1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34
35 #include <linux/atomic.h>
36 #include <asm/byteorder.h>
37
38 #include "core.h"
39
40 #define define_fw_printk_level(func, kern_level) \
41 void func(const struct fw_card *card, const char *fmt, ...) \
42 { \
43 struct va_format vaf; \
44 va_list args; \
45 \
46 va_start(args, fmt); \
47 vaf.fmt = fmt; \
48 vaf.va = &args; \
49 printk(kern_level KBUILD_MODNAME " %s: %pV", \
50 dev_name(card->device), &vaf); \
51 va_end(args); \
52 }
53 define_fw_printk_level(fw_err, KERN_ERR);
54 define_fw_printk_level(fw_notice, KERN_NOTICE);
55
fw_compute_block_crc(__be32 * block)56 int fw_compute_block_crc(__be32 *block)
57 {
58 int length;
59 u16 crc;
60
61 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
62 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
63 *block |= cpu_to_be32(crc);
64
65 return length;
66 }
67
68 static DEFINE_MUTEX(card_mutex);
69 static LIST_HEAD(card_list);
70
71 static LIST_HEAD(descriptor_list);
72 static int descriptor_count;
73
74 static __be32 tmp_config_rom[256];
75 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
76 static size_t config_rom_length = 1 + 4 + 1 + 1;
77
78 #define BIB_CRC(v) ((v) << 0)
79 #define BIB_CRC_LENGTH(v) ((v) << 16)
80 #define BIB_INFO_LENGTH(v) ((v) << 24)
81 #define BIB_BUS_NAME 0x31333934 /* "1394" */
82 #define BIB_LINK_SPEED(v) ((v) << 0)
83 #define BIB_GENERATION(v) ((v) << 4)
84 #define BIB_MAX_ROM(v) ((v) << 8)
85 #define BIB_MAX_RECEIVE(v) ((v) << 12)
86 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
87 #define BIB_PMC ((1) << 27)
88 #define BIB_BMC ((1) << 28)
89 #define BIB_ISC ((1) << 29)
90 #define BIB_CMC ((1) << 30)
91 #define BIB_IRMC ((1) << 31)
92 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
93
94 /*
95 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
96 * but we have to make it longer because there are many devices whose firmware
97 * is just too slow for that.
98 */
99 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
100
101 #define CANON_OUI 0x000085
102
generate_config_rom(struct fw_card * card,__be32 * config_rom)103 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
104 {
105 struct fw_descriptor *desc;
106 int i, j, k, length;
107
108 /*
109 * Initialize contents of config rom buffer. On the OHCI
110 * controller, block reads to the config rom accesses the host
111 * memory, but quadlet read access the hardware bus info block
112 * registers. That's just crack, but it means we should make
113 * sure the contents of bus info block in host memory matches
114 * the version stored in the OHCI registers.
115 */
116
117 config_rom[0] = cpu_to_be32(
118 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
119 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
120 config_rom[2] = cpu_to_be32(
121 BIB_LINK_SPEED(card->link_speed) |
122 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
123 BIB_MAX_ROM(2) |
124 BIB_MAX_RECEIVE(card->max_receive) |
125 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
126 config_rom[3] = cpu_to_be32(card->guid >> 32);
127 config_rom[4] = cpu_to_be32(card->guid);
128
129 /* Generate root directory. */
130 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
131 i = 7;
132 j = 7 + descriptor_count;
133
134 /* Generate root directory entries for descriptors. */
135 list_for_each_entry (desc, &descriptor_list, link) {
136 if (desc->immediate > 0)
137 config_rom[i++] = cpu_to_be32(desc->immediate);
138 config_rom[i] = cpu_to_be32(desc->key | (j - i));
139 i++;
140 j += desc->length;
141 }
142
143 /* Update root directory length. */
144 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
145
146 /* End of root directory, now copy in descriptors. */
147 list_for_each_entry (desc, &descriptor_list, link) {
148 for (k = 0; k < desc->length; k++)
149 config_rom[i + k] = cpu_to_be32(desc->data[k]);
150 i += desc->length;
151 }
152
153 /* Calculate CRCs for all blocks in the config rom. This
154 * assumes that CRC length and info length are identical for
155 * the bus info block, which is always the case for this
156 * implementation. */
157 for (i = 0; i < j; i += length + 1)
158 length = fw_compute_block_crc(config_rom + i);
159
160 WARN_ON(j != config_rom_length);
161 }
162
update_config_roms(void)163 static void update_config_roms(void)
164 {
165 struct fw_card *card;
166
167 list_for_each_entry (card, &card_list, link) {
168 generate_config_rom(card, tmp_config_rom);
169 card->driver->set_config_rom(card, tmp_config_rom,
170 config_rom_length);
171 }
172 }
173
required_space(struct fw_descriptor * desc)174 static size_t required_space(struct fw_descriptor *desc)
175 {
176 /* descriptor + entry into root dir + optional immediate entry */
177 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
178 }
179
fw_core_add_descriptor(struct fw_descriptor * desc)180 int fw_core_add_descriptor(struct fw_descriptor *desc)
181 {
182 size_t i;
183 int ret;
184
185 /*
186 * Check descriptor is valid; the length of all blocks in the
187 * descriptor has to add up to exactly the length of the
188 * block.
