1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern asmlinkage void math_state_restore(void);
33 extern void __math_state_restore(void);
34 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
35
36 extern user_regset_active_fn fpregs_active, xfpregs_active;
37 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 xstateregs_get;
39 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
40 xstateregs_set;
41
42 /*
43 * xstateregs_active == fpregs_active. Please refer to the comment
44 * at the definition of fpregs_active.
45 */
46 #define xstateregs_active fpregs_active
47
48 extern struct _fpx_sw_bytes fx_sw_reserved;
49 #ifdef CONFIG_IA32_EMULATION
50 extern unsigned int sig_xstate_ia32_size;
51 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
52 struct _fpstate_ia32;
53 struct _xstate_ia32;
54 extern int save_i387_xstate_ia32(void __user *buf);
55 extern int restore_i387_xstate_ia32(void __user *buf);
56 #endif
57
58 #ifdef CONFIG_MATH_EMULATION
59 extern void finit_soft_fpu(struct i387_soft_struct *soft);
60 #else
finit_soft_fpu(struct i387_soft_struct * soft)61 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
62 #endif
63
64 #define X87_FSW_ES (1 << 7) /* Exception Summary */
65
use_xsaveopt(void)66 static __always_inline __pure bool use_xsaveopt(void)
67 {
68 return static_cpu_has(X86_FEATURE_XSAVEOPT);
69 }
70
use_xsave(void)71 static __always_inline __pure bool use_xsave(void)
72 {
73 return static_cpu_has(X86_FEATURE_XSAVE);
74 }
75
use_fxsr(void)76 static __always_inline __pure bool use_fxsr(void)
77 {
78 return static_cpu_has(X86_FEATURE_FXSR);
79 }
80
81 extern void __sanitize_i387_state(struct task_struct *);
82
sanitize_i387_state(struct task_struct * tsk)83 static inline void sanitize_i387_state(struct task_struct *tsk)
84 {
85 if (!use_xsaveopt())
86 return;
87 __sanitize_i387_state(tsk);
88 }
89
90 #ifdef CONFIG_X86_64
fxrstor_checking(struct i387_fxsave_struct * fx)91 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
92 {
93 int err;
94
95 /* See comment in fxsave() below. */
96 #ifdef CONFIG_AS_FXSAVEQ
97 asm volatile("1: fxrstorq %[fx]\n\t"
98 "2:\n"
99 ".section .fixup,\"ax\"\n"
100 "3: movl $-1,%[err]\n"
101 " jmp 2b\n"
102 ".previous\n"
103 _ASM_EXTABLE(1b, 3b)
104 : [err] "=r" (err)
105 : [fx] "m" (*fx), "0" (0));
106 #else
107 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
108 "2:\n"
109 ".section .fixup,\"ax\"\n"
110 "3: movl $-1,%[err]\n"
111 " jmp 2b\n"
112 ".previous\n"
113 _ASM_EXTABLE(1b, 3b)
114 : [err] "=r" (err)
115 : [fx] "R" (fx), "m" (*fx), "0" (0));
116 #endif
117 return err;
118 }
119
fxsave_user(struct i387_fxsave_struct __user * fx)120 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
121 {
122 int err;
123
124 /*
125 * Clear the bytes not touched by the fxsave and reserved
126 * for the SW usage.
127 */
128 err = __clear_user(&fx->sw_reserved,
129 sizeof(struct _fpx_sw_bytes));
130 if (unlikely(err))
131 return -EFAULT;
132
133 /* See comment in fxsave() below. */
134 #ifdef CONFIG_AS_FXSAVEQ
135 asm volatile("1: fxsaveq %[fx]\n\t"
136 "2:\n"
137 ".section .fixup,\"ax\"\n"
138 "3: movl $-1,%[err]\n"
139 " jmp 2b\n"
140 ".previous\n"
141 _ASM_EXTABLE(1b, 3b)
142 : [err] "=r" (err), [fx] "=m" (*fx)
143 : "0" (0));
144 #else
145 asm volatile("1: rex64/fxsave (%[fx])\n\t"
146 "2:\n"
147 ".section .fixup,\"ax\"\n"
148 "3: movl $-1,%[err]\n"
149 " jmp 2b\n"
150 ".previous\n"
151 _ASM_EXTABLE(1b, 3b)
152 : [err] "=r" (err), "=m" (*fx)
153 : [fx] "R" (fx), "0" (0));
154 #endif
155 if (unlikely(err) &&
156 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
157 err = -EFAULT;
158 /* No need to clear here because the caller clears USED_MATH */
159 return err;
160 }
161
fpu_fxsave(struct fpu * fpu)162 static inline void fpu_fxsave(struct fpu *fpu)
163 {
164 /* Using "rex64; fxsave %0" is broken because, if the memory operand
165 uses any extended registers for addressing, a second REX prefix
166 will be generated (to the assembler, rex64 followed by semicolon
167 is a separate instruction), and hence the 64-bitness is lost. */
168
169 #ifdef CONFIG_AS_FXSAVEQ
170 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
171 starting with gas 2.16. */
172 __asm__ __volatile__("fxsaveq %0"
173 : "=m" (fpu->state->fxsave));
174 #else
175 /* Using, as a workaround, the properly prefixed form below isn't
176 accepted by any binutils version so far released, complaining that
177 the same type of prefix is used twice if an extended register is
178 needed for addressing (fix submitted to mainline 2005-11-21).
