1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 
36 #include "core.h"
37 
38 /*
39  * Isochronous DMA context management
40  */
41 
fw_iso_buffer_init(struct fw_iso_buffer * buffer,struct fw_card * card,int page_count,enum dma_data_direction direction)42 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
43 		       int page_count, enum dma_data_direction direction)
44 {
45 	int i, j;
46 	dma_addr_t address;
47 
48 	buffer->page_count = page_count;
49 	buffer->direction = direction;
50 
51 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
52 				GFP_KERNEL);
53 	if (buffer->pages == NULL)
54 		goto out;
55 
56 	for (i = 0; i < buffer->page_count; i++) {
57 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
58 		if (buffer->pages[i] == NULL)
59 			goto out_pages;
60 
61 		address = dma_map_page(card->device, buffer->pages[i],
62 				       0, PAGE_SIZE, direction);
63 		if (dma_mapping_error(card->device, address)) {
64 			__free_page(buffer->pages[i]);
65 			goto out_pages;
66 		}
67 		set_page_private(buffer->pages[i], address);
68 	}
69 
70 	return 0;
71 
72  out_pages:
73 	for (j = 0; j < i; j++) {
74 		address = page_private(buffer->pages[j]);
75 		dma_unmap_page(card->device, address,
76 			       PAGE_SIZE, direction);
77 		__free_page(buffer->pages[j]);
78 	}
79 	kfree(buffer->pages);
80  out:
81 	buffer->pages = NULL;
82 
83 	return -ENOMEM;
84 }
85 EXPORT_SYMBOL(fw_iso_buffer_init);
86 
fw_iso_buffer_map(struct fw_iso_buffer * buffer,struct vm_area_struct * vma)87 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
88 {
89 	unsigned long uaddr;
90 	int i, err;
91 
92 	uaddr = vma->vm_start;
93 	for (i = 0; i < buffer->page_count; i++) {
94 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
95 		if (err)
96 			return err;
97 
98 		uaddr += PAGE_SIZE;
99 	}
100 
101 	return 0;
102 }
103 
fw_iso_buffer_destroy(struct fw_iso_buffer * buffer,struct fw_card * card)104 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
105 			   struct fw_card *card)
106 {
107 	int i;
108 	dma_addr_t address;
109 
110 	for (i = 0; i < buffer->page_count; i++) {
111 		address = page_private(buffer->pages[i]);
112 		dma_unmap_page(card->device, address,
113 			       PAGE_SIZE, buffer->direction);
114 		__free_page(buffer->pages[i]);
115 	}
116 
117 	kfree(buffer->pages);
118 	buffer->pages = NULL;
119 }
120 EXPORT_SYMBOL(fw_iso_buffer_destroy);
121 
122 /* Convert DMA address to offset into virtually contiguous buffer. */
fw_iso_buffer_lookup(struct fw_iso_buffer * buffer,dma_addr_t completed)123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
124 {
125 	int i;
126 	dma_addr_t address;
127 	ssize_t offset;
128 
129 	for (i = 0; i < buffer->page_count; i++) {
130 		address = page_private(buffer->pages[i]);
131 		offset = (ssize_t)completed - (ssize_t)address;
132 		if (offset > 0 && offset <= PAGE_SIZE)
133 			return (i << PAGE_SHIFT) + offset;
134 	}
135 
136 	return 0;
137 }
138 
fw_iso_context_create(struct fw_card * card,int type,int channel,int speed,size_t header_size,fw_iso_callback_t callback,void * callback_data)139 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
140 		int type, int channel, int speed, size_t header_size,
141 		fw_iso_callback_t callback, void *callback_data)
142 {
143 	struct fw_iso_context *ctx;
144 
145 	ctx = card->driver->allocate_iso_context(card,
146 						 type, channel, header_size);
147 	if (IS_ERR(ctx))
148 		return ctx;
149 
150 	ctx->card = card;
151 	ctx->type = type;
152 	ctx->channel = channel;
153 	ctx->speed = speed;
154 	ctx->header_size = header_size;
155 	ctx->callback.sc = callback;
156 	ctx->callback_data = callback_data;
157 
158 	return ctx;
159 }
160 EXPORT_SYMBOL(fw_iso_context_create);
