1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
37
38 #include "core.h"
39
fw_compute_block_crc(__be32 * block)40 int fw_compute_block_crc(__be32 *block)
41 {
42 int length;
43 u16 crc;
44
45 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 *block |= cpu_to_be32(crc);
48
49 return length;
50 }
51
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
54
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
57
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
61
62 #define BIB_CRC(v) ((v) << 0)
63 #define BIB_CRC_LENGTH(v) ((v) << 16)
64 #define BIB_INFO_LENGTH(v) ((v) << 24)
65 #define BIB_BUS_NAME 0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v) ((v) << 0)
67 #define BIB_GENERATION(v) ((v) << 4)
68 #define BIB_MAX_ROM(v) ((v) << 8)
69 #define BIB_MAX_RECEIVE(v) ((v) << 12)
70 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
71 #define BIB_PMC ((1) << 27)
72 #define BIB_BMC ((1) << 28)
73 #define BIB_ISC ((1) << 29)
74 #define BIB_CMC ((1) << 30)
75 #define BIB_IRMC ((1) << 31)
76 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77
78 /*
79 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
80 * but we have to make it longer because there are many devices whose firmware
81 * is just too slow for that.
82 */
83 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
84
85 #define CANON_OUI 0x000085
86
generate_config_rom(struct fw_card * card,__be32 * config_rom)87 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
88 {
89 struct fw_descriptor *desc;
90 int i, j, k, length;
91
92 /*
93 * Initialize contents of config rom buffer. On the OHCI
94 * controller, block reads to the config rom accesses the host
95 * memory, but quadlet read access the hardware bus info block
96 * registers. That's just crack, but it means we should make
97 * sure the contents of bus info block in host memory matches
98 * the version stored in the OHCI registers.
99 */
100
101 config_rom[0] = cpu_to_be32(
102 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
103 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
104 config_rom[2] = cpu_to_be32(
105 BIB_LINK_SPEED(card->link_speed) |
106 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
107 BIB_MAX_ROM(2) |
108 BIB_MAX_RECEIVE(card->max_receive) |
109 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
110 config_rom[3] = cpu_to_be32(card->guid >> 32);
111 config_rom[4] = cpu_to_be32(card->guid);
112
113 /* Generate root directory. */
114 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
115 i = 7;
116 j = 7 + descriptor_count;
117
118 /* Generate root directory entries for descriptors. */
119 list_for_each_entry (desc, &descriptor_list, link) {
120 if (desc->immediate > 0)
121 config_rom[i++] = cpu_to_be32(desc->immediate);
122 config_rom[i] = cpu_to_be32(desc->key | (j - i));
123 i++;
124 j += desc->length;
125 }
126
127 /* Update root directory length. */
128 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
129
130 /* End of root directory, now copy in descriptors. */
131 list_for_each_entry (desc, &descriptor_list, link) {
132 for (k = 0; k < desc->length; k++)
133 config_rom[i + k] = cpu_to_be32(desc->data[k]);
134 i += desc->length;
135 }
136
137 /* Calculate CRCs for all blocks in the config rom. This
138 * assumes that CRC length and info length are identical for
139 * the bus info block, which is always the case for this
140 * implementation. */
141 for (i = 0; i < j; i += length + 1)
142 length = fw_compute_block_crc(config_rom + i);
143
144 WARN_ON(j != config_rom_length);
145 }
146
update_config_roms(void)147 static void update_config_roms(void)
148 {
149 struct fw_card *card;
150
151 list_for_each_entry (card, &card_list, link) {
152 generate_config_rom(card, tmp_config_rom);
153 card->driver->set_config_rom(card, tmp_config_rom,
154 config_rom_length);
155 }
156 }
157
required_space(struct fw_descriptor * desc)158 static size_t required_space(struct fw_descriptor *desc)
159 {
160 /* descriptor + entry into root dir + optional immediate entry */
161 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
162 }
163
fw_core_add_descriptor(struct fw_descriptor * desc)164 int fw_core_add_descriptor(struct fw_descriptor *desc)
165 {
166 size_t i;
167 int ret;
168
169 /*
170 * Check descriptor is valid; the length of all blocks in the
171 * descriptor has to add up to exactly the length of the
172 * block.
