1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/platform_device.h>
26 #include <linux/property.h>
27 #include <linux/fsl/mc.h>
28 #include <linux/module.h>
29 #include <linux/cc_platform.h>
30 #include <trace/events/iommu.h>
31 
32 #include "dma-iommu.h"
33 
34 static struct kset *iommu_group_kset;
35 static DEFINE_IDA(iommu_group_ida);
36 
37 static unsigned int iommu_def_domain_type __read_mostly;
38 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
39 static u32 iommu_cmd_line __read_mostly;
40 
41 struct iommu_group {
42 	struct kobject kobj;
43 	struct kobject *devices_kobj;
44 	struct list_head devices;
45 	struct mutex mutex;
46 	void *iommu_data;
47 	void (*iommu_data_release)(void *iommu_data);
48 	char *name;
49 	int id;
50 	struct iommu_domain *default_domain;
51 	struct iommu_domain *blocking_domain;
52 	struct iommu_domain *domain;
53 	struct list_head entry;
54 	unsigned int owner_cnt;
55 	void *owner;
56 };
57 
58 struct group_device {
59 	struct list_head list;
60 	struct device *dev;
61 	char *name;
62 };
63 
64 struct iommu_group_attribute {
65 	struct attribute attr;
66 	ssize_t (*show)(struct iommu_group *group, char *buf);
67 	ssize_t (*store)(struct iommu_group *group,
68 			 const char *buf, size_t count);
69 };
70 
71 static const char * const iommu_group_resv_type_string[] = {
72 	[IOMMU_RESV_DIRECT]			= "direct",
73 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
74 	[IOMMU_RESV_RESERVED]			= "reserved",
75 	[IOMMU_RESV_MSI]			= "msi",
76 	[IOMMU_RESV_SW_MSI]			= "msi",
77 };
78 
79 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
80 #define IOMMU_CMD_LINE_STRICT		BIT(1)
81 
82 static int iommu_bus_notifier(struct notifier_block *nb,
83 			      unsigned long action, void *data);
84 static int iommu_alloc_default_domain(struct iommu_group *group,
85 				      struct device *dev);
86 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
87 						 unsigned type);
88 static int __iommu_attach_device(struct iommu_domain *domain,
89 				 struct device *dev);
90 static int __iommu_attach_group(struct iommu_domain *domain,
91 				struct iommu_group *group);
92 static int __iommu_group_set_domain(struct iommu_group *group,
93 				    struct iommu_domain *new_domain);
94 static int iommu_create_device_direct_mappings(struct iommu_group *group,
95 					       struct device *dev);
96 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
97 static ssize_t iommu_group_store_type(struct iommu_group *group,
98 				      const char *buf, size_t count);
99 
100 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
101 struct iommu_group_attribute iommu_group_attr_##_name =		\
102 	__ATTR(_name, _mode, _show, _store)
103 
104 #define to_iommu_group_attr(_attr)	\
105 	container_of(_attr, struct iommu_group_attribute, attr)
106 #define to_iommu_group(_kobj)		\
107 	container_of(_kobj, struct iommu_group, kobj)
108 
109 static LIST_HEAD(iommu_device_list);
110 static DEFINE_SPINLOCK(iommu_device_lock);
111 
112 static struct bus_type * const iommu_buses[] = {
113 	&platform_bus_type,
114 #ifdef CONFIG_PCI
115 	&pci_bus_type,
116 #endif
117 #ifdef CONFIG_ARM_AMBA
118 	&amba_bustype,
119 #endif
120 #ifdef CONFIG_FSL_MC_BUS
121 	&fsl_mc_bus_type,
122 #endif
123 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
124 	&host1x_context_device_bus_type,
125 #endif
126 };
127 
128 /*
129  * Use a function instead of an array here because the domain-type is a
130  * bit-field, so an array would waste memory.
131  */
iommu_domain_type_str(unsigned int t)132 static const char *iommu_domain_type_str(unsigned int t)
133 {
134 	switch (t) {
135 	case IOMMU_DOMAIN_BLOCKED:
136 		return "Blocked";
137 	case IOMMU_DOMAIN_IDENTITY:
138 		return "Passthrough";
139 	case IOMMU_DOMAIN_UNMANAGED:
140 		return "Unmanaged";
141 	case IOMMU_DOMAIN_DMA:
142 	case IOMMU_DOMAIN_DMA_FQ:
143 		return "Translated";
144 	default:
145 		return "Unknown";
146 	}
147 }
148 
iommu_subsys_init(void)149 static int __init iommu_subsys_init(void)
150 {
151 	struct notifier_block *nb;
152 
153 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
154 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
155 			iommu_set_default_passthrough(false);
156 		else
157 			iommu_set_default_translated(false);
158 
159 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
160 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
161 			iommu_set_default_translated(false);
162 		}
163 	}
164 
165 	if (!iommu_default_passthrough() && !iommu_dma_strict)
166 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
167 
168 	pr_info("Default domain type: %s %s\n",
169 		iommu_domain_type_str(iommu_def_domain_type),
170 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
171 			"(set via kernel command line)" : "");
172 
173 	if (!iommu_default_passthrough())
174 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
175 			iommu_dma_strict ? "strict" : "lazy",
176 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
177 				"(set via kernel command line)" : "");
178 
179 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
180 	if (!nb)
181 		return -ENOMEM;
182 
183 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
184 		nb[i].notifier_call = iommu_bus_notifier;
185 		bus_register_notifier(iommu_buses[i], &nb[i]);
186 	}
187 
188 	return 0;
189 }
190 subsys_initcall(iommu_subsys_init);
191 
remove_iommu_group(struct device * dev,void * data)192 static int remove_iommu_group(struct device *dev, void *data)
193 {
194 	if (dev->iommu && dev->iommu->iommu_dev == data)
195 		iommu_release_device(dev);
196 
197 	return 0;
198 }
199 
200 /**
201  * iommu_device_register() - Register an IOMMU hardware instance
202  * @iommu: IOMMU handle for the instance
203  * @ops:   IOMMU ops to associate with the instance
204  * @hwdev: (optional) actual instance device, used for fwnode lookup
205  *
206  * Return: 0 on success, or an error.
207  */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)208 int iommu_device_register(struct iommu_device *iommu,
209 			  const struct iommu_ops *ops, struct device *hwdev)
210 {
211 	int err = 0;
212 
213 	/* We need to be able to take module references appropriately */
214 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
215 		return -EINVAL;
216 	/*
217 	 * Temporarily enforce global restriction to a single driver. This was
218 	 * already the de-facto behaviour, since any possible combination of
219 	 * existing drivers would compete for at least the PCI or platform bus.
220 	 */
221 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
222 		return -EBUSY;
223 
224 	iommu->ops = ops;
225 	if (hwdev)
226 		iommu->fwnode = dev_fwnode(hwdev);
227 
228 	spin_lock(&iommu_device_lock);
229 	list_add_tail(&iommu->list, &iommu_device_list);
230 	spin_unlock(&iommu_device_lock);
231 
232 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
233 		iommu_buses[i]->iommu_ops = ops;
234 		err = bus_iommu_probe(iommu_buses[i]);
235 	}
236 	if (err)
237 		iommu_device_unregister(iommu);
238 	return err;
239 }
240 EXPORT_SYMBOL_GPL(iommu_device_register);
241 
iommu_device_unregister(struct iommu_device * iommu)242 void iommu_device_unregister(struct iommu_device *iommu)
243 {
244 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
245 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
246 
247 	spin_lock(&iommu_device_lock);
248 	list_del(&iommu->list);
249 	spin_unlock(&iommu_device_lock);
250 }
251 EXPORT_SYMBOL_GPL(iommu_device_unregister);
252 
dev_iommu_get(struct device * dev)253 static struct dev_iommu *dev_iommu_get(struct device *dev)
254 {
255 	struct dev_iommu *param = dev->iommu;
256 
257 	if (param)
258 		return param;
259 
260 	param = kzalloc(sizeof(*param), GFP_KERNEL);
261 	if (!param)
262 		return NULL;
263 
264 	mutex_init(&param->lock);
265 	dev->iommu = param;
266 	return param;
267 }
268 
dev_iommu_free(struct device * dev)269 static void dev_iommu_free(struct device *dev)
270 {
271 	struct dev_iommu *param = dev->iommu;
272 
273 	dev->iommu = NULL;
274 	if (param->fwspec) {
275 		fwnode_handle_put(param->fwspec->iommu_fwnode);
276 		kfree(param->fwspec);
277 	}
278 	kfree(param);
279 }
280 
__iommu_probe_device(struct device * dev,struct list_head * group_list)281 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
282 {
283 	const struct iommu_ops *ops = dev->bus->iommu_ops;
284 	struct iommu_device *iommu_dev;
285 	struct iommu_group *group;
286 	static DEFINE_MUTEX(iommu_probe_device_lock);
287 	int ret;
288 
289 	if (!ops)
290 		return -ENODEV;
291 	/*
292 	 * Serialise to avoid races between IOMMU drivers registering in
293 	 * parallel and/or the "replay" calls from ACPI/OF code via client
294 	 * driver probe. Once the latter have been cleaned up we should
295 	 * probably be able to use device_lock() here to minimise the scope,
296 	 * but for now enforcing a simple global ordering is fine.
297 	 */
298 	mutex_lock(&iommu_probe_device_lock);
299 	if (!dev_iommu_get(dev)) {
300 		ret = -ENOMEM;
301 		goto err_unlock;
302 	}
303 
304 	if (!try_module_get(ops->owner)) {
305 		ret = -EINVAL;
306 		goto err_free;
307 	}
308 
309 	iommu_dev = ops->probe_device(dev);
310 	if (IS_ERR(iommu_dev)) {
311 		ret = PTR_ERR(iommu_dev);
312 		goto out_module_put;
313 	}
314 
315 	dev->iommu->iommu_dev = iommu_dev;
316 
317 	group = iommu_group_get_for_dev(dev);
318 	if (IS_ERR(group)) {
319 		ret = PTR_ERR(group);
320 		goto out_release;
321 	}
322 
323 	mutex_lock(&group->mutex);
324 	if (group_list && !group->default_domain && list_empty(&group->entry))
325 		list_add_tail(&group->entry, group_list);
326 	mutex_unlock(&group->mutex);
327 	iommu_group_put(group);
328 
329 	mutex_unlock(&iommu_probe_device_lock);
330 	iommu_device_link(iommu_dev, dev);
331 
332 	return 0;
333 
334 out_release:
335 	if (ops->release_device)
336 		ops->release_device(dev);
337 
338 out_module_put:
339 	module_put(ops->owner);
340 
341 err_free:
342 	dev_iommu_free(dev);
343 
344 err_unlock:
345 	mutex_unlock(&iommu_probe_device_lock);
346 
347 	return ret;
348 }
349 
iommu_probe_device(struct device * dev)350 int iommu_probe_device(struct device *dev)
351 {
352 	const struct iommu_ops *ops;
353 	struct iommu_group *group;
354 	int ret;
355 
356 	ret = __iommu_probe_device(dev, NULL);
357 	if (ret)
358 		goto err_out;
359 
360 	group = iommu_group_get(dev);
361 	if (!group) {
362 		ret = -ENODEV;
363 		goto err_release;
364 	}
365 
366 	/*
367 	 * Try to allocate a default domain - needs support from the
368 	 * IOMMU driver. There are still some drivers which don't
369 	 * support default domains, so the return value is not yet
370 	 * checked.
371 	 */
372 	mutex_lock(&group->mutex);
373 	iommu_alloc_default_domain(group, dev);
374 
375 	/*
376 	 * If device joined an existing group which has been claimed, don't
377 	 * attach the default domain.
