1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 #include <linux/workqueue.h>
40 
41 #include <asm/byteorder.h>
42 
43 #include "core.h"
44 
45 #define HEADER_PRI(pri)			((pri) << 0)
46 #define HEADER_TCODE(tcode)		((tcode) << 4)
47 #define HEADER_RETRY(retry)		((retry) << 8)
48 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
49 #define HEADER_DESTINATION(destination)	((destination) << 16)
50 #define HEADER_SOURCE(source)		((source) << 16)
51 #define HEADER_RCODE(rcode)		((rcode) << 12)
52 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
53 #define HEADER_DATA_LENGTH(length)	((length) << 16)
54 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
55 
56 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
57 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
58 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
59 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
60 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
61 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
62 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
63 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
64 
65 #define HEADER_DESTINATION_IS_BROADCAST(q) \
66 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
67 
68 #define PHY_PACKET_CONFIG	0x0
69 #define PHY_PACKET_LINK_ON	0x1
70 #define PHY_PACKET_SELF_ID	0x2
71 
72 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
73 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
74 #define PHY_IDENTIFIER(id)		((id) << 30)
75 
76 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)77 static int try_cancel_split_timeout(struct fw_transaction *t)
78 {
79 	if (t->is_split_transaction)
80 		return del_timer(&t->split_timeout_timer);
81 	else
82 		return 1;
83 }
84 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)85 static int close_transaction(struct fw_transaction *transaction,
86 			     struct fw_card *card, int rcode)
87 {
88 	struct fw_transaction *t;
89 	unsigned long flags;
90 
91 	spin_lock_irqsave(&card->lock, flags);
92 	list_for_each_entry(t, &card->transaction_list, link) {
93 		if (t == transaction) {
94 			if (!try_cancel_split_timeout(t)) {
95 				spin_unlock_irqrestore(&card->lock, flags);
96 				goto timed_out;
97 			}
98 			list_del_init(&t->link);
99 			card->tlabel_mask &= ~(1ULL << t->tlabel);
100 			break;
101 		}
102 	}
103 	spin_unlock_irqrestore(&card->lock, flags);
104 
105 	if (&t->link != &card->transaction_list) {
106 		t->callback(card, rcode, NULL, 0, t->callback_data);
107 		return 0;
108 	}
109 
110  timed_out:
111 	return -ENOENT;
112 }
113 
114 /*
115  * Only valid for transactions that are potentially pending (ie have
116  * been sent).
117  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)118 int fw_cancel_transaction(struct fw_card *card,
119 			  struct fw_transaction *transaction)
120 {
121 	/*
122 	 * Cancel the packet transmission if it's still queued.  That
123 	 * will call the packet transmission callback which cancels
124 	 * the transaction.
125 	 */
126 
127 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
128 		return 0;
129 
130 	/*
131 	 * If the request packet has already been sent, we need to see
132 	 * if the transaction is still pending and remove it in that case.
133 	 */
134 
135 	return close_transaction(transaction, card, RCODE_CANCELLED);
136 }
137 EXPORT_SYMBOL(fw_cancel_transaction);
138 
split_transaction_timeout_callback(unsigned long data)139 static void split_transaction_timeout_callback(unsigned long data)
140 {
141 	struct fw_transaction *t = (struct fw_transaction *)data;
142 	struct fw_card *card = t->card;
143 	unsigned long flags;
144 
145 	spin_lock_irqsave(&card->lock, flags);
146 	if (list_empty(&t->link)) {
147 		spin_unlock_irqrestore(&card->lock, flags);
148 		return;
149 	}
150 	list_del(&t->link);
151 	card->tlabel_mask &= ~(1ULL << t->tlabel);
152 	spin_unlock_irqrestore(&card->lock, flags);
153 
154 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
155 }
156 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)157 static void start_split_transaction_timeout(struct fw_transaction *t,
158 					    struct fw_card *card)
159 {
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&card->lock, flags);
163 
164 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
165 		spin_unlock_irqrestore(&card->lock, flags);
166 		return;
167 	}
168 
169 	t->is_split_transaction = true;
170 	mod_timer(&t->split_timeout_timer,
171 		  jiffies + card->split_timeout_jiffies);
172 
173 	spin_unlock_irqrestore(&card->lock, flags);
174 }
175 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)176 static void transmit_complete_callback(struct fw_packet *packet,
177 				       struct fw_card *card, int status)
178 {
179 	struct fw_transaction *t =
180 	    container_of(packet, struct fw_transaction, packet);
181 
182 	switch (status) {
183 	case ACK_COMPLETE:
184 		close_transaction(t, card, RCODE_COMPLETE);
185 		break;
186 	case ACK_PENDING:
187 		start_split_transaction_timeout(t, card);
188 		break;
189 	case ACK_BUSY_X:
190 	case ACK_BUSY_A:
191 	case ACK_BUSY_B:
192 		close_transaction(t, card, RCODE_BUSY);
193 		break;
194 	case ACK_DATA_ERROR:
195 		close_transaction(t, card, RCODE_DATA_ERROR);
196 		break;
197 	case ACK_TYPE_ERROR:
198 		close_transaction(t, card, RCODE_TYPE_ERROR);
199 		break;
200 	default:
201 		/*
202 		 * In this case the ack is really a juju specific
203 		 * rcode, so just forward that to the callback.
