1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36 
37 struct fsyscall_gtod_data_t fsyscall_gtod_data;
38 
39 struct itc_jitter_data_t itc_jitter_data;
40 
41 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
42 
43 #ifdef CONFIG_IA64_DEBUG_IRQ
44 
45 unsigned long last_cli_ip;
46 EXPORT_SYMBOL(last_cli_ip);
47 
48 #endif
49 
50 #ifdef CONFIG_PARAVIRT
51 /* We need to define a real function for sched_clock, to override the
52    weak default version */
sched_clock(void)53 unsigned long long sched_clock(void)
54 {
55         return paravirt_sched_clock();
56 }
57 #endif
58 
59 #ifdef CONFIG_PARAVIRT
60 static void
paravirt_clocksource_resume(struct clocksource * cs)61 paravirt_clocksource_resume(struct clocksource *cs)
62 {
63 	if (pv_time_ops.clocksource_resume)
64 		pv_time_ops.clocksource_resume();
65 }
66 #endif
67 
68 static struct clocksource clocksource_itc = {
69 	.name           = "itc",
70 	.rating         = 350,
71 	.read           = itc_get_cycles,
72 	.mask           = CLOCKSOURCE_MASK(64),
73 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
74 #ifdef CONFIG_PARAVIRT
75 	.resume		= paravirt_clocksource_resume,
76 #endif
77 };
78 static struct clocksource *itc_clocksource;
79 
80 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
81 
82 #include <linux/kernel_stat.h>
83 
84 extern cputime_t cycle_to_cputime(u64 cyc);
85 
86 /*
87  * Called from the context switch with interrupts disabled, to charge all
88  * accumulated times to the current process, and to prepare accounting on
89  * the next process.
90  */
ia64_account_on_switch(struct task_struct * prev,struct task_struct * next)91 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
92 {
93 	struct thread_info *pi = task_thread_info(prev);
94 	struct thread_info *ni = task_thread_info(next);
95 	cputime_t delta_stime, delta_utime;
96 	__u64 now;
97 
98 	now = ia64_get_itc();
99 
100 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
101 	if (idle_task(smp_processor_id()) != prev)
102 		account_system_time(prev, 0, delta_stime, delta_stime);
103 	else
104 		account_idle_time(delta_stime);
105 
106 	if (pi->ac_utime) {
107 		delta_utime = cycle_to_cputime(pi->ac_utime);
108 		account_user_time(prev, delta_utime, delta_utime);
109 	}
110 
111 	pi->ac_stamp = ni->ac_stamp = now;
112 	ni->ac_stime = ni->ac_utime = 0;
113 }
114 
115 /*
116  * Account time for a transition between system, hard irq or soft irq state.
117  * Note that this function is called with interrupts enabled.
118  */
account_system_vtime(struct task_struct * tsk)119 void account_system_vtime(struct task_struct *tsk)
120 {
121 	struct thread_info *ti = task_thread_info(tsk);
122 	unsigned long flags;
123 	cputime_t delta_stime;
124 	__u64 now;
125 
126 	local_irq_save(flags);
127 
128 	now = ia64_get_itc();
129 
130 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
131 	if (irq_count() || idle_task(smp_processor_id()) != tsk)
132 		account_system_time(tsk, 0, delta_stime, delta_stime);
133 	else
134 		account_idle_time(delta_stime);
135 	ti->ac_stime = 0;
136 
137 	ti->ac_stamp = now;
138 
139 	local_irq_restore(flags);
140 }
141 EXPORT_SYMBOL_GPL(account_system_vtime);
142 
143 /*
144  * Called from the timer interrupt handler to charge accumulated user time
145  * to the current process.  Must be called with interrupts disabled.