189 */
190 i = 0;
191 while (i < desc->length)
192 i += (desc->data[i] >> 16) + 1;
193
194 if (i != desc->length)
195 return -EINVAL;
196
197 mutex_lock(&card_mutex);
198
199 if (config_rom_length + required_space(desc) > 256) {
200 ret = -EBUSY;
201 } else {
202 list_add_tail(&desc->link, &descriptor_list);
203 config_rom_length += required_space(desc);
204 descriptor_count++;
205 if (desc->immediate > 0)
206 descriptor_count++;
207 update_config_roms();
208 ret = 0;
209 }
210
211 mutex_unlock(&card_mutex);
212
213 return ret;
214 }
215 EXPORT_SYMBOL(fw_core_add_descriptor);
216
fw_core_remove_descriptor(struct fw_descriptor * desc)217 void fw_core_remove_descriptor(struct fw_descriptor *desc)
218 {
219 mutex_lock(&card_mutex);
220
221 list_del(&desc->link);
222 config_rom_length -= required_space(desc);
223 descriptor_count--;
224 if (desc->immediate > 0)
225 descriptor_count--;
226 update_config_roms();
227
228 mutex_unlock(&card_mutex);
229 }
230 EXPORT_SYMBOL(fw_core_remove_descriptor);
231
reset_bus(struct fw_card * card,bool short_reset)232 static int reset_bus(struct fw_card *card, bool short_reset)
233 {
234 int reg = short_reset ? 5 : 1;
235 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
236
237 return card->driver->update_phy_reg(card, reg, 0, bit);
238 }
239
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)240 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
241 {
242 /* We don't try hard to sort out requests of long vs. short resets. */
243 card->br_short = short_reset;
244
245 /* Use an arbitrary short delay to combine multiple reset requests. */
246 fw_card_get(card);
247 if (!queue_delayed_work(fw_workqueue, &card->br_work,
248 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
249 fw_card_put(card);
250 }
251 EXPORT_SYMBOL(fw_schedule_bus_reset);
252
br_work(struct work_struct * work)253 static void br_work(struct work_struct *work)
254 {
255 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
256
257 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
258 if (card->reset_jiffies != 0 &&
259 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
260 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
261 fw_card_put(card);
262 return;
263 }
264
265 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
266 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
267 reset_bus(card, card->br_short);
268 fw_card_put(card);
269 }
270
allocate_broadcast_channel(struct fw_card * card,int generation)271 static void allocate_broadcast_channel(struct fw_card *card, int generation)
272 {
273 int channel, bandwidth = 0;
274
275 if (!card->broadcast_channel_allocated) {
276 fw_iso_resource_manage(card, generation, 1ULL << 31,
277 &channel, &bandwidth, true);
278 if (channel != 31) {
279 fw_notice(card, "failed to allocate broadcast channel\n");
280 return;
281 }
282 card->broadcast_channel_allocated = true;
283 }
284
285 device_for_each_child(card->device, (void *)(long)generation,
286 fw_device_set_broadcast_channel);
287 }
288
289 static const char gap_count_table[] = {
290 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
291 };
292
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)293 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
294 {
295 fw_card_get(card);
296 if (!schedule_delayed_work(&card->bm_work, delay))
297 fw_card_put(card);
298 }
299
bm_work(struct work_struct * work)300 static void bm_work(struct work_struct *work)
301 {
302 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
303 struct fw_device *root_device, *irm_device;
304 struct fw_node *root_node;
305 int root_id, new_root_id, irm_id, bm_id, local_id;
306 int gap_count, generation, grace, rcode;
307 bool do_reset = false;
308 bool root_device_is_running;
309 bool root_device_is_cmc;
310 bool irm_is_1394_1995_only;
311 bool keep_this_irm;
312 __be32 transaction_data[2];
