1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 
40 #include <asm/byteorder.h>
41 
42 #include "core.h"
43 
44 #define HEADER_PRI(pri)			((pri) << 0)
45 #define HEADER_TCODE(tcode)		((tcode) << 4)
46 #define HEADER_RETRY(retry)		((retry) << 8)
47 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
48 #define HEADER_DESTINATION(destination)	((destination) << 16)
49 #define HEADER_SOURCE(source)		((source) << 16)
50 #define HEADER_RCODE(rcode)		((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)	((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
54 
55 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
63 
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66 
67 #define PHY_PACKET_CONFIG	0x0
68 #define PHY_PACKET_LINK_ON	0x1
69 #define PHY_PACKET_SELF_ID	0x2
70 
71 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)		((id) << 30)
74 
75 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)76 static int try_cancel_split_timeout(struct fw_transaction *t)
77 {
78 	if (t->is_split_transaction)
79 		return del_timer(&t->split_timeout_timer);
80 	else
81 		return 1;
82 }
83 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)84 static int close_transaction(struct fw_transaction *transaction,
85 			     struct fw_card *card, int rcode)
86 {
87 	struct fw_transaction *t;
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&card->lock, flags);
91 	list_for_each_entry(t, &card->transaction_list, link) {
92 		if (t == transaction) {
93 			if (!try_cancel_split_timeout(t)) {
94 				spin_unlock_irqrestore(&card->lock, flags);
95 				goto timed_out;
96 			}
97 			list_del_init(&t->link);
98 			card->tlabel_mask &= ~(1ULL << t->tlabel);
99 			break;
100 		}
101 	}
102 	spin_unlock_irqrestore(&card->lock, flags);
103 
104 	if (&t->link != &card->transaction_list) {
105 		t->callback(card, rcode, NULL, 0, t->callback_data);
106 		return 0;
107 	}
108 
109  timed_out:
110 	return -ENOENT;
111 }
112 
113 /*
114  * Only valid for transactions that are potentially pending (ie have
115  * been sent).
116  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)117 int fw_cancel_transaction(struct fw_card *card,
118 			  struct fw_transaction *transaction)
119 {
120 	/*
121 	 * Cancel the packet transmission if it's still queued.  That
122 	 * will call the packet transmission callback which cancels
123 	 * the transaction.
124 	 */
125 
126 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
127 		return 0;
128 
129 	/*
130 	 * If the request packet has already been sent, we need to see
131 	 * if the transaction is still pending and remove it in that case.
132 	 */
133 
134 	return close_transaction(transaction, card, RCODE_CANCELLED);
135 }
136 EXPORT_SYMBOL(fw_cancel_transaction);
137 
split_transaction_timeout_callback(unsigned long data)138 static void split_transaction_timeout_callback(unsigned long data)
139 {
140 	struct fw_transaction *t = (struct fw_transaction *)data;
141 	struct fw_card *card = t->card;
142 	unsigned long flags;
143 
144 	spin_lock_irqsave(&card->lock, flags);
145 	if (list_empty(&t->link)) {
146 		spin_unlock_irqrestore(&card->lock, flags);
147 		return;
148 	}
149 	list_del(&t->link);
150 	card->tlabel_mask &= ~(1ULL << t->tlabel);
151 	spin_unlock_irqrestore(&card->lock, flags);
152 
153 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
154 }
155 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)156 static void start_split_transaction_timeout(struct fw_transaction *t,
157 					    struct fw_card *card)
158 {
159 	unsigned long flags;
160 
161 	spin_lock_irqsave(&card->lock, flags);
162 
163 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
164 		spin_unlock_irqrestore(&card->lock, flags);
165 		return;
166 	}
167 
168 	t->is_split_transaction = true;
169 	mod_timer(&t->split_timeout_timer,
170 		  jiffies + card->split_timeout_jiffies);
171 
172 	spin_unlock_irqrestore(&card->lock, flags);
173 }
174 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)175 static void transmit_complete_callback(struct fw_packet *packet,
176 				       struct fw_card *card, int status)
177 {
178 	struct fw_transaction *t =
179 	    container_of(packet, struct fw_transaction, packet);
180 
181 	switch (status) {
182 	case ACK_COMPLETE:
183 		close_transaction(t, card, RCODE_COMPLETE);
184 		break;
185 	case ACK_PENDING:
186 		start_split_transaction_timeout(t, card);
187 		break;
188 	case ACK_BUSY_X:
189 	case ACK_BUSY_A:
190 	case ACK_BUSY_B:
191 		close_transaction(t, card, RCODE_BUSY);
192 		break;
193 	case ACK_DATA_ERROR:
194 		close_transaction(t, card, RCODE_DATA_ERROR);
195 		break;
196 	case ACK_TYPE_ERROR:
197 		close_transaction(t, card, RCODE_TYPE_ERROR);
198 		break;
199 	default:
200 		/*
201 		 * In this case the ack is really a juju specific
202 		 * rcode, so just forward that to the callback.