161 
fw_iso_context_destroy(struct fw_iso_context * ctx)162 void fw_iso_context_destroy(struct fw_iso_context *ctx)
163 {
164 	ctx->card->driver->free_iso_context(ctx);
165 }
166 EXPORT_SYMBOL(fw_iso_context_destroy);
167 
fw_iso_context_start(struct fw_iso_context * ctx,int cycle,int sync,int tags)168 int fw_iso_context_start(struct fw_iso_context *ctx,
169 			 int cycle, int sync, int tags)
170 {
171 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
172 }
173 EXPORT_SYMBOL(fw_iso_context_start);
174 
fw_iso_context_set_channels(struct fw_iso_context * ctx,u64 * channels)175 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
176 {
177 	return ctx->card->driver->set_iso_channels(ctx, channels);
178 }
179 
fw_iso_context_queue(struct fw_iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)180 int fw_iso_context_queue(struct fw_iso_context *ctx,
181 			 struct fw_iso_packet *packet,
182 			 struct fw_iso_buffer *buffer,
183 			 unsigned long payload)
184 {
185 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
186 }
187 EXPORT_SYMBOL(fw_iso_context_queue);
188 
fw_iso_context_queue_flush(struct fw_iso_context * ctx)189 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
190 {
191 	ctx->card->driver->flush_queue_iso(ctx);
192 }
193 EXPORT_SYMBOL(fw_iso_context_queue_flush);
194 
fw_iso_context_flush_completions(struct fw_iso_context * ctx)195 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
196 {
197 	return ctx->card->driver->flush_iso_completions(ctx);
198 }
199 EXPORT_SYMBOL(fw_iso_context_flush_completions);
200 
fw_iso_context_stop(struct fw_iso_context * ctx)201 int fw_iso_context_stop(struct fw_iso_context *ctx)
202 {
203 	return ctx->card->driver->stop_iso(ctx);
204 }
205 EXPORT_SYMBOL(fw_iso_context_stop);
206 
207 /*
208  * Isochronous bus resource management (channels, bandwidth), client side
209  */
210 
manage_bandwidth(struct fw_card * card,int irm_id,int generation,int bandwidth,bool allocate)211 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
212 			    int bandwidth, bool allocate)
213 {
214 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
215 	__be32 data[2];
216 
217 	/*
218 	 * On a 1394a IRM with low contention, try < 1 is enough.
219 	 * On a 1394-1995 IRM, we need at least try < 2.
220 	 * Let's just do try < 5.
221 	 */
222 	for (try = 0; try < 5; try++) {
223 		new = allocate ? old - bandwidth : old + bandwidth;
224 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
225 			return -EBUSY;
226 
227 		data[0] = cpu_to_be32(old);
228 		data[1] = cpu_to_be32(new);
229 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
230 				irm_id, generation, SCODE_100,
231 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
232 				data, 8)) {
233 		case RCODE_GENERATION:
234 			/* A generation change frees all bandwidth. */
235 			return allocate ? -EAGAIN : bandwidth;
236 
237 		case RCODE_COMPLETE:
238 			if (be32_to_cpup(data) == old)
239 				return bandwidth;
240 
241 			old = be32_to_cpup(data);
242 			/* Fall through. */
243 		}
244 	}
245 
246 	return -EIO;
247 }
248 
manage_channel(struct fw_card * card,int irm_id,int generation,u32 channels_mask,u64 offset,bool allocate)249 static int manage_channel(struct fw_card *card, int irm_id, int generation,
250 		u32 channels_mask, u64 offset, bool allocate)
251 {
252 	__be32 bit, all, old;
253 	__be32 data[2];
254 	int channel, ret = -EIO, retry = 5;
255 
256 	old = all = allocate ? cpu_to_be32(~0) : 0;
257 
258 	for (channel = 0; channel < 32; channel++) {
259 		if (!(channels_mask & 1 << channel))
260 			continue;
261 
262 		ret = -EBUSY;
263 
264 		bit = cpu_to_be32(1 << (31 - channel));
265 		if ((old & bit) != (all & bit))
266 			continue;
267 
