1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
37 
38 #include "core.h"
39 
fw_compute_block_crc(__be32 * block)40 int fw_compute_block_crc(__be32 *block)
41 {
42 	int length;
43 	u16 crc;
44 
45 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 	*block |= cpu_to_be32(crc);
48 
49 	return length;
50 }
51 
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
54 
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
57 
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
61 
62 #define BIB_CRC(v)		((v) <<  0)
63 #define BIB_CRC_LENGTH(v)	((v) << 16)
64 #define BIB_INFO_LENGTH(v)	((v) << 24)
65 #define BIB_BUS_NAME		0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v)	((v) <<  0)
67 #define BIB_GENERATION(v)	((v) <<  4)
68 #define BIB_MAX_ROM(v)		((v) <<  8)
69 #define BIB_MAX_RECEIVE(v)	((v) << 12)
70 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
71 #define BIB_PMC			((1) << 27)
72 #define BIB_BMC			((1) << 28)
73 #define BIB_ISC			((1) << 29)
74 #define BIB_CMC			((1) << 30)
75 #define BIB_IRMC		((1) << 31)
76 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77 
78 /*
79  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
80  * but we have to make it longer because there are many devices whose firmware
81  * is just too slow for that.
82  */
83 #define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
84 
85 #define CANON_OUI		0x000085
86 
generate_config_rom(struct fw_card * card,__be32 * config_rom)87 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
88 {
89 	struct fw_descriptor *desc;
90 	int i, j, k, length;
91 
92 	/*
93 	 * Initialize contents of config rom buffer.  On the OHCI
94 	 * controller, block reads to the config rom accesses the host
95 	 * memory, but quadlet read access the hardware bus info block
96 	 * registers.  That's just crack, but it means we should make
97 	 * sure the contents of bus info block in host memory matches
98 	 * the version stored in the OHCI registers.
99 	 */
100 
101 	config_rom[0] = cpu_to_be32(
102 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
103 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
104 	config_rom[2] = cpu_to_be32(
105 		BIB_LINK_SPEED(card->link_speed) |
106 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
107 		BIB_MAX_ROM(2) |
108 		BIB_MAX_RECEIVE(card->max_receive) |
109 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
110 	config_rom[3] = cpu_to_be32(card->guid >> 32);
111 	config_rom[4] = cpu_to_be32(card->guid);
112 
113 	/* Generate root directory. */
114 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
115 	i = 7;
116 	j = 7 + descriptor_count;
117 
118 	/* Generate root directory entries for descriptors. */
119 	list_for_each_entry (desc, &descriptor_list, link) {
120 		if (desc->immediate > 0)
121 			config_rom[i++] = cpu_to_be32(desc->immediate);
122 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
123 		i++;
124 		j += desc->length;
125 	}
126 
127 	/* Update root directory length. */
128 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
129 
130 	/* End of root directory, now copy in descriptors. */
131 	list_for_each_entry (desc, &descriptor_list, link) {
132 		for (k = 0; k < desc->length; k++)
133 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
134 		i += desc->length;
135 	}
136 
137 	/* Calculate CRCs for all blocks in the config rom.  This
138 	 * assumes that CRC length and info length are identical for
139 	 * the bus info block, which is always the case for this
140 	 * implementation. */
141 	for (i = 0; i < j; i += length + 1)
142 		length = fw_compute_block_crc(config_rom + i);
143 
144 	WARN_ON(j != config_rom_length);
145 }
146 
update_config_roms(void)147 static void update_config_roms(void)
148 {
149 	struct fw_card *card;
150 
151 	list_for_each_entry (card, &card_list, link) {
152 		generate_config_rom(card, tmp_config_rom);
153 		card->driver->set_config_rom(card, tmp_config_rom,
154 					     config_rom_length);
155 	}
156 }
157 
required_space(struct fw_descriptor * desc)158 static size_t required_space(struct fw_descriptor *desc)
159 {
160 	/* descriptor + entry into root dir + optional immediate entry */
161 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
162 }
163 
fw_core_add_descriptor(struct fw_descriptor * desc)164 int fw_core_add_descriptor(struct fw_descriptor *desc)
165 {
166 	size_t i;
167 	int ret;
168 
169 	/*
170 	 * Check descriptor is valid; the length of all blocks in the
171 	 * descriptor has to add up to exactly the length of the
172 	 * block.