378 	 */
379 	if (group->default_domain && !group->owner) {
380 		ret = __iommu_attach_device(group->default_domain, dev);
381 		if (ret) {
382 			mutex_unlock(&group->mutex);
383 			iommu_group_put(group);
384 			goto err_release;
385 		}
386 	}
387 
388 	iommu_create_device_direct_mappings(group, dev);
389 
390 	mutex_unlock(&group->mutex);
391 	iommu_group_put(group);
392 
393 	ops = dev_iommu_ops(dev);
394 	if (ops->probe_finalize)
395 		ops->probe_finalize(dev);
396 
397 	return 0;
398 
399 err_release:
400 	iommu_release_device(dev);
401 
402 err_out:
403 	return ret;
404 
405 }
406 
iommu_release_device(struct device * dev)407 void iommu_release_device(struct device *dev)
408 {
409 	const struct iommu_ops *ops;
410 
411 	if (!dev->iommu)
412 		return;
413 
414 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
415 
416 	ops = dev_iommu_ops(dev);
417 	if (ops->release_device)
418 		ops->release_device(dev);
419 
420 	iommu_group_remove_device(dev);
421 	module_put(ops->owner);
422 	dev_iommu_free(dev);
423 }
424 
iommu_set_def_domain_type(char * str)425 static int __init iommu_set_def_domain_type(char *str)
426 {
427 	bool pt;
428 	int ret;
429 
430 	ret = kstrtobool(str, &pt);
431 	if (ret)
432 		return ret;
433 
434 	if (pt)
435 		iommu_set_default_passthrough(true);
436 	else
437 		iommu_set_default_translated(true);
438 
439 	return 0;
440 }
441 early_param("iommu.passthrough", iommu_set_def_domain_type);
442 
iommu_dma_setup(char * str)443 static int __init iommu_dma_setup(char *str)
444 {
445 	int ret = kstrtobool(str, &iommu_dma_strict);
446 
447 	if (!ret)
448 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
449 	return ret;
450 }
451 early_param("iommu.strict", iommu_dma_setup);
452 
iommu_set_dma_strict(void)453 void iommu_set_dma_strict(void)
454 {
455 	iommu_dma_strict = true;
456 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
457 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
458 }
459 
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)460 static ssize_t iommu_group_attr_show(struct kobject *kobj,
461 				     struct attribute *__attr, char *buf)
462 {
463 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
464 	struct iommu_group *group = to_iommu_group(kobj);
465 	ssize_t ret = -EIO;
466 
467 	if (attr->show)
468 		ret = attr->show(group, buf);
469 	return ret;
470 }
471 
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)472 static ssize_t iommu_group_attr_store(struct kobject *kobj,
473 				      struct attribute *__attr,
474 				      const char *buf, size_t count)
475 {
476 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
477 	struct iommu_group *group = to_iommu_group(kobj);
478 	ssize_t ret = -EIO;
479 
480 	if (attr->store)
481 		ret = attr->store(group, buf, count);
482 	return ret;
483 }
484 
485 static const struct sysfs_ops iommu_group_sysfs_ops = {
486 	.show = iommu_group_attr_show,
487 	.store = iommu_group_attr_store,
488 };
489 
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)490 static int iommu_group_create_file(struct iommu_group *group,
491 				   struct iommu_group_attribute *attr)
492 {
493 	return sysfs_create_file(&group->kobj, &attr->attr);
494 }
495 
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)496 static void iommu_group_remove_file(struct iommu_group *group,
497 				    struct iommu_group_attribute *attr)
498 {
499 	sysfs_remove_file(&group->kobj, &attr->attr);
500 }
501 
iommu_group_show_name(struct iommu_group * group,char * buf)502 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
503 {
504 	return sprintf(buf, "%s\n", group->name);
505 }
506 
507 /**
508  * iommu_insert_resv_region - Insert a new region in the
509  * list of reserved regions.
510  * @new: new region to insert
511  * @regions: list of regions
512  *
513  * Elements are sorted by start address and overlapping segments
514  * of the same type are merged.
515  */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)516 static int iommu_insert_resv_region(struct iommu_resv_region *new,
517 				    struct list_head *regions)
518 {
519 	struct iommu_resv_region *iter, *tmp, *nr, *top;
520 	LIST_HEAD(stack);
521 
522 	nr = iommu_alloc_resv_region(new->start, new->length,
523 				     new->prot, new->type, GFP_KERNEL);
524 	if (!nr)
525 		return -ENOMEM;
526 
527 	/* First add the new element based on start address sorting */
528 	list_for_each_entry(iter, regions, list) {
529 		if (nr->start < iter->start ||
530 		    (nr->start == iter->start && nr->type <= iter->type))
531 			break;
532 	}
533 	list_add_tail(&nr->list, &iter->list);
534 
535 	/* Merge overlapping segments of type nr->type in @regions, if any */
536 	list_for_each_entry_safe(iter, tmp, regions, list) {
537 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
538 
539 		/* no merge needed on elements of different types than @new */
540 		if (iter->type != new->type) {
541 			list_move_tail(&iter->list, &stack);
542 			continue;
543 		}
544 
545 		/* look for the last stack element of same type as @iter */
546 		list_for_each_entry_reverse(top, &stack, list)
547 			if (top->type == iter->type)
548 				goto check_overlap;
549 
550 		list_move_tail(&iter->list, &stack);
551 		continue;
552 
553 check_overlap:
554 		top_end = top->start + top->length - 1;
555 
556 		if (iter->start > top_end + 1) {
557 			list_move_tail(&iter->list, &stack);
558 		} else {
559 			top->length = max(top_end, iter_end) - top->start + 1;
560 			list_del(&iter->list);
561 			kfree(iter);
562 		}
563 	}
564 	list_splice(&stack, regions);
565 	return 0;
566 }
567 
568 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)569 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
570 				 struct list_head *group_resv_regions)
571 {
572 	struct iommu_resv_region *entry;
573 	int ret = 0;
574 
575 	list_for_each_entry(entry, dev_resv_regions, list) {
576 		ret = iommu_insert_resv_region(entry, group_resv_regions);
577 		if (ret)
578 			break;
579 	}
580 	return ret;
581 }
582 
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)583 int iommu_get_group_resv_regions(struct iommu_group *group,
584 				 struct list_head *head)
585 {
586 	struct group_device *device;
587 	int ret = 0;
588 
589 	mutex_lock(&group->mutex);
590 	list_for_each_entry(device, &group->devices, list) {
591 		struct list_head dev_resv_regions;
592 
593 		/*
594 		 * Non-API groups still expose reserved_regions in sysfs,
595 		 * so filter out calls that get here that way.
596 		 */
597 		if (!device->dev->iommu)
598 			break;
599 
600 		INIT_LIST_HEAD(&dev_resv_regions);
601 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
602 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
603 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
604 		if (ret)
605 			break;
606 	}
607 	mutex_unlock(&group->mutex);
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
611 
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)612 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
613 					     char *buf)
614 {
615 	struct iommu_resv_region *region, *next;
616 	struct list_head group_resv_regions;
617 	char *str = buf;
618 
619 	INIT_LIST_HEAD(&group_resv_regions);
620 	iommu_get_group_resv_regions(group, &group_resv_regions);
621 
622 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
623 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
624 			       (long long int)region->start,
625 			       (long long int)(region->start +
626 						region->length - 1),
627 			       iommu_group_resv_type_string[region->type]);
628 		kfree(region);
629 	}
630 
631 	return (str - buf);
632 }
633 
iommu_group_show_type(struct iommu_group * group,char * buf)634 static ssize_t iommu_group_show_type(struct iommu_group *group,
635 				     char *buf)
636 {
637 	char *type = "unknown\n";
638 
639 	mutex_lock(&group->mutex);
640 	if (group->default_domain) {
641 		switch (group->default_domain->type) {
642 		case IOMMU_DOMAIN_BLOCKED:
643 			type = "blocked\n";
644 			break;
645 		case IOMMU_DOMAIN_IDENTITY:
646 			type = "identity\n";
647 			break;
648 		case IOMMU_DOMAIN_UNMANAGED:
649 			type = "unmanaged\n";
650 			break;
651 		case IOMMU_DOMAIN_DMA:
652 			type = "DMA\n";
653 			break;
654 		case IOMMU_DOMAIN_DMA_FQ:
655 			type = "DMA-FQ\n";
656 			break;
657 		}
658 	}
659 	mutex_unlock(&group->mutex);
660 	strcpy(buf, type);
661 
662 	return strlen(type);
663 }
664 
665 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
666 
667 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
668 			iommu_group_show_resv_regions, NULL);
669 
670 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
671 			iommu_group_store_type);
672 
iommu_group_release(struct kobject * kobj)673 static void iommu_group_release(struct kobject *kobj)
674 {
675 	struct iommu_group *group = to_iommu_group(kobj);
676 
677 	pr_debug("Releasing group %d\n", group->id);
678 
679 	if (group->iommu_data_release)
680 		group->iommu_data_release(group->iommu_data);
681 
682 	ida_free(&iommu_group_ida, group->id);
683 
684 	if (group->default_domain)
685 		iommu_domain_free(group->default_domain);
686 	if (group->blocking_domain)
687 		iommu_domain_free(group->blocking_domain);
688 
689 	kfree(group->name);
690 	kfree(group);
691 }
692 
693 static struct kobj_type iommu_group_ktype = {
694 	.sysfs_ops = &iommu_group_sysfs_ops,
695 	.release = iommu_group_release,
696 };
697 
698 /**
699  * iommu_group_alloc - Allocate a new group
700  *
701  * This function is called by an iommu driver to allocate a new iommu
702  * group.  The iommu group represents the minimum granularity of the iommu.
703  * Upon successful return, the caller holds a reference to the supplied
704  * group in order to hold the group until devices are added.  Use
705  * iommu_group_put() to release this extra reference count, allowing the
706  * group to be automatically reclaimed once it has no devices or external
707  * references.
708  */
iommu_group_alloc(void)709 struct iommu_group *iommu_group_alloc(void)
710 {
711 	struct iommu_group *group;
712 	int ret;
713 
714 	group = kzalloc(sizeof(*group), GFP_KERNEL);
715 	if (!group)
716 		return ERR_PTR(-ENOMEM);
717 
718 	group->kobj.kset = iommu_group_kset;
719 	mutex_init(&group->mutex);
720 	INIT_LIST_HEAD(&group->devices);
721 	INIT_LIST_HEAD(&group->entry);
722 
723 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
724 	if (ret < 0) {
725 		kfree(group);
726 		return ERR_PTR(ret);
727 	}
728 	group->id = ret;
729 
730 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
731 				   NULL, "%d", group->id);
732 	if (ret) {
733 		kobject_put(&group->kobj);
734 		return ERR_PTR(ret);
735 	}
736 
737 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
738 	if (!group->devices_kobj) {
739 		kobject_put(&group->kobj); /* triggers .release & free */
740 		return ERR_PTR(-ENOMEM);
741 	}
742 
743 	/*
744 	 * The devices_kobj holds a reference on the group kobject, so
745 	 * as long as that exists so will the group.  We can therefore
746 	 * use the devices_kobj for reference counting.
747 	 */
748 	kobject_put(&group->kobj);
749 
750 	ret = iommu_group_create_file(group,
751 				      &iommu_group_attr_reserved_regions);
752 	if (ret)
753 		return ERR_PTR(ret);
754 
755 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
756 	if (ret)
757 		return ERR_PTR(ret);
758 
759 	pr_debug("Allocated group %d\n", group->id);
760 
761 	return group;
762 }
763 EXPORT_SYMBOL_GPL(iommu_group_alloc);
764 
iommu_group_get_by_id(int id)765 struct iommu_group *iommu_group_get_by_id(int id)
766 {
767 	struct kobject *group_kobj;
768 	struct iommu_group *group;
769 	const char *name;
770 
771 	if (!iommu_group_kset)
772 		return NULL;
773 
774 	name = kasprintf(GFP_KERNEL, "%d", id);
775 	if (!name)
776 		return NULL;
777 
778 	group_kobj = kset_find_obj(iommu_group_kset, name);
779 	kfree(name);
780 
781 	if (!group_kobj)
782 		return NULL;
783 
784 	group = container_of(group_kobj, struct iommu_group, kobj);
785 	BUG_ON(group->id != id);
786 
787 	kobject_get(group->devices_kobj);
788 	kobject_put(&group->kobj);
789 
790 	return group;
791 }
792 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
793 
794 /**
795  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
796  * @group: the group
797  *
798  * iommu drivers can store data in the group for use when doing iommu
799  * operations.  This function provides a way to retrieve it.  Caller
800  * should hold a group reference.
801  */
iommu_group_get_iommudata(struct iommu_group * group)802 void *iommu_group_get_iommudata(struct iommu_group *group)
803 {
804 	return group->iommu_data;
805 }
806 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
807 
808 /**
809  * iommu_group_set_iommudata - set iommu_data for a group
810  * @group: the group
811  * @iommu_data: new data
812  * @release: release function for iommu_data
813  *
814  * iommu drivers can store data in the group for use when doing iommu
815  * operations.  This function provides a way to set the data after
816  * the group has been allocated.  Caller should hold a group reference.