204 		 */
205 		close_transaction(t, card, status);
206 		break;
207 	}
208 }
209 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)210 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
211 		int destination_id, int source_id, int generation, int speed,
212 		unsigned long long offset, void *payload, size_t length)
213 {
214 	int ext_tcode;
215 
216 	if (tcode == TCODE_STREAM_DATA) {
217 		packet->header[0] =
218 			HEADER_DATA_LENGTH(length) |
219 			destination_id |
220 			HEADER_TCODE(TCODE_STREAM_DATA);
221 		packet->header_length = 4;
222 		packet->payload = payload;
223 		packet->payload_length = length;
224 
225 		goto common;
226 	}
227 
228 	if (tcode > 0x10) {
229 		ext_tcode = tcode & ~0x10;
230 		tcode = TCODE_LOCK_REQUEST;
231 	} else
232 		ext_tcode = 0;
233 
234 	packet->header[0] =
235 		HEADER_RETRY(RETRY_X) |
236 		HEADER_TLABEL(tlabel) |
237 		HEADER_TCODE(tcode) |
238 		HEADER_DESTINATION(destination_id);
239 	packet->header[1] =
240 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
241 	packet->header[2] =
242 		offset;
243 
244 	switch (tcode) {
245 	case TCODE_WRITE_QUADLET_REQUEST:
246 		packet->header[3] = *(u32 *)payload;
247 		packet->header_length = 16;
248 		packet->payload_length = 0;
249 		break;
250 
251 	case TCODE_LOCK_REQUEST:
252 	case TCODE_WRITE_BLOCK_REQUEST:
253 		packet->header[3] =
254 			HEADER_DATA_LENGTH(length) |
255 			HEADER_EXTENDED_TCODE(ext_tcode);
256 		packet->header_length = 16;
257 		packet->payload = payload;
258 		packet->payload_length = length;
259 		break;
260 
261 	case TCODE_READ_QUADLET_REQUEST:
262 		packet->header_length = 12;
263 		packet->payload_length = 0;
264 		break;
265 
266 	case TCODE_READ_BLOCK_REQUEST:
267 		packet->header[3] =
268 			HEADER_DATA_LENGTH(length) |
269 			HEADER_EXTENDED_TCODE(ext_tcode);
270 		packet->header_length = 16;
271 		packet->payload_length = 0;
272 		break;
273 
274 	default:
275 		WARN(1, "wrong tcode %d\n", tcode);
276 	}
277  common:
278 	packet->speed = speed;
279 	packet->generation = generation;
280 	packet->ack = 0;
281 	packet->payload_mapped = false;
282 }
283 
allocate_tlabel(struct fw_card * card)284 static int allocate_tlabel(struct fw_card *card)
285 {
286 	int tlabel;
287 
288 	tlabel = card->current_tlabel;
289 	while (card->tlabel_mask & (1ULL << tlabel)) {
290 		tlabel = (tlabel + 1) & 0x3f;
291 		if (tlabel == card->current_tlabel)
292 			return -EBUSY;
293 	}
294 
295 	card->current_tlabel = (tlabel + 1) & 0x3f;
296 	card->tlabel_mask |= 1ULL << tlabel;
297 
298 	return tlabel;
299 }
300 
301 /**
302  * fw_send_request() - submit a request packet for transmission
303  * @card:		interface to send the request at
304  * @t:			transaction instance to which the request belongs
305  * @tcode:		transaction code
306  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
307  * @generation:		bus generation in which request and response are valid
308  * @speed:		transmission speed
309  * @offset:		48bit wide offset into destination's address space
310  * @payload:		data payload for the request subaction
311  * @length:		length of the payload, in bytes
312  * @callback:		function to be called when the transaction is completed
313  * @callback_data:	data to be passed to the transaction completion callback
314  *
315  * Submit a request packet into the asynchronous request transmission queue.
316  * Can be called from atomic context.  If you prefer a blocking API, use
317  * fw_run_transaction() in a context that can sleep.
318  *
319  * In case of lock requests, specify one of the firewire-core specific %TCODE_
320  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
321  *
322  * Make sure that the value in @destination_id is not older than the one in
323  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
324  *
325  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
326  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
327  * It will contain tag, channel, and sy data instead of a node ID then.
328  *
329  * The payload buffer at @data is going to be DMA-mapped except in case of
330  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
331  * buffer complies with the restrictions of the streaming DMA mapping API.
332  * @payload must not be freed before the @callback is called.
333  *
334  * In case of request types without payload, @data is NULL and @length is 0.