179 asm volatile("rex64/fxsave %0"
180 : "=m" (fpu->state->fxsave));
181 This, however, we can work around by forcing the compiler to select
182 an addressing mode that doesn't require extended registers. */
183 asm volatile("rex64/fxsave (%[fx])"
184 : "=m" (fpu->state->fxsave)
185 : [fx] "R" (&fpu->state->fxsave));
186 #endif
187 }
188
189 #else /* CONFIG_X86_32 */
190
191 /* perform fxrstor iff the processor has extended states, otherwise frstor */
fxrstor_checking(struct i387_fxsave_struct * fx)192 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
193 {
194 /*
195 * The "nop" is needed to make the instructions the same
196 * length.
197 */
198 alternative_input(
199 "nop ; frstor %1",
200 "fxrstor %1",
201 X86_FEATURE_FXSR,
202 "m" (*fx));
203
204 return 0;
205 }
206
fpu_fxsave(struct fpu * fpu)207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 asm volatile("fxsave %[fx]"
210 : [fx] "=m" (fpu->state->fxsave));
211 }
212
213 #endif /* CONFIG_X86_64 */
214
215 /* We need a safe address that is cheap to find and that is already
216 in L1 during context switch. The best choices are unfortunately
217 different for UP and SMP */
218 #ifdef CONFIG_SMP
219 #define safe_address (__per_cpu_offset[0])
220 #else
221 #define safe_address (kstat_cpu(0).cpustat.user)
222 #endif
223
224 /*
225 * These must be called with preempt disabled
226 */
fpu_save_init(struct fpu * fpu)227 static inline void fpu_save_init(struct fpu *fpu)
228 {
229 if (use_xsave()) {
230 fpu_xsave(fpu);
231
232 /*
233 * xsave header may indicate the init state of the FP.
234 */
235 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
236 return;
237 } else if (use_fxsr()) {
238 fpu_fxsave(fpu);
239 } else {
240 asm volatile("fnsave %[fx]; fwait"
241 : [fx] "=m" (fpu->state->fsave));
242 return;
243 }
244
245 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES))
246 asm volatile("fnclex");
247
248 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
249 is pending. Clear the x87 state here by setting it to fixed
250 values. safe_address is a random variable that should be in L1 */
251 alternative_input(
252 ASM_NOP8 ASM_NOP2,
253 "emms\n\t" /* clear stack tags */
254 "fildl %P[addr]", /* set F?P to defined value */
255 X86_FEATURE_FXSAVE_LEAK,
256 [addr] "m" (safe_address));
257 }
258
__save_init_fpu(struct task_struct * tsk)259 static inline void __save_init_fpu(struct task_struct *tsk)
260 {
261 fpu_save_init(&tsk->thread.fpu);
262 task_thread_info(tsk)->status &= ~TS_USEDFPU;
263 }
264
fpu_fxrstor_checking(struct fpu * fpu)265 static inline int fpu_fxrstor_checking(struct fpu *fpu)
266 {
267 return fxrstor_checking(&fpu->state->fxsave);
268 }
269
fpu_restore_checking(struct fpu * fpu)270 static inline int fpu_restore_checking(struct fpu *fpu)
271 {
272 if (use_xsave())
273 return fpu_xrstor_checking(fpu);
274 else
275 return fpu_fxrstor_checking(fpu);
276 }
277
restore_fpu_checking(struct task_struct * tsk)278 static inline int restore_fpu_checking(struct task_struct *tsk)
279 {
280 return fpu_restore_checking(&tsk->thread.fpu);
281 }
282
283 /*
284 * Signal frame handlers...