817  */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))818 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
819 			       void (*release)(void *iommu_data))
820 {
821 	group->iommu_data = iommu_data;
822 	group->iommu_data_release = release;
823 }
824 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
825 
826 /**
827  * iommu_group_set_name - set name for a group
828  * @group: the group
829  * @name: name
830  *
831  * Allow iommu driver to set a name for a group.  When set it will
832  * appear in a name attribute file under the group in sysfs.
833  */
iommu_group_set_name(struct iommu_group * group,const char * name)834 int iommu_group_set_name(struct iommu_group *group, const char *name)
835 {
836 	int ret;
837 
838 	if (group->name) {
839 		iommu_group_remove_file(group, &iommu_group_attr_name);
840 		kfree(group->name);
841 		group->name = NULL;
842 		if (!name)
843 			return 0;
844 	}
845 
846 	group->name = kstrdup(name, GFP_KERNEL);
847 	if (!group->name)
848 		return -ENOMEM;
849 
850 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
851 	if (ret) {
852 		kfree(group->name);
853 		group->name = NULL;
854 		return ret;
855 	}
856 
857 	return 0;
858 }
859 EXPORT_SYMBOL_GPL(iommu_group_set_name);
860 
iommu_create_device_direct_mappings(struct iommu_group * group,struct device * dev)861 static int iommu_create_device_direct_mappings(struct iommu_group *group,
862 					       struct device *dev)
863 {
864 	struct iommu_domain *domain = group->default_domain;
865 	struct iommu_resv_region *entry;
866 	struct list_head mappings;
867 	unsigned long pg_size;
868 	int ret = 0;
869 
870 	if (!domain || !iommu_is_dma_domain(domain))
871 		return 0;
872 
873 	BUG_ON(!domain->pgsize_bitmap);
874 
875 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
876 	INIT_LIST_HEAD(&mappings);
877 
878 	iommu_get_resv_regions(dev, &mappings);
879 
880 	/* We need to consider overlapping regions for different devices */
881 	list_for_each_entry(entry, &mappings, list) {
882 		dma_addr_t start, end, addr;
883 		size_t map_size = 0;
884 
885 		start = ALIGN(entry->start, pg_size);
886 		end   = ALIGN(entry->start + entry->length, pg_size);
887 
888 		if (entry->type != IOMMU_RESV_DIRECT &&
889 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
890 			continue;
891 
892 		for (addr = start; addr <= end; addr += pg_size) {
893 			phys_addr_t phys_addr;
894 
895 			if (addr == end)
896 				goto map_end;
897 
898 			phys_addr = iommu_iova_to_phys(domain, addr);
899 			if (!phys_addr) {
900 				map_size += pg_size;
901 				continue;
902 			}
903 
904 map_end:
905 			if (map_size) {
906 				ret = iommu_map(domain, addr - map_size,
907 						addr - map_size, map_size,
908 						entry->prot);
909 				if (ret)
910 					goto out;
911 				map_size = 0;
912 			}
913 		}
914 
915 	}
916 
917 	iommu_flush_iotlb_all(domain);
918 
919 out:
920 	iommu_put_resv_regions(dev, &mappings);
921 
922 	return ret;
923 }
924 
iommu_is_attach_deferred(struct device * dev)925 static bool iommu_is_attach_deferred(struct device *dev)
926 {
927 	const struct iommu_ops *ops = dev_iommu_ops(dev);
928 
929 	if (ops->is_attach_deferred)
930 		return ops->is_attach_deferred(dev);
931 
932 	return false;
933 }
934 
935 /**
936  * iommu_group_add_device - add a device to an iommu group
937  * @group: the group into which to add the device (reference should be held)
938  * @dev: the device
939  *
940  * This function is called by an iommu driver to add a device into a
941  * group.  Adding a device increments the group reference count.
942  */
iommu_group_add_device(struct iommu_group * group,struct device * dev)943 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
944 {
945 	int ret, i = 0;
946 	struct group_device *device;
947 
948 	device = kzalloc(sizeof(*device), GFP_KERNEL);
949 	if (!device)
950 		return -ENOMEM;
951 
952 	device->dev = dev;
953 
954 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
955 	if (ret)
956 		goto err_free_device;
957 
958 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
959 rename:
960 	if (!device->name) {
961 		ret = -ENOMEM;
962 		goto err_remove_link;
963 	}
964 
965 	ret = sysfs_create_link_nowarn(group->devices_kobj,
966 				       &dev->kobj, device->name);
967 	if (ret) {
968 		if (ret == -EEXIST && i >= 0) {
969 			/*
970 			 * Account for the slim chance of collision
971 			 * and append an instance to the name.
972 			 */
973 			kfree(device->name);
974 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
975 						 kobject_name(&dev->kobj), i++);
976 			goto rename;
977 		}
978 		goto err_free_name;
979 	}
980 
981 	kobject_get(group->devices_kobj);
982 
983 	dev->iommu_group = group;
984 
985 	mutex_lock(&group->mutex);
986 	list_add_tail(&device->list, &group->devices);
987 	if (group->domain  && !iommu_is_attach_deferred(dev))
988 		ret = __iommu_attach_device(group->domain, dev);
989 	mutex_unlock(&group->mutex);
990 	if (ret)
991 		goto err_put_group;
992 
993 	trace_add_device_to_group(group->id, dev);
994 
995 	dev_info(dev, "Adding to iommu group %d\n", group->id);
996 
997 	return 0;
998 
999 err_put_group:
1000 	mutex_lock(&group->mutex);
1001 	list_del(&device->list);
1002 	mutex_unlock(&group->mutex);
1003 	dev->iommu_group = NULL;
1004 	kobject_put(group->devices_kobj);
1005 	sysfs_remove_link(group->devices_kobj, device->name);
1006 err_free_name:
1007 	kfree(device->name);
1008 err_remove_link:
1009 	sysfs_remove_link(&dev->kobj, "iommu_group");
1010 err_free_device:
1011 	kfree(device);
1012 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1016 
1017 /**
1018  * iommu_group_remove_device - remove a device from it's current group
1019  * @dev: device to be removed
1020  *
1021  * This function is called by an iommu driver to remove the device from
1022  * it's current group.  This decrements the iommu group reference count.
1023  */
iommu_group_remove_device(struct device * dev)1024 void iommu_group_remove_device(struct device *dev)
1025 {
1026 	struct iommu_group *group = dev->iommu_group;
1027 	struct group_device *tmp_device, *device = NULL;
1028 
1029 	if (!group)
1030 		return;
1031 
1032 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1033 
1034 	mutex_lock(&group->mutex);
1035 	list_for_each_entry(tmp_device, &group->devices, list) {
1036 		if (tmp_device->dev == dev) {
1037 			device = tmp_device;
1038 			list_del(&device->list);
1039 			break;
1040 		}
1041 	}
1042 	mutex_unlock(&group->mutex);
1043 
1044 	if (!device)
1045 		return;
1046 
1047 	sysfs_remove_link(group->devices_kobj, device->name);
1048 	sysfs_remove_link(&dev->kobj, "iommu_group");
1049 
1050 	trace_remove_device_from_group(group->id, dev);
1051 
1052 	kfree(device->name);
1053 	kfree(device);
1054 	dev->iommu_group = NULL;
1055 	kobject_put(group->devices_kobj);
1056 }
1057 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1058 
iommu_group_device_count(struct iommu_group * group)1059 static int iommu_group_device_count(struct iommu_group *group)
1060 {
1061 	struct group_device *entry;
1062 	int ret = 0;
1063 
1064 	list_for_each_entry(entry, &group->devices, list)
1065 		ret++;
1066 
1067 	return ret;
1068 }
1069 
__iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1070 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1071 				      int (*fn)(struct device *, void *))
1072 {
1073 	struct group_device *device;
1074 	int ret = 0;
1075 
1076 	list_for_each_entry(device, &group->devices, list) {
1077 		ret = fn(device->dev, data);
1078 		if (ret)
1079 			break;
1080 	}
1081 	return ret;
1082 }
1083 
1084 /**
1085  * iommu_group_for_each_dev - iterate over each device in the group
1086  * @group: the group
1087  * @data: caller opaque data to be passed to callback function
1088  * @fn: caller supplied callback function
1089  *
1090  * This function is called by group users to iterate over group devices.
1091  * Callers should hold a reference count to the group during callback.
1092  * The group->mutex is held across callbacks, which will block calls to
1093  * iommu_group_add/remove_device.
1094  */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1095 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1096 			     int (*fn)(struct device *, void *))
1097 {
1098 	int ret;
1099 
1100 	mutex_lock(&group->mutex);
1101 	ret = __iommu_group_for_each_dev(group, data, fn);
1102 	mutex_unlock(&group->mutex);
1103 
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1107 
1108 /**
1109  * iommu_group_get - Return the group for a device and increment reference
1110  * @dev: get the group that this device belongs to
1111  *
1112  * This function is called by iommu drivers and users to get the group
1113  * for the specified device.  If found, the group is returned and the group
1114  * reference in incremented, else NULL.
1115  */
iommu_group_get(struct device * dev)1116 struct iommu_group *iommu_group_get(struct device *dev)
1117 {
1118 	struct iommu_group *group = dev->iommu_group;
1119 
1120 	if (group)
1121 		kobject_get(group->devices_kobj);
1122 
1123 	return group;
1124 }
1125 EXPORT_SYMBOL_GPL(iommu_group_get);
1126 
1127 /**
1128  * iommu_group_ref_get - Increment reference on a group
1129  * @group: the group to use, must not be NULL
1130  *
1131  * This function is called by iommu drivers to take additional references on an
1132  * existing group.  Returns the given group for convenience.
1133  */
iommu_group_ref_get(struct iommu_group * group)1134 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1135 {
1136 	kobject_get(group->devices_kobj);
1137 	return group;
1138 }
1139 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1140 
1141 /**
1142  * iommu_group_put - Decrement group reference
1143  * @group: the group to use
1144  *
1145  * This function is called by iommu drivers and users to release the
1146  * iommu group.  Once the reference count is zero, the group is released.
1147  */
iommu_group_put(struct iommu_group * group)1148 void iommu_group_put(struct iommu_group *group)
1149 {
1150 	if (group)
1151 		kobject_put(group->devices_kobj);
1152 }
1153 EXPORT_SYMBOL_GPL(iommu_group_put);
1154 
1155 /**
1156  * iommu_register_device_fault_handler() - Register a device fault handler
1157  * @dev: the device
1158  * @handler: the fault handler
1159  * @data: private data passed as argument to the handler
1160  *
1161  * When an IOMMU fault event is received, this handler gets called with the
1162  * fault event and data as argument. The handler should return 0 on success. If
1163  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1164  * complete the fault by calling iommu_page_response() with one of the following
1165  * response code:
1166  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1167  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1168  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1169  *   page faults if possible.
1170  *
1171  * Return 0 if the fault handler was installed successfully, or an error.
1172  */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1173 int iommu_register_device_fault_handler(struct device *dev,
1174 					iommu_dev_fault_handler_t handler,
1175 					void *data)
1176 {
1177 	struct dev_iommu *param = dev->iommu;
1178 	int ret = 0;
1179 
1180 	if (!param)
1181 		return -EINVAL;
1182 
1183 	mutex_lock(&param->lock);
1184 	/* Only allow one fault handler registered for each device */
1185 	if (param->fault_param) {
1186 		ret = -EBUSY;
1187 		goto done_unlock;
1188 	}
1189 
1190 	get_device(dev);
1191 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1192 	if (!param->fault_param) {
1193 		put_device(dev);
1194 		ret = -ENOMEM;
1195 		goto done_unlock;
1196 	}
1197 	param->fault_param->handler = handler;
1198 	param->fault_param->data = data;
1199 	mutex_init(&param->fault_param->lock);
1200 	INIT_LIST_HEAD(&param->fault_param->faults);
1201 
1202 done_unlock:
1203 	mutex_unlock(&param->lock);
1204 
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1208 
1209 /**
1210  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1211  * @dev: the device
1212  *
1213  * Remove the device fault handler installed with
1214  * iommu_register_device_fault_handler().
1215  *
1216  * Return 0 on success, or an error.