173 */
174 i = 0;
175 while (i < desc->length)
176 i += (desc->data[i] >> 16) + 1;
177
178 if (i != desc->length)
179 return -EINVAL;
180
181 mutex_lock(&card_mutex);
182
183 if (config_rom_length + required_space(desc) > 256) {
184 ret = -EBUSY;
185 } else {
186 list_add_tail(&desc->link, &descriptor_list);
187 config_rom_length += required_space(desc);
188 descriptor_count++;
189 if (desc->immediate > 0)
190 descriptor_count++;
191 update_config_roms();
192 ret = 0;
193 }
194
195 mutex_unlock(&card_mutex);
196
197 return ret;
198 }
199 EXPORT_SYMBOL(fw_core_add_descriptor);
200
fw_core_remove_descriptor(struct fw_descriptor * desc)201 void fw_core_remove_descriptor(struct fw_descriptor *desc)
202 {
203 mutex_lock(&card_mutex);
204
205 list_del(&desc->link);
206 config_rom_length -= required_space(desc);
207 descriptor_count--;
208 if (desc->immediate > 0)
209 descriptor_count--;
210 update_config_roms();
211
212 mutex_unlock(&card_mutex);
213 }
214 EXPORT_SYMBOL(fw_core_remove_descriptor);
215
reset_bus(struct fw_card * card,bool short_reset)216 static int reset_bus(struct fw_card *card, bool short_reset)
217 {
218 int reg = short_reset ? 5 : 1;
219 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
220
221 return card->driver->update_phy_reg(card, reg, 0, bit);
222 }
223
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)224 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
225 {
226 /* We don't try hard to sort out requests of long vs. short resets. */
227 card->br_short = short_reset;
228
229 /* Use an arbitrary short delay to combine multiple reset requests. */
230 fw_card_get(card);
231 if (!schedule_delayed_work(&card->br_work,
232 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
233 fw_card_put(card);
234 }
235 EXPORT_SYMBOL(fw_schedule_bus_reset);
236
br_work(struct work_struct * work)237 static void br_work(struct work_struct *work)
238 {
239 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
240
241 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242 if (card->reset_jiffies != 0 &&
243 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
244 if (!schedule_delayed_work(&card->br_work, 2 * HZ))
245 fw_card_put(card);
246 return;
247 }
248
249 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
250 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
251 reset_bus(card, card->br_short);
252 fw_card_put(card);
253 }
254
allocate_broadcast_channel(struct fw_card * card,int generation)255 static void allocate_broadcast_channel(struct fw_card *card, int generation)
256 {
257 int channel, bandwidth = 0;
258
259 if (!card->broadcast_channel_allocated) {
260 fw_iso_resource_manage(card, generation, 1ULL << 31,
261 &channel, &bandwidth, true,
262 card->bm_transaction_data);
263 if (channel != 31) {
264 fw_notify("failed to allocate broadcast channel\n");
265 return;
266 }
267 card->broadcast_channel_allocated = true;
268 }
269
270 device_for_each_child(card->device, (void *)(long)generation,
271 fw_device_set_broadcast_channel);
272 }
273
274 static const char gap_count_table[] = {
275 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
276 };
277
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)278 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
279 {
280 fw_card_get(card);
281 if (!schedule_delayed_work(&card->bm_work, delay))
282 fw_card_put(card);
283 }
284
bm_work(struct work_struct * work)285 static void bm_work(struct work_struct *work)
286 {
287 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
288 struct fw_device *root_device, *irm_device;
289 struct fw_node *root_node;
290 int root_id, new_root_id, irm_id, bm_id, local_id;
291 int gap_count, generation, grace, rcode;
292 bool do_reset = false;
293 bool root_device_is_running;
294 bool root_device_is_cmc;
295 bool irm_is_1394_1995_only;
296 bool keep_this_irm;
297
298 spin_lock_irq(&card->lock);
299
300 if (card->local_node == NULL) {
301 spin_unlock_irq(&card->lock);
302 goto out_put_card;
303 }
304