203 		 */
204 		close_transaction(t, card, status);
205 		break;
206 	}
207 }
208 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)209 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
210 		int destination_id, int source_id, int generation, int speed,
211 		unsigned long long offset, void *payload, size_t length)
212 {
213 	int ext_tcode;
214 
215 	if (tcode == TCODE_STREAM_DATA) {
216 		packet->header[0] =
217 			HEADER_DATA_LENGTH(length) |
218 			destination_id |
219 			HEADER_TCODE(TCODE_STREAM_DATA);
220 		packet->header_length = 4;
221 		packet->payload = payload;
222 		packet->payload_length = length;
223 
224 		goto common;
225 	}
226 
227 	if (tcode > 0x10) {
228 		ext_tcode = tcode & ~0x10;
229 		tcode = TCODE_LOCK_REQUEST;
230 	} else
231 		ext_tcode = 0;
232 
233 	packet->header[0] =
234 		HEADER_RETRY(RETRY_X) |
235 		HEADER_TLABEL(tlabel) |
236 		HEADER_TCODE(tcode) |
237 		HEADER_DESTINATION(destination_id);
238 	packet->header[1] =
239 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
240 	packet->header[2] =
241 		offset;
242 
243 	switch (tcode) {
244 	case TCODE_WRITE_QUADLET_REQUEST:
245 		packet->header[3] = *(u32 *)payload;
246 		packet->header_length = 16;
247 		packet->payload_length = 0;
248 		break;
249 
250 	case TCODE_LOCK_REQUEST:
251 	case TCODE_WRITE_BLOCK_REQUEST:
252 		packet->header[3] =
253 			HEADER_DATA_LENGTH(length) |
254 			HEADER_EXTENDED_TCODE(ext_tcode);
255 		packet->header_length = 16;
256 		packet->payload = payload;
257 		packet->payload_length = length;
258 		break;
259 
260 	case TCODE_READ_QUADLET_REQUEST:
261 		packet->header_length = 12;
262 		packet->payload_length = 0;
263 		break;
264 
265 	case TCODE_READ_BLOCK_REQUEST:
266 		packet->header[3] =
267 			HEADER_DATA_LENGTH(length) |
268 			HEADER_EXTENDED_TCODE(ext_tcode);
269 		packet->header_length = 16;
270 		packet->payload_length = 0;
271 		break;
272 
273 	default:
274 		WARN(1, "wrong tcode %d\n", tcode);
275 	}
276  common:
277 	packet->speed = speed;
278 	packet->generation = generation;
279 	packet->ack = 0;
280 	packet->payload_mapped = false;
281 }
282 
allocate_tlabel(struct fw_card * card)283 static int allocate_tlabel(struct fw_card *card)
284 {
285 	int tlabel;
286 
287 	tlabel = card->current_tlabel;
288 	while (card->tlabel_mask & (1ULL << tlabel)) {
289 		tlabel = (tlabel + 1) & 0x3f;
290 		if (tlabel == card->current_tlabel)
291 			return -EBUSY;
292 	}
293 
294 	card->current_tlabel = (tlabel + 1) & 0x3f;
295 	card->tlabel_mask |= 1ULL << tlabel;
296 
297 	return tlabel;
298 }
299 
300 /**
301  * fw_send_request() - submit a request packet for transmission
302  * @card:		interface to send the request at
303  * @t:			transaction instance to which the request belongs
304  * @tcode:		transaction code
305  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
306  * @generation:		bus generation in which request and response are valid
307  * @speed:		transmission speed
308  * @offset:		48bit wide offset into destination's address space
309  * @payload:		data payload for the request subaction
310  * @length:		length of the payload, in bytes
311  * @callback:		function to be called when the transaction is completed
312  * @callback_data:	data to be passed to the transaction completion callback
313  *
314  * Submit a request packet into the asynchronous request transmission queue.
315  * Can be called from atomic context.  If you prefer a blocking API, use
316  * fw_run_transaction() in a context that can sleep.
317  *
318  * In case of lock requests, specify one of the firewire-core specific %TCODE_
319  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
320  *
321  * Make sure that the value in @destination_id is not older than the one in
322  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
323  *
324  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
325  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
326  * It will contain tag, channel, and sy data instead of a node ID then.
327  *
328  * The payload buffer at @data is going to be DMA-mapped except in case of
329  * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
330  * the buffer complies with the restrictions for DMA-mapped memory.  The
331  * @payload must not be freed before the @callback is called.
332  *
333  * In case of request types without payload, @data is NULL and @length is 0.
334  *
335  * After the transaction is completed successfully or unsuccessfully, the
336  * @callback will be called.  Among its parameters is the response code which
337  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
338  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
339  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
340  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
341  * generation, or missing ACK respectively.