1217  */
iommu_unregister_device_fault_handler(struct device * dev)1218 int iommu_unregister_device_fault_handler(struct device *dev)
1219 {
1220 	struct dev_iommu *param = dev->iommu;
1221 	int ret = 0;
1222 
1223 	if (!param)
1224 		return -EINVAL;
1225 
1226 	mutex_lock(&param->lock);
1227 
1228 	if (!param->fault_param)
1229 		goto unlock;
1230 
1231 	/* we cannot unregister handler if there are pending faults */
1232 	if (!list_empty(&param->fault_param->faults)) {
1233 		ret = -EBUSY;
1234 		goto unlock;
1235 	}
1236 
1237 	kfree(param->fault_param);
1238 	param->fault_param = NULL;
1239 	put_device(dev);
1240 unlock:
1241 	mutex_unlock(&param->lock);
1242 
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1246 
1247 /**
1248  * iommu_report_device_fault() - Report fault event to device driver
1249  * @dev: the device
1250  * @evt: fault event data
1251  *
1252  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1253  * handler. When this function fails and the fault is recoverable, it is the
1254  * caller's responsibility to complete the fault.
1255  *
1256  * Return 0 on success, or an error.
1257  */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1258 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1259 {
1260 	struct dev_iommu *param = dev->iommu;
1261 	struct iommu_fault_event *evt_pending = NULL;
1262 	struct iommu_fault_param *fparam;
1263 	int ret = 0;
1264 
1265 	if (!param || !evt)
1266 		return -EINVAL;
1267 
1268 	/* we only report device fault if there is a handler registered */
1269 	mutex_lock(&param->lock);
1270 	fparam = param->fault_param;
1271 	if (!fparam || !fparam->handler) {
1272 		ret = -EINVAL;
1273 		goto done_unlock;
1274 	}
1275 
1276 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1277 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1278 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1279 				      GFP_KERNEL);
1280 		if (!evt_pending) {
1281 			ret = -ENOMEM;
1282 			goto done_unlock;
1283 		}
1284 		mutex_lock(&fparam->lock);
1285 		list_add_tail(&evt_pending->list, &fparam->faults);
1286 		mutex_unlock(&fparam->lock);
1287 	}
1288 
1289 	ret = fparam->handler(&evt->fault, fparam->data);
1290 	if (ret && evt_pending) {
1291 		mutex_lock(&fparam->lock);
1292 		list_del(&evt_pending->list);
1293 		mutex_unlock(&fparam->lock);
1294 		kfree(evt_pending);
1295 	}
1296 done_unlock:
1297 	mutex_unlock(&param->lock);
1298 	return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1301 
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1302 int iommu_page_response(struct device *dev,
1303 			struct iommu_page_response *msg)
1304 {
1305 	bool needs_pasid;
1306 	int ret = -EINVAL;
1307 	struct iommu_fault_event *evt;
1308 	struct iommu_fault_page_request *prm;
1309 	struct dev_iommu *param = dev->iommu;
1310 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1311 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1312 
1313 	if (!ops->page_response)
1314 		return -ENODEV;
1315 
1316 	if (!param || !param->fault_param)
1317 		return -EINVAL;
1318 
1319 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1320 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1321 		return -EINVAL;
1322 
1323 	/* Only send response if there is a fault report pending */
1324 	mutex_lock(&param->fault_param->lock);
1325 	if (list_empty(&param->fault_param->faults)) {
1326 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1327 		goto done_unlock;
1328 	}
1329 	/*
1330 	 * Check if we have a matching page request pending to respond,
1331 	 * otherwise return -EINVAL
1332 	 */
1333 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1334 		prm = &evt->fault.prm;
1335 		if (prm->grpid != msg->grpid)
1336 			continue;
1337 
1338 		/*
1339 		 * If the PASID is required, the corresponding request is
1340 		 * matched using the group ID, the PASID valid bit and the PASID
1341 		 * value. Otherwise only the group ID matches request and
1342 		 * response.
1343 		 */
1344 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1345 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1346 			continue;
1347 
1348 		if (!needs_pasid && has_pasid) {
1349 			/* No big deal, just clear it. */
1350 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1351 			msg->pasid = 0;
1352 		}
1353 
1354 		ret = ops->page_response(dev, evt, msg);
1355 		list_del(&evt->list);
1356 		kfree(evt);
1357 		break;
1358 	}
1359 
1360 done_unlock:
1361 	mutex_unlock(&param->fault_param->lock);
1362 	return ret;
1363 }
1364 EXPORT_SYMBOL_GPL(iommu_page_response);
1365 
1366 /**
1367  * iommu_group_id - Return ID for a group
1368  * @group: the group to ID
1369  *
1370  * Return the unique ID for the group matching the sysfs group number.
1371  */
iommu_group_id(struct iommu_group * group)1372 int iommu_group_id(struct iommu_group *group)
1373 {
1374 	return group->id;
1375 }
1376 EXPORT_SYMBOL_GPL(iommu_group_id);
1377 
1378 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1379 					       unsigned long *devfns);
1380 
1381 /*
1382  * To consider a PCI device isolated, we require ACS to support Source
1383  * Validation, Request Redirection, Completer Redirection, and Upstream
1384  * Forwarding.  This effectively means that devices cannot spoof their
1385  * requester ID, requests and completions cannot be redirected, and all
1386  * transactions are forwarded upstream, even as it passes through a
1387  * bridge where the target device is downstream.
1388  */
1389 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1390 
1391 /*
1392  * For multifunction devices which are not isolated from each other, find
1393  * all the other non-isolated functions and look for existing groups.  For
1394  * each function, we also need to look for aliases to or from other devices
1395  * that may already have a group.
1396  */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1397 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1398 							unsigned long *devfns)
1399 {
1400 	struct pci_dev *tmp = NULL;
1401 	struct iommu_group *group;
1402 
1403 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1404 		return NULL;
1405 
1406 	for_each_pci_dev(tmp) {
1407 		if (tmp == pdev || tmp->bus != pdev->bus ||
1408 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1409 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1410 			continue;
1411 
1412 		group = get_pci_alias_group(tmp, devfns);
1413 		if (group) {
1414 			pci_dev_put(tmp);
1415 			return group;
1416 		}
1417 	}
1418 
1419 	return NULL;
1420 }
1421 
1422 /*
1423  * Look for aliases to or from the given device for existing groups. DMA
1424  * aliases are only supported on the same bus, therefore the search
1425  * space is quite small (especially since we're really only looking at pcie
1426  * device, and therefore only expect multiple slots on the root complex or
1427  * downstream switch ports).  It's conceivable though that a pair of
1428  * multifunction devices could have aliases between them that would cause a
1429  * loop.  To prevent this, we use a bitmap to track where we've been.
1430  */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1431 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1432 					       unsigned long *devfns)
1433 {
1434 	struct pci_dev *tmp = NULL;
1435 	struct iommu_group *group;
1436 
1437 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1438 		return NULL;
1439 
1440 	group = iommu_group_get(&pdev->dev);
1441 	if (group)
1442 		return group;
1443 
1444 	for_each_pci_dev(tmp) {
1445 		if (tmp == pdev || tmp->bus != pdev->bus)
1446 			continue;
1447 
1448 		/* We alias them or they alias us */
1449 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1450 			group = get_pci_alias_group(tmp, devfns);
1451 			if (group) {
1452 				pci_dev_put(tmp);
1453 				return group;
1454 			}
1455 
1456 			group = get_pci_function_alias_group(tmp, devfns);
1457 			if (group) {
1458 				pci_dev_put(tmp);
1459 				return group;
1460 			}
1461 		}
1462 	}
1463 
1464 	return NULL;
1465 }
1466 
1467 struct group_for_pci_data {
1468 	struct pci_dev *pdev;
1469 	struct iommu_group *group;
1470 };
1471 
1472 /*
1473  * DMA alias iterator callback, return the last seen device.  Stop and return
1474  * the IOMMU group if we find one along the way.
1475  */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1476 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1477 {
1478 	struct group_for_pci_data *data = opaque;
1479 
1480 	data->pdev = pdev;
1481 	data->group = iommu_group_get(&pdev->dev);
1482 
1483 	return data->group != NULL;
1484 }
1485 
1486 /*
1487  * Generic device_group call-back function. It just allocates one
1488  * iommu-group per device.
1489  */
generic_device_group(struct device * dev)1490 struct iommu_group *generic_device_group(struct device *dev)
1491 {
1492 	return iommu_group_alloc();
1493 }
1494 EXPORT_SYMBOL_GPL(generic_device_group);
1495 
1496 /*
1497  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1498  * to find or create an IOMMU group for a device.
1499  */
pci_device_group(struct device * dev)1500 struct iommu_group *pci_device_group(struct device *dev)
1501 {
1502 	struct pci_dev *pdev = to_pci_dev(dev);
1503 	struct group_for_pci_data data;
1504 	struct pci_bus *bus;
1505 	struct iommu_group *group = NULL;
1506 	u64 devfns[4] = { 0 };
1507 
1508 	if (WARN_ON(!dev_is_pci(dev)))
1509 		return ERR_PTR(-EINVAL);
1510 
1511 	/*
1512 	 * Find the upstream DMA alias for the device.  A device must not
1513 	 * be aliased due to topology in order to have its own IOMMU group.
1514 	 * If we find an alias along the way that already belongs to a
1515 	 * group, use it.
1516 	 */
1517 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1518 		return data.group;
1519 
1520 	pdev = data.pdev;
1521 
1522 	/*
1523 	 * Continue upstream from the point of minimum IOMMU granularity
1524 	 * due to aliases to the point where devices are protected from
1525 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1526 	 * group, use it.
1527 	 */
1528 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1529 		if (!bus->self)
1530 			continue;
1531 
1532 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1533 			break;
1534 
1535 		pdev = bus->self;
1536 
1537 		group = iommu_group_get(&pdev->dev);
1538 		if (group)
1539 			return group;
1540 	}
1541 
1542 	/*
1543 	 * Look for existing groups on device aliases.  If we alias another
1544 	 * device or another device aliases us, use the same group.
1545 	 */
1546 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1547 	if (group)
1548 		return group;
1549 
1550 	/*
1551 	 * Look for existing groups on non-isolated functions on the same
1552 	 * slot and aliases of those funcions, if any.  No need to clear
1553 	 * the search bitmap, the tested devfns are still valid.
1554 	 */
1555 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1556 	if (group)
1557 		return group;
1558 
1559 	/* No shared group found, allocate new */
1560 	return iommu_group_alloc();
1561 }
1562 EXPORT_SYMBOL_GPL(pci_device_group);
1563 
1564 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1565 struct iommu_group *fsl_mc_device_group(struct device *dev)
1566 {
1567 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1568 	struct iommu_group *group;
1569 
1570 	group = iommu_group_get(cont_dev);
1571 	if (!group)
1572 		group = iommu_group_alloc();
1573 	return group;
1574 }
1575 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1576 
iommu_get_def_domain_type(struct device * dev)1577 static int iommu_get_def_domain_type(struct device *dev)
1578 {
1579 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1580 
1581 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1582 		return IOMMU_DOMAIN_DMA;
1583 
1584 	if (ops->def_domain_type)
1585 		return ops->def_domain_type(dev);
1586 
1587 	return 0;
1588 }
1589 
iommu_group_alloc_default_domain(struct bus_type * bus,struct iommu_group * group,unsigned int type)1590 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1591 					    struct iommu_group *group,
1592 					    unsigned int type)
1593 {
1594 	struct iommu_domain *dom;
1595 
1596 	dom = __iommu_domain_alloc(bus, type);
1597 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1598 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1599 		if (dom)
1600 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1601 				type, group->name);
1602 	}
1603 
1604 	if (!dom)
1605 		return -ENOMEM;
1606 
1607 	group->default_domain = dom;
1608 	if (!group->domain)
1609 		group->domain = dom;
1610 	return 0;
1611 }
1612 
iommu_alloc_default_domain(struct iommu_group * group,struct device * dev)1613 static int iommu_alloc_default_domain(struct iommu_group *group,
1614 				      struct device *dev)
1615 {
1616 	unsigned int type;
1617 
1618 	if (group->default_domain)
1619 		return 0;
1620 
1621 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1622 
1623 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1624 }
1625 
1626 /**
1627  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1628  * @dev: target device
1629  *
1630  * This function is intended to be called by IOMMU drivers and extended to
1631  * support common, bus-defined algorithms when determining or creating the
1632  * IOMMU group for a device.  On success, the caller will hold a reference
1633  * to the returned IOMMU group, which will already include the provided
1634  * device.  The reference should be released with iommu_group_put().