173 	 */
174 	i = 0;
175 	while (i < desc->length)
176 		i += (desc->data[i] >> 16) + 1;
177 
178 	if (i != desc->length)
179 		return -EINVAL;
180 
181 	mutex_lock(&card_mutex);
182 
183 	if (config_rom_length + required_space(desc) > 256) {
184 		ret = -EBUSY;
185 	} else {
186 		list_add_tail(&desc->link, &descriptor_list);
187 		config_rom_length += required_space(desc);
188 		descriptor_count++;
189 		if (desc->immediate > 0)
190 			descriptor_count++;
191 		update_config_roms();
192 		ret = 0;
193 	}
194 
195 	mutex_unlock(&card_mutex);
196 
197 	return ret;
198 }
199 EXPORT_SYMBOL(fw_core_add_descriptor);
200 
fw_core_remove_descriptor(struct fw_descriptor * desc)201 void fw_core_remove_descriptor(struct fw_descriptor *desc)
202 {
203 	mutex_lock(&card_mutex);
204 
205 	list_del(&desc->link);
206 	config_rom_length -= required_space(desc);
207 	descriptor_count--;
208 	if (desc->immediate > 0)
209 		descriptor_count--;
210 	update_config_roms();
211 
212 	mutex_unlock(&card_mutex);
213 }
214 EXPORT_SYMBOL(fw_core_remove_descriptor);
215 
reset_bus(struct fw_card * card,bool short_reset)216 static int reset_bus(struct fw_card *card, bool short_reset)
217 {
218 	int reg = short_reset ? 5 : 1;
219 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
220 
221 	return card->driver->update_phy_reg(card, reg, 0, bit);
222 }
223 
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)224 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
225 {
226 	/* We don't try hard to sort out requests of long vs. short resets. */
227 	card->br_short = short_reset;
228 
229 	/* Use an arbitrary short delay to combine multiple reset requests. */
230 	fw_card_get(card);
231 	if (!schedule_delayed_work(&card->br_work,
232 				   delayed ? DIV_ROUND_UP(HZ, 100) : 0))
233 		fw_card_put(card);
234 }
235 EXPORT_SYMBOL(fw_schedule_bus_reset);
236 
br_work(struct work_struct * work)237 static void br_work(struct work_struct *work)
238 {
239 	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
240 
241 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242 	if (card->reset_jiffies != 0 &&
243 	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
244 		if (!schedule_delayed_work(&card->br_work, 2 * HZ))
245 			fw_card_put(card);
246 		return;
247 	}
248 
249 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
250 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
251 	reset_bus(card, card->br_short);
252 	fw_card_put(card);
253 }
254 
allocate_broadcast_channel(struct fw_card * card,int generation)255 static void allocate_broadcast_channel(struct fw_card *card, int generation)
256 {
257 	int channel, bandwidth = 0;
258 
259 	if (!card->broadcast_channel_allocated) {
260 		fw_iso_resource_manage(card, generation, 1ULL << 31,
261 				       &channel, &bandwidth, true,
262 				       card->bm_transaction_data);
263 		if (channel != 31) {
264 			fw_notify("failed to allocate broadcast channel\n");
265 			return;
266 		}
267 		card->broadcast_channel_allocated = true;
268 	}
269 
270 	device_for_each_child(card->device, (void *)(long)generation,
271 			      fw_device_set_broadcast_channel);
272 }
273 
274 static const char gap_count_table[] = {
275 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
276 };
277 
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)278 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
279 {
280 	fw_card_get(card);
281 	if (!schedule_delayed_work(&card->bm_work, delay))
282 		fw_card_put(card);
283 }
284 
bm_work(struct work_struct * work)285 static void bm_work(struct work_struct *work)
286 {
287 	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
288 	struct fw_device *root_device, *irm_device;
289 	struct fw_node *root_node;
290 	int root_id, new_root_id, irm_id, bm_id, local_id;
291 	int gap_count, generation, grace, rcode;
292 	bool do_reset = false;
293 	bool root_device_is_running;
294 	bool root_device_is_cmc;
295 	bool irm_is_1394_1995_only;
296 	bool keep_this_irm;
297 
298 	spin_lock_irq(&card->lock);
299 
300 	if (card->local_node == NULL) {