342  *
343  * Note some timing corner cases:  fw_send_request() may complete much earlier
344  * than when the request packet actually hits the wire.  On the other hand,
345  * transaction completion and hence execution of @callback may happen even
346  * before fw_send_request() returns.
347  */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)348 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
349 		     int destination_id, int generation, int speed,
350 		     unsigned long long offset, void *payload, size_t length,
351 		     fw_transaction_callback_t callback, void *callback_data)
352 {
353 	unsigned long flags;
354 	int tlabel;
355 
356 	/*
357 	 * Allocate tlabel from the bitmap and put the transaction on
358 	 * the list while holding the card spinlock.
359 	 */
360 
361 	spin_lock_irqsave(&card->lock, flags);
362 
363 	tlabel = allocate_tlabel(card);
364 	if (tlabel < 0) {
365 		spin_unlock_irqrestore(&card->lock, flags);
366 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
367 		return;
368 	}
369 
370 	t->node_id = destination_id;
371 	t->tlabel = tlabel;
372 	t->card = card;
373 	t->is_split_transaction = false;
374 	setup_timer(&t->split_timeout_timer,
375 		    split_transaction_timeout_callback, (unsigned long)t);
376 	t->callback = callback;
377 	t->callback_data = callback_data;
378 
379 	fw_fill_request(&t->packet, tcode, t->tlabel,
380 			destination_id, card->node_id, generation,
381 			speed, offset, payload, length);
382 	t->packet.callback = transmit_complete_callback;
383 
384 	list_add_tail(&t->link, &card->transaction_list);
385 
386 	spin_unlock_irqrestore(&card->lock, flags);
387 
388 	card->driver->send_request(card, &t->packet);
389 }
390 EXPORT_SYMBOL(fw_send_request);
391 
392 struct transaction_callback_data {
393 	struct completion done;
394 	void *payload;
395 	int rcode;
396 };
397 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)398 static void transaction_callback(struct fw_card *card, int rcode,
399 				 void *payload, size_t length, void *data)
400 {
401 	struct transaction_callback_data *d = data;
402 
403 	if (rcode == RCODE_COMPLETE)
404 		memcpy(d->payload, payload, length);
405 	d->rcode = rcode;
406 	complete(&d->done);
407 }
408 
409 /**
410  * fw_run_transaction() - send request and sleep until transaction is completed
411  *
412  * Returns the RCODE.  See fw_send_request() for parameter documentation.
413  * Unlike fw_send_request(), @data points to the payload of the request or/and
414  * to the payload of the response.
415  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)416 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
417 		       int generation, int speed, unsigned long long offset,
418 		       void *payload, size_t length)
419 {
420 	struct transaction_callback_data d;
421 	struct fw_transaction t;
422 
423 	init_timer_on_stack(&t.split_timeout_timer);
424 	init_completion(&d.done);
425 	d.payload = payload;
426 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
427 			offset, payload, length, transaction_callback, &d);
428 	wait_for_completion(&d.done);
429 	destroy_timer_on_stack(&t.split_timeout_timer);
430 
431 	return d.rcode;
432 }
433 EXPORT_SYMBOL(fw_run_transaction);
434 
435 static DEFINE_MUTEX(phy_config_mutex);
436 static DECLARE_COMPLETION(phy_config_done);
437 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)438 static void transmit_phy_packet_callback(struct fw_packet *packet,
439 					 struct fw_card *card, int status)
440 {
441 	complete(&phy_config_done);
442 }
443 
444 static struct fw_packet phy_config_packet = {
445 	.header_length	= 12,
446 	.header[0]	= TCODE_LINK_INTERNAL << 4,
447 	.payload_length	= 0,
448 	.speed		= SCODE_100,
449 	.callback	= transmit_phy_packet_callback,
450 };
451 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)452 void fw_send_phy_config(struct fw_card *card,
453 			int node_id, int generation, int gap_count)
454 {
455 	long timeout = DIV_ROUND_UP(HZ, 10);
456 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
457 
458 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
459 		data |= PHY_CONFIG_ROOT_ID(node_id);
460 
461 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
462 		gap_count = card->driver->read_phy_reg(card, 1);
463 		if (gap_count < 0)
464 			return;
465 
466 		gap_count &= 63;
467 		if (gap_count == 63)
468 			return;
469 	}
470 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
471 
472 	mutex_lock(&phy_config_mutex);
473 
474 	phy_config_packet.header[1] = data;
475 	phy_config_packet.header[2] = ~data;
476 	phy_config_packet.generation = generation;
477 	INIT_COMPLETION(phy_config_done);
478 
479 	card->driver->send_request(card, &phy_config_packet);
480 	wait_for_completion_timeout(&phy_config_done, timeout);
481 
482 	mutex_unlock(&phy_config_mutex);
483 }
484 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)485 static struct fw_address_handler *lookup_overlapping_address_handler(
486 	struct list_head *list, unsigned long long offset, size_t length)
487 {
488 	struct fw_address_handler *handler;
489 
490 	list_for_each_entry(handler, list, link) {
491 		if (handler->offset < offset + length &&