1635  */
iommu_group_get_for_dev(struct device * dev)1636 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1637 {
1638 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1639 	struct iommu_group *group;
1640 	int ret;
1641 
1642 	group = iommu_group_get(dev);
1643 	if (group)
1644 		return group;
1645 
1646 	group = ops->device_group(dev);
1647 	if (WARN_ON_ONCE(group == NULL))
1648 		return ERR_PTR(-EINVAL);
1649 
1650 	if (IS_ERR(group))
1651 		return group;
1652 
1653 	ret = iommu_group_add_device(group, dev);
1654 	if (ret)
1655 		goto out_put_group;
1656 
1657 	return group;
1658 
1659 out_put_group:
1660 	iommu_group_put(group);
1661 
1662 	return ERR_PTR(ret);
1663 }
1664 
iommu_group_default_domain(struct iommu_group * group)1665 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1666 {
1667 	return group->default_domain;
1668 }
1669 
probe_iommu_group(struct device * dev,void * data)1670 static int probe_iommu_group(struct device *dev, void *data)
1671 {
1672 	struct list_head *group_list = data;
1673 	struct iommu_group *group;
1674 	int ret;
1675 
1676 	/* Device is probed already if in a group */
1677 	group = iommu_group_get(dev);
1678 	if (group) {
1679 		iommu_group_put(group);
1680 		return 0;
1681 	}
1682 
1683 	ret = __iommu_probe_device(dev, group_list);
1684 	if (ret == -ENODEV)
1685 		ret = 0;
1686 
1687 	return ret;
1688 }
1689 
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1690 static int iommu_bus_notifier(struct notifier_block *nb,
1691 			      unsigned long action, void *data)
1692 {
1693 	struct device *dev = data;
1694 
1695 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1696 		int ret;
1697 
1698 		ret = iommu_probe_device(dev);
1699 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1700 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1701 		iommu_release_device(dev);
1702 		return NOTIFY_OK;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 struct __group_domain_type {
1709 	struct device *dev;
1710 	unsigned int type;
1711 };
1712 
probe_get_default_domain_type(struct device * dev,void * data)1713 static int probe_get_default_domain_type(struct device *dev, void *data)
1714 {
1715 	struct __group_domain_type *gtype = data;
1716 	unsigned int type = iommu_get_def_domain_type(dev);
1717 
1718 	if (type) {
1719 		if (gtype->type && gtype->type != type) {
1720 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1721 				 iommu_domain_type_str(type),
1722 				 dev_name(gtype->dev),
1723 				 iommu_domain_type_str(gtype->type));
1724 			gtype->type = 0;
1725 		}
1726 
1727 		if (!gtype->dev) {
1728 			gtype->dev  = dev;
1729 			gtype->type = type;
1730 		}
1731 	}
1732 
1733 	return 0;
1734 }
1735 
probe_alloc_default_domain(struct bus_type * bus,struct iommu_group * group)1736 static void probe_alloc_default_domain(struct bus_type *bus,
1737 				       struct iommu_group *group)
1738 {
1739 	struct __group_domain_type gtype;
1740 
1741 	memset(&gtype, 0, sizeof(gtype));
1742 
1743 	/* Ask for default domain requirements of all devices in the group */
1744 	__iommu_group_for_each_dev(group, &gtype,
1745 				   probe_get_default_domain_type);
1746 
1747 	if (!gtype.type)
1748 		gtype.type = iommu_def_domain_type;
1749 
1750 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1751 
1752 }
1753 
iommu_group_do_dma_attach(struct device * dev,void * data)1754 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1755 {
1756 	struct iommu_domain *domain = data;
1757 	int ret = 0;
1758 
1759 	if (!iommu_is_attach_deferred(dev))
1760 		ret = __iommu_attach_device(domain, dev);
1761 
1762 	return ret;
1763 }
1764 
__iommu_group_dma_attach(struct iommu_group * group)1765 static int __iommu_group_dma_attach(struct iommu_group *group)
1766 {
1767 	return __iommu_group_for_each_dev(group, group->default_domain,
1768 					  iommu_group_do_dma_attach);
1769 }
1770 
iommu_group_do_probe_finalize(struct device * dev,void * data)1771 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1772 {
1773 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1774 
1775 	if (ops->probe_finalize)
1776 		ops->probe_finalize(dev);
1777 
1778 	return 0;
1779 }
1780 
__iommu_group_dma_finalize(struct iommu_group * group)1781 static void __iommu_group_dma_finalize(struct iommu_group *group)
1782 {
1783 	__iommu_group_for_each_dev(group, group->default_domain,
1784 				   iommu_group_do_probe_finalize);
1785 }
1786 
iommu_do_create_direct_mappings(struct device * dev,void * data)1787 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1788 {
1789 	struct iommu_group *group = data;
1790 
1791 	iommu_create_device_direct_mappings(group, dev);
1792 
1793 	return 0;
1794 }
1795 
iommu_group_create_direct_mappings(struct iommu_group * group)1796 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1797 {
1798 	return __iommu_group_for_each_dev(group, group,
1799 					  iommu_do_create_direct_mappings);
1800 }
1801 
bus_iommu_probe(struct bus_type * bus)1802 int bus_iommu_probe(struct bus_type *bus)
1803 {
1804 	struct iommu_group *group, *next;
1805 	LIST_HEAD(group_list);
1806 	int ret;
1807 
1808 	/*
1809 	 * This code-path does not allocate the default domain when
1810 	 * creating the iommu group, so do it after the groups are
1811 	 * created.
1812 	 */
1813 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1814 	if (ret)
1815 		return ret;
1816 
1817 	list_for_each_entry_safe(group, next, &group_list, entry) {
1818 		mutex_lock(&group->mutex);
1819 
1820 		/* Remove item from the list */
1821 		list_del_init(&group->entry);
1822 
1823 		/* Try to allocate default domain */
1824 		probe_alloc_default_domain(bus, group);
1825 
1826 		if (!group->default_domain) {
1827 			mutex_unlock(&group->mutex);
1828 			continue;
1829 		}
1830 
1831 		iommu_group_create_direct_mappings(group);
1832 
1833 		ret = __iommu_group_dma_attach(group);
1834 
1835 		mutex_unlock(&group->mutex);
1836 
1837 		if (ret)
1838 			break;
1839 
1840 		__iommu_group_dma_finalize(group);
1841 	}
1842 
1843 	return ret;
1844 }
1845 
iommu_present(struct bus_type * bus)1846 bool iommu_present(struct bus_type *bus)
1847 {
1848 	return bus->iommu_ops != NULL;
1849 }
1850 EXPORT_SYMBOL_GPL(iommu_present);
1851 
1852 /**
1853  * device_iommu_capable() - check for a general IOMMU capability
1854  * @dev: device to which the capability would be relevant, if available
1855  * @cap: IOMMU capability
1856  *
1857  * Return: true if an IOMMU is present and supports the given capability
1858  * for the given device, otherwise false.
1859  */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1860 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1861 {
1862 	const struct iommu_ops *ops;
1863 
1864 	if (!dev->iommu || !dev->iommu->iommu_dev)
1865 		return false;
1866 
1867 	ops = dev_iommu_ops(dev);
1868 	if (!ops->capable)
1869 		return false;
1870 
1871 	return ops->capable(dev, cap);
1872 }
1873 EXPORT_SYMBOL_GPL(device_iommu_capable);
1874 
1875 /**
1876  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1877  * @domain: iommu domain
1878  * @handler: fault handler
1879  * @token: user data, will be passed back to the fault handler
1880  *
1881  * This function should be used by IOMMU users which want to be notified
1882  * whenever an IOMMU fault happens.
1883  *
1884  * The fault handler itself should return 0 on success, and an appropriate
1885  * error code otherwise.
1886  */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1887 void iommu_set_fault_handler(struct iommu_domain *domain,
1888 					iommu_fault_handler_t handler,
1889 					void *token)
1890 {
1891 	BUG_ON(!domain);
1892 
1893 	domain->handler = handler;
1894 	domain->handler_token = token;
1895 }
1896 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1897 
__iommu_domain_alloc(struct bus_type * bus,unsigned type)1898 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1899 						 unsigned type)
1900 {
1901 	struct iommu_domain *domain;
1902 
1903 	if (bus == NULL || bus->iommu_ops == NULL)
1904 		return NULL;
1905 
1906 	domain = bus->iommu_ops->domain_alloc(type);
1907 	if (!domain)
1908 		return NULL;
1909 
1910 	domain->type = type;
1911 	/* Assume all sizes by default; the driver may override this later */
1912 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1913 	if (!domain->ops)
1914 		domain->ops = bus->iommu_ops->default_domain_ops;
1915 
1916 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1917 		iommu_domain_free(domain);
1918 		domain = NULL;
1919 	}
1920 	return domain;
1921 }
1922 
iommu_domain_alloc(struct bus_type * bus)1923 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1924 {
1925 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1926 }
1927 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1928 
iommu_domain_free(struct iommu_domain * domain)1929 void iommu_domain_free(struct iommu_domain *domain)
1930 {
1931 	iommu_put_dma_cookie(domain);
1932 	domain->ops->free(domain);
1933 }
1934 EXPORT_SYMBOL_GPL(iommu_domain_free);
1935 
1936 /*
1937  * Put the group's domain back to the appropriate core-owned domain - either the
1938  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1939  */
__iommu_group_set_core_domain(struct iommu_group * group)1940 static void __iommu_group_set_core_domain(struct iommu_group *group)
1941 {
1942 	struct iommu_domain *new_domain;
1943 	int ret;
1944 
1945 	if (group->owner)
1946 		new_domain = group->blocking_domain;
1947 	else
1948 		new_domain = group->default_domain;
1949 
1950 	ret = __iommu_group_set_domain(group, new_domain);
1951 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
1952 }
1953 
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)1954 static int __iommu_attach_device(struct iommu_domain *domain,
1955 				 struct device *dev)
1956 {
1957 	int ret;
1958 
1959 	if (unlikely(domain->ops->attach_dev == NULL))
1960 		return -ENODEV;
1961 
1962 	ret = domain->ops->attach_dev(domain, dev);
1963 	if (!ret)
1964 		trace_attach_device_to_domain(dev);
1965 	return ret;
1966 }
1967 
iommu_attach_device(struct iommu_domain * domain,struct device * dev)1968 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1969 {
1970 	struct iommu_group *group;
1971 	int ret;
1972 
1973 	group = iommu_group_get(dev);
1974 	if (!group)
1975 		return -ENODEV;
1976 
1977 	/*
1978 	 * Lock the group to make sure the device-count doesn't
1979 	 * change while we are attaching
1980 	 */
1981 	mutex_lock(&group->mutex);
1982 	ret = -EINVAL;
1983 	if (iommu_group_device_count(group) != 1)
1984 		goto out_unlock;
1985 
1986 	ret = __iommu_attach_group(domain, group);
1987 
1988 out_unlock:
1989 	mutex_unlock(&group->mutex);
1990 	iommu_group_put(group);
1991 
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(iommu_attach_device);
1995 
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)1996 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
1997 {
1998 	if (iommu_is_attach_deferred(dev))
1999 		return __iommu_attach_device(domain, dev);
2000 
2001 	return 0;
2002 }
2003 
__iommu_detach_device(struct iommu_domain * domain,struct device * dev)2004 static void __iommu_detach_device(struct iommu_domain *domain,
2005 				  struct device *dev)
2006 {
2007 	if (iommu_is_attach_deferred(dev))
2008 		return;
2009 
2010 	domain->ops->detach_dev(domain, dev);
2011 	trace_detach_device_from_domain(dev);
2012 }
2013 
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2014 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2015 {
2016 	struct iommu_group *group;
2017 
2018 	group = iommu_group_get(dev);
2019 	if (!group)
2020 		return;
2021 
2022 	mutex_lock(&group->mutex);
2023 	if (WARN_ON(domain != group->domain) ||
2024 	    WARN_ON(iommu_group_device_count(group) != 1))
2025 		goto out_unlock;
2026 	__iommu_group_set_core_domain(group);
2027 
2028 out_unlock:
2029 	mutex_unlock(&group->mutex);
2030 	iommu_group_put(group);
2031 }
2032 EXPORT_SYMBOL_GPL(iommu_detach_device);
2033 
iommu_get_domain_for_dev(struct device * dev)2034 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2035 {
2036 	struct iommu_domain *domain;
2037 	struct iommu_group *group;
2038 
2039 	group = iommu_group_get(dev);
2040 	if (!group)
2041 		return NULL;
2042 
2043 	domain = group->domain;
2044 
2045 	iommu_group_put(group);
2046 
2047 	return domain;
2048 }
2049 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2050 
2051 /*
2052  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2053  * guarantees that the group and its default domain are valid and correct.