335  *
336  * After the transaction is completed successfully or unsuccessfully, the
337  * @callback will be called.  Among its parameters is the response code which
338  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
339  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
340  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
341  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
342  * generation, or missing ACK respectively.
343  *
344  * Note some timing corner cases:  fw_send_request() may complete much earlier
345  * than when the request packet actually hits the wire.  On the other hand,
346  * transaction completion and hence execution of @callback may happen even
347  * before fw_send_request() returns.
348  */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)349 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
350 		     int destination_id, int generation, int speed,
351 		     unsigned long long offset, void *payload, size_t length,
352 		     fw_transaction_callback_t callback, void *callback_data)
353 {
354 	unsigned long flags;
355 	int tlabel;
356 
357 	/*
358 	 * Allocate tlabel from the bitmap and put the transaction on
359 	 * the list while holding the card spinlock.
360 	 */
361 
362 	spin_lock_irqsave(&card->lock, flags);
363 
364 	tlabel = allocate_tlabel(card);
365 	if (tlabel < 0) {
366 		spin_unlock_irqrestore(&card->lock, flags);
367 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
368 		return;
369 	}
370 
371 	t->node_id = destination_id;
372 	t->tlabel = tlabel;
373 	t->card = card;
374 	t->is_split_transaction = false;
375 	setup_timer(&t->split_timeout_timer,
376 		    split_transaction_timeout_callback, (unsigned long)t);
377 	t->callback = callback;
378 	t->callback_data = callback_data;
379 
380 	fw_fill_request(&t->packet, tcode, t->tlabel,
381 			destination_id, card->node_id, generation,
382 			speed, offset, payload, length);
383 	t->packet.callback = transmit_complete_callback;
384 
385 	list_add_tail(&t->link, &card->transaction_list);
386 
387 	spin_unlock_irqrestore(&card->lock, flags);
388 
389 	card->driver->send_request(card, &t->packet);
390 }
391 EXPORT_SYMBOL(fw_send_request);
392 
393 struct transaction_callback_data {
394 	struct completion done;
395 	void *payload;
396 	int rcode;
397 };
398 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)399 static void transaction_callback(struct fw_card *card, int rcode,
400 				 void *payload, size_t length, void *data)
401 {
402 	struct transaction_callback_data *d = data;
403 
404 	if (rcode == RCODE_COMPLETE)
405 		memcpy(d->payload, payload, length);
406 	d->rcode = rcode;
407 	complete(&d->done);
408 }
409 
410 /**
411  * fw_run_transaction() - send request and sleep until transaction is completed
412  *
413  * Returns the RCODE.  See fw_send_request() for parameter documentation.
414  * Unlike fw_send_request(), @data points to the payload of the request or/and
415  * to the payload of the response.  DMA mapping restrictions apply to outbound
416  * request payloads of >= 8 bytes but not to inbound response payloads.
417  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)418 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
419 		       int generation, int speed, unsigned long long offset,
420 		       void *payload, size_t length)
421 {
422 	struct transaction_callback_data d;
423 	struct fw_transaction t;
424 
425 	init_timer_on_stack(&t.split_timeout_timer);
426 	init_completion(&d.done);
427 	d.payload = payload;
428 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
429 			offset, payload, length, transaction_callback, &d);
430 	wait_for_completion(&d.done);
431 	destroy_timer_on_stack(&t.split_timeout_timer);
432 
433 	return d.rcode;
434 }
435 EXPORT_SYMBOL(fw_run_transaction);
436 
437 static DEFINE_MUTEX(phy_config_mutex);
438 static DECLARE_COMPLETION(phy_config_done);
439 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)440 static void transmit_phy_packet_callback(struct fw_packet *packet,
441 					 struct fw_card *card, int status)
442 {
443 	complete(&phy_config_done);
444 }
445 
446 static struct fw_packet phy_config_packet = {
447 	.header_length	= 12,
448 	.header[0]	= TCODE_LINK_INTERNAL << 4,
449 	.payload_length	= 0,
450 	.speed		= SCODE_100,
451 	.callback	= transmit_phy_packet_callback,
452 };
453 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)454 void fw_send_phy_config(struct fw_card *card,
455 			int node_id, int generation, int gap_count)
456 {
457 	long timeout = DIV_ROUND_UP(HZ, 10);
458 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
459 
460 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
461 		data |= PHY_CONFIG_ROOT_ID(node_id);
462 
463 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
464 		gap_count = card->driver->read_phy_reg(card, 1);
465 		if (gap_count < 0)
466 			return;
467 