492 		    offset < handler->offset + handler->length)
493 			return handler;
494 	}
495 
496 	return NULL;
497 }
498 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)499 static bool is_enclosing_handler(struct fw_address_handler *handler,
500 				 unsigned long long offset, size_t length)
501 {
502 	return handler->offset <= offset &&
503 		offset + length <= handler->offset + handler->length;
504 }
505 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)506 static struct fw_address_handler *lookup_enclosing_address_handler(
507 	struct list_head *list, unsigned long long offset, size_t length)
508 {
509 	struct fw_address_handler *handler;
510 
511 	list_for_each_entry(handler, list, link) {
512 		if (is_enclosing_handler(handler, offset, length))
513 			return handler;
514 	}
515 
516 	return NULL;
517 }
518 
519 static DEFINE_SPINLOCK(address_handler_lock);
520 static LIST_HEAD(address_handler_list);
521 
522 const struct fw_address_region fw_high_memory_region =
523 	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
524 EXPORT_SYMBOL(fw_high_memory_region);
525 
526 #if 0
527 const struct fw_address_region fw_low_memory_region =
528 	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
529 const struct fw_address_region fw_private_region =
530 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
531 const struct fw_address_region fw_csr_region =
532 	{ .start = CSR_REGISTER_BASE,
533 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
534 const struct fw_address_region fw_unit_space_region =
535 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536 #endif  /*  0  */
537 
is_in_fcp_region(u64 offset,size_t length)538 static bool is_in_fcp_region(u64 offset, size_t length)
539 {
540 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542 }
543 
544 /**
545  * fw_core_add_address_handler() - register for incoming requests
546  * @handler:	callback
547  * @region:	region in the IEEE 1212 node space address range
548  *
549  * region->start, ->end, and handler->length have to be quadlet-aligned.
550  *
551  * When a request is received that falls within the specified address range,
552  * the specified callback is invoked.  The parameters passed to the callback
553  * give the details of the particular request.
554  *
555  * Return value:  0 on success, non-zero otherwise.
556  *
557  * The start offset of the handler's address region is determined by
558  * fw_core_add_address_handler() and is returned in handler->offset.
559  *
560  * Address allocations are exclusive, except for the FCP registers.
561  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)562 int fw_core_add_address_handler(struct fw_address_handler *handler,
563 				const struct fw_address_region *region)
564 {
565 	struct fw_address_handler *other;
566 	unsigned long flags;
567 	int ret = -EBUSY;
568 
569 	if (region->start & 0xffff000000000003ULL ||
570 	    region->start >= region->end ||
571 	    region->end   > 0x0001000000000000ULL ||
572 	    handler->length & 3 ||
573 	    handler->length == 0)
574 		return -EINVAL;
575 
576 	spin_lock_irqsave(&address_handler_lock, flags);
577 
578 	handler->offset = region->start;
579 	while (handler->offset + handler->length <= region->end) {
580 		if (is_in_fcp_region(handler->offset, handler->length))
581 			other = NULL;
582 		else
583 			other = lookup_overlapping_address_handler
584 					(&address_handler_list,
585 					 handler->offset, handler->length);
586 		if (other != NULL) {
587 			handler->offset += other->length;
588 		} else {
589 			list_add_tail(&handler->link, &address_handler_list);
590 			ret = 0;
591 			break;
592 		}
593 	}
594 
595 	spin_unlock_irqrestore(&address_handler_lock, flags);
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL(fw_core_add_address_handler);
600 
601 /**
602  * fw_core_remove_address_handler() - unregister an address handler
603  */
fw_core_remove_address_handler(struct fw_address_handler * handler)604 void fw_core_remove_address_handler(struct fw_address_handler *handler)
605 {
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&address_handler_lock, flags);
609 	list_del(&handler->link);
610 	spin_unlock_irqrestore(&address_handler_lock, flags);
611 }
612 EXPORT_SYMBOL(fw_core_remove_address_handler);
613 
614 struct fw_request {
615 	struct fw_packet response;
616 	u32 request_header[4];
617 	int ack;
618 	u32 length;
619 	u32 data[0];
620 };
621 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)622 static void free_response_callback(struct fw_packet *packet,
623 				   struct fw_card *card, int status)
624 {
625 	struct fw_request *request;
626 
627 	request = container_of(packet, struct fw_request, response);
628 	kfree(request);
629 }
630 
fw_get_response_length(struct fw_request * r)631 int fw_get_response_length(struct fw_request *r)
632 {
633 	int tcode, ext_tcode, data_length;
634 
635 	tcode = HEADER_GET_TCODE(r->request_header[0]);
636 
637 	switch (tcode) {
638 	case TCODE_WRITE_QUADLET_REQUEST:
639 	case TCODE_WRITE_BLOCK_REQUEST:
640 		return 0;
641 
642 	case TCODE_READ_QUADLET_REQUEST:
643 		return 4;
644 
645 	case TCODE_READ_BLOCK_REQUEST:
646 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
647 		return data_length;
648 
649 	case TCODE_LOCK_REQUEST:
650 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
651 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652 		switch (ext_tcode) {
653 		case EXTCODE_FETCH_ADD:
654 		case EXTCODE_LITTLE_ADD:
655 			return data_length;
656 		default:
657 			return data_length / 2;
658 		}
659 
660 	default:
661 		WARN(1, "wrong tcode %d\n", tcode);
662 		return 0;
663 	}
664 }
665 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)666 void fw_fill_response(struct fw_packet *response, u32 *request_header,
667 		      int rcode, void *payload, size_t length)
668 {
669 	int tcode, tlabel, extended_tcode, source, destination;
670 
671 	tcode          = HEADER_GET_TCODE(request_header[0]);
672 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
673 	source         = HEADER_GET_DESTINATION(request_header[0]);
674 	destination    = HEADER_GET_SOURCE(request_header[1]);
675 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
676 
677 	response->header[0] =
678 		HEADER_RETRY(RETRY_1) |
679 		HEADER_TLABEL(tlabel) |
680 		HEADER_DESTINATION(destination);
681 	response->header[1] =
682 		HEADER_SOURCE(source) |
683 		HEADER_RCODE(rcode);
684 	response->header[2] = 0;
685 
686 	switch (tcode) {
687 	case TCODE_WRITE_QUADLET_REQUEST:
688 	case TCODE_WRITE_BLOCK_REQUEST:
689 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
690 		response->header_length = 12;
691 		response->payload_length = 0;
692 		break;
693 
694 	case TCODE_READ_QUADLET_REQUEST:
695 		response->header[0] |=
696 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
697 		if (payload != NULL)
698 			response->header[3] = *(u32 *)payload;
699 		else
700 			response->header[3] = 0;
701 		response->header_length = 16;
702 		response->payload_length = 0;
703 		break;
704 
705 	case TCODE_READ_BLOCK_REQUEST:
706 	case TCODE_LOCK_REQUEST:
707 		response->header[0] |= HEADER_TCODE(tcode + 2);
708 		response->header[3] =
709 			HEADER_DATA_LENGTH(length) |
710 			HEADER_EXTENDED_TCODE(extended_tcode);
711 		response->header_length = 16;
712 		response->payload = payload;
713 		response->payload_length = length;
714 		break;
715 
716 	default:
717 		WARN(1, "wrong tcode %d\n", tcode);
718 	}
719 
720 	response->payload_mapped = false;
721 }
722 EXPORT_SYMBOL(fw_fill_response);
723 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)724 static u32 compute_split_timeout_timestamp(struct fw_card *card,
725 					   u32 request_timestamp)
726 {
727 	unsigned int cycles;
728 	u32 timestamp;
729 
730 	cycles = card->split_timeout_cycles;
731 	cycles += request_timestamp & 0x1fff;
732 
733 	timestamp = request_timestamp & ~0x1fff;
734 	timestamp += (cycles / 8000) << 13;
735 	timestamp |= cycles % 8000;
736 
737 	return timestamp;
738 }
739 
allocate_request(struct fw_card * card,struct fw_packet * p)740 static struct fw_request *allocate_request(struct fw_card *card,
741 					   struct fw_packet *p)
742 {
743 	struct fw_request *request;
744 	u32 *data, length;
745 	int request_tcode;
746 
747 	request_tcode = HEADER_GET_TCODE(p->header[0]);
748 	switch (request_tcode) {
749 	case TCODE_WRITE_QUADLET_REQUEST:
750 		data = &p->header[3];
751 		length = 4;
752 		break;
753 
754 	case TCODE_WRITE_BLOCK_REQUEST:
755 	case TCODE_LOCK_REQUEST:
756 		data = p->payload;
757 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
758 		break;
759 
760 	case TCODE_READ_QUADLET_REQUEST:
761 		data = NULL;
762 		length = 4;
763 		break;
764 
765 	case TCODE_READ_BLOCK_REQUEST:
766 		data = NULL;
767 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
768 		break;
769 
770 	default:
771 		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
772 			 p->header[0], p->header[1], p->header[2]);
773 		return NULL;
774 	}
775 
776 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
777 	if (request == NULL)
778 		return NULL;
779 
780 	request->response.speed = p->speed;
781 	request->response.timestamp =
782 			compute_split_timeout_timestamp(card, p->timestamp);
783 	request->response.generation = p->generation;
784 	request->response.ack = 0;
785 	request->response.callback = free_response_callback;
786 	request->ack = p->ack;
787 	request->length = length;
788 	if (data)
789 		memcpy(request->data, data, length);
790 
791 	memcpy(request->request_header, p->header, sizeof(p->header));
792 
793 	return request;
794 }
795 
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)796 void fw_send_response(struct fw_card *card,
797 		      struct fw_request *request, int rcode)
798 {
799 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
800 		return;
801 
802 	/* unified transaction or broadcast transaction: don't respond */
803 	if (request->ack != ACK_PENDING ||
804 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
805 		kfree(request);
806 		return;
807 	}
808 
809 	if (rcode == RCODE_COMPLETE)
810 		fw_fill_response(&request->response, request->request_header,
811 				 rcode, request->data,
812 				 fw_get_response_length(request));
813 	else
814 		fw_fill_response(&request->response, request->request_header,