301 		spin_unlock_irq(&card->lock);
302 		goto out_put_card;
303 	}
304 
305 	generation = card->generation;
306 
307 	root_node = card->root_node;
308 	fw_node_get(root_node);
309 	root_device = root_node->data;
310 	root_device_is_running = root_device &&
311 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
312 	root_device_is_cmc = root_device && root_device->cmc;
313 
314 	irm_device = card->irm_node->data;
315 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
316 			(irm_device->config_rom[2] & 0x000000f0) == 0;
317 
318 	/* Canon MV5i works unreliably if it is not root node. */
319 	keep_this_irm = irm_device && irm_device->config_rom &&
320 			irm_device->config_rom[3] >> 8 == CANON_OUI;
321 
322 	root_id  = root_node->node_id;
323 	irm_id   = card->irm_node->node_id;
324 	local_id = card->local_node->node_id;
325 
326 	grace = time_after64(get_jiffies_64(),
327 			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
328 
329 	if ((is_next_generation(generation, card->bm_generation) &&
330 	     !card->bm_abdicate) ||
331 	    (card->bm_generation != generation && grace)) {
332 		/*
333 		 * This first step is to figure out who is IRM and
334 		 * then try to become bus manager.  If the IRM is not
335 		 * well defined (e.g. does not have an active link
336 		 * layer or does not responds to our lock request, we
337 		 * will have to do a little vigilante bus management.
338 		 * In that case, we do a goto into the gap count logic
339 		 * so that when we do the reset, we still optimize the
340 		 * gap count.  That could well save a reset in the
341 		 * next generation.
342 		 */
343 
344 		if (!card->irm_node->link_on) {
345 			new_root_id = local_id;
346 			fw_notify("%s, making local node (%02x) root.\n",
347 				  "IRM has link off", new_root_id);
348 			goto pick_me;
349 		}
350 
351 		if (irm_is_1394_1995_only && !keep_this_irm) {
352 			new_root_id = local_id;
353 			fw_notify("%s, making local node (%02x) root.\n",
354 				  "IRM is not 1394a compliant", new_root_id);
355 			goto pick_me;
356 		}
357 
358 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
359 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
360 
361 		spin_unlock_irq(&card->lock);
362 
363 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
364 				irm_id, generation, SCODE_100,
365 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
366 				card->bm_transaction_data, 8);
367 
368 		if (rcode == RCODE_GENERATION)
369 			/* Another bus reset, BM work has been rescheduled. */
370 			goto out;
371 
372 		bm_id = be32_to_cpu(card->bm_transaction_data[0]);
373 
374 		spin_lock_irq(&card->lock);
375 		if (rcode == RCODE_COMPLETE && generation == card->generation)
376 			card->bm_node_id =
377 			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
378 		spin_unlock_irq(&card->lock);
379 
380 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
381 			/* Somebody else is BM.  Only act as IRM. */
382 			if (local_id == irm_id)
383 				allocate_broadcast_channel(card, generation);
384 
385 			goto out;
386 		}
387 
388 		if (rcode == RCODE_SEND_ERROR) {
389 			/*
390 			 * We have been unable to send the lock request due to
391 			 * some local problem.  Let's try again later and hope
392 			 * that the problem has gone away by then.
393 			 */
394 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
395 			goto out;
396 		}
397 
398 		spin_lock_irq(&card->lock);
399 
400 		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
401 			/*
402 			 * The lock request failed, maybe the IRM
403 			 * isn't really IRM capable after all. Let's
404 			 * do a bus reset and pick the local node as
405 			 * root, and thus, IRM.
406 			 */
407 			new_root_id = local_id;
408 			fw_notify("%s, making local node (%02x) root.\n",
409 				  "BM lock failed", new_root_id);
410 			goto pick_me;
411 		}
412 	} else if (card->bm_generation != generation) {
413 		/*
414 		 * We weren't BM in the last generation, and the last
415 		 * bus reset is less than 125ms ago.  Reschedule this job.
