1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39
40 #include <asm/byteorder.h>
41
42 #include "core.h"
43
44 #define HEADER_PRI(pri) ((pri) << 0)
45 #define HEADER_TCODE(tcode) ((tcode) << 4)
46 #define HEADER_RETRY(retry) ((retry) << 8)
47 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
48 #define HEADER_DESTINATION(destination) ((destination) << 16)
49 #define HEADER_SOURCE(source) ((source) << 16)
50 #define HEADER_RCODE(rcode) ((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length) ((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
54
55 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
63
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66
67 #define PHY_PACKET_CONFIG 0x0
68 #define PHY_PACKET_LINK_ON 0x1
69 #define PHY_PACKET_SELF_ID 0x2
70
71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id) ((id) << 30)
74
75 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)76 static int try_cancel_split_timeout(struct fw_transaction *t)
77 {
78 if (t->is_split_transaction)
79 return del_timer(&t->split_timeout_timer);
80 else
81 return 1;
82 }
83
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)84 static int close_transaction(struct fw_transaction *transaction,
85 struct fw_card *card, int rcode)
86 {
87 struct fw_transaction *t;
88 unsigned long flags;
89
90 spin_lock_irqsave(&card->lock, flags);
91 list_for_each_entry(t, &card->transaction_list, link) {
92 if (t == transaction) {
93 if (!try_cancel_split_timeout(t)) {
94 spin_unlock_irqrestore(&card->lock, flags);
95 goto timed_out;
96 }
97 list_del_init(&t->link);
98 card->tlabel_mask &= ~(1ULL << t->tlabel);
99 break;
100 }
101 }
102 spin_unlock_irqrestore(&card->lock, flags);
103
104 if (&t->link != &card->transaction_list) {
105 t->callback(card, rcode, NULL, 0, t->callback_data);
106 return 0;
107 }
108
109 timed_out:
110 return -ENOENT;
111 }
112
113 /*
114 * Only valid for transactions that are potentially pending (ie have
115 * been sent).
116 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)117 int fw_cancel_transaction(struct fw_card *card,
118 struct fw_transaction *transaction)
119 {
120 /*
121 * Cancel the packet transmission if it's still queued. That
122 * will call the packet transmission callback which cancels
123 * the transaction.
124 */
125
126 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
127 return 0;
128
129 /*
130 * If the request packet has already been sent, we need to see
131 * if the transaction is still pending and remove it in that case.
132 */
133
134 return close_transaction(transaction, card, RCODE_CANCELLED);
135 }
136 EXPORT_SYMBOL(fw_cancel_transaction);
137
split_transaction_timeout_callback(unsigned long data)138 static void split_transaction_timeout_callback(unsigned long data)
139 {
140 struct fw_transaction *t = (struct fw_transaction *)data;
141 struct fw_card *card = t->card;
142 unsigned long flags;
143
144 spin_lock_irqsave(&card->lock, flags);
145 if (list_empty(&t->link)) {
146 spin_unlock_irqrestore(&card->lock, flags);
147 return;
148 }
149 list_del(&t->link);
150 card->tlabel_mask &= ~(1ULL << t->tlabel);
151 spin_unlock_irqrestore(&card->lock, flags);
152
153 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
154 }
155
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)156 static void start_split_transaction_timeout(struct fw_transaction *t,
157 struct fw_card *card)
158 {
159 unsigned long flags;
160
161 spin_lock_irqsave(&card->lock, flags);
162
163 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
164 spin_unlock_irqrestore(&card->lock, flags);
165 return;
166 }
167
168 t->is_split_transaction = true;
169 mod_timer(&t->split_timeout_timer,
170 jiffies + card->split_timeout_jiffies);
171
172 spin_unlock_irqrestore(&card->lock, flags);
173 }
174
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)175 static void transmit_complete_callback(struct fw_packet *packet,
176 struct fw_card *card, int status)
177 {
178 struct fw_transaction *t =
179 container_of(packet, struct fw_transaction, packet);
180
181 switch (status) {
182 case ACK_COMPLETE:
183 close_transaction(t, card, RCODE_COMPLETE);
184 break;
185 case ACK_PENDING:
186 start_split_transaction_timeout(t, card);
187 break;
188 case ACK_BUSY_X:
189 case ACK_BUSY_A:
190 case ACK_BUSY_B:
191 close_transaction(t, card, RCODE_BUSY);
192 break;
193 case ACK_DATA_ERROR:
194 close_transaction(t, card, RCODE_DATA_ERROR);
195 break;
196 case ACK_TYPE_ERROR:
197 close_transaction(t, card, RCODE_TYPE_ERROR);
198 break;
199 default:
200 /*
201 * In this case the ack is really a juju specific
202 * rcode, so just forward that to the callback.