468 		gap_count &= 63;
469 		if (gap_count == 63)
470 			return;
471 	}
472 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
473 
474 	mutex_lock(&phy_config_mutex);
475 
476 	phy_config_packet.header[1] = data;
477 	phy_config_packet.header[2] = ~data;
478 	phy_config_packet.generation = generation;
479 	INIT_COMPLETION(phy_config_done);
480 
481 	card->driver->send_request(card, &phy_config_packet);
482 	wait_for_completion_timeout(&phy_config_done, timeout);
483 
484 	mutex_unlock(&phy_config_mutex);
485 }
486 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)487 static struct fw_address_handler *lookup_overlapping_address_handler(
488 	struct list_head *list, unsigned long long offset, size_t length)
489 {
490 	struct fw_address_handler *handler;
491 
492 	list_for_each_entry(handler, list, link) {
493 		if (handler->offset < offset + length &&
494 		    offset < handler->offset + handler->length)
495 			return handler;
496 	}
497 
498 	return NULL;
499 }
500 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)501 static bool is_enclosing_handler(struct fw_address_handler *handler,
502 				 unsigned long long offset, size_t length)
503 {
504 	return handler->offset <= offset &&
505 		offset + length <= handler->offset + handler->length;
506 }
507 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)508 static struct fw_address_handler *lookup_enclosing_address_handler(
509 	struct list_head *list, unsigned long long offset, size_t length)
510 {
511 	struct fw_address_handler *handler;
512 
513 	list_for_each_entry(handler, list, link) {
514 		if (is_enclosing_handler(handler, offset, length))
515 			return handler;
516 	}
517 
518 	return NULL;
519 }
520 
521 static DEFINE_SPINLOCK(address_handler_lock);
522 static LIST_HEAD(address_handler_list);
523 
524 const struct fw_address_region fw_high_memory_region =
525 	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
526 EXPORT_SYMBOL(fw_high_memory_region);
527 
528 #if 0
529 const struct fw_address_region fw_low_memory_region =
530 	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
531 const struct fw_address_region fw_private_region =
532 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
533 const struct fw_address_region fw_csr_region =
534 	{ .start = CSR_REGISTER_BASE,
535 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
536 const struct fw_address_region fw_unit_space_region =
537 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
538 #endif  /*  0  */
539 
is_in_fcp_region(u64 offset,size_t length)540 static bool is_in_fcp_region(u64 offset, size_t length)
541 {
542 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
543 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
544 }
545 
546 /**
547  * fw_core_add_address_handler() - register for incoming requests
548  * @handler:	callback
549  * @region:	region in the IEEE 1212 node space address range
550  *
551  * region->start, ->end, and handler->length have to be quadlet-aligned.
552  *
553  * When a request is received that falls within the specified address range,
554  * the specified callback is invoked.  The parameters passed to the callback
555  * give the details of the particular request.
556  *
557  * Return value:  0 on success, non-zero otherwise.
558  *
559  * The start offset of the handler's address region is determined by
560  * fw_core_add_address_handler() and is returned in handler->offset.
561  *
562  * Address allocations are exclusive, except for the FCP registers.
563  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)564 int fw_core_add_address_handler(struct fw_address_handler *handler,
565 				const struct fw_address_region *region)
566 {
567 	struct fw_address_handler *other;
568 	int ret = -EBUSY;
569 
570 	if (region->start & 0xffff000000000003ULL ||
571 	    region->start >= region->end ||
572 	    region->end   > 0x0001000000000000ULL ||
573 	    handler->length & 3 ||
574 	    handler->length == 0)
575 		return -EINVAL;
576 
577 	spin_lock_bh(&address_handler_lock);
578 
579 	handler->offset = region->start;
580 	while (handler->offset + handler->length <= region->end) {
581 		if (is_in_fcp_region(handler->offset, handler->length))
582 			other = NULL;
583 		else
584 			other = lookup_overlapping_address_handler
585 					(&address_handler_list,
586 					 handler->offset, handler->length);
587 		if (other != NULL) {
588 			handler->offset += other->length;
589 		} else {
590 			list_add_tail(&handler->link, &address_handler_list);
591 			ret = 0;
592 			break;
593 		}
594 	}
595 
596 	spin_unlock_bh(&address_handler_lock);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL(fw_core_add_address_handler);
601 
602 /**
603  * fw_core_remove_address_handler() - unregister an address handler
604  *
605  * When fw_core_remove_address_handler() returns, @handler->callback() is
606  * guaranteed to not run on any CPU anymore.