313
314 spin_lock_irq(&card->lock);
315
316 if (card->local_node == NULL) {
317 spin_unlock_irq(&card->lock);
318 goto out_put_card;
319 }
320
321 generation = card->generation;
322
323 root_node = card->root_node;
324 fw_node_get(root_node);
325 root_device = root_node->data;
326 root_device_is_running = root_device &&
327 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
328 root_device_is_cmc = root_device && root_device->cmc;
329
330 irm_device = card->irm_node->data;
331 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
332 (irm_device->config_rom[2] & 0x000000f0) == 0;
333
334 /* Canon MV5i works unreliably if it is not root node. */
335 keep_this_irm = irm_device && irm_device->config_rom &&
336 irm_device->config_rom[3] >> 8 == CANON_OUI;
337
338 root_id = root_node->node_id;
339 irm_id = card->irm_node->node_id;
340 local_id = card->local_node->node_id;
341
342 grace = time_after64(get_jiffies_64(),
343 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
344
345 if ((is_next_generation(generation, card->bm_generation) &&
346 !card->bm_abdicate) ||
347 (card->bm_generation != generation && grace)) {
348 /*
349 * This first step is to figure out who is IRM and
350 * then try to become bus manager. If the IRM is not
351 * well defined (e.g. does not have an active link
352 * layer or does not responds to our lock request, we
353 * will have to do a little vigilante bus management.
354 * In that case, we do a goto into the gap count logic
355 * so that when we do the reset, we still optimize the
356 * gap count. That could well save a reset in the
357 * next generation.
358 */
359
360 if (!card->irm_node->link_on) {
361 new_root_id = local_id;
362 fw_notice(card, "%s, making local node (%02x) root\n",
363 "IRM has link off", new_root_id);
364 goto pick_me;
365 }
366
367 if (irm_is_1394_1995_only && !keep_this_irm) {
368 new_root_id = local_id;
369 fw_notice(card, "%s, making local node (%02x) root\n",
370 "IRM is not 1394a compliant", new_root_id);
371 goto pick_me;
372 }
373
374 transaction_data[0] = cpu_to_be32(0x3f);
375 transaction_data[1] = cpu_to_be32(local_id);
376
377 spin_unlock_irq(&card->lock);
378
379 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
380 irm_id, generation, SCODE_100,
381 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
382 transaction_data, 8);
383
384 if (rcode == RCODE_GENERATION)
385 /* Another bus reset, BM work has been rescheduled. */
386 goto out;
387
388 bm_id = be32_to_cpu(transaction_data[0]);
389
390 spin_lock_irq(&card->lock);
391 if (rcode == RCODE_COMPLETE && generation == card->generation)
392 card->bm_node_id =
393 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
394 spin_unlock_irq(&card->lock);
395
396 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
397 /* Somebody else is BM. Only act as IRM. */
398 if (local_id == irm_id)
399 allocate_broadcast_channel(card, generation);
400
401 goto out;
402 }
403
404 if (rcode == RCODE_SEND_ERROR) {
405 /*
406 * We have been unable to send the lock request due to
407 * some local problem. Let's try again later and hope
408 * that the problem has gone away by then.
409 */
410 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
411 goto out;
412 }
413
414 spin_lock_irq(&card->lock);
415
416 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
417 /*
418 * The lock request failed, maybe the IRM
419 * isn't really IRM capable after all. Let's
420 * do a bus reset and pick the local node as
421 * root, and thus, IRM.
422 */
423 new_root_id = local_id;
424 fw_notice(card, "%s, making local node (%02x) root\n",
425 "BM lock failed", new_root_id);
426 goto pick_me;
427 }
428 } else if (card->bm_generation != generation) {
429 /*
430 * We weren't BM in the last generation, and the last
431 * bus reset is less than 125ms ago. Reschedule this job.