203 */
204 close_transaction(t, card, status);
205 break;
206 }
207 }
208
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)209 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
210 int destination_id, int source_id, int generation, int speed,
211 unsigned long long offset, void *payload, size_t length)
212 {
213 int ext_tcode;
214
215 if (tcode == TCODE_STREAM_DATA) {
216 packet->header[0] =
217 HEADER_DATA_LENGTH(length) |
218 destination_id |
219 HEADER_TCODE(TCODE_STREAM_DATA);
220 packet->header_length = 4;
221 packet->payload = payload;
222 packet->payload_length = length;
223
224 goto common;
225 }
226
227 if (tcode > 0x10) {
228 ext_tcode = tcode & ~0x10;
229 tcode = TCODE_LOCK_REQUEST;
230 } else
231 ext_tcode = 0;
232
233 packet->header[0] =
234 HEADER_RETRY(RETRY_X) |
235 HEADER_TLABEL(tlabel) |
236 HEADER_TCODE(tcode) |
237 HEADER_DESTINATION(destination_id);
238 packet->header[1] =
239 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
240 packet->header[2] =
241 offset;
242
243 switch (tcode) {
244 case TCODE_WRITE_QUADLET_REQUEST:
245 packet->header[3] = *(u32 *)payload;
246 packet->header_length = 16;
247 packet->payload_length = 0;
248 break;
249
250 case TCODE_LOCK_REQUEST:
251 case TCODE_WRITE_BLOCK_REQUEST:
252 packet->header[3] =
253 HEADER_DATA_LENGTH(length) |
254 HEADER_EXTENDED_TCODE(ext_tcode);
255 packet->header_length = 16;
256 packet->payload = payload;
257 packet->payload_length = length;
258 break;
259
260 case TCODE_READ_QUADLET_REQUEST:
261 packet->header_length = 12;
262 packet->payload_length = 0;
263 break;
264
265 case TCODE_READ_BLOCK_REQUEST:
266 packet->header[3] =
267 HEADER_DATA_LENGTH(length) |
268 HEADER_EXTENDED_TCODE(ext_tcode);
269 packet->header_length = 16;
270 packet->payload_length = 0;
271 break;
272
273 default:
274 WARN(1, "wrong tcode %d\n", tcode);
275 }
276 common:
277 packet->speed = speed;
278 packet->generation = generation;
279 packet->ack = 0;
280 packet->payload_mapped = false;
281 }
282
allocate_tlabel(struct fw_card * card)283 static int allocate_tlabel(struct fw_card *card)
284 {
285 int tlabel;
286
287 tlabel = card->current_tlabel;
288 while (card->tlabel_mask & (1ULL << tlabel)) {
289 tlabel = (tlabel + 1) & 0x3f;
290 if (tlabel == card->current_tlabel)
291 return -EBUSY;
292 }
293
294 card->current_tlabel = (tlabel + 1) & 0x3f;
295 card->tlabel_mask |= 1ULL << tlabel;
296
297 return tlabel;
298 }
299
300 /**
301 * fw_send_request() - submit a request packet for transmission
302 * @card: interface to send the request at
303 * @t: transaction instance to which the request belongs
304 * @tcode: transaction code
305 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
306 * @generation: bus generation in which request and response are valid
307 * @speed: transmission speed
308 * @offset: 48bit wide offset into destination's address space
309 * @payload: data payload for the request subaction
310 * @length: length of the payload, in bytes
311 * @callback: function to be called when the transaction is completed
312 * @callback_data: data to be passed to the transaction completion callback
313 *
314 * Submit a request packet into the asynchronous request transmission queue.
315 * Can be called from atomic context. If you prefer a blocking API, use
316 * fw_run_transaction() in a context that can sleep.
317 *
318 * In case of lock requests, specify one of the firewire-core specific %TCODE_
319 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
320 *
321 * Make sure that the value in @destination_id is not older than the one in
322 * @generation. Otherwise the request is in danger to be sent to a wrong node.
323 *
324 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
325 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
326 * It will contain tag, channel, and sy data instead of a node ID then.
327 *
328 * The payload buffer at @data is going to be DMA-mapped except in case of
329 * quadlet-sized payload or of local (loopback) requests. Hence make sure that
330 * the buffer complies with the restrictions for DMA-mapped memory. The
331 * @payload must not be freed before the @callback is called.
332 *
333 * In case of request types without payload, @data is NULL and @length is 0.
334 *
335 * After the transaction is completed successfully or unsuccessfully, the
336 * @callback will be called. Among its parameters is the response code which
337 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
338 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
339 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
340 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
341 * generation, or missing ACK respectively.