416 		 */
417 		spin_unlock_irq(&card->lock);
418 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
419 		goto out;
420 	}
421 
422 	/*
423 	 * We're bus manager for this generation, so next step is to
424 	 * make sure we have an active cycle master and do gap count
425 	 * optimization.
426 	 */
427 	card->bm_generation = generation;
428 
429 	if (root_device == NULL) {
430 		/*
431 		 * Either link_on is false, or we failed to read the
432 		 * config rom.  In either case, pick another root.
433 		 */
434 		new_root_id = local_id;
435 	} else if (!root_device_is_running) {
436 		/*
437 		 * If we haven't probed this device yet, bail out now
438 		 * and let's try again once that's done.
439 		 */
440 		spin_unlock_irq(&card->lock);
441 		goto out;
442 	} else if (root_device_is_cmc) {
443 		/*
444 		 * We will send out a force root packet for this
445 		 * node as part of the gap count optimization.
446 		 */
447 		new_root_id = root_id;
448 	} else {
449 		/*
450 		 * Current root has an active link layer and we
451 		 * successfully read the config rom, but it's not
452 		 * cycle master capable.
453 		 */
454 		new_root_id = local_id;
455 	}
456 
457  pick_me:
458 	/*
459 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
460 	 * the typically much larger 1394b beta repeater delays though.
461 	 */
462 	if (!card->beta_repeaters_present &&
463 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
464 		gap_count = gap_count_table[root_node->max_hops];
465 	else
466 		gap_count = 63;
467 
468 	/*
469 	 * Finally, figure out if we should do a reset or not.  If we have
470 	 * done less than 5 resets with the same physical topology and we
471 	 * have either a new root or a new gap count setting, let's do it.
472 	 */
473 
474 	if (card->bm_retries++ < 5 &&
475 	    (card->gap_count != gap_count || new_root_id != root_id))
476 		do_reset = true;
477 
478 	spin_unlock_irq(&card->lock);
479 
480 	if (do_reset) {
481 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
482 			  card->index, new_root_id, gap_count);
483 		fw_send_phy_config(card, new_root_id, generation, gap_count);
484 		reset_bus(card, true);
485 		/* Will allocate broadcast channel after the reset. */
486 		goto out;
487 	}
488 
489 	if (root_device_is_cmc) {
490 		/*
491 		 * Make sure that the cycle master sends cycle start packets.
492 		 */
493 		card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
494 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
495 				root_id, generation, SCODE_100,
496 				CSR_REGISTER_BASE + CSR_STATE_SET,
497 				card->bm_transaction_data, 4);
498 		if (rcode == RCODE_GENERATION)
499 			goto out;
500 	}
501 
502 	if (local_id == irm_id)
503 		allocate_broadcast_channel(card, generation);
504 
505  out:
506 	fw_node_put(root_node);
507  out_put_card:
508 	fw_card_put(card);
509 }
510 
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)511 void fw_card_initialize(struct fw_card *card,
512 			const struct fw_card_driver *driver,
513 			struct device *device)
514 {
515 	static atomic_t index = ATOMIC_INIT(-1);
516 
517 	card->index = atomic_inc_return(&index);
518 	card->driver = driver;
519 	card->device = device;
520 	card->current_tlabel = 0;
521 	card->tlabel_mask = 0;
522 	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
523 	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
524 	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
525 	card->split_timeout_jiffies =
526 			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
527 	card->color = 0;
528 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
529 
530 	kref_init(&card->kref);
531 	init_completion(&card->done);
532 	INIT_LIST_HEAD(&card->transaction_list);
533 	INIT_LIST_HEAD(&card->phy_receiver_list);
534 	spin_lock_init(&card->lock);
535 
536 	card->local_node = NULL;
537 
538 	INIT_DELAYED_WORK(&card->br_work, br_work);
539 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
540 }
541 EXPORT_SYMBOL(fw_card_initialize);
542 
fw_card_add(struct fw_card * card,u32 max_receive,u32 link_speed,u64 guid)543 int fw_card_add(struct fw_card *card,
544 		u32 max_receive, u32 link_speed, u64 guid)
545 {
546 	int ret;
547 
548 	card->max_receive = max_receive;
549 	card->link_speed = link_speed;
550 	card->guid = guid;
551 
552 	mutex_lock(&card_mutex);
553 
554 	generate_config_rom(card, tmp_config_rom);
555 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
556 	if (ret == 0)
557 		list_add_tail(&card->link, &card_list);
558 
559 	mutex_unlock(&card_mutex);
560 
561 	return ret;
562 }
563 EXPORT_SYMBOL(fw_card_add);
564 
565 /*
566  * The next few functions implement a dummy driver that is used once a card
567  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
568  * as all IO to the card will be handled (and failed) by the dummy driver
569  * instead of calling into the module.  Only functions for iso context
570  * shutdown still need to be provided by the card driver.