815 				 rcode, NULL, 0);
816 
817 	card->driver->send_response(card, &request->response);
818 }
819 EXPORT_SYMBOL(fw_send_response);
820 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)821 static void handle_exclusive_region_request(struct fw_card *card,
822 					    struct fw_packet *p,
823 					    struct fw_request *request,
824 					    unsigned long long offset)
825 {
826 	struct fw_address_handler *handler;
827 	unsigned long flags;
828 	int tcode, destination, source;
829 
830 	destination = HEADER_GET_DESTINATION(p->header[0]);
831 	source      = HEADER_GET_SOURCE(p->header[1]);
832 	tcode       = HEADER_GET_TCODE(p->header[0]);
833 	if (tcode == TCODE_LOCK_REQUEST)
834 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
835 
836 	spin_lock_irqsave(&address_handler_lock, flags);
837 	handler = lookup_enclosing_address_handler(&address_handler_list,
838 						   offset, request->length);
839 	spin_unlock_irqrestore(&address_handler_lock, flags);
840 
841 	/*
842 	 * FIXME: lookup the fw_node corresponding to the sender of
843 	 * this request and pass that to the address handler instead
844 	 * of the node ID.  We may also want to move the address
845 	 * allocations to fw_node so we only do this callback if the
846 	 * upper layers registered it for this node.
847 	 */
848 
849 	if (handler == NULL)
850 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
851 	else
852 		handler->address_callback(card, request,
853 					  tcode, destination, source,
854 					  p->generation, offset,
855 					  request->data, request->length,
856 					  handler->callback_data);
857 }
858 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)859 static void handle_fcp_region_request(struct fw_card *card,
860 				      struct fw_packet *p,
861 				      struct fw_request *request,
862 				      unsigned long long offset)
863 {
864 	struct fw_address_handler *handler;
865 	unsigned long flags;
866 	int tcode, destination, source;
867 
868 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
869 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
870 	    request->length > 0x200) {
871 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
872 
873 		return;
874 	}
875 
876 	tcode       = HEADER_GET_TCODE(p->header[0]);
877 	destination = HEADER_GET_DESTINATION(p->header[0]);
878 	source      = HEADER_GET_SOURCE(p->header[1]);
879 
880 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
881 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
882 		fw_send_response(card, request, RCODE_TYPE_ERROR);
883 
884 		return;
885 	}
886 
887 	spin_lock_irqsave(&address_handler_lock, flags);
888 	list_for_each_entry(handler, &address_handler_list, link) {
889 		if (is_enclosing_handler(handler, offset, request->length))
890 			handler->address_callback(card, NULL, tcode,
891 						  destination, source,
892 						  p->generation, offset,
893 						  request->data,
894 						  request->length,
895 						  handler->callback_data);
896 	}
897 	spin_unlock_irqrestore(&address_handler_lock, flags);
898 
899 	fw_send_response(card, request, RCODE_COMPLETE);
900 }
901 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)902 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
903 {
904 	struct fw_request *request;
905 	unsigned long long offset;
906 
907 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
908 		return;
909 
910 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
911 		fw_cdev_handle_phy_packet(card, p);
912 		return;
913 	}
914 
915 	request = allocate_request(card, p);
916 	if (request == NULL) {
917 		/* FIXME: send statically allocated busy packet. */
918 		return;
919 	}
920 
921 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
922 		p->header[2];
923 
924 	if (!is_in_fcp_region(offset, request->length))
925 		handle_exclusive_region_request(card, p, request, offset);
926 	else
927 		handle_fcp_region_request(card, p, request, offset);
928 
929 }
930 EXPORT_SYMBOL(fw_core_handle_request);
931 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)932 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
933 {
934 	struct fw_transaction *t;
935 	unsigned long flags;
936 	u32 *data;
937 	size_t data_length;
938 	int tcode, tlabel, source, rcode;
939 
940 	tcode	= HEADER_GET_TCODE(p->header[0]);
941 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
942 	source	= HEADER_GET_SOURCE(p->header[1]);
943 	rcode	= HEADER_GET_RCODE(p->header[1]);
944 
945 	spin_lock_irqsave(&card->lock, flags);
946 	list_for_each_entry(t, &card->transaction_list, link) {
947 		if (t->node_id == source && t->tlabel == tlabel) {
948 			if (!try_cancel_split_timeout(t)) {
949 				spin_unlock_irqrestore(&card->lock, flags);
950 				goto timed_out;
951 			}
952 			list_del_init(&t->link);
953 			card->tlabel_mask &= ~(1ULL << t->tlabel);
954 			break;
955 		}
956 	}
957 	spin_unlock_irqrestore(&card->lock, flags);
958 
959 	if (&t->link == &card->transaction_list) {
960  timed_out:
961 		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
962 			  source, tlabel);
963 		return;
964 	}
965 
966 	/*
967 	 * FIXME: sanity check packet, is length correct, does tcodes
968 	 * and addresses match.