432 */
433 spin_unlock_irq(&card->lock);
434 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
435 goto out;
436 }
437
438 /*
439 * We're bus manager for this generation, so next step is to
440 * make sure we have an active cycle master and do gap count
441 * optimization.
442 */
443 card->bm_generation = generation;
444
445 if (root_device == NULL) {
446 /*
447 * Either link_on is false, or we failed to read the
448 * config rom. In either case, pick another root.
449 */
450 new_root_id = local_id;
451 } else if (!root_device_is_running) {
452 /*
453 * If we haven't probed this device yet, bail out now
454 * and let's try again once that's done.
455 */
456 spin_unlock_irq(&card->lock);
457 goto out;
458 } else if (root_device_is_cmc) {
459 /*
460 * We will send out a force root packet for this
461 * node as part of the gap count optimization.
462 */
463 new_root_id = root_id;
464 } else {
465 /*
466 * Current root has an active link layer and we
467 * successfully read the config rom, but it's not
468 * cycle master capable.
469 */
470 new_root_id = local_id;
471 }
472
473 pick_me:
474 /*
475 * Pick a gap count from 1394a table E-1. The table doesn't cover
476 * the typically much larger 1394b beta repeater delays though.
477 */
478 if (!card->beta_repeaters_present &&
479 root_node->max_hops < ARRAY_SIZE(gap_count_table))
480 gap_count = gap_count_table[root_node->max_hops];
481 else
482 gap_count = 63;
483
484 /*
485 * Finally, figure out if we should do a reset or not. If we have
486 * done less than 5 resets with the same physical topology and we
487 * have either a new root or a new gap count setting, let's do it.
488 */
489
490 if (card->bm_retries++ < 5 &&
491 (card->gap_count != gap_count || new_root_id != root_id))
492 do_reset = true;
493
494 spin_unlock_irq(&card->lock);
495
496 if (do_reset) {
497 fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
498 new_root_id, gap_count);
499 fw_send_phy_config(card, new_root_id, generation, gap_count);
500 reset_bus(card, true);
501 /* Will allocate broadcast channel after the reset. */
502 goto out;
503 }
504
505 if (root_device_is_cmc) {
506 /*
507 * Make sure that the cycle master sends cycle start packets.
508 */
509 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
510 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
511 root_id, generation, SCODE_100,
512 CSR_REGISTER_BASE + CSR_STATE_SET,
513 transaction_data, 4);
514 if (rcode == RCODE_GENERATION)
515 goto out;
516 }
517
518 if (local_id == irm_id)
519 allocate_broadcast_channel(card, generation);
520
521 out:
522 fw_node_put(root_node);
523 out_put_card:
524 fw_card_put(card);
525 }
526
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)527 void fw_card_initialize(struct fw_card *card,
528 const struct fw_card_driver *driver,
529 struct device *device)
530 {
531 static atomic_t index = ATOMIC_INIT(-1);
532
533 card->index = atomic_inc_return(&index);
534 card->driver = driver;
535 card->device = device;
536 card->current_tlabel = 0;
537 card->tlabel_mask = 0;
538 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
539 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
540 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
541 card->split_timeout_jiffies =
542 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
543 card->color = 0;
544 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
545
546 kref_init(&card->kref);
547 init_completion(&card->done);
548 INIT_LIST_HEAD(&card->transaction_list);
549 INIT_LIST_HEAD(&card->phy_receiver_list);
550 spin_lock_init(&card->lock);
551
552 card->local_node = NULL;
553
554 INIT_DELAYED_WORK(&card->br_work, br_work);
555 INIT_DELAYED_WORK(&card->bm_work, bm_work);
556 }
557 EXPORT_SYMBOL(fw_card_initialize);
558
fw_card_add(struct fw_card * card,u32 max_receive,u32 link_speed,u64 guid)559 int fw_card_add(struct fw_card *card,
560 u32 max_receive, u32 link_speed, u64 guid)
561 {
562 int ret;
563
564 card->max_receive = max_receive;
565 card->link_speed = link_speed;
566 card->guid = guid;
567
568 mutex_lock(&card_mutex);
569
570 generate_config_rom(card, tmp_config_rom);
571 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
572 if (ret == 0)
573 list_add_tail(&card->link, &card_list);
574
575 mutex_unlock(&card_mutex);
576
577 return ret;
578 }
579 EXPORT_SYMBOL(fw_card_add);
580
581 /*
582 * The next few functions implement a dummy driver that is used once a card
583 * driver shuts down an fw_card. This allows the driver to cleanly unload,
584 * as all IO to the card will be handled (and failed) by the dummy driver
585 * instead of calling into the module. Only functions for iso context
586 * shutdown still need to be provided by the card driver.