607  */
fw_core_remove_address_handler(struct fw_address_handler * handler)608 void fw_core_remove_address_handler(struct fw_address_handler *handler)
609 {
610 	spin_lock_bh(&address_handler_lock);
611 	list_del(&handler->link);
612 	spin_unlock_bh(&address_handler_lock);
613 }
614 EXPORT_SYMBOL(fw_core_remove_address_handler);
615 
616 struct fw_request {
617 	struct fw_packet response;
618 	u32 request_header[4];
619 	int ack;
620 	u32 length;
621 	u32 data[0];
622 };
623 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)624 static void free_response_callback(struct fw_packet *packet,
625 				   struct fw_card *card, int status)
626 {
627 	struct fw_request *request;
628 
629 	request = container_of(packet, struct fw_request, response);
630 	kfree(request);
631 }
632 
fw_get_response_length(struct fw_request * r)633 int fw_get_response_length(struct fw_request *r)
634 {
635 	int tcode, ext_tcode, data_length;
636 
637 	tcode = HEADER_GET_TCODE(r->request_header[0]);
638 
639 	switch (tcode) {
640 	case TCODE_WRITE_QUADLET_REQUEST:
641 	case TCODE_WRITE_BLOCK_REQUEST:
642 		return 0;
643 
644 	case TCODE_READ_QUADLET_REQUEST:
645 		return 4;
646 
647 	case TCODE_READ_BLOCK_REQUEST:
648 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
649 		return data_length;
650 
651 	case TCODE_LOCK_REQUEST:
652 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
653 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
654 		switch (ext_tcode) {
655 		case EXTCODE_FETCH_ADD:
656 		case EXTCODE_LITTLE_ADD:
657 			return data_length;
658 		default:
659 			return data_length / 2;
660 		}
661 
662 	default:
663 		WARN(1, "wrong tcode %d\n", tcode);
664 		return 0;
665 	}
666 }
667 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)668 void fw_fill_response(struct fw_packet *response, u32 *request_header,
669 		      int rcode, void *payload, size_t length)
670 {
671 	int tcode, tlabel, extended_tcode, source, destination;
672 
673 	tcode          = HEADER_GET_TCODE(request_header[0]);
674 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
675 	source         = HEADER_GET_DESTINATION(request_header[0]);
676 	destination    = HEADER_GET_SOURCE(request_header[1]);
677 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
678 
679 	response->header[0] =
680 		HEADER_RETRY(RETRY_1) |
681 		HEADER_TLABEL(tlabel) |
682 		HEADER_DESTINATION(destination);
683 	response->header[1] =
684 		HEADER_SOURCE(source) |
685 		HEADER_RCODE(rcode);
686 	response->header[2] = 0;
687 
688 	switch (tcode) {
689 	case TCODE_WRITE_QUADLET_REQUEST:
690 	case TCODE_WRITE_BLOCK_REQUEST:
691 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
692 		response->header_length = 12;
693 		response->payload_length = 0;
694 		break;
695 
696 	case TCODE_READ_QUADLET_REQUEST:
697 		response->header[0] |=
698 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
699 		if (payload != NULL)
700 			response->header[3] = *(u32 *)payload;
701 		else
702 			response->header[3] = 0;
703 		response->header_length = 16;
704 		response->payload_length = 0;
705 		break;
706 
707 	case TCODE_READ_BLOCK_REQUEST:
708 	case TCODE_LOCK_REQUEST:
709 		response->header[0] |= HEADER_TCODE(tcode + 2);
710 		response->header[3] =
711 			HEADER_DATA_LENGTH(length) |
712 			HEADER_EXTENDED_TCODE(extended_tcode);
713 		response->header_length = 16;
714 		response->payload = payload;
715 		response->payload_length = length;
716 		break;
717 
718 	default:
719 		WARN(1, "wrong tcode %d\n", tcode);
720 	}
721 
722 	response->payload_mapped = false;
723 }
724 EXPORT_SYMBOL(fw_fill_response);
725 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)726 static u32 compute_split_timeout_timestamp(struct fw_card *card,
727 					   u32 request_timestamp)
728 {
729 	unsigned int cycles;
730 	u32 timestamp;
731 
732 	cycles = card->split_timeout_cycles;
733 	cycles += request_timestamp & 0x1fff;
734 
735 	timestamp = request_timestamp & ~0x1fff;
736 	timestamp += (cycles / 8000) << 13;
737 	timestamp |= cycles % 8000;
738 
739 	return timestamp;
740 }
741 
allocate_request(struct fw_card * card,struct fw_packet * p)742 static struct fw_request *allocate_request(struct fw_card *card,
743 					   struct fw_packet *p)
744 {
745 	struct fw_request *request;
746 	u32 *data, length;
747 	int request_tcode;
748 
749 	request_tcode = HEADER_GET_TCODE(p->header[0]);
750 	switch (request_tcode) {
751 	case TCODE_WRITE_QUADLET_REQUEST:
752 		data = &p->header[3];
753 		length = 4;
754 		break;
755 
756 	case TCODE_WRITE_BLOCK_REQUEST:
757 	case TCODE_LOCK_REQUEST:
758 		data = p->payload;
759 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
760 		break;
761 
762 	case TCODE_READ_QUADLET_REQUEST:
763 		data = NULL;
764 		length = 4;
765 		break;
766 
767 	case TCODE_READ_BLOCK_REQUEST:
768 		data = NULL;
769 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
770 		break;
771 
772 	default:
773 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
774 			 p->header[0], p->header[1], p->header[2]);
775 		return NULL;
776 	}
777 
778 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
779 	if (request == NULL)
780 		return NULL;
781 
782 	request->response.speed = p->speed;
783 	request->response.timestamp =
784 			compute_split_timeout_timestamp(card, p->timestamp);
785 	request->response.generation = p->generation;
786 	request->response.ack = 0;
787 	request->response.callback = free_response_callback;
788 	request->ack = p->ack;
789 	request->length = length;
790 	if (data)
791 		memcpy(request->data, data, length);
