1 /*
2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
5 *
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32
33 #include <asm/byteorder.h>
34
35 #include "core.h"
36
37 /*
38 * Isochronous DMA context management
39 */
40
fw_iso_buffer_init(struct fw_iso_buffer * buffer,struct fw_card * card,int page_count,enum dma_data_direction direction)41 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
42 int page_count, enum dma_data_direction direction)
43 {
44 int i, j;
45 dma_addr_t address;
46
47 buffer->page_count = page_count;
48 buffer->direction = direction;
49
50 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
51 GFP_KERNEL);
52 if (buffer->pages == NULL)
53 goto out;
54
55 for (i = 0; i < buffer->page_count; i++) {
56 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
57 if (buffer->pages[i] == NULL)
58 goto out_pages;
59
60 address = dma_map_page(card->device, buffer->pages[i],
61 0, PAGE_SIZE, direction);
62 if (dma_mapping_error(card->device, address)) {
63 __free_page(buffer->pages[i]);
64 goto out_pages;
65 }
66 set_page_private(buffer->pages[i], address);
67 }
68
69 return 0;
70
71 out_pages:
72 for (j = 0; j < i; j++) {
73 address = page_private(buffer->pages[j]);
74 dma_unmap_page(card->device, address,
75 PAGE_SIZE, direction);
76 __free_page(buffer->pages[j]);
77 }
78 kfree(buffer->pages);
79 out:
80 buffer->pages = NULL;
81
82 return -ENOMEM;
83 }
84 EXPORT_SYMBOL(fw_iso_buffer_init);
85
fw_iso_buffer_map(struct fw_iso_buffer * buffer,struct vm_area_struct * vma)86 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
87 {
88 unsigned long uaddr;
89 int i, err;
90
91 uaddr = vma->vm_start;
92 for (i = 0; i < buffer->page_count; i++) {
93 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
94 if (err)
95 return err;
96
97 uaddr += PAGE_SIZE;
98 }
99
100 return 0;
101 }
102
fw_iso_buffer_destroy(struct fw_iso_buffer * buffer,struct fw_card * card)103 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
104 struct fw_card *card)
105 {
106 int i;
107 dma_addr_t address;
108
109 for (i = 0; i < buffer->page_count; i++) {
110 address = page_private(buffer->pages[i]);
111 dma_unmap_page(card->device, address,
112 PAGE_SIZE, buffer->direction);
113 __free_page(buffer->pages[i]);
114 }
115
116 kfree(buffer->pages);
117 buffer->pages = NULL;
118 }
119 EXPORT_SYMBOL(fw_iso_buffer_destroy);
120
121 /* Convert DMA address to offset into virtually contiguous buffer. */
fw_iso_buffer_lookup(struct fw_iso_buffer * buffer,dma_addr_t completed)122 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
123 {
124 int i;
125 dma_addr_t address;
126 ssize_t offset;
127
128 for (i = 0; i < buffer->page_count; i++) {
129 address = page_private(buffer->pages[i]);
130 offset = (ssize_t)completed - (ssize_t)address;
131 if (offset > 0 && offset <= PAGE_SIZE)
132 return (i << PAGE_SHIFT) + offset;
133 }
134
135 return 0;
136 }
137
fw_iso_context_create(struct fw_card * card,int type,int channel,int speed,size_t header_size,fw_iso_callback_t callback,void * callback_data)138 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
139 int type, int channel, int speed, size_t header_size,
140 fw_iso_callback_t callback, void *callback_data)
141 {
142 struct fw_iso_context *ctx;
143
144 ctx = card->driver->allocate_iso_context(card,
145 type, channel, header_size);
146 if (IS_ERR(ctx))
147 return ctx;
148
149 ctx->card = card;
150 ctx->type = type;
151 ctx->channel = channel;
152 ctx->speed = speed;
153 ctx->header_size = header_size;
154 ctx->callback.sc = callback;
155 ctx->callback_data = callback_data;
156
157 return ctx;
158 }
159 EXPORT_SYMBOL(fw_iso_context_create);
160
fw_iso_context_destroy(struct fw_iso_context * ctx)161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
162 {
163 ctx->card->driver->free_iso_context(ctx);
164 }
165 EXPORT_SYMBOL(fw_iso_context_destroy);
166
fw_iso_context_start(struct fw_iso_context * ctx,int cycle,int sync,int tags)167 int fw_iso_context_start(struct fw_iso_context *ctx,
168 int cycle, int sync, int tags)
169 {
170 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
171 }
172 EXPORT_SYMBOL(fw_iso_context_start);
173
fw_iso_context_set_channels(struct fw_iso_context * ctx,u64 * channels)174 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
175 {
176 return ctx->card->driver->set_iso_channels(ctx, channels);
177 }
178
fw_iso_context_queue(struct fw_iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)179 int fw_iso_context_queue(struct fw_iso_context *ctx,
180 struct fw_iso_packet *packet,
181 struct fw_iso_buffer *buffer,
182 unsigned long payload)
183 {
184 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
185 }
186 EXPORT_SYMBOL(fw_iso_context_queue);
187
fw_iso_context_stop(struct fw_iso_context * ctx)188 int fw_iso_context_stop(struct fw_iso_context *ctx)
189 {
190 return ctx->card->driver->stop_iso(ctx);
191 }
192 EXPORT_SYMBOL(fw_iso_context_stop);
193
194 /*
195 * Isochronous bus resource management (channels, bandwidth), client side
196 */
197
manage_bandwidth(struct fw_card * card,int irm_id,int generation,int bandwidth,bool allocate,__be32 data[2])198 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
199 int bandwidth, bool allocate, __be32 data[2])
200 {
201 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
202
203 /*
204 * On a 1394a IRM with low contention, try < 1 is enough.