146  */
account_process_tick(struct task_struct * p,int user_tick)147 void account_process_tick(struct task_struct *p, int user_tick)
148 {
149 	struct thread_info *ti = task_thread_info(p);
150 	cputime_t delta_utime;
151 
152 	if (ti->ac_utime) {
153 		delta_utime = cycle_to_cputime(ti->ac_utime);
154 		account_user_time(p, delta_utime, delta_utime);
155 		ti->ac_utime = 0;
156 	}
157 }
158 
159 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
160 
161 static irqreturn_t
timer_interrupt(int irq,void * dev_id)162 timer_interrupt (int irq, void *dev_id)
163 {
164 	unsigned long new_itm;
165 
166 	if (cpu_is_offline(smp_processor_id())) {
167 		return IRQ_HANDLED;
168 	}
169 
170 	platform_timer_interrupt(irq, dev_id);
171 
172 	new_itm = local_cpu_data->itm_next;
173 
174 	if (!time_after(ia64_get_itc(), new_itm))
175 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
176 		       ia64_get_itc(), new_itm);
177 
178 	profile_tick(CPU_PROFILING);
179 
180 	if (paravirt_do_steal_accounting(&new_itm))
181 		goto skip_process_time_accounting;
182 
183 	while (1) {
184 		update_process_times(user_mode(get_irq_regs()));
185 
186 		new_itm += local_cpu_data->itm_delta;
187 
188 		if (smp_processor_id() == time_keeper_id)
189 			xtime_update(1);
190 
191 		local_cpu_data->itm_next = new_itm;
192 
193 		if (time_after(new_itm, ia64_get_itc()))
194 			break;
195 
196 		/*
197 		 * Allow IPIs to interrupt the timer loop.
198 		 */
199 		local_irq_enable();
200 		local_irq_disable();
201 	}
202 
203 skip_process_time_accounting:
204 
205 	do {
206 		/*
207 		 * If we're too close to the next clock tick for
208 		 * comfort, we increase the safety margin by
209 		 * intentionally dropping the next tick(s).  We do NOT
210 		 * update itm.next because that would force us to call
211 		 * xtime_update() which in turn would let our clock run
212 		 * too fast (with the potentially devastating effect
213 		 * of losing monotony of time).
214 		 */
215 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
216 			new_itm += local_cpu_data->itm_delta;
217 		ia64_set_itm(new_itm);
218 		/* double check, in case we got hit by a (slow) PMI: */
219 	} while (time_after_eq(ia64_get_itc(), new_itm));
220 	return IRQ_HANDLED;
221 }
222 
223 /*
224  * Encapsulate access to the itm structure for SMP.
225  */
226 void
ia64_cpu_local_tick(void)227 ia64_cpu_local_tick (void)
228 {
229 	int cpu = smp_processor_id();
230 	unsigned long shift = 0, delta;
231 
232 	/* arrange for the cycle counter to generate a timer interrupt: */
233 	ia64_set_itv(IA64_TIMER_VECTOR);
234 
235 	delta = local_cpu_data->itm_delta;
236 	/*
237 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
238 	 * same time:
239 	 */
240 	if (cpu) {
241 		unsigned long hi = 1UL << ia64_fls(cpu);
242 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
243 	}
244 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
245 	ia64_set_itm(local_cpu_data->itm_next);
246 }
247 
248 static int nojitter;
249 
nojitter_setup(char * str)250 static int __init nojitter_setup(char *str)
251 {
252 	nojitter = 1;
253 	printk("Jitter checking for ITC timers disabled\n");
254 	return 1;
255 }
256 
257 __setup("nojitter", nojitter_setup);
258 
259 
260 void __devinit
ia64_init_itm(void)261 ia64_init_itm (void)
262 {
263 	unsigned long platform_base_freq, itc_freq;
264 	struct pal_freq_ratio itc_ratio, proc_ratio;
265 	long status, platform_base_drift, itc_drift;
266 
267 	/*
268 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
269 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
270 	 * and the base frequency.