2054  */
iommu_get_dma_domain(struct device * dev)2055 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2056 {
2057 	return dev->iommu_group->default_domain;
2058 }
2059 
2060 /*
2061  * IOMMU groups are really the natural working unit of the IOMMU, but
2062  * the IOMMU API works on domains and devices.  Bridge that gap by
2063  * iterating over the devices in a group.  Ideally we'd have a single
2064  * device which represents the requestor ID of the group, but we also
2065  * allow IOMMU drivers to create policy defined minimum sets, where
2066  * the physical hardware may be able to distiguish members, but we
2067  * wish to group them at a higher level (ex. untrusted multi-function
2068  * PCI devices).  Thus we attach each device.
2069  */
iommu_group_do_attach_device(struct device * dev,void * data)2070 static int iommu_group_do_attach_device(struct device *dev, void *data)
2071 {
2072 	struct iommu_domain *domain = data;
2073 
2074 	return __iommu_attach_device(domain, dev);
2075 }
2076 
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2077 static int __iommu_attach_group(struct iommu_domain *domain,
2078 				struct iommu_group *group)
2079 {
2080 	int ret;
2081 
2082 	if (group->domain && group->domain != group->default_domain &&
2083 	    group->domain != group->blocking_domain)
2084 		return -EBUSY;
2085 
2086 	ret = __iommu_group_for_each_dev(group, domain,
2087 					 iommu_group_do_attach_device);
2088 	if (ret == 0)
2089 		group->domain = domain;
2090 
2091 	return ret;
2092 }
2093 
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2094 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2095 {
2096 	int ret;
2097 
2098 	mutex_lock(&group->mutex);
2099 	ret = __iommu_attach_group(domain, group);
2100 	mutex_unlock(&group->mutex);
2101 
2102 	return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(iommu_attach_group);
2105 
iommu_group_do_detach_device(struct device * dev,void * data)2106 static int iommu_group_do_detach_device(struct device *dev, void *data)
2107 {
2108 	struct iommu_domain *domain = data;
2109 
2110 	__iommu_detach_device(domain, dev);
2111 
2112 	return 0;
2113 }
2114 
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)2115 static int __iommu_group_set_domain(struct iommu_group *group,
2116 				    struct iommu_domain *new_domain)
2117 {
2118 	int ret;
2119 
2120 	if (group->domain == new_domain)
2121 		return 0;
2122 
2123 	/*
2124 	 * New drivers should support default domains and so the detach_dev() op
2125 	 * will never be called. Otherwise the NULL domain represents some
2126 	 * platform specific behavior.
2127 	 */
2128 	if (!new_domain) {
2129 		if (WARN_ON(!group->domain->ops->detach_dev))
2130 			return -EINVAL;
2131 		__iommu_group_for_each_dev(group, group->domain,
2132 					   iommu_group_do_detach_device);
2133 		group->domain = NULL;
2134 		return 0;
2135 	}
2136 
2137 	/*
2138 	 * Changing the domain is done by calling attach_dev() on the new
2139 	 * domain. This switch does not have to be atomic and DMA can be
2140 	 * discarded during the transition. DMA must only be able to access
2141 	 * either new_domain or group->domain, never something else.
2142 	 *
2143 	 * Note that this is called in error unwind paths, attaching to a
2144 	 * domain that has already been attached cannot fail.
2145 	 */
2146 	ret = __iommu_group_for_each_dev(group, new_domain,
2147 					 iommu_group_do_attach_device);
2148 	if (ret)
2149 		return ret;
2150 	group->domain = new_domain;
2151 	return 0;
2152 }
2153 
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2154 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2155 {
2156 	mutex_lock(&group->mutex);
2157 	__iommu_group_set_core_domain(group);
2158 	mutex_unlock(&group->mutex);
2159 }
2160 EXPORT_SYMBOL_GPL(iommu_detach_group);
2161 
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2162 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2163 {
2164 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2165 		return iova;
2166 
2167 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2168 		return 0;
2169 
2170 	return domain->ops->iova_to_phys(domain, iova);
2171 }
2172 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2173 
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2174 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2175 			   phys_addr_t paddr, size_t size, size_t *count)
2176 {
2177 	unsigned int pgsize_idx, pgsize_idx_next;
2178 	unsigned long pgsizes;
2179 	size_t offset, pgsize, pgsize_next;
2180 	unsigned long addr_merge = paddr | iova;
2181 
2182 	/* Page sizes supported by the hardware and small enough for @size */
2183 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2184 
2185 	/* Constrain the page sizes further based on the maximum alignment */
2186 	if (likely(addr_merge))
2187 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2188 
2189 	/* Make sure we have at least one suitable page size */
2190 	BUG_ON(!pgsizes);
2191 
2192 	/* Pick the biggest page size remaining */
2193 	pgsize_idx = __fls(pgsizes);
2194 	pgsize = BIT(pgsize_idx);
2195 	if (!count)
2196 		return pgsize;
2197 
2198 	/* Find the next biggest support page size, if it exists */
2199 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2200 	if (!pgsizes)
2201 		goto out_set_count;
2202 
2203 	pgsize_idx_next = __ffs(pgsizes);
2204 	pgsize_next = BIT(pgsize_idx_next);
2205 
2206 	/*
2207 	 * There's no point trying a bigger page size unless the virtual
2208 	 * and physical addresses are similarly offset within the larger page.
2209 	 */
2210 	if ((iova ^ paddr) & (pgsize_next - 1))
2211 		goto out_set_count;
2212 
2213 	/* Calculate the offset to the next page size alignment boundary */
2214 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2215 
2216 	/*
2217 	 * If size is big enough to accommodate the larger page, reduce
2218 	 * the number of smaller pages.
2219 	 */
2220 	if (offset + pgsize_next <= size)
2221 		size = offset;
2222 
2223 out_set_count:
2224 	*count = size >> pgsize_idx;
2225 	return pgsize;
2226 }
2227 
__iommu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp,size_t * mapped)2228 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2229 			     phys_addr_t paddr, size_t size, int prot,
2230 			     gfp_t gfp, size_t *mapped)
2231 {
2232 	const struct iommu_domain_ops *ops = domain->ops;
2233 	size_t pgsize, count;
2234 	int ret;
2235 
2236 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2237 
2238 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2239 		 iova, &paddr, pgsize, count);
2240 
2241 	if (ops->map_pages) {
2242 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2243 				     gfp, mapped);
2244 	} else {
2245 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2246 		*mapped = ret ? 0 : pgsize;
2247 	}
2248 
2249 	return ret;
2250 }
2251 
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2252 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2253 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2254 {
2255 	const struct iommu_domain_ops *ops = domain->ops;
2256 	unsigned long orig_iova = iova;
2257 	unsigned int min_pagesz;
2258 	size_t orig_size = size;
2259 	phys_addr_t orig_paddr = paddr;
2260 	int ret = 0;
2261 
2262 	if (unlikely(!(ops->map || ops->map_pages) ||
2263 		     domain->pgsize_bitmap == 0UL))
2264 		return -ENODEV;
2265 
2266 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2267 		return -EINVAL;
2268 
2269 	/* find out the minimum page size supported */
2270 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2271 
2272 	/*
2273 	 * both the virtual address and the physical one, as well as
2274 	 * the size of the mapping, must be aligned (at least) to the
2275 	 * size of the smallest page supported by the hardware
2276 	 */
2277 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2278 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2279 		       iova, &paddr, size, min_pagesz);
2280 		return -EINVAL;
2281 	}
2282 
2283 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2284 
2285 	while (size) {
2286 		size_t mapped = 0;
2287 
2288 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2289 					&mapped);
2290 		/*
2291 		 * Some pages may have been mapped, even if an error occurred,
2292 		 * so we should account for those so they can be unmapped.
2293 		 */
2294 		size -= mapped;
2295 
2296 		if (ret)
2297 			break;
2298 
2299 		iova += mapped;
2300 		paddr += mapped;
2301 	}
2302 
2303 	/* unroll mapping in case something went wrong */
2304 	if (ret)
2305 		iommu_unmap(domain, orig_iova, orig_size - size);
2306 	else
2307 		trace_map(orig_iova, orig_paddr, orig_size);
2308 
2309 	return ret;
2310 }
2311 
_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2312 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2313 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2314 {
2315 	const struct iommu_domain_ops *ops = domain->ops;
2316 	int ret;
2317 
2318 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2319 	if (ret == 0 && ops->iotlb_sync_map)
2320 		ops->iotlb_sync_map(domain, iova, size);
2321 
2322 	return ret;
2323 }
2324 
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2325 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2326 	      phys_addr_t paddr, size_t size, int prot)
2327 {
2328 	might_sleep();
2329 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2330 }
2331 EXPORT_SYMBOL_GPL(iommu_map);
2332 
iommu_map_atomic(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2333 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2334 	      phys_addr_t paddr, size_t size, int prot)
2335 {
2336 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2337 }
2338 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2339 
__iommu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2340 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2341 				  unsigned long iova, size_t size,
2342 				  struct iommu_iotlb_gather *iotlb_gather)
2343 {
2344 	const struct iommu_domain_ops *ops = domain->ops;
2345 	size_t pgsize, count;
2346 
2347 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2348 	return ops->unmap_pages ?
2349 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2350 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2351 }
2352 
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2353 static size_t __iommu_unmap(struct iommu_domain *domain,
2354 			    unsigned long iova, size_t size,
2355 			    struct iommu_iotlb_gather *iotlb_gather)
2356 {
2357 	const struct iommu_domain_ops *ops = domain->ops;
2358 	size_t unmapped_page, unmapped = 0;
2359 	unsigned long orig_iova = iova;
2360 	unsigned int min_pagesz;
2361 
2362 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2363 		     domain->pgsize_bitmap == 0UL))
2364 		return 0;
2365 
2366 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2367 		return 0;
2368 
2369 	/* find out the minimum page size supported */
2370 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2371 
2372 	/*
2373 	 * The virtual address, as well as the size of the mapping, must be
2374 	 * aligned (at least) to the size of the smallest page supported
2375 	 * by the hardware
2376 	 */
2377 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2378 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2379 		       iova, size, min_pagesz);
2380 		return 0;
2381 	}
2382 
2383 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2384 
2385 	/*
2386 	 * Keep iterating until we either unmap 'size' bytes (or more)
2387 	 * or we hit an area that isn't mapped.
2388 	 */
2389 	while (unmapped < size) {
2390 		unmapped_page = __iommu_unmap_pages(domain, iova,
2391 						    size - unmapped,
2392 						    iotlb_gather);
2393 		if (!unmapped_page)
2394 			break;
2395 
2396 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2397 			 iova, unmapped_page);
2398 
2399 		iova += unmapped_page;
2400 		unmapped += unmapped_page;
2401 	}
2402 
2403 	trace_unmap(orig_iova, size, unmapped);
2404 	return unmapped;
2405 }
2406 
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2407 size_t iommu_unmap(struct iommu_domain *domain,
2408 		   unsigned long iova, size_t size)
2409 {
2410 	struct iommu_iotlb_gather iotlb_gather;
2411 	size_t ret;
2412 
2413 	iommu_iotlb_gather_init(&iotlb_gather);
2414 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2415 	iommu_iotlb_sync(domain, &iotlb_gather);
2416 
2417 	return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(iommu_unmap);
2420 
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2421 size_t iommu_unmap_fast(struct iommu_domain *domain,
2422 			unsigned long iova, size_t size,
2423 			struct iommu_iotlb_gather *iotlb_gather)
2424 {
2425 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2426 }
2427 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2428 
__iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2429 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2430 		struct scatterlist *sg, unsigned int nents, int prot,
2431 		gfp_t gfp)
2432 {
2433 	const struct iommu_domain_ops *ops = domain->ops;
2434 	size_t len = 0, mapped = 0;
2435 	phys_addr_t start;
2436 	unsigned int i = 0;
2437 	int ret;
2438 
2439 	while (i <= nents) {
2440 		phys_addr_t s_phys = sg_phys(sg);
2441 
2442 		if (len && s_phys != start + len) {
2443 			ret = __iommu_map(domain, iova + mapped, start,
2444 					len, prot, gfp);
2445 
2446 			if (ret)
2447 				goto out_err;
2448 
2449 			mapped += len;
2450 			len = 0;
2451 		}
2452 
2453 		if (sg_is_dma_bus_address(sg))
2454 			goto next;
2455 
2456 		if (len) {
2457 			len += sg->length;
2458 		} else {
2459 			len = sg->length;
2460 			start = s_phys;
2461 		}
2462 
2463 next:
2464 		if (++i < nents)
2465 			sg = sg_next(sg);
2466 	}
2467 
2468 	if (ops->iotlb_sync_map)
2469 		ops->iotlb_sync_map(domain, iova, mapped);
2470 	return mapped;
2471 
2472 out_err:
2473 	/* undo mappings already done */
2474 	iommu_unmap(domain, iova, mapped);
2475 
2476 	return ret;
2477 }
2478 
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2479 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2480 		     struct scatterlist *sg, unsigned int nents, int prot)
2481 {
2482 	might_sleep();
2483 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2484 }
2485 EXPORT_SYMBOL_GPL(iommu_map_sg);
2486 
iommu_map_sg_atomic(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2487 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2488 		    struct scatterlist *sg, unsigned int nents, int prot)
2489 {
2490 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2491 }
2492 
2493 /**
2494  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2495  * @domain: the iommu domain where the fault has happened
2496  * @dev: the device where the fault has happened
2497  * @iova: the faulting address
2498  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2499  *
2500  * This function should be called by the low-level IOMMU implementations
2501  * whenever IOMMU faults happen, to allow high-level users, that are
2502  * interested in such events, to know about them.