969 	 */
970 
971 	switch (tcode) {
972 	case TCODE_READ_QUADLET_RESPONSE:
973 		data = (u32 *) &p->header[3];
974 		data_length = 4;
975 		break;
976 
977 	case TCODE_WRITE_RESPONSE:
978 		data = NULL;
979 		data_length = 0;
980 		break;
981 
982 	case TCODE_READ_BLOCK_RESPONSE:
983 	case TCODE_LOCK_RESPONSE:
984 		data = p->payload;
985 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
986 		break;
987 
988 	default:
989 		/* Should never happen, this is just to shut up gcc. */
990 		data = NULL;
991 		data_length = 0;
992 		break;
993 	}
994 
995 	/*
996 	 * The response handler may be executed while the request handler
997 	 * is still pending.  Cancel the request handler.
998 	 */
999 	card->driver->cancel_packet(card, &t->packet);
1000 
1001 	t->callback(card, rcode, data, data_length, t->callback_data);
1002 }
1003 EXPORT_SYMBOL(fw_core_handle_response);
1004 
1005 static const struct fw_address_region topology_map_region =
1006 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1007 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1008 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1009 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1010 		int tcode, int destination, int source, int generation,
1011 		unsigned long long offset, void *payload, size_t length,
1012 		void *callback_data)
1013 {
1014 	int start;
1015 
1016 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1017 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1018 		return;
1019 	}
1020 
1021 	if ((offset & 3) > 0 || (length & 3) > 0) {
1022 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1023 		return;
1024 	}
1025 
1026 	start = (offset - topology_map_region.start) / 4;
1027 	memcpy(payload, &card->topology_map[start], length);
1028 
1029 	fw_send_response(card, request, RCODE_COMPLETE);
1030 }
1031 
1032 static struct fw_address_handler topology_map = {
1033 	.length			= 0x400,
1034 	.address_callback	= handle_topology_map,
1035 };
1036 
1037 static const struct fw_address_region registers_region =
1038 	{ .start = CSR_REGISTER_BASE,
1039 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1040 
update_split_timeout(struct fw_card * card)1041 static void update_split_timeout(struct fw_card *card)
1042 {
1043 	unsigned int cycles;
1044 
1045 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1046 
1047 	cycles = max(cycles, 800u); /* minimum as per the spec */
1048 	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1049 
1050 	card->split_timeout_cycles = cycles;
1051 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1052 }
1053 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1054 static void handle_registers(struct fw_card *card, struct fw_request *request,
1055 		int tcode, int destination, int source, int generation,
1056 		unsigned long long offset, void *payload, size_t length,
1057 		void *callback_data)
1058 {
1059 	int reg = offset & ~CSR_REGISTER_BASE;
1060 	__be32 *data = payload;
1061 	int rcode = RCODE_COMPLETE;
1062 	unsigned long flags;
1063 
1064 	switch (reg) {
1065 	case CSR_PRIORITY_BUDGET:
1066 		if (!card->priority_budget_implemented) {
1067 			rcode = RCODE_ADDRESS_ERROR;
1068 			break;
1069 		}
1070 		/* else fall through */
1071 
1072 	case CSR_NODE_IDS:
1073 		/*
1074 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1075 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1076 		 */
1077 		/* fall through */
1078 
1079 	case CSR_STATE_CLEAR:
1080 	case CSR_STATE_SET:
1081 	case CSR_CYCLE_TIME:
1082 	case CSR_BUS_TIME:
1083 	case CSR_BUSY_TIMEOUT:
1084 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1085 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1086 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1087 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1088 		else
1089 			rcode = RCODE_TYPE_ERROR;
1090 		break;
1091 
1092 	case CSR_RESET_START:
1093 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1094 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1095 						CSR_STATE_BIT_ABDICATE);
1096 		else
1097 			rcode = RCODE_TYPE_ERROR;
1098 		break;
1099 
1100 	case CSR_SPLIT_TIMEOUT_HI:
1101 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1102 			*data = cpu_to_be32(card->split_timeout_hi);