342 *
343 * Note some timing corner cases: fw_send_request() may complete much earlier
344 * than when the request packet actually hits the wire. On the other hand,
345 * transaction completion and hence execution of @callback may happen even
346 * before fw_send_request() returns.
347 */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)348 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
349 int destination_id, int generation, int speed,
350 unsigned long long offset, void *payload, size_t length,
351 fw_transaction_callback_t callback, void *callback_data)
352 {
353 unsigned long flags;
354 int tlabel;
355
356 /*
357 * Allocate tlabel from the bitmap and put the transaction on
358 * the list while holding the card spinlock.
359 */
360
361 spin_lock_irqsave(&card->lock, flags);
362
363 tlabel = allocate_tlabel(card);
364 if (tlabel < 0) {
365 spin_unlock_irqrestore(&card->lock, flags);
366 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
367 return;
368 }
369
370 t->node_id = destination_id;
371 t->tlabel = tlabel;
372 t->card = card;
373 t->is_split_transaction = false;
374 setup_timer(&t->split_timeout_timer,
375 split_transaction_timeout_callback, (unsigned long)t);
376 t->callback = callback;
377 t->callback_data = callback_data;
378
379 fw_fill_request(&t->packet, tcode, t->tlabel,
380 destination_id, card->node_id, generation,
381 speed, offset, payload, length);
382 t->packet.callback = transmit_complete_callback;
383
384 list_add_tail(&t->link, &card->transaction_list);
385
386 spin_unlock_irqrestore(&card->lock, flags);
387
388 card->driver->send_request(card, &t->packet);
389 }
390 EXPORT_SYMBOL(fw_send_request);
391
392 struct transaction_callback_data {
393 struct completion done;
394 void *payload;
395 int rcode;
396 };
397
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)398 static void transaction_callback(struct fw_card *card, int rcode,
399 void *payload, size_t length, void *data)
400 {
401 struct transaction_callback_data *d = data;
402
403 if (rcode == RCODE_COMPLETE)
404 memcpy(d->payload, payload, length);
405 d->rcode = rcode;
406 complete(&d->done);
407 }
408
409 /**
410 * fw_run_transaction() - send request and sleep until transaction is completed
411 *
412 * Returns the RCODE. See fw_send_request() for parameter documentation.
413 * Unlike fw_send_request(), @data points to the payload of the request or/and
414 * to the payload of the response.
415 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)416 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
417 int generation, int speed, unsigned long long offset,
418 void *payload, size_t length)
419 {
420 struct transaction_callback_data d;
421 struct fw_transaction t;
422
423 init_timer_on_stack(&t.split_timeout_timer);
424 init_completion(&d.done);
425 d.payload = payload;
426 fw_send_request(card, &t, tcode, destination_id, generation, speed,
427 offset, payload, length, transaction_callback, &d);
428 wait_for_completion(&d.done);
429 destroy_timer_on_stack(&t.split_timeout_timer);
430
431 return d.rcode;
432 }
433 EXPORT_SYMBOL(fw_run_transaction);
434
435 static DEFINE_MUTEX(phy_config_mutex);
436 static DECLARE_COMPLETION(phy_config_done);
437
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)438 static void transmit_phy_packet_callback(struct fw_packet *packet,
439 struct fw_card *card, int status)
440 {
441 complete(&phy_config_done);
442 }
443
444 static struct fw_packet phy_config_packet = {
445 .header_length = 12,
446 .header[0] = TCODE_LINK_INTERNAL << 4,
447 .payload_length = 0,
448 .speed = SCODE_100,
449 .callback = transmit_phy_packet_callback,
450 };
451
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)452 void fw_send_phy_config(struct fw_card *card,
453 int node_id, int generation, int gap_count)
454 {
455 long timeout = DIV_ROUND_UP(HZ, 10);
456 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
457
458 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
459 data |= PHY_CONFIG_ROOT_ID(node_id);
460
461 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
462 gap_count = card->driver->read_phy_reg(card, 1);
463 if (gap_count < 0)
464 return;
465
466 gap_count &= 63;
467 if (gap_count == 63)
468 return;
469 }
470 data |= PHY_CONFIG_GAP_COUNT(gap_count);
471
472 mutex_lock(&phy_config_mutex);
473
474 phy_config_packet.header[1] = data;
475 phy_config_packet.header[2] = ~data;
476 phy_config_packet.generation = generation;
477 INIT_COMPLETION(phy_config_done);
478
479 card->driver->send_request(card, &phy_config_packet);
480 wait_for_completion_timeout(&phy_config_done, timeout);
481
482 mutex_unlock(&phy_config_mutex);
483 }
484
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)485 static struct fw_address_handler *lookup_overlapping_address_handler(
486 struct list_head *list, unsigned long long offset, size_t length)
487 {
488 struct fw_address_handler *handler;
489