587 *
588 * .read/write_csr() should never be called anymore after the dummy driver
589 * was bound since they are only used within request handler context.
590 * .set_config_rom() is never called since the card is taken out of card_list
591 * before switching to the dummy driver.
592 */
593
dummy_read_phy_reg(struct fw_card * card,int address)594 static int dummy_read_phy_reg(struct fw_card *card, int address)
595 {
596 return -ENODEV;
597 }
598
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)599 static int dummy_update_phy_reg(struct fw_card *card, int address,
600 int clear_bits, int set_bits)
601 {
602 return -ENODEV;
603 }
604
dummy_send_request(struct fw_card * card,struct fw_packet * packet)605 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
606 {
607 packet->callback(packet, card, RCODE_CANCELLED);
608 }
609
dummy_send_response(struct fw_card * card,struct fw_packet * packet)610 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
611 {
612 packet->callback(packet, card, RCODE_CANCELLED);
613 }
614
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)615 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
616 {
617 return -ENOENT;
618 }
619
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)620 static int dummy_enable_phys_dma(struct fw_card *card,
621 int node_id, int generation)
622 {
623 return -ENODEV;
624 }
625
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)626 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
627 int type, int channel, size_t header_size)
628 {
629 return ERR_PTR(-ENODEV);
630 }
631
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)632 static int dummy_start_iso(struct fw_iso_context *ctx,
633 s32 cycle, u32 sync, u32 tags)
634 {
635 return -ENODEV;
636 }
637
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)638 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
639 {
640 return -ENODEV;
641 }
642
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)643 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
644 struct fw_iso_buffer *buffer, unsigned long payload)
645 {
646 return -ENODEV;
647 }
648
dummy_flush_queue_iso(struct fw_iso_context * ctx)649 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
650 {
651 }
652
dummy_flush_iso_completions(struct fw_iso_context * ctx)653 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
654 {
655 return -ENODEV;
656 }
657
658 static const struct fw_card_driver dummy_driver_template = {
659 .read_phy_reg = dummy_read_phy_reg,
660 .update_phy_reg = dummy_update_phy_reg,
661 .send_request = dummy_send_request,
662 .send_response = dummy_send_response,
663 .cancel_packet = dummy_cancel_packet,
664 .enable_phys_dma = dummy_enable_phys_dma,
665 .allocate_iso_context = dummy_allocate_iso_context,
666 .start_iso = dummy_start_iso,
667 .set_iso_channels = dummy_set_iso_channels,
668 .queue_iso = dummy_queue_iso,
669 .flush_queue_iso = dummy_flush_queue_iso,
670 .flush_iso_completions = dummy_flush_iso_completions,
671 };
672
fw_card_release(struct kref * kref)673 void fw_card_release(struct kref *kref)
674 {
675 struct fw_card *card = container_of(kref, struct fw_card, kref);
676
677 complete(&card->done);
678 }
679
fw_core_remove_card(struct fw_card * card)680 void fw_core_remove_card(struct fw_card *card)
681 {
682 struct fw_card_driver dummy_driver = dummy_driver_template;
683
684 card->driver->update_phy_reg(card, 4,
685 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
686 fw_schedule_bus_reset(card, false, true);
687
688 mutex_lock(&card_mutex);
689 list_del_init(&card->link);
690 mutex_unlock(&card_mutex);
691
692 /* Switch off most of the card driver interface. */
693 dummy_driver.free_iso_context = card->driver->free_iso_context;
694 dummy_driver.stop_iso = card->driver->stop_iso;
695 card->driver = &dummy_driver;
696
697 fw_destroy_nodes(card);
698
699 /* Wait for all users, especially device workqueue jobs, to finish. */
700 fw_card_put(card);
701 wait_for_completion(&card->done);
702
703 WARN_ON(!list_empty(&card->transaction_list));
704 }
705 EXPORT_SYMBOL(fw_core_remove_card);
706