1103 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1104 			spin_lock_irqsave(&card->lock, flags);
1105 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1106 			update_split_timeout(card);
1107 			spin_unlock_irqrestore(&card->lock, flags);
1108 		} else {
1109 			rcode = RCODE_TYPE_ERROR;
1110 		}
1111 		break;
1112 
1113 	case CSR_SPLIT_TIMEOUT_LO:
1114 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1115 			*data = cpu_to_be32(card->split_timeout_lo);
1116 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1117 			spin_lock_irqsave(&card->lock, flags);
1118 			card->split_timeout_lo =
1119 					be32_to_cpu(*data) & 0xfff80000;
1120 			update_split_timeout(card);
1121 			spin_unlock_irqrestore(&card->lock, flags);
1122 		} else {
1123 			rcode = RCODE_TYPE_ERROR;
1124 		}
1125 		break;
1126 
1127 	case CSR_MAINT_UTILITY:
1128 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1129 			*data = card->maint_utility_register;
1130 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1131 			card->maint_utility_register = *data;
1132 		else
1133 			rcode = RCODE_TYPE_ERROR;
1134 		break;
1135 
1136 	case CSR_BROADCAST_CHANNEL:
1137 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1138 			*data = cpu_to_be32(card->broadcast_channel);
1139 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1140 			card->broadcast_channel =
1141 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1142 			    BROADCAST_CHANNEL_INITIAL;
1143 		else
1144 			rcode = RCODE_TYPE_ERROR;
1145 		break;
1146 
1147 	case CSR_BUS_MANAGER_ID:
1148 	case CSR_BANDWIDTH_AVAILABLE:
1149 	case CSR_CHANNELS_AVAILABLE_HI:
1150 	case CSR_CHANNELS_AVAILABLE_LO:
1151 		/*
1152 		 * FIXME: these are handled by the OHCI hardware and
1153 		 * the stack never sees these request. If we add
1154 		 * support for a new type of controller that doesn't
1155 		 * handle this in hardware we need to deal with these
1156 		 * transactions.
1157 		 */
1158 		BUG();
1159 		break;
1160 
1161 	default:
1162 		rcode = RCODE_ADDRESS_ERROR;
1163 		break;
1164 	}
1165 
1166 	fw_send_response(card, request, rcode);
1167 }
1168 
1169 static struct fw_address_handler registers = {
1170 	.length			= 0x400,
1171 	.address_callback	= handle_registers,
1172 };
1173 
1174 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1175 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1176 MODULE_LICENSE("GPL");
1177 
1178 static const u32 vendor_textual_descriptor[] = {
1179 	/* textual descriptor leaf () */
1180 	0x00060000,
1181 	0x00000000,
1182 	0x00000000,
1183 	0x4c696e75,		/* L i n u */
1184 	0x78204669,		/* x   F i */
1185 	0x72657769,		/* r e w i */
1186 	0x72650000,		/* r e     */
1187 };
1188 
1189 static const u32 model_textual_descriptor[] = {
1190 	/* model descriptor leaf () */
1191 	0x00030000,
1192 	0x00000000,
1193 	0x00000000,
1194 	0x4a756a75,		/* J u j u */
1195 };
1196 
1197 static struct fw_descriptor vendor_id_descriptor = {
1198 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1199 	.immediate = 0x03d00d1e,
1200 	.key = 0x81000000,
1201 	.data = vendor_textual_descriptor,
1202 };
1203 
1204 static struct fw_descriptor model_id_descriptor = {
1205 	.length = ARRAY_SIZE(model_textual_descriptor),
1206 	.immediate = 0x17000001,
1207 	.key = 0x81000000,
1208 	.data = model_textual_descriptor,
1209 };
1210 
fw_core_init(void)1211 static int __init fw_core_init(void)
1212 {
1213 	int ret;
1214 
1215 	ret = bus_register(&fw_bus_type);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1220 	if (fw_cdev_major < 0) {
1221 		bus_unregister(&fw_bus_type);
1222 		return fw_cdev_major;
1223 	}
1224 
1225 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1226 	fw_core_add_address_handler(&registers, &registers_region);
1227 	fw_core_add_descriptor(&vendor_id_descriptor);
1228 	fw_core_add_descriptor(&model_id_descriptor);
1229 
1230 	return 0;
1231 }
1232 
fw_core_cleanup(void)1233 static void __exit fw_core_cleanup(void)
1234 {
1235 	unregister_chrdev(fw_cdev_major, "firewire");
1236 	bus_unregister(&fw_bus_type);
1237 	idr_destroy(&fw_device_idr);
1238 }
1239 
1240 module_init(fw_core_init);
1241 module_exit(fw_core_cleanup);
1242