490 list_for_each_entry(handler, list, link) {
491 if (handler->offset < offset + length &&
492 offset < handler->offset + handler->length)
493 return handler;
494 }
495
496 return NULL;
497 }
498
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)499 static bool is_enclosing_handler(struct fw_address_handler *handler,
500 unsigned long long offset, size_t length)
501 {
502 return handler->offset <= offset &&
503 offset + length <= handler->offset + handler->length;
504 }
505
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)506 static struct fw_address_handler *lookup_enclosing_address_handler(
507 struct list_head *list, unsigned long long offset, size_t length)
508 {
509 struct fw_address_handler *handler;
510
511 list_for_each_entry(handler, list, link) {
512 if (is_enclosing_handler(handler, offset, length))
513 return handler;
514 }
515
516 return NULL;
517 }
518
519 static DEFINE_SPINLOCK(address_handler_lock);
520 static LIST_HEAD(address_handler_list);
521
522 const struct fw_address_region fw_high_memory_region =
523 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
524 EXPORT_SYMBOL(fw_high_memory_region);
525
526 #if 0
527 const struct fw_address_region fw_low_memory_region =
528 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
529 const struct fw_address_region fw_private_region =
530 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
531 const struct fw_address_region fw_csr_region =
532 { .start = CSR_REGISTER_BASE,
533 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
534 const struct fw_address_region fw_unit_space_region =
535 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536 #endif /* 0 */
537
is_in_fcp_region(u64 offset,size_t length)538 static bool is_in_fcp_region(u64 offset, size_t length)
539 {
540 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542 }
543
544 /**
545 * fw_core_add_address_handler() - register for incoming requests
546 * @handler: callback
547 * @region: region in the IEEE 1212 node space address range
548 *
549 * region->start, ->end, and handler->length have to be quadlet-aligned.
550 *
551 * When a request is received that falls within the specified address range,
552 * the specified callback is invoked. The parameters passed to the callback
553 * give the details of the particular request.
554 *
555 * Return value: 0 on success, non-zero otherwise.
556 *
557 * The start offset of the handler's address region is determined by
558 * fw_core_add_address_handler() and is returned in handler->offset.
559 *
560 * Address allocations are exclusive, except for the FCP registers.
561 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)562 int fw_core_add_address_handler(struct fw_address_handler *handler,
563 const struct fw_address_region *region)
564 {
565 struct fw_address_handler *other;
566 unsigned long flags;
567 int ret = -EBUSY;
568
569 if (region->start & 0xffff000000000003ULL ||
570 region->start >= region->end ||
571 region->end > 0x0001000000000000ULL ||
572 handler->length & 3 ||
573 handler->length == 0)
574 return -EINVAL;
575
576 spin_lock_irqsave(&address_handler_lock, flags);
577
578 handler->offset = region->start;
579 while (handler->offset + handler->length <= region->end) {
580 if (is_in_fcp_region(handler->offset, handler->length))
581 other = NULL;
582 else
583 other = lookup_overlapping_address_handler
584 (&address_handler_list,
585 handler->offset, handler->length);
586 if (other != NULL) {
587 handler->offset += other->length;
588 } else {
589 list_add_tail(&handler->link, &address_handler_list);
590 ret = 0;
591 break;
592 }
593 }
594
595 spin_unlock_irqrestore(&address_handler_lock, flags);
596
597 return ret;
598 }
599 EXPORT_SYMBOL(fw_core_add_address_handler);
600
601 /**
602 * fw_core_remove_address_handler() - unregister an address handler
603 */
fw_core_remove_address_handler(struct fw_address_handler * handler)604 void fw_core_remove_address_handler(struct fw_address_handler *handler)
605 {
606 unsigned long flags;
607
608 spin_lock_irqsave(&address_handler_lock, flags);
609 list_del(&handler->link);
610 spin_unlock_irqrestore(&address_handler_lock, flags);
611 }
612 EXPORT_SYMBOL(fw_core_remove_address_handler);
613
614 struct fw_request {
615 struct fw_packet response;
616 u32 request_header[4];
617 int ack;
618 u32 length;
619 u32 data[0];
620 };
621
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)622 static void free_response_callback(struct fw_packet *packet,
623 struct fw_card *card, int status)
624 {
625 struct fw_request *request;
626
627 request = container_of(packet, struct fw_request, response);
628 kfree(request);
629 }
630
fw_get_response_length(struct fw_request * r)631 int fw_get_response_length(struct fw_request *r)
632 {
633 int tcode, ext_tcode, data_length;
634
635 tcode = HEADER_GET_TCODE(r->request_header[0]);
636
637 switch (tcode) {
638 case TCODE_WRITE_QUADLET_REQUEST:
639 case TCODE_WRITE_BLOCK_REQUEST:
640 return 0;
641
642 case TCODE_READ_QUADLET_REQUEST:
643 return 4;
644
645 case TCODE_READ_BLOCK_REQUEST:
646 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
647 return data_length;
648
649 case TCODE_LOCK_REQUEST:
650 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
651 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652 switch (ext_tcode) {
653 case EXTCODE_FETCH_ADD:
654 case EXTCODE_LITTLE_ADD:
655 return data_length;
656 default:
657 return data_length / 2;
658 }
659
660 default:
661 WARN(1, "wrong tcode %d\n", tcode);
662 return 0;
663 }
664 }
665
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)666 void fw_fill_response(struct fw_packet *response, u32 *request_header,
667 int rcode, void *payload, size_t length)
668 {
669 int tcode, tlabel, extended_tcode, source, destination;
670
671 tcode = HEADER_GET_TCODE(request_header[0]);
672 tlabel = HEADER_GET_TLABEL(request_header[0]);
673 source = HEADER_GET_DESTINATION(request_header[0]);
674 destination = HEADER_GET_SOURCE(request_header[1]);
675 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
676
677 response->header[0] =
678 HEADER_RETRY(RETRY_1) |
679 HEADER_TLABEL(tlabel) |
680 HEADER_DESTINATION(destination);
681 response->header[1] =
682 HEADER_SOURCE(source) |
683 HEADER_RCODE(rcode);
684 response->header[2] = 0;
685
686 switch (tcode) {
687 case TCODE_WRITE_QUADLET_REQUEST:
688 case TCODE_WRITE_BLOCK_REQUEST:
689 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
690 response->header_length = 12;
691 response->payload_length = 0;
692 break;
693
694 case TCODE_READ_QUADLET_REQUEST:
695 response->header[0] |=
696 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
697 if (payload != NULL)
698 response->header[3] = *(u32 *)payload;
699 else
700 response->header[3] = 0;
701 response->header_length = 16;
702 response->payload_length = 0;
703 break;
704
705 case TCODE_READ_BLOCK_REQUEST:
706 case TCODE_LOCK_REQUEST:
707 response->header[0] |= HEADER_TCODE(tcode + 2);
708 response->header[3] =
709 HEADER_DATA_LENGTH(length) |
710 HEADER_EXTENDED_TCODE(extended_tcode);
711 response->header_length = 16;
712 response->payload = payload;
713 response->payload_length = length;
714 break;
715
716 default:
717 WARN(1, "wrong tcode %d\n", tcode);
718 }
719
720 response->payload_mapped = false;
721 }
722 EXPORT_SYMBOL(fw_fill_response);
723
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)724 static u32 compute_split_timeout_timestamp(struct fw_card *card,
725 u32 request_timestamp)
726 {
727 unsigned int cycles;
728 u32 timestamp;
729
730 cycles = card->split_timeout_cycles;
731 cycles += request_timestamp & 0x1fff;
732
733 timestamp = request_timestamp & ~0x1fff;
734 timestamp += (cycles / 8000) << 13;
735 timestamp |= cycles % 8000;
736
737 return timestamp;
738 }
739
allocate_request(struct fw_card * card,struct fw_packet * p)740 static struct fw_request *allocate_request(struct fw_card *card,
741 struct fw_packet *p)
742 {
743 struct fw_request *request;
744 u32 *data, length;
745 int request_tcode;
746
747 request_tcode = HEADER_GET_TCODE(p->header[0]);
748 switch (request_tcode) {
749 case TCODE_WRITE_QUADLET_REQUEST:
750 data = &p->header[3];
751 length = 4;
752 break;
753
754 case TCODE_WRITE_BLOCK_REQUEST:
755 case TCODE_LOCK_REQUEST:
756 data = p->payload;
757 length = HEADER_GET_DATA_LENGTH(p->header[3]);
758 break;
759
760 case TCODE_READ_QUADLET_REQUEST:
761 data = NULL;
762 length = 4;
763 break;
764
765 case TCODE_READ_BLOCK_REQUEST:
766 data = NULL;
767 length = HEADER_GET_DATA_LENGTH(p->header[3]);
768 break;
769
770 default:
771 fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
772 p->header[0], p->header[1], p->header[2]);
773 return NULL;
774 }
775
776 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
777 if (request == NULL)
778 return NULL;
779
780 request->response.speed = p->speed;
781 request->response.timestamp =
782 compute_split_timeout_timestamp(card, p->timestamp);
783 request->response.generation = p->generation;
784 request->response.ack = 0;
785 request->response.callback = free_response_callback;
786 request->ack = p->ack;
787 request->length = length;
788 if (data)
789 memcpy(request->data, data, length);
790
791 memcpy(request->request_header, p->header, sizeof(p->header));
792
793 return request;
794 }
795
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)796 void fw_send_response(struct fw_card *card,
797 struct fw_request *request, int rcode)
798 {
799 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
800 return;
801
802 /* unified transaction or broadcast transaction: don't respond */
803 if (request->ack != ACK_PENDING ||
804 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
805 kfree(request);
806 return;
807 }
808
809 if (rcode == RCODE_COMPLETE)
810 fw_fill_response(&request->response, request->request_header,
811 rcode, request->data,
812 fw_get_response_length(request));