268 		data[0] = old;
269 		data[1] = old ^ bit;
270 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
271 					   irm_id, generation, SCODE_100,
272 					   offset, data, 8)) {
273 		case RCODE_GENERATION:
274 			/* A generation change frees all channels. */
275 			return allocate ? -EAGAIN : channel;
276 
277 		case RCODE_COMPLETE:
278 			if (data[0] == old)
279 				return channel;
280 
281 			old = data[0];
282 
283 			/* Is the IRM 1394a-2000 compliant? */
284 			if ((data[0] & bit) == (data[1] & bit))
285 				continue;
286 
287 			/* 1394-1995 IRM, fall through to retry. */
288 		default:
289 			if (retry) {
290 				retry--;
291 				channel--;
292 			} else {
293 				ret = -EIO;
294 			}
295 		}
296 	}
297 
298 	return ret;
299 }
300 
deallocate_channel(struct fw_card * card,int irm_id,int generation,int channel)301 static void deallocate_channel(struct fw_card *card, int irm_id,
302 			       int generation, int channel)
303 {
304 	u32 mask;
305 	u64 offset;
306 
307 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
308 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
309 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
310 
311 	manage_channel(card, irm_id, generation, mask, offset, false);
312 }
313 
314 /**
315  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
316  *
317  * In parameters: card, generation, channels_mask, bandwidth, allocate
318  * Out parameters: channel, bandwidth
319  * This function blocks (sleeps) during communication with the IRM.
320  *
321  * Allocates or deallocates at most one channel out of channels_mask.
322  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
323  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
324  * channel 0 and LSB for channel 63.)
325  * Allocates or deallocates as many bandwidth allocation units as specified.
326  *
327  * Returns channel < 0 if no channel was allocated or deallocated.
328  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
329  *
330  * If generation is stale, deallocations succeed but allocations fail with
331  * channel = -EAGAIN.
332  *
333  * If channel allocation fails, no bandwidth will be allocated either.
334  * If bandwidth allocation fails, no channel will be allocated either.
335  * But deallocations of channel and bandwidth are tried independently
336  * of each other's success.
337  */
fw_iso_resource_manage(struct fw_card * card,int generation,u64 channels_mask,int * channel,int * bandwidth,bool allocate)338 void fw_iso_resource_manage(struct fw_card *card, int generation,
339 			    u64 channels_mask, int *channel, int *bandwidth,
340 			    bool allocate)
341 {
342 	u32 channels_hi = channels_mask;	/* channels 31...0 */
343 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
344 	int irm_id, ret, c = -EINVAL;
345 
346 	spin_lock_irq(&card->lock);
347 	irm_id = card->irm_node->node_id;
348 	spin_unlock_irq(&card->lock);
349 
350 	if (channels_hi)
351 		c = manage_channel(card, irm_id, generation, channels_hi,
352 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
353 				allocate);
354 	if (channels_lo && c < 0) {
355 		c = manage_channel(card, irm_id, generation, channels_lo,
356 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
357 				allocate);
358 		if (c >= 0)
359 			c += 32;
360 	}
361 	*channel = c;
362 
363 	if (allocate && channels_mask != 0 && c < 0)
364 		*bandwidth = 0;
365 
366 	if (*bandwidth == 0)
367 		return;
368 
369 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
370 	if (ret < 0)
371 		*bandwidth = 0;
372 
373 	if (allocate && ret < 0) {
374 		if (c >= 0)
375 			deallocate_channel(card, irm_id, generation, c);
376 		*channel = ret;
377 	}
378 }
379 EXPORT_SYMBOL(fw_iso_resource_manage);
380