571  *
572  * .read/write_csr() should never be called anymore after the dummy driver
573  * was bound since they are only used within request handler context.
574  * .set_config_rom() is never called since the card is taken out of card_list
575  * before switching to the dummy driver.
576  */
577 
dummy_read_phy_reg(struct fw_card * card,int address)578 static int dummy_read_phy_reg(struct fw_card *card, int address)
579 {
580 	return -ENODEV;
581 }
582 
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)583 static int dummy_update_phy_reg(struct fw_card *card, int address,
584 				int clear_bits, int set_bits)
585 {
586 	return -ENODEV;
587 }
588 
dummy_send_request(struct fw_card * card,struct fw_packet * packet)589 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
590 {
591 	packet->callback(packet, card, RCODE_CANCELLED);
592 }
593 
dummy_send_response(struct fw_card * card,struct fw_packet * packet)594 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
595 {
596 	packet->callback(packet, card, RCODE_CANCELLED);
597 }
598 
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)599 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
600 {
601 	return -ENOENT;
602 }
603 
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)604 static int dummy_enable_phys_dma(struct fw_card *card,
605 				 int node_id, int generation)
606 {
607 	return -ENODEV;
608 }
609 
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)610 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
611 				int type, int channel, size_t header_size)
612 {
613 	return ERR_PTR(-ENODEV);
614 }
615 
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)616 static int dummy_start_iso(struct fw_iso_context *ctx,
617 			   s32 cycle, u32 sync, u32 tags)
618 {
619 	return -ENODEV;
620 }
621 
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)622 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
623 {
624 	return -ENODEV;
625 }
626 
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)627 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
628 			   struct fw_iso_buffer *buffer, unsigned long payload)
629 {
630 	return -ENODEV;
631 }
632 
633 static const struct fw_card_driver dummy_driver_template = {
634 	.read_phy_reg		= dummy_read_phy_reg,
635 	.update_phy_reg		= dummy_update_phy_reg,
636 	.send_request		= dummy_send_request,
637 	.send_response		= dummy_send_response,
638 	.cancel_packet		= dummy_cancel_packet,
639 	.enable_phys_dma	= dummy_enable_phys_dma,
640 	.allocate_iso_context	= dummy_allocate_iso_context,
641 	.start_iso		= dummy_start_iso,
642 	.set_iso_channels	= dummy_set_iso_channels,
643 	.queue_iso		= dummy_queue_iso,
644 };
645 
fw_card_release(struct kref * kref)646 void fw_card_release(struct kref *kref)
647 {
648 	struct fw_card *card = container_of(kref, struct fw_card, kref);
649 
650 	complete(&card->done);
651 }
652 
fw_core_remove_card(struct fw_card * card)653 void fw_core_remove_card(struct fw_card *card)
654 {
655 	struct fw_card_driver dummy_driver = dummy_driver_template;
656 
657 	card->driver->update_phy_reg(card, 4,
658 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
659 	fw_schedule_bus_reset(card, false, true);
660 
661 	mutex_lock(&card_mutex);
662 	list_del_init(&card->link);
663 	mutex_unlock(&card_mutex);
664 
665 	/* Switch off most of the card driver interface. */
666 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
667 	dummy_driver.stop_iso		= card->driver->stop_iso;
668 	card->driver = &dummy_driver;
669 
670 	fw_destroy_nodes(card);
671 
672 	/* Wait for all users, especially device workqueue jobs, to finish. */
673 	fw_card_put(card);
674 	wait_for_completion(&card->done);
675 
676 	WARN_ON(!list_empty(&card->transaction_list));
677 }
678 EXPORT_SYMBOL(fw_core_remove_card);
679