305 generation = card->generation;
306
307 root_node = card->root_node;
308 fw_node_get(root_node);
309 root_device = root_node->data;
310 root_device_is_running = root_device &&
311 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
312 root_device_is_cmc = root_device && root_device->cmc;
313
314 irm_device = card->irm_node->data;
315 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
316 (irm_device->config_rom[2] & 0x000000f0) == 0;
317
318 /* Canon MV5i works unreliably if it is not root node. */
319 keep_this_irm = irm_device && irm_device->config_rom &&
320 irm_device->config_rom[3] >> 8 == CANON_OUI;
321
322 root_id = root_node->node_id;
323 irm_id = card->irm_node->node_id;
324 local_id = card->local_node->node_id;
325
326 grace = time_after64(get_jiffies_64(),
327 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
328
329 if ((is_next_generation(generation, card->bm_generation) &&
330 !card->bm_abdicate) ||
331 (card->bm_generation != generation && grace)) {
332 /*
333 * This first step is to figure out who is IRM and
334 * then try to become bus manager. If the IRM is not
335 * well defined (e.g. does not have an active link
336 * layer or does not responds to our lock request, we
337 * will have to do a little vigilante bus management.
338 * In that case, we do a goto into the gap count logic
339 * so that when we do the reset, we still optimize the
340 * gap count. That could well save a reset in the
341 * next generation.
342 */
343
344 if (!card->irm_node->link_on) {
345 new_root_id = local_id;
346 fw_notify("%s, making local node (%02x) root.\n",
347 "IRM has link off", new_root_id);
348 goto pick_me;
349 }
350
351 if (irm_is_1394_1995_only && !keep_this_irm) {
352 new_root_id = local_id;
353 fw_notify("%s, making local node (%02x) root.\n",
354 "IRM is not 1394a compliant", new_root_id);
355 goto pick_me;
356 }
357
358 card->bm_transaction_data[0] = cpu_to_be32(0x3f);
359 card->bm_transaction_data[1] = cpu_to_be32(local_id);
360
361 spin_unlock_irq(&card->lock);
362
363 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
364 irm_id, generation, SCODE_100,
365 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
366 card->bm_transaction_data, 8);
367
368 if (rcode == RCODE_GENERATION)
369 /* Another bus reset, BM work has been rescheduled. */
370 goto out;
371
372 bm_id = be32_to_cpu(card->bm_transaction_data[0]);
373
374 spin_lock_irq(&card->lock);
375 if (rcode == RCODE_COMPLETE && generation == card->generation)
376 card->bm_node_id =
377 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
378 spin_unlock_irq(&card->lock);
379
380 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
381 /* Somebody else is BM. Only act as IRM. */
382 if (local_id == irm_id)
383 allocate_broadcast_channel(card, generation);
384
385 goto out;
386 }
387
388 if (rcode == RCODE_SEND_ERROR) {
389 /*
390 * We have been unable to send the lock request due to
391 * some local problem. Let's try again later and hope
392 * that the problem has gone away by then.
393 */
394 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
395 goto out;
396 }
397
398 spin_lock_irq(&card->lock);
399
400 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
401 /*
402 * The lock request failed, maybe the IRM
403 * isn't really IRM capable after all. Let's
404 * do a bus reset and pick the local node as
405 * root, and thus, IRM.
406 */
407 new_root_id = local_id;
408 fw_notify("%s, making local node (%02x) root.\n",
409 "BM lock failed", new_root_id);
410 goto pick_me;
411 }
412 } else if (card->bm_generation != generation) {
413 /*
414 * We weren't BM in the last generation, and the last
415 * bus reset is less than 125ms ago. Reschedule this job.
416 */
417 spin_unlock_irq(&card->lock);
418 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
419 goto out;
420 }
421
422 /*
423 * We're bus manager for this generation, so next step is to
424 * make sure we have an active cycle master and do gap count
425 * optimization.