813 else
814 fw_fill_response(&request->response, request->request_header,
815 rcode, NULL, 0);
816
817 card->driver->send_response(card, &request->response);
818 }
819 EXPORT_SYMBOL(fw_send_response);
820
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)821 static void handle_exclusive_region_request(struct fw_card *card,
822 struct fw_packet *p,
823 struct fw_request *request,
824 unsigned long long offset)
825 {
826 struct fw_address_handler *handler;
827 unsigned long flags;
828 int tcode, destination, source;
829
830 destination = HEADER_GET_DESTINATION(p->header[0]);
831 source = HEADER_GET_SOURCE(p->header[1]);
832 tcode = HEADER_GET_TCODE(p->header[0]);
833 if (tcode == TCODE_LOCK_REQUEST)
834 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
835
836 spin_lock_irqsave(&address_handler_lock, flags);
837 handler = lookup_enclosing_address_handler(&address_handler_list,
838 offset, request->length);
839 spin_unlock_irqrestore(&address_handler_lock, flags);
840
841 /*
842 * FIXME: lookup the fw_node corresponding to the sender of
843 * this request and pass that to the address handler instead
844 * of the node ID. We may also want to move the address
845 * allocations to fw_node so we only do this callback if the
846 * upper layers registered it for this node.
847 */
848
849 if (handler == NULL)
850 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
851 else
852 handler->address_callback(card, request,
853 tcode, destination, source,
854 p->generation, offset,
855 request->data, request->length,
856 handler->callback_data);
857 }
858
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)859 static void handle_fcp_region_request(struct fw_card *card,
860 struct fw_packet *p,
861 struct fw_request *request,
862 unsigned long long offset)
863 {
864 struct fw_address_handler *handler;
865 unsigned long flags;
866 int tcode, destination, source;
867
868 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
869 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
870 request->length > 0x200) {
871 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
872
873 return;
874 }
875
876 tcode = HEADER_GET_TCODE(p->header[0]);
877 destination = HEADER_GET_DESTINATION(p->header[0]);
878 source = HEADER_GET_SOURCE(p->header[1]);
879
880 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
881 tcode != TCODE_WRITE_BLOCK_REQUEST) {
882 fw_send_response(card, request, RCODE_TYPE_ERROR);
883
884 return;
885 }
886
887 spin_lock_irqsave(&address_handler_lock, flags);
888 list_for_each_entry(handler, &address_handler_list, link) {
889 if (is_enclosing_handler(handler, offset, request->length))
890 handler->address_callback(card, NULL, tcode,
891 destination, source,
892 p->generation, offset,
893 request->data,
894 request->length,
895 handler->callback_data);
896 }
897 spin_unlock_irqrestore(&address_handler_lock, flags);
898
899 fw_send_response(card, request, RCODE_COMPLETE);
900 }
901
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)902 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
903 {
904 struct fw_request *request;
905 unsigned long long offset;
906
907 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
908 return;
909
910 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
911 fw_cdev_handle_phy_packet(card, p);
912 return;
913 }
914
915 request = allocate_request(card, p);
916 if (request == NULL) {
917 /* FIXME: send statically allocated busy packet. */
918 return;
919 }
920
921 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
922 p->header[2];
923
924 if (!is_in_fcp_region(offset, request->length))
925 handle_exclusive_region_request(card, p, request, offset);
926 else
927 handle_fcp_region_request(card, p, request, offset);
928
929 }
930 EXPORT_SYMBOL(fw_core_handle_request);
931
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)932 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
933 {
934 struct fw_transaction *t;
935 unsigned long flags;
936 u32 *data;
937 size_t data_length;
938 int tcode, tlabel, source, rcode;
939
940 tcode = HEADER_GET_TCODE(p->header[0]);
941 tlabel = HEADER_GET_TLABEL(p->header[0]);
942 source = HEADER_GET_SOURCE(p->header[1]);
943 rcode = HEADER_GET_RCODE(p->header[1]);
944
945 spin_lock_irqsave(&card->lock, flags);
946 list_for_each_entry(t, &card->transaction_list, link) {
947 if (t->node_id == source && t->tlabel == tlabel) {
948 if (!try_cancel_split_timeout(t)) {
949 spin_unlock_irqrestore(&card->lock, flags);
950 goto timed_out;
951 }
952 list_del_init(&t->link);
953 card->tlabel_mask &= ~(1ULL << t->tlabel);
954 break;
955 }
956 }
957 spin_unlock_irqrestore(&card->lock, flags);
958
959 if (&t->link == &card->transaction_list) {
960 timed_out:
961 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
962 source, tlabel);
963 return;
964 }
965
966 /*
967 * FIXME: sanity check packet, is length correct, does tcodes
968 * and addresses match.