271 	 */
272 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
273 				    &platform_base_freq, &platform_base_drift);
274 	if (status != 0) {
275 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
276 	} else {
277 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
278 		if (status != 0)
279 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
280 	}
281 	if (status != 0) {
282 		/* invent "random" values */
283 		printk(KERN_ERR
284 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
285 		platform_base_freq = 100000000;
286 		platform_base_drift = -1;	/* no drift info */
287 		itc_ratio.num = 3;
288 		itc_ratio.den = 1;
289 	}
290 	if (platform_base_freq < 40000000) {
291 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
292 		       platform_base_freq);
293 		platform_base_freq = 75000000;
294 		platform_base_drift = -1;
295 	}
296 	if (!proc_ratio.den)
297 		proc_ratio.den = 1;	/* avoid division by zero */
298 	if (!itc_ratio.den)
299 		itc_ratio.den = 1;	/* avoid division by zero */
300 
301 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
302 
303 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
304 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
305 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
306 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
307 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
308 
309 	if (platform_base_drift != -1) {
310 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
311 		printk("+/-%ldppm\n", itc_drift);
312 	} else {
313 		itc_drift = -1;
314 		printk("\n");
315 	}
316 
317 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
318 	local_cpu_data->itc_freq = itc_freq;
319 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
320 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
321 					+ itc_freq/2)/itc_freq;
322 
323 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
324 #ifdef CONFIG_SMP
325 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
326 		 * Jitter compensation requires a cmpxchg which may limit
327 		 * the scalability of the syscalls for retrieving time.
328 		 * The ITC synchronization is usually successful to within a few
329 		 * ITC ticks but this is not a sure thing. If you need to improve
330 		 * timer performance in SMP situations then boot the kernel with the
331 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
332 		 * even going backward) if the ITC offsets between the individual CPUs
333 		 * are too large.
334 		 */
335 		if (!nojitter)
336 			itc_jitter_data.itc_jitter = 1;
337 #endif
338 	} else
339 		/*
340 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
341 		 * ITC values may fluctuate significantly between processors.
342 		 * Clock should not be used for hrtimers. Mark itc as only
343 		 * useful for boot and testing.
344 		 *
345 		 * Note that jitter compensation is off! There is no point of
346 		 * synchronizing ITCs since they may be large differentials
347 		 * that change over time.
348 		 *
349 		 * The only way to fix this would be to repeatedly sync the
350 		 * ITCs. Until that time we have to avoid ITC.
351 		 */
352 		clocksource_itc.rating = 50;
353 
354 	paravirt_init_missing_ticks_accounting(smp_processor_id());
355 
356 	/* avoid softlock up message when cpu is unplug and plugged again. */
357 	touch_softlockup_watchdog();
358 
359 	/* Setup the CPU local timer tick */
360 	ia64_cpu_local_tick();
361 
362 	if (!itc_clocksource) {
363 		clocksource_register_hz(&clocksource_itc,
364 						local_cpu_data->itc_freq);
365 		itc_clocksource = &clocksource_itc;
366 	}
367 }
368 
itc_get_cycles(struct clocksource * cs)369 static cycle_t itc_get_cycles(struct clocksource *cs)
370 {
371 	unsigned long lcycle, now, ret;
372 
373 	if (!itc_jitter_data.itc_jitter)
374 		return get_cycles();
375 
376 	lcycle = itc_jitter_data.itc_lastcycle;
377 	now = get_cycles();
378 	if (lcycle && time_after(lcycle, now))
379 		return lcycle;
380 
381 	/*
382 	 * Keep track of the last timer value returned.
383 	 * In an SMP environment, you could lose out in contention of
384 	 * cmpxchg. If so, your cmpxchg returns new value which the
385 	 * winner of contention updated to. Use the new value instead.
386 	 */
387 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
388 	if (unlikely(ret != lcycle))
389 		return ret;
390 
391 	return now;
392 }
393 
394 
395 static struct irqaction timer_irqaction = {
396 	.handler =	timer_interrupt,
397 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
398 	.name =		"timer"
399 };
400 
401 static struct platform_device rtc_efi_dev = {
402 	.name = "rtc-efi",
403 	.id = -1,
404 };
405 
rtc_init(void)406 static int __init rtc_init(void)
407 {
408 	if (platform_device_register(&rtc_efi_dev) < 0)
409 		printk(KERN_ERR "unable to register rtc device...\n");
410 
411 	/* not necessarily an error */
412 	return 0;
413 }
414 module_init(rtc_init);
415 
read_persistent_clock(struct timespec * ts)416 void read_persistent_clock(struct timespec *ts)
417 {
418 	efi_gettimeofday(ts);
419 }
420 