426 */
427 card->bm_generation = generation;
428
429 if (root_device == NULL) {
430 /*
431 * Either link_on is false, or we failed to read the
432 * config rom. In either case, pick another root.
433 */
434 new_root_id = local_id;
435 } else if (!root_device_is_running) {
436 /*
437 * If we haven't probed this device yet, bail out now
438 * and let's try again once that's done.
439 */
440 spin_unlock_irq(&card->lock);
441 goto out;
442 } else if (root_device_is_cmc) {
443 /*
444 * We will send out a force root packet for this
445 * node as part of the gap count optimization.
446 */
447 new_root_id = root_id;
448 } else {
449 /*
450 * Current root has an active link layer and we
451 * successfully read the config rom, but it's not
452 * cycle master capable.
453 */
454 new_root_id = local_id;
455 }
456
457 pick_me:
458 /*
459 * Pick a gap count from 1394a table E-1. The table doesn't cover
460 * the typically much larger 1394b beta repeater delays though.
461 */
462 if (!card->beta_repeaters_present &&
463 root_node->max_hops < ARRAY_SIZE(gap_count_table))
464 gap_count = gap_count_table[root_node->max_hops];
465 else
466 gap_count = 63;
467
468 /*
469 * Finally, figure out if we should do a reset or not. If we have
470 * done less than 5 resets with the same physical topology and we
471 * have either a new root or a new gap count setting, let's do it.
472 */
473
474 if (card->bm_retries++ < 5 &&
475 (card->gap_count != gap_count || new_root_id != root_id))
476 do_reset = true;
477
478 spin_unlock_irq(&card->lock);
479
480 if (do_reset) {
481 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
482 card->index, new_root_id, gap_count);
483 fw_send_phy_config(card, new_root_id, generation, gap_count);
484 reset_bus(card, true);
485 /* Will allocate broadcast channel after the reset. */
486 goto out;
487 }
488
489 if (root_device_is_cmc) {
490 /*
491 * Make sure that the cycle master sends cycle start packets.
492 */
493 card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
494 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
495 root_id, generation, SCODE_100,
496 CSR_REGISTER_BASE + CSR_STATE_SET,
497 card->bm_transaction_data, 4);
498 if (rcode == RCODE_GENERATION)
499 goto out;
500 }
501
502 if (local_id == irm_id)
503 allocate_broadcast_channel(card, generation);
504
505 out:
506 fw_node_put(root_node);
507 out_put_card:
508 fw_card_put(card);
509 }
510
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)511 void fw_card_initialize(struct fw_card *card,
512 const struct fw_card_driver *driver,
513 struct device *device)
514 {
515 static atomic_t index = ATOMIC_INIT(-1);
516
517 card->index = atomic_inc_return(&index);
518 card->driver = driver;
519 card->device = device;
520 card->current_tlabel = 0;
521 card->tlabel_mask = 0;
522 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
523 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
524 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
525 card->split_timeout_jiffies =
526 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
527 card->color = 0;
528 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
529
530 kref_init(&card->kref);
531 init_completion(&card->done);
532 INIT_LIST_HEAD(&card->transaction_list);
533 INIT_LIST_HEAD(&card->phy_receiver_list);
534 spin_lock_init(&card->lock);
535
536 card->local_node = NULL;
537
538 INIT_DELAYED_WORK(&card->br_work, br_work);
539 INIT_DELAYED_WORK(&card->bm_work, bm_work);
540 }
541 EXPORT_SYMBOL(fw_card_initialize);
542
fw_card_add(struct fw_card * card,u32 max_receive,u32 link_speed,u64 guid)543 int fw_card_add(struct fw_card *card,
544 u32 max_receive, u32 link_speed, u64 guid)
545 {
546 int ret;
547
548 card->max_receive = max_receive;
549 card->link_speed = link_speed;
550 card->guid = guid;
551
552 mutex_lock(&card_mutex);
553
554 generate_config_rom(card, tmp_config_rom);
555 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
556 if (ret == 0)
557 list_add_tail(&card->link, &card_list);
558
559 mutex_unlock(&card_mutex);
560
561 return ret;
562 }
563 EXPORT_SYMBOL(fw_card_add);
564
565 /*
566 * The next few functions implement a dummy driver that is used once a card
567 * driver shuts down an fw_card. This allows the driver to cleanly unload,
568 * as all IO to the card will be handled (and failed) by the dummy driver
569 * instead of calling into the module. Only functions for iso context
570 * shutdown still need to be provided by the card driver.