969 */
970
971 switch (tcode) {
972 case TCODE_READ_QUADLET_RESPONSE:
973 data = (u32 *) &p->header[3];
974 data_length = 4;
975 break;
976
977 case TCODE_WRITE_RESPONSE:
978 data = NULL;
979 data_length = 0;
980 break;
981
982 case TCODE_READ_BLOCK_RESPONSE:
983 case TCODE_LOCK_RESPONSE:
984 data = p->payload;
985 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
986 break;
987
988 default:
989 /* Should never happen, this is just to shut up gcc. */
990 data = NULL;
991 data_length = 0;
992 break;
993 }
994
995 /*
996 * The response handler may be executed while the request handler
997 * is still pending. Cancel the request handler.
998 */
999 card->driver->cancel_packet(card, &t->packet);
1000
1001 t->callback(card, rcode, data, data_length, t->callback_data);
1002 }
1003 EXPORT_SYMBOL(fw_core_handle_response);
1004
1005 static const struct fw_address_region topology_map_region =
1006 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1007 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1008
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1009 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1010 int tcode, int destination, int source, int generation,
1011 unsigned long long offset, void *payload, size_t length,
1012 void *callback_data)
1013 {
1014 int start;
1015
1016 if (!TCODE_IS_READ_REQUEST(tcode)) {
1017 fw_send_response(card, request, RCODE_TYPE_ERROR);
1018 return;
1019 }
1020
1021 if ((offset & 3) > 0 || (length & 3) > 0) {
1022 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1023 return;
1024 }
1025
1026 start = (offset - topology_map_region.start) / 4;
1027 memcpy(payload, &card->topology_map[start], length);
1028
1029 fw_send_response(card, request, RCODE_COMPLETE);
1030 }
1031
1032 static struct fw_address_handler topology_map = {
1033 .length = 0x400,
1034 .address_callback = handle_topology_map,
1035 };
1036
1037 static const struct fw_address_region registers_region =
1038 { .start = CSR_REGISTER_BASE,
1039 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1040
update_split_timeout(struct fw_card * card)1041 static void update_split_timeout(struct fw_card *card)
1042 {
1043 unsigned int cycles;
1044
1045 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1046
1047 cycles = max(cycles, 800u); /* minimum as per the spec */
1048 cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1049
1050 card->split_timeout_cycles = cycles;
1051 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1052 }
1053
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1054 static void handle_registers(struct fw_card *card, struct fw_request *request,
1055 int tcode, int destination, int source, int generation,
1056 unsigned long long offset, void *payload, size_t length,
1057 void *callback_data)
1058 {
1059 int reg = offset & ~CSR_REGISTER_BASE;
1060 __be32 *data = payload;
1061 int rcode = RCODE_COMPLETE;
1062 unsigned long flags;
1063
1064 switch (reg) {
1065 case CSR_PRIORITY_BUDGET:
1066 if (!card->priority_budget_implemented) {
1067 rcode = RCODE_ADDRESS_ERROR;
1068 break;
1069 }
1070 /* else fall through */
1071
1072 case CSR_NODE_IDS:
1073 /*
1074 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1075 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1076 */
1077 /* fall through */
1078
1079 case CSR_STATE_CLEAR:
1080 case CSR_STATE_SET:
1081 case CSR_CYCLE_TIME:
1082 case CSR_BUS_TIME:
1083 case CSR_BUSY_TIMEOUT:
1084 if (tcode == TCODE_READ_QUADLET_REQUEST)
1085 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1086 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1087 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1088 else
1089 rcode = RCODE_TYPE_ERROR;
1090 break;
1091
1092 case CSR_RESET_START:
1093 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1094 card->driver->write_csr(card, CSR_STATE_CLEAR,
1095 CSR_STATE_BIT_ABDICATE);
1096 else
1097 rcode = RCODE_TYPE_ERROR;
1098 break;
1099
1100 case CSR_SPLIT_TIMEOUT_HI:
1101 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1102 *data = cpu_to_be32(card->split_timeout_hi);