2503  *
2504  * This event may be useful for several possible use cases:
2505  * - mere logging of the event
2506  * - dynamic TLB/PTE loading
2507  * - if restarting of the faulting device is required
2508  *
2509  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2510  * PTE/TLB loading will one day be supported, implementations will be able
2511  * to tell whether it succeeded or not according to this return value).
2512  *
2513  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2514  * (though fault handlers can also return -ENOSYS, in case they want to
2515  * elicit the default behavior of the IOMMU drivers).
2516  */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2517 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2518 		       unsigned long iova, int flags)
2519 {
2520 	int ret = -ENOSYS;
2521 
2522 	/*
2523 	 * if upper layers showed interest and installed a fault handler,
2524 	 * invoke it.
2525 	 */
2526 	if (domain->handler)
2527 		ret = domain->handler(domain, dev, iova, flags,
2528 						domain->handler_token);
2529 
2530 	trace_io_page_fault(dev, iova, flags);
2531 	return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(report_iommu_fault);
2534 
iommu_init(void)2535 static int __init iommu_init(void)
2536 {
2537 	iommu_group_kset = kset_create_and_add("iommu_groups",
2538 					       NULL, kernel_kobj);
2539 	BUG_ON(!iommu_group_kset);
2540 
2541 	iommu_debugfs_setup();
2542 
2543 	return 0;
2544 }
2545 core_initcall(iommu_init);
2546 
iommu_enable_nesting(struct iommu_domain * domain)2547 int iommu_enable_nesting(struct iommu_domain *domain)
2548 {
2549 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2550 		return -EINVAL;
2551 	if (!domain->ops->enable_nesting)
2552 		return -EINVAL;
2553 	return domain->ops->enable_nesting(domain);
2554 }
2555 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2556 
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2557 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2558 		unsigned long quirk)
2559 {
2560 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2561 		return -EINVAL;
2562 	if (!domain->ops->set_pgtable_quirks)
2563 		return -EINVAL;
2564 	return domain->ops->set_pgtable_quirks(domain, quirk);
2565 }
2566 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2567 
iommu_get_resv_regions(struct device * dev,struct list_head * list)2568 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2569 {
2570 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2571 
2572 	if (ops->get_resv_regions)
2573 		ops->get_resv_regions(dev, list);
2574 }
2575 
2576 /**
2577  * iommu_put_resv_regions - release resered regions
2578  * @dev: device for which to free reserved regions
2579  * @list: reserved region list for device
2580  *
2581  * This releases a reserved region list acquired by iommu_get_resv_regions().
2582  */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2583 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2584 {
2585 	struct iommu_resv_region *entry, *next;
2586 
2587 	list_for_each_entry_safe(entry, next, list, list) {
2588 		if (entry->free)
2589 			entry->free(dev, entry);
2590 		else
2591 			kfree(entry);
2592 	}
2593 }
2594 EXPORT_SYMBOL(iommu_put_resv_regions);
2595 
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2596 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2597 						  size_t length, int prot,
2598 						  enum iommu_resv_type type,
2599 						  gfp_t gfp)
2600 {
2601 	struct iommu_resv_region *region;
2602 
2603 	region = kzalloc(sizeof(*region), gfp);
2604 	if (!region)
2605 		return NULL;
2606 
2607 	INIT_LIST_HEAD(&region->list);
2608 	region->start = start;
2609 	region->length = length;
2610 	region->prot = prot;
2611 	region->type = type;
2612 	return region;
2613 }
2614 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2615 
iommu_set_default_passthrough(bool cmd_line)2616 void iommu_set_default_passthrough(bool cmd_line)
2617 {
2618 	if (cmd_line)
2619 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2620 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2621 }
2622 
iommu_set_default_translated(bool cmd_line)2623 void iommu_set_default_translated(bool cmd_line)
2624 {
2625 	if (cmd_line)
2626 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2627 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2628 }
2629 
iommu_default_passthrough(void)2630 bool iommu_default_passthrough(void)
2631 {
2632 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2633 }
2634 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2635 
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2636 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2637 {
2638 	const struct iommu_ops *ops = NULL;
2639 	struct iommu_device *iommu;
2640 
2641 	spin_lock(&iommu_device_lock);
2642 	list_for_each_entry(iommu, &iommu_device_list, list)
2643 		if (iommu->fwnode == fwnode) {
2644 			ops = iommu->ops;
2645 			break;
2646 		}
2647 	spin_unlock(&iommu_device_lock);
2648 	return ops;
2649 }
2650 
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2651 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2652 		      const struct iommu_ops *ops)
2653 {
2654 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2655 
2656 	if (fwspec)
2657 		return ops == fwspec->ops ? 0 : -EINVAL;
2658 
2659 	if (!dev_iommu_get(dev))
2660 		return -ENOMEM;
2661 
2662 	/* Preallocate for the overwhelmingly common case of 1 ID */
2663 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2664 	if (!fwspec)
2665 		return -ENOMEM;
2666 
2667 	of_node_get(to_of_node(iommu_fwnode));
2668 	fwspec->iommu_fwnode = iommu_fwnode;
2669 	fwspec->ops = ops;
2670 	dev_iommu_fwspec_set(dev, fwspec);
2671 	return 0;
2672 }
2673 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2674 
iommu_fwspec_free(struct device * dev)2675 void iommu_fwspec_free(struct device *dev)
2676 {
2677 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2678 
2679 	if (fwspec) {
2680 		fwnode_handle_put(fwspec->iommu_fwnode);
2681 		kfree(fwspec);
2682 		dev_iommu_fwspec_set(dev, NULL);
2683 	}
2684 }
2685 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2686 
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2687 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2688 {
2689 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2690 	int i, new_num;
2691 
2692 	if (!fwspec)
2693 		return -EINVAL;
2694 
2695 	new_num = fwspec->num_ids + num_ids;
2696 	if (new_num > 1) {
2697 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2698 				  GFP_KERNEL);
2699 		if (!fwspec)
2700 			return -ENOMEM;
2701 
2702 		dev_iommu_fwspec_set(dev, fwspec);
2703 	}
2704 
2705 	for (i = 0; i < num_ids; i++)
2706 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2707 
2708 	fwspec->num_ids = new_num;
2709 	return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2712 
2713 /*
2714  * Per device IOMMU features.
2715  */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2716 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2717 {
2718 	if (dev->iommu && dev->iommu->iommu_dev) {
2719 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2720 
2721 		if (ops->dev_enable_feat)
2722 			return ops->dev_enable_feat(dev, feat);
2723 	}
2724 
2725 	return -ENODEV;
2726 }
2727 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2728 
2729 /*
2730  * The device drivers should do the necessary cleanups before calling this.
2731  */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2732 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2733 {
2734 	if (dev->iommu && dev->iommu->iommu_dev) {
2735 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2736 
2737 		if (ops->dev_disable_feat)
2738 			return ops->dev_disable_feat(dev, feat);
2739 	}
2740 
2741 	return -EBUSY;
2742 }
2743 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2744 
2745 /**
2746  * iommu_sva_bind_device() - Bind a process address space to a device
2747  * @dev: the device
2748  * @mm: the mm to bind, caller must hold a reference to it
2749  * @drvdata: opaque data pointer to pass to bind callback
2750  *
2751  * Create a bond between device and address space, allowing the device to access
2752  * the mm using the returned PASID. If a bond already exists between @device and
2753  * @mm, it is returned and an additional reference is taken. Caller must call
2754  * iommu_sva_unbind_device() to release each reference.
2755  *
2756  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2757  * initialize the required SVA features.
2758  *
2759  * On error, returns an ERR_PTR value.
2760  */
2761 struct iommu_sva *
iommu_sva_bind_device(struct device * dev,struct mm_struct * mm,void * drvdata)2762 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2763 {
2764 	struct iommu_group *group;
2765 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2766 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2767 
2768 	if (!ops->sva_bind)
2769 		return ERR_PTR(-ENODEV);
2770 
2771 	group = iommu_group_get(dev);
2772 	if (!group)
2773 		return ERR_PTR(-ENODEV);
2774 
2775 	/* Ensure device count and domain don't change while we're binding */
2776 	mutex_lock(&group->mutex);
2777 
2778 	/*
2779 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2780 	 * with more than one device. Existing SVA-capable systems are not
2781 	 * affected by the problems that required IOMMU groups (lack of ACS
2782 	 * isolation, device ID aliasing and other hardware issues).
2783 	 */
2784 	if (iommu_group_device_count(group) != 1)
2785 		goto out_unlock;
2786 
2787 	handle = ops->sva_bind(dev, mm, drvdata);
2788 
2789 out_unlock:
2790 	mutex_unlock(&group->mutex);
2791 	iommu_group_put(group);
2792 
2793 	return handle;
2794 }
2795 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2796 
2797 /**
2798  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2799  * @handle: the handle returned by iommu_sva_bind_device()
2800  *
2801  * Put reference to a bond between device and address space. The device should
2802  * not be issuing any more transaction for this PASID. All outstanding page
2803  * requests for this PASID must have been flushed to the IOMMU.
2804  */
iommu_sva_unbind_device(struct iommu_sva * handle)2805 void iommu_sva_unbind_device(struct iommu_sva *handle)
2806 {
2807 	struct iommu_group *group;
2808 	struct device *dev = handle->dev;
2809 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2810 
2811 	if (!ops->sva_unbind)
2812 		return;
2813 
2814 	group = iommu_group_get(dev);
2815 	if (!group)
2816 		return;
2817 
2818 	mutex_lock(&group->mutex);
2819 	ops->sva_unbind(handle);
2820 	mutex_unlock(&group->mutex);
2821 
2822 	iommu_group_put(group);
2823 }
2824 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2825 
iommu_sva_get_pasid(struct iommu_sva * handle)2826 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
2827 {
2828 	const struct iommu_ops *ops = dev_iommu_ops(handle->dev);
2829 
2830 	if (!ops->sva_get_pasid)
2831 		return IOMMU_PASID_INVALID;
2832 
2833 	return ops->sva_get_pasid(handle);
2834 }
2835 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2836 
2837 /*
2838  * Changes the default domain of an iommu group that has *only* one device
2839  *
2840  * @group: The group for which the default domain should be changed
2841  * @prev_dev: The device in the group (this is used to make sure that the device
2842  *	 hasn't changed after the caller has called this function)
2843  * @type: The type of the new default domain that gets associated with the group
2844  *
2845  * Returns 0 on success and error code on failure
2846  *
2847  * Note:
2848  * 1. Presently, this function is called only when user requests to change the
2849  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2850  *    Please take a closer look if intended to use for other purposes.
2851  */
iommu_change_dev_def_domain(struct iommu_group * group,struct device * prev_dev,int type)2852 static int iommu_change_dev_def_domain(struct iommu_group *group,
2853 				       struct device *prev_dev, int type)
2854 {
2855 	struct iommu_domain *prev_dom;
2856 	struct group_device *grp_dev;
2857 	int ret, dev_def_dom;
2858 	struct device *dev;
2859 
2860 	mutex_lock(&group->mutex);
2861 
2862 	if (group->default_domain != group->domain) {
2863 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2864 		ret = -EBUSY;
2865 		goto out;
2866 	}
2867 
2868 	/*
2869 	 * iommu group wasn't locked while acquiring device lock in
2870 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2871 	 * changed while acquiring device lock.