571 *
572 * .read/write_csr() should never be called anymore after the dummy driver
573 * was bound since they are only used within request handler context.
574 * .set_config_rom() is never called since the card is taken out of card_list
575 * before switching to the dummy driver.
576 */
577
dummy_read_phy_reg(struct fw_card * card,int address)578 static int dummy_read_phy_reg(struct fw_card *card, int address)
579 {
580 return -ENODEV;
581 }
582
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)583 static int dummy_update_phy_reg(struct fw_card *card, int address,
584 int clear_bits, int set_bits)
585 {
586 return -ENODEV;
587 }
588
dummy_send_request(struct fw_card * card,struct fw_packet * packet)589 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
590 {
591 packet->callback(packet, card, RCODE_CANCELLED);
592 }
593
dummy_send_response(struct fw_card * card,struct fw_packet * packet)594 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
595 {
596 packet->callback(packet, card, RCODE_CANCELLED);
597 }
598
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)599 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
600 {
601 return -ENOENT;
602 }
603
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)604 static int dummy_enable_phys_dma(struct fw_card *card,
605 int node_id, int generation)
606 {
607 return -ENODEV;
608 }
609
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)610 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
611 int type, int channel, size_t header_size)
612 {
613 return ERR_PTR(-ENODEV);
614 }
615
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)616 static int dummy_start_iso(struct fw_iso_context *ctx,
617 s32 cycle, u32 sync, u32 tags)
618 {
619 return -ENODEV;
620 }
621
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)622 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
623 {
624 return -ENODEV;
625 }
626
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)627 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
628 struct fw_iso_buffer *buffer, unsigned long payload)
629 {
630 return -ENODEV;
631 }
632
633 static const struct fw_card_driver dummy_driver_template = {
634 .read_phy_reg = dummy_read_phy_reg,
635 .update_phy_reg = dummy_update_phy_reg,
636 .send_request = dummy_send_request,
637 .send_response = dummy_send_response,
638 .cancel_packet = dummy_cancel_packet,
639 .enable_phys_dma = dummy_enable_phys_dma,
640 .allocate_iso_context = dummy_allocate_iso_context,
641 .start_iso = dummy_start_iso,
642 .set_iso_channels = dummy_set_iso_channels,
643 .queue_iso = dummy_queue_iso,
644 };
645
fw_card_release(struct kref * kref)646 void fw_card_release(struct kref *kref)
647 {
648 struct fw_card *card = container_of(kref, struct fw_card, kref);
649
650 complete(&card->done);
651 }
652
fw_core_remove_card(struct fw_card * card)653 void fw_core_remove_card(struct fw_card *card)
654 {
655 struct fw_card_driver dummy_driver = dummy_driver_template;
656
657 card->driver->update_phy_reg(card, 4,
658 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
659 fw_schedule_bus_reset(card, false, true);
660
661 mutex_lock(&card_mutex);
662 list_del_init(&card->link);
663 mutex_unlock(&card_mutex);
664
665 /* Switch off most of the card driver interface. */
666 dummy_driver.free_iso_context = card->driver->free_iso_context;
667 dummy_driver.stop_iso = card->driver->stop_iso;
668 card->driver = &dummy_driver;
669
670 fw_destroy_nodes(card);
671
672 /* Wait for all users, especially device workqueue jobs, to finish. */
673 fw_card_put(card);
674 wait_for_completion(&card->done);
675
676 WARN_ON(!list_empty(&card->transaction_list));
677 }
678 EXPORT_SYMBOL(fw_core_remove_card);
679