1103 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1104 spin_lock_irqsave(&card->lock, flags);
1105 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1106 update_split_timeout(card);
1107 spin_unlock_irqrestore(&card->lock, flags);
1108 } else {
1109 rcode = RCODE_TYPE_ERROR;
1110 }
1111 break;
1112
1113 case CSR_SPLIT_TIMEOUT_LO:
1114 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1115 *data = cpu_to_be32(card->split_timeout_lo);
1116 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1117 spin_lock_irqsave(&card->lock, flags);
1118 card->split_timeout_lo =
1119 be32_to_cpu(*data) & 0xfff80000;
1120 update_split_timeout(card);
1121 spin_unlock_irqrestore(&card->lock, flags);
1122 } else {
1123 rcode = RCODE_TYPE_ERROR;
1124 }
1125 break;
1126
1127 case CSR_MAINT_UTILITY:
1128 if (tcode == TCODE_READ_QUADLET_REQUEST)
1129 *data = card->maint_utility_register;
1130 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1131 card->maint_utility_register = *data;
1132 else
1133 rcode = RCODE_TYPE_ERROR;
1134 break;
1135
1136 case CSR_BROADCAST_CHANNEL:
1137 if (tcode == TCODE_READ_QUADLET_REQUEST)
1138 *data = cpu_to_be32(card->broadcast_channel);
1139 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1140 card->broadcast_channel =
1141 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1142 BROADCAST_CHANNEL_INITIAL;
1143 else
1144 rcode = RCODE_TYPE_ERROR;
1145 break;
1146
1147 case CSR_BUS_MANAGER_ID:
1148 case CSR_BANDWIDTH_AVAILABLE:
1149 case CSR_CHANNELS_AVAILABLE_HI:
1150 case CSR_CHANNELS_AVAILABLE_LO:
1151 /*
1152 * FIXME: these are handled by the OHCI hardware and
1153 * the stack never sees these request. If we add
1154 * support for a new type of controller that doesn't
1155 * handle this in hardware we need to deal with these
1156 * transactions.
1157 */
1158 BUG();
1159 break;
1160
1161 default:
1162 rcode = RCODE_ADDRESS_ERROR;
1163 break;
1164 }
1165
1166 fw_send_response(card, request, rcode);
1167 }
1168
1169 static struct fw_address_handler registers = {
1170 .length = 0x400,
1171 .address_callback = handle_registers,
1172 };
1173
1174 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1175 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1176 MODULE_LICENSE("GPL");
1177
1178 static const u32 vendor_textual_descriptor[] = {
1179 /* textual descriptor leaf () */
1180 0x00060000,
1181 0x00000000,
1182 0x00000000,
1183 0x4c696e75, /* L i n u */
1184 0x78204669, /* x F i */
1185 0x72657769, /* r e w i */
1186 0x72650000, /* r e */
1187 };
1188
1189 static const u32 model_textual_descriptor[] = {
1190 /* model descriptor leaf () */
1191 0x00030000,
1192 0x00000000,
1193 0x00000000,
1194 0x4a756a75, /* J u j u */
1195 };
1196
1197 static struct fw_descriptor vendor_id_descriptor = {
1198 .length = ARRAY_SIZE(vendor_textual_descriptor),
1199 .immediate = 0x03d00d1e,
1200 .key = 0x81000000,
1201 .data = vendor_textual_descriptor,
1202 };
1203
1204 static struct fw_descriptor model_id_descriptor = {
1205 .length = ARRAY_SIZE(model_textual_descriptor),
1206 .immediate = 0x17000001,
1207 .key = 0x81000000,
1208 .data = model_textual_descriptor,
1209 };
1210
fw_core_init(void)1211 static int __init fw_core_init(void)
1212 {
1213 int ret;
1214
1215 ret = bus_register(&fw_bus_type);
1216 if (ret < 0)
1217 return ret;
1218
1219 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1220 if (fw_cdev_major < 0) {
1221 bus_unregister(&fw_bus_type);
1222 return fw_cdev_major;
1223 }
1224
1225 fw_core_add_address_handler(&topology_map, &topology_map_region);
1226 fw_core_add_address_handler(®isters, ®isters_region);
1227 fw_core_add_descriptor(&vendor_id_descriptor);
1228 fw_core_add_descriptor(&model_id_descriptor);
1229
1230 return 0;
1231 }
1232
fw_core_cleanup(void)1233 static void __exit fw_core_cleanup(void)
1234 {
1235 unregister_chrdev(fw_cdev_major, "firewire");
1236 bus_unregister(&fw_bus_type);
1237 idr_destroy(&fw_device_idr);
1238 }
1239
1240 module_init(fw_core_init);
1241 module_exit(fw_core_cleanup);
1242