285 */
286 extern int save_i387_xstate(void __user *buf);
287 extern int restore_i387_xstate(void __user *buf);
288
__unlazy_fpu(struct task_struct * tsk)289 static inline void __unlazy_fpu(struct task_struct *tsk)
290 {
291 if (task_thread_info(tsk)->status & TS_USEDFPU) {
292 __save_init_fpu(tsk);
293 stts();
294 } else
295 tsk->fpu_counter = 0;
296 }
297
__clear_fpu(struct task_struct * tsk)298 static inline void __clear_fpu(struct task_struct *tsk)
299 {
300 if (task_thread_info(tsk)->status & TS_USEDFPU) {
301 /* Ignore delayed exceptions from user space */
302 asm volatile("1: fwait\n"
303 "2:\n"
304 _ASM_EXTABLE(1b, 2b));
305 task_thread_info(tsk)->status &= ~TS_USEDFPU;
306 stts();
307 }
308 }
309
kernel_fpu_begin(void)310 static inline void kernel_fpu_begin(void)
311 {
312 struct thread_info *me = current_thread_info();
313 preempt_disable();
314 if (me->status & TS_USEDFPU)
315 __save_init_fpu(me->task);
316 else
317 clts();
318 }
319
kernel_fpu_end(void)320 static inline void kernel_fpu_end(void)
321 {
322 stts();
323 preempt_enable();
324 }
325
irq_fpu_usable(void)326 static inline bool irq_fpu_usable(void)
327 {
328 struct pt_regs *regs;
329
330 return !in_interrupt() || !(regs = get_irq_regs()) || \
331 user_mode(regs) || (read_cr0() & X86_CR0_TS);
332 }
333
334 /*
335 * Some instructions like VIA's padlock instructions generate a spurious
336 * DNA fault but don't modify SSE registers. And these instructions
337 * get used from interrupt context as well. To prevent these kernel instructions
338 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
339 * should use them only in the context of irq_ts_save/restore()
340 */
irq_ts_save(void)341 static inline int irq_ts_save(void)
342 {
343 /*
344 * If in process context and not atomic, we can take a spurious DNA fault.
345 * Otherwise, doing clts() in process context requires disabling preemption
346 * or some heavy lifting like kernel_fpu_begin()
347 */
348 if (!in_atomic())
349 return 0;
350
351 if (read_cr0() & X86_CR0_TS) {
352 clts();
353 return 1;
354 }
355
356 return 0;
357 }
358
irq_ts_restore(int TS_state)359 static inline void irq_ts_restore(int TS_state)
360 {
361 if (TS_state)
362 stts();
363 }
364
365 /*
366 * These disable preemption on their own and are safe
367 */
save_init_fpu(struct task_struct * tsk)368 static inline void save_init_fpu(struct task_struct *tsk)
369 {
370 preempt_disable();
371 __save_init_fpu(tsk);
372 stts();
373 preempt_enable();
374 }
375
unlazy_fpu(struct task_struct * tsk)376 static inline void unlazy_fpu(struct task_struct *tsk)
377 {
378 preempt_disable();
379 __unlazy_fpu(tsk);
380 preempt_enable();
381 }
382
clear_fpu(struct task_struct * tsk)383 static inline void clear_fpu(struct task_struct *tsk)
384 {
385 preempt_disable();
386 __clear_fpu(tsk);
387 preempt_enable();
388 }
389
390 /*
391 * i387 state interaction
392 */
get_fpu_cwd(struct task_struct * tsk)393 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
394 {
395 if (cpu_has_fxsr) {
396 return tsk->thread.fpu.state->fxsave.cwd;
397 } else {
398 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
399 }
400 }
401
get_fpu_swd(struct task_struct * tsk)402 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
403 {
404 if (cpu_has_fxsr) {
405 return tsk->thread.fpu.state->fxsave.swd;
406 } else {
407 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
408 }
409 }
410
get_fpu_mxcsr(struct task_struct * tsk)411 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
412 {
413 if (cpu_has_xmm) {
414 return tsk->thread.fpu.state->fxsave.mxcsr;
415 } else {
416 return MXCSR_DEFAULT;
417 }
418 }
419
fpu_allocated(struct fpu * fpu)420 static bool fpu_allocated(struct fpu *fpu)
421 {
422 return fpu->state != NULL;
423 }
424
fpu_alloc(struct fpu * fpu)425 static inline int fpu_alloc(struct fpu *fpu)
426 {
427 if (fpu_allocated(fpu))
428 return 0;
429 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
430 if (!fpu->state)
431 return -ENOMEM;
432 WARN_ON((unsigned long)fpu->state & 15);
433 return 0;
434 }
435
fpu_free(struct fpu * fpu)436 static inline void fpu_free(struct fpu *fpu)
437 {
438 if (fpu->state) {
439 kmem_cache_free(task_xstate_cachep, fpu->state);
440 fpu->state = NULL;
441 }
442 }
443
fpu_copy(struct fpu * dst,struct fpu * src)444 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
445 {
446 memcpy(dst->state, src->state, xstate_size);
447 }
448
449 extern void fpu_finit(struct fpu *fpu);
450
451 #endif /* __ASSEMBLY__ */
452
453 #endif /* _ASM_X86_I387_H */
454