792 
793 	memcpy(request->request_header, p->header, sizeof(p->header));
794 
795 	return request;
796 }
797 
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)798 void fw_send_response(struct fw_card *card,
799 		      struct fw_request *request, int rcode)
800 {
801 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
802 		return;
803 
804 	/* unified transaction or broadcast transaction: don't respond */
805 	if (request->ack != ACK_PENDING ||
806 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
807 		kfree(request);
808 		return;
809 	}
810 
811 	if (rcode == RCODE_COMPLETE)
812 		fw_fill_response(&request->response, request->request_header,
813 				 rcode, request->data,
814 				 fw_get_response_length(request));
815 	else
816 		fw_fill_response(&request->response, request->request_header,
817 				 rcode, NULL, 0);
818 
819 	card->driver->send_response(card, &request->response);
820 }
821 EXPORT_SYMBOL(fw_send_response);
822 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)823 static void handle_exclusive_region_request(struct fw_card *card,
824 					    struct fw_packet *p,
825 					    struct fw_request *request,
826 					    unsigned long long offset)
827 {
828 	struct fw_address_handler *handler;
829 	int tcode, destination, source;
830 
831 	destination = HEADER_GET_DESTINATION(p->header[0]);
832 	source      = HEADER_GET_SOURCE(p->header[1]);
833 	tcode       = HEADER_GET_TCODE(p->header[0]);
834 	if (tcode == TCODE_LOCK_REQUEST)
835 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
836 
837 	spin_lock_bh(&address_handler_lock);
838 	handler = lookup_enclosing_address_handler(&address_handler_list,
839 						   offset, request->length);
840 	if (handler)
841 		handler->address_callback(card, request,
842 					  tcode, destination, source,
843 					  p->generation, offset,
844 					  request->data, request->length,
845 					  handler->callback_data);
846 	spin_unlock_bh(&address_handler_lock);
847 
848 	if (!handler)
849 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
850 }
851 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)852 static void handle_fcp_region_request(struct fw_card *card,
853 				      struct fw_packet *p,
854 				      struct fw_request *request,
855 				      unsigned long long offset)
856 {
857 	struct fw_address_handler *handler;
858 	int tcode, destination, source;
859 
860 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
861 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
862 	    request->length > 0x200) {
863 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
864 
865 		return;
866 	}
867 
868 	tcode       = HEADER_GET_TCODE(p->header[0]);
869 	destination = HEADER_GET_DESTINATION(p->header[0]);
870 	source      = HEADER_GET_SOURCE(p->header[1]);
871 
872 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
873 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
874 		fw_send_response(card, request, RCODE_TYPE_ERROR);
875 
876 		return;
877 	}
878 
879 	spin_lock_bh(&address_handler_lock);
880 	list_for_each_entry(handler, &address_handler_list, link) {
881 		if (is_enclosing_handler(handler, offset, request->length))
882 			handler->address_callback(card, NULL, tcode,
883 						  destination, source,
884 						  p->generation, offset,
885 						  request->data,
886 						  request->length,
887 						  handler->callback_data);
888 	}
889 	spin_unlock_bh(&address_handler_lock);
890 
891 	fw_send_response(card, request, RCODE_COMPLETE);
892 }
893 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)894 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
895 {
896 	struct fw_request *request;
897 	unsigned long long offset;
898 
899 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
900 		return;
901 
902 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
903 		fw_cdev_handle_phy_packet(card, p);
904 		return;
905 	}
906 
907 	request = allocate_request(card, p);
908 	if (request == NULL) {
909 		/* FIXME: send statically allocated busy packet. */
910 		return;
911 	}
912 
913 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
914 		p->header[2];
915 
916 	if (!is_in_fcp_region(offset, request->length))
917 		handle_exclusive_region_request(card, p, request, offset);
918 	else
919 		handle_fcp_region_request(card, p, request, offset);
920 
921 }
922 EXPORT_SYMBOL(fw_core_handle_request);
923 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)924 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
925 {
926 	struct fw_transaction *t;
927 	unsigned long flags;
928 	u32 *data;
929 	size_t data_length;
930 	int tcode, tlabel, source, rcode;
931 
932 	tcode	= HEADER_GET_TCODE(p->header[0]);
933 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
934 	source	= HEADER_GET_SOURCE(p->header[1]);
935 	rcode	= HEADER_GET_RCODE(p->header[1]);
936 
937 	spin_lock_irqsave(&card->lock, flags);
938 	list_for_each_entry(t, &card->transaction_list, link) {
939 		if (t->node_id == source && t->tlabel == tlabel) {
940 			if (!try_cancel_split_timeout(t)) {
941 				spin_unlock_irqrestore(&card->lock, flags);
942 				goto timed_out;
943 			}
944 			list_del_init(&t->link);
945 			card->tlabel_mask &= ~(1ULL << t->tlabel);
946 			break;
947 		}
948 	}
949 	spin_unlock_irqrestore(&card->lock, flags);
950 
951 	if (&t->link == &card->transaction_list) {
952  timed_out:
953 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
954 			  source, tlabel);
955 		return;
956 	}
957 
958 	/*
959 	 * FIXME: sanity check packet, is length correct, does tcodes
960 	 * and addresses match.