205 * On a 1394-1995 IRM, we need at least try < 2.
206 * Let's just do try < 5.
207 */
208 for (try = 0; try < 5; try++) {
209 new = allocate ? old - bandwidth : old + bandwidth;
210 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
211 return -EBUSY;
212
213 data[0] = cpu_to_be32(old);
214 data[1] = cpu_to_be32(new);
215 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
216 irm_id, generation, SCODE_100,
217 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
218 data, 8)) {
219 case RCODE_GENERATION:
220 /* A generation change frees all bandwidth. */
221 return allocate ? -EAGAIN : bandwidth;
222
223 case RCODE_COMPLETE:
224 if (be32_to_cpup(data) == old)
225 return bandwidth;
226
227 old = be32_to_cpup(data);
228 /* Fall through. */
229 }
230 }
231
232 return -EIO;
233 }
234
manage_channel(struct fw_card * card,int irm_id,int generation,u32 channels_mask,u64 offset,bool allocate,__be32 data[2])235 static int manage_channel(struct fw_card *card, int irm_id, int generation,
236 u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
237 {
238 __be32 bit, all, old;
239 int channel, ret = -EIO, retry = 5;
240
241 old = all = allocate ? cpu_to_be32(~0) : 0;
242
243 for (channel = 0; channel < 32; channel++) {
244 if (!(channels_mask & 1 << channel))
245 continue;
246
247 ret = -EBUSY;
248
249 bit = cpu_to_be32(1 << (31 - channel));
250 if ((old & bit) != (all & bit))
251 continue;
252
253 data[0] = old;
254 data[1] = old ^ bit;
255 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
256 irm_id, generation, SCODE_100,
257 offset, data, 8)) {
258 case RCODE_GENERATION:
259 /* A generation change frees all channels. */
260 return allocate ? -EAGAIN : channel;
261
262 case RCODE_COMPLETE:
263 if (data[0] == old)
264 return channel;
265
266 old = data[0];
267
268 /* Is the IRM 1394a-2000 compliant? */
269 if ((data[0] & bit) == (data[1] & bit))
270 continue;
271
272 /* 1394-1995 IRM, fall through to retry. */
273 default:
274 if (retry) {
275 retry--;
276 channel--;
277 } else {
278 ret = -EIO;
279 }
280 }
281 }
282
283 return ret;
284 }
285
deallocate_channel(struct fw_card * card,int irm_id,int generation,int channel,__be32 buffer[2])286 static void deallocate_channel(struct fw_card *card, int irm_id,
287 int generation, int channel, __be32 buffer[2])
288 {
289 u32 mask;
290 u64 offset;
291
292 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
293 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
294 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
295
296 manage_channel(card, irm_id, generation, mask, offset, false, buffer);
297 }
298
299 /**
300 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
301 *
302 * In parameters: card, generation, channels_mask, bandwidth, allocate
303 * Out parameters: channel, bandwidth
304 * This function blocks (sleeps) during communication with the IRM.
305 *
306 * Allocates or deallocates at most one channel out of channels_mask.
307 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
308 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
309 * channel 0 and LSB for channel 63.)
310 * Allocates or deallocates as many bandwidth allocation units as specified.
311 *
312 * Returns channel < 0 if no channel was allocated or deallocated.
313 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
314 *
315 * If generation is stale, deallocations succeed but allocations fail with
316 * channel = -EAGAIN.
317 *
318 * If channel allocation fails, no bandwidth will be allocated either.
319 * If bandwidth allocation fails, no channel will be allocated either.
320 * But deallocations of channel and bandwidth are tried independently
321 * of each other's success.
322 */
fw_iso_resource_manage(struct fw_card * card,int generation,u64 channels_mask,int * channel,int * bandwidth,bool allocate,__be32 buffer[2])323 void fw_iso_resource_manage(struct fw_card *card, int generation,
324 u64 channels_mask, int *channel, int *bandwidth,
325 bool allocate, __be32 buffer[2])
326 {
327 u32 channels_hi = channels_mask; /* channels 31...0 */
328 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
329 int irm_id, ret, c = -EINVAL;
330
331 spin_lock_irq(&card->lock);
332 irm_id = card->irm_node->node_id;
333 spin_unlock_irq(&card->lock);
334
335 if (channels_hi)
336 c = manage_channel(card, irm_id, generation, channels_hi,
337 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
338 allocate, buffer);
339 if (channels_lo && c < 0) {
340 c = manage_channel(card, irm_id, generation, channels_lo,
341 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
342 allocate, buffer);
343 if (c >= 0)
344 c += 32;
345 }
346 *channel = c;
347
348 if (allocate && channels_mask != 0 && c < 0)
349 *bandwidth = 0;
350
351 if (*bandwidth == 0)
352 return;
353
354 ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
355 allocate, buffer);
356 if (ret < 0)
357 *bandwidth = 0;
358
359 if (allocate && ret < 0) {
360 if (c >= 0)
361 deallocate_channel(card, irm_id, generation, c, buffer);
362 *channel = ret;
363 }
364 }
365 EXPORT_SYMBOL(fw_iso_resource_manage);
366