2872 	 *
2873 	 * Changing default domain of an iommu group with two or more devices
2874 	 * isn't supported because there could be a potential deadlock. Consider
2875 	 * the following scenario. T1 is trying to acquire device locks of all
2876 	 * the devices in the group and before it could acquire all of them,
2877 	 * there could be another thread T2 (from different sub-system and use
2878 	 * case) that has already acquired some of the device locks and might be
2879 	 * waiting for T1 to release other device locks.
2880 	 */
2881 	if (iommu_group_device_count(group) != 1) {
2882 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2883 		ret = -EINVAL;
2884 		goto out;
2885 	}
2886 
2887 	/* Since group has only one device */
2888 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2889 	dev = grp_dev->dev;
2890 
2891 	if (prev_dev != dev) {
2892 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2893 		ret = -EBUSY;
2894 		goto out;
2895 	}
2896 
2897 	prev_dom = group->default_domain;
2898 	if (!prev_dom) {
2899 		ret = -EINVAL;
2900 		goto out;
2901 	}
2902 
2903 	dev_def_dom = iommu_get_def_domain_type(dev);
2904 	if (!type) {
2905 		/*
2906 		 * If the user hasn't requested any specific type of domain and
2907 		 * if the device supports both the domains, then default to the
2908 		 * domain the device was booted with
2909 		 */
2910 		type = dev_def_dom ? : iommu_def_domain_type;
2911 	} else if (dev_def_dom && type != dev_def_dom) {
2912 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2913 				    iommu_domain_type_str(type));
2914 		ret = -EINVAL;
2915 		goto out;
2916 	}
2917 
2918 	/*
2919 	 * Switch to a new domain only if the requested domain type is different
2920 	 * from the existing default domain type
2921 	 */
2922 	if (prev_dom->type == type) {
2923 		ret = 0;
2924 		goto out;
2925 	}
2926 
2927 	/* We can bring up a flush queue without tearing down the domain */
2928 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2929 		ret = iommu_dma_init_fq(prev_dom);
2930 		if (!ret)
2931 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2932 		goto out;
2933 	}
2934 
2935 	/* Sets group->default_domain to the newly allocated domain */
2936 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2937 	if (ret)
2938 		goto out;
2939 
2940 	ret = iommu_create_device_direct_mappings(group, dev);
2941 	if (ret)
2942 		goto free_new_domain;
2943 
2944 	ret = __iommu_attach_device(group->default_domain, dev);
2945 	if (ret)
2946 		goto free_new_domain;
2947 
2948 	group->domain = group->default_domain;
2949 
2950 	/*
2951 	 * Release the mutex here because ops->probe_finalize() call-back of
2952 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2953 	 * in-turn might call back into IOMMU core code, where it tries to take
2954 	 * group->mutex, resulting in a deadlock.
2955 	 */
2956 	mutex_unlock(&group->mutex);
2957 
2958 	/* Make sure dma_ops is appropriatley set */
2959 	iommu_group_do_probe_finalize(dev, group->default_domain);
2960 	iommu_domain_free(prev_dom);
2961 	return 0;
2962 
2963 free_new_domain:
2964 	iommu_domain_free(group->default_domain);
2965 	group->default_domain = prev_dom;
2966 	group->domain = prev_dom;
2967 
2968 out:
2969 	mutex_unlock(&group->mutex);
2970 
2971 	return ret;
2972 }
2973 
2974 /*
2975  * Changing the default domain through sysfs requires the users to unbind the
2976  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2977  * transition. Return failure if this isn't met.
2978  *
2979  * We need to consider the race between this and the device release path.
2980  * device_lock(dev) is used here to guarantee that the device release path
2981  * will not be entered at the same time.
2982  */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)2983 static ssize_t iommu_group_store_type(struct iommu_group *group,
2984 				      const char *buf, size_t count)
2985 {
2986 	struct group_device *grp_dev;
2987 	struct device *dev;
2988 	int ret, req_type;
2989 
2990 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2991 		return -EACCES;
2992 
2993 	if (WARN_ON(!group) || !group->default_domain)
2994 		return -EINVAL;
2995 
2996 	if (sysfs_streq(buf, "identity"))
2997 		req_type = IOMMU_DOMAIN_IDENTITY;
2998 	else if (sysfs_streq(buf, "DMA"))
2999 		req_type = IOMMU_DOMAIN_DMA;
3000 	else if (sysfs_streq(buf, "DMA-FQ"))
3001 		req_type = IOMMU_DOMAIN_DMA_FQ;
3002 	else if (sysfs_streq(buf, "auto"))
3003 		req_type = 0;
3004 	else
3005 		return -EINVAL;
3006 
3007 	/*
3008 	 * Lock/Unlock the group mutex here before device lock to
3009 	 * 1. Make sure that the iommu group has only one device (this is a
3010 	 *    prerequisite for step 2)
3011 	 * 2. Get struct *dev which is needed to lock device
3012 	 */
3013 	mutex_lock(&group->mutex);
3014 	if (iommu_group_device_count(group) != 1) {
3015 		mutex_unlock(&group->mutex);
3016 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3017 		return -EINVAL;
3018 	}
3019 
3020 	/* Since group has only one device */
3021 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3022 	dev = grp_dev->dev;
3023 	get_device(dev);
3024 
3025 	/*
3026 	 * Don't hold the group mutex because taking group mutex first and then
3027 	 * the device lock could potentially cause a deadlock as below. Assume
3028 	 * two threads T1 and T2. T1 is trying to change default domain of an
3029 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3030 	 * of a PCIe device which is in the same iommu group. T1 takes group
3031 	 * mutex and before it could take device lock assume T2 has taken device
3032 	 * lock and is yet to take group mutex. Now, both the threads will be
3033 	 * waiting for the other thread to release lock. Below, lock order was
3034 	 * suggested.
3035 	 * device_lock(dev);
3036 	 *	mutex_lock(&group->mutex);
3037 	 *		iommu_change_dev_def_domain();
3038 	 *	mutex_unlock(&group->mutex);
3039 	 * device_unlock(dev);
3040 	 *
3041 	 * [1] Typical device release path
3042 	 * device_lock() from device/driver core code
3043 	 *  -> bus_notifier()
3044 	 *   -> iommu_bus_notifier()
3045 	 *    -> iommu_release_device()
3046 	 *     -> ops->release_device() vendor driver calls back iommu core code
3047 	 *      -> mutex_lock() from iommu core code
3048 	 */
3049 	mutex_unlock(&group->mutex);
3050 
3051 	/* Check if the device in the group still has a driver bound to it */
3052 	device_lock(dev);
3053 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3054 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3055 		pr_err_ratelimited("Device is still bound to driver\n");
3056 		ret = -EBUSY;
3057 		goto out;
3058 	}
3059 
3060 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3061 	ret = ret ?: count;
3062 
3063 out:
3064 	device_unlock(dev);
3065 	put_device(dev);
3066 
3067 	return ret;
3068 }
3069 
iommu_is_default_domain(struct iommu_group * group)3070 static bool iommu_is_default_domain(struct iommu_group *group)
3071 {
3072 	if (group->domain == group->default_domain)
3073 		return true;
3074 
3075 	/*
3076 	 * If the default domain was set to identity and it is still an identity
3077 	 * domain then we consider this a pass. This happens because of
3078 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3079 	 * identity domain that has a different configuration for AMDGPU.
3080 	 */
3081 	if (group->default_domain &&
3082 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3083 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3084 		return true;
3085 	return false;
3086 }
3087 
3088 /**
3089  * iommu_device_use_default_domain() - Device driver wants to handle device
3090  *                                     DMA through the kernel DMA API.
3091  * @dev: The device.
3092  *
3093  * The device driver about to bind @dev wants to do DMA through the kernel
3094  * DMA API. Return 0 if it is allowed, otherwise an error.
3095  */
iommu_device_use_default_domain(struct device * dev)3096 int iommu_device_use_default_domain(struct device *dev)
3097 {
3098 	struct iommu_group *group = iommu_group_get(dev);
3099 	int ret = 0;
3100 
3101 	if (!group)
3102 		return 0;
3103 
3104 	mutex_lock(&group->mutex);
3105 	if (group->owner_cnt) {
3106 		if (group->owner || !iommu_is_default_domain(group)) {
3107 			ret = -EBUSY;
3108 			goto unlock_out;
3109 		}
3110 	}
3111 
3112 	group->owner_cnt++;
3113 
3114 unlock_out:
3115 	mutex_unlock(&group->mutex);
3116 	iommu_group_put(group);
3117 
3118 	return ret;
3119 }
3120 
3121 /**
3122  * iommu_device_unuse_default_domain() - Device driver stops handling device
3123  *                                       DMA through the kernel DMA API.
3124  * @dev: The device.
3125  *
3126  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3127  * It must be called after iommu_device_use_default_domain().
3128  */
iommu_device_unuse_default_domain(struct device * dev)3129 void iommu_device_unuse_default_domain(struct device *dev)
3130 {
3131 	struct iommu_group *group = iommu_group_get(dev);
3132 
3133 	if (!group)
3134 		return;
3135 
3136 	mutex_lock(&group->mutex);
3137 	if (!WARN_ON(!group->owner_cnt))
3138 		group->owner_cnt--;
3139 
3140 	mutex_unlock(&group->mutex);
3141 	iommu_group_put(group);
3142 }
3143 
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3144 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3145 {
3146 	struct group_device *dev =
3147 		list_first_entry(&group->devices, struct group_device, list);
3148 
3149 	if (group->blocking_domain)
3150 		return 0;
3151 
3152 	group->blocking_domain =
3153 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3154 	if (!group->blocking_domain) {
3155 		/*
3156 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3157 		 * create an empty domain instead.
3158 		 */
3159 		group->blocking_domain = __iommu_domain_alloc(
3160 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3161 		if (!group->blocking_domain)
3162 			return -EINVAL;
3163 	}
3164 	return 0;
3165 }
3166 
3167 /**
3168  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3169  * @group: The group.
3170  * @owner: Caller specified pointer. Used for exclusive ownership.
3171  *
3172  * This is to support backward compatibility for vfio which manages
3173  * the dma ownership in iommu_group level. New invocations on this
3174  * interface should be prohibited.
3175  */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3176 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3177 {
3178 	int ret = 0;
3179 
3180 	mutex_lock(&group->mutex);
3181 	if (group->owner_cnt) {
3182 		ret = -EPERM;
3183 		goto unlock_out;
3184 	} else {
3185 		if (group->domain && group->domain != group->default_domain) {
3186 			ret = -EBUSY;
3187 			goto unlock_out;
3188 		}
3189 
3190 		ret = __iommu_group_alloc_blocking_domain(group);
3191 		if (ret)
3192 			goto unlock_out;
3193 
3194 		ret = __iommu_group_set_domain(group, group->blocking_domain);
3195 		if (ret)
3196 			goto unlock_out;
3197 		group->owner = owner;
3198 	}
3199 
3200 	group->owner_cnt++;
3201 unlock_out:
3202 	mutex_unlock(&group->mutex);
3203 
3204 	return ret;
3205 }
3206 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3207 
3208 /**
3209  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3210  * @group: The group.
3211  *
3212  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3213  */
iommu_group_release_dma_owner(struct iommu_group * group)3214 void iommu_group_release_dma_owner(struct iommu_group *group)
3215 {
3216 	int ret;
3217 
3218 	mutex_lock(&group->mutex);
3219 	if (WARN_ON(!group->owner_cnt || !group->owner))
3220 		goto unlock_out;
3221 
3222 	group->owner_cnt = 0;
3223 	group->owner = NULL;
3224 	ret = __iommu_group_set_domain(group, group->default_domain);
3225 	WARN(ret, "iommu driver failed to attach the default domain");
3226 
3227 unlock_out:
3228 	mutex_unlock(&group->mutex);
3229 }
3230 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3231 
3232 /**
3233  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3234  * @group: The group.
3235  *
3236  * This provides status query on a given group. It is racy and only for
3237  * non-binding status reporting.
3238  */
iommu_group_dma_owner_claimed(struct iommu_group * group)3239 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3240 {
3241 	unsigned int user;
3242 
3243 	mutex_lock(&group->mutex);
3244 	user = group->owner_cnt;
3245 	mutex_unlock(&group->mutex);
3246 
3247 	return user;
3248 }
3249 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3250