961 	 */
962 
963 	switch (tcode) {
964 	case TCODE_READ_QUADLET_RESPONSE:
965 		data = (u32 *) &p->header[3];
966 		data_length = 4;
967 		break;
968 
969 	case TCODE_WRITE_RESPONSE:
970 		data = NULL;
971 		data_length = 0;
972 		break;
973 
974 	case TCODE_READ_BLOCK_RESPONSE:
975 	case TCODE_LOCK_RESPONSE:
976 		data = p->payload;
977 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
978 		break;
979 
980 	default:
981 		/* Should never happen, this is just to shut up gcc. */
982 		data = NULL;
983 		data_length = 0;
984 		break;
985 	}
986 
987 	/*
988 	 * The response handler may be executed while the request handler
989 	 * is still pending.  Cancel the request handler.
990 	 */
991 	card->driver->cancel_packet(card, &t->packet);
992 
993 	t->callback(card, rcode, data, data_length, t->callback_data);
994 }
995 EXPORT_SYMBOL(fw_core_handle_response);
996 
997 static const struct fw_address_region topology_map_region =
998 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
999 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1000 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1001 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1002 		int tcode, int destination, int source, int generation,
1003 		unsigned long long offset, void *payload, size_t length,
1004 		void *callback_data)
1005 {
1006 	int start;
1007 
1008 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1009 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1010 		return;
1011 	}
1012 
1013 	if ((offset & 3) > 0 || (length & 3) > 0) {
1014 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1015 		return;
1016 	}
1017 
1018 	start = (offset - topology_map_region.start) / 4;
1019 	memcpy(payload, &card->topology_map[start], length);
1020 
1021 	fw_send_response(card, request, RCODE_COMPLETE);
1022 }
1023 
1024 static struct fw_address_handler topology_map = {
1025 	.length			= 0x400,
1026 	.address_callback	= handle_topology_map,
1027 };
1028 
1029 static const struct fw_address_region registers_region =
1030 	{ .start = CSR_REGISTER_BASE,
1031 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1032 
update_split_timeout(struct fw_card * card)1033 static void update_split_timeout(struct fw_card *card)
1034 {
1035 	unsigned int cycles;
1036 
1037 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1038 
1039 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1040 	cycles = clamp(cycles, 800u, 3u * 8000u);
1041 
1042 	card->split_timeout_cycles = cycles;
1043 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1044 }
1045 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1046 static void handle_registers(struct fw_card *card, struct fw_request *request,
1047 		int tcode, int destination, int source, int generation,
1048 		unsigned long long offset, void *payload, size_t length,
1049 		void *callback_data)
1050 {
1051 	int reg = offset & ~CSR_REGISTER_BASE;
1052 	__be32 *data = payload;
1053 	int rcode = RCODE_COMPLETE;
1054 	unsigned long flags;
1055 
1056 	switch (reg) {
1057 	case CSR_PRIORITY_BUDGET:
1058 		if (!card->priority_budget_implemented) {
1059 			rcode = RCODE_ADDRESS_ERROR;
1060 			break;
1061 		}
1062 		/* else fall through */
1063 
1064 	case CSR_NODE_IDS:
1065 		/*
1066 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1067 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1068 		 */
1069 		/* fall through */
1070 
1071 	case CSR_STATE_CLEAR:
1072 	case CSR_STATE_SET:
1073 	case CSR_CYCLE_TIME:
1074 	case CSR_BUS_TIME:
1075 	case CSR_BUSY_TIMEOUT:
1076 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1077 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1078 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1079 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1080 		else
1081 			rcode = RCODE_TYPE_ERROR;
1082 		break;
1083 
1084 	case CSR_RESET_START:
1085 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1086 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1087 						CSR_STATE_BIT_ABDICATE);
1088 		else
1089 			rcode = RCODE_TYPE_ERROR;
1090 		break;
1091 
1092 	case CSR_SPLIT_TIMEOUT_HI:
1093 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1094 			*data = cpu_to_be32(card->split_timeout_hi);
1095 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1096 			spin_lock_irqsave(&card->lock, flags);
1097 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1098 			update_split_timeout(card);
1099 			spin_unlock_irqrestore(&card->lock, flags);
1100 		} else {
1101 			rcode = RCODE_TYPE_ERROR;
1102 		}
1103 		break;
1104 
1105 	case CSR_SPLIT_TIMEOUT_LO:
1106 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1107 			*data = cpu_to_be32(card->split_timeout_lo);
1108 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1109 			spin_lock_irqsave(&card->lock, flags);
1110 			card->split_timeout_lo =
1111 					be32_to_cpu(*data) & 0xfff80000;
1112 			update_split_timeout(card);
1113 			spin_unlock_irqrestore(&card->lock, flags);
1114 		} else {
1115 			rcode = RCODE_TYPE_ERROR;
1116 		}
1117 		break;
1118 
1119 	case CSR_MAINT_UTILITY:
1120 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1121 			*data = card->maint_utility_register;
1122 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1123 			card->maint_utility_register = *data;
1124 		else
1125 			rcode = RCODE_TYPE_ERROR;
1126 		break;
1127 
1128 	case CSR_BROADCAST_CHANNEL:
1129 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1130 			*data = cpu_to_be32(card->broadcast_channel);
1131 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1132 			card->broadcast_channel =
1133 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1134 			    BROADCAST_CHANNEL_INITIAL;
1135 		else
1136 			rcode = RCODE_TYPE_ERROR;
1137 		break;
1138 
1139 	case CSR_BUS_MANAGER_ID:
1140 	case CSR_BANDWIDTH_AVAILABLE:
1141 	case CSR_CHANNELS_AVAILABLE_HI:
1142 	case CSR_CHANNELS_AVAILABLE_LO:
1143 		/*
1144 		 * FIXME: these are handled by the OHCI hardware and
1145 		 * the stack never sees these request. If we add
1146 		 * support for a new type of controller that doesn't
1147 		 * handle this in hardware we need to deal with these
1148 		 * transactions.
1149 		 */
1150 		BUG();
1151 		break;
1152 
1153 	default:
1154 		rcode = RCODE_ADDRESS_ERROR;
1155 		break;
1156 	}
1157 
1158 	fw_send_response(card, request, rcode);
1159 }
1160 
1161 static struct fw_address_handler registers = {
1162 	.length			= 0x400,
1163 	.address_callback	= handle_registers,
1164 };
1165 
1166 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1167 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1168 MODULE_LICENSE("GPL");
1169 
1170 static const u32 vendor_textual_descriptor[] = {
1171 	/* textual descriptor leaf () */
1172 	0x00060000,
1173 	0x00000000,
1174 	0x00000000,
1175 	0x4c696e75,		/* L i n u */
1176 	0x78204669,		/* x   F i */
1177 	0x72657769,		/* r e w i */
1178 	0x72650000,		/* r e     */
1179 };
1180 
1181 static const u32 model_textual_descriptor[] = {
1182 	/* model descriptor leaf () */
1183 	0x00030000,
1184 	0x00000000,
1185 	0x00000000,
1186 	0x4a756a75,		/* J u j u */
1187 };
1188 
1189 static struct fw_descriptor vendor_id_descriptor = {
1190 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1191 	.immediate = 0x03d00d1e,
1192 	.key = 0x81000000,
1193 	.data = vendor_textual_descriptor,
1194 };
1195 
1196 static struct fw_descriptor model_id_descriptor = {
1197 	.length = ARRAY_SIZE(model_textual_descriptor),
1198 	.immediate = 0x17000001,
1199 	.key = 0x81000000,
1200 	.data = model_textual_descriptor,
1201 };
1202 
fw_core_init(void)1203 static int __init fw_core_init(void)
1204 {
1205 	int ret;
1206 
1207 	fw_workqueue = alloc_workqueue("firewire",
1208 				       WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1209 	if (!fw_workqueue)
1210 		return -ENOMEM;
1211 
1212 	ret = bus_register(&fw_bus_type);
1213 	if (ret < 0) {
1214 		destroy_workqueue(fw_workqueue);
1215 		return ret;
1216 	}
1217 
1218 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1219 	if (fw_cdev_major < 0) {
1220 		bus_unregister(&fw_bus_type);
1221 		destroy_workqueue(fw_workqueue);
1222 		return fw_cdev_major;
1223 	}
1224 
1225 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1226 	fw_core_add_address_handler(&registers, &registers_region);
1227 	fw_core_add_descriptor(&vendor_id_descriptor);
1228 	fw_core_add_descriptor(&model_id_descriptor);
1229 
1230 	return 0;
1231 }
1232 
fw_core_cleanup(void)1233 static void __exit fw_core_cleanup(void)
1234 {
1235 	unregister_chrdev(fw_cdev_major, "firewire");
1236 	bus_unregister(&fw_bus_type);
1237 	destroy_workqueue(fw_workqueue);
1238 	idr_destroy(&fw_device_idr);
1239 }
1240 
1241 module_init(fw_core_init);
1242 module_exit(fw_core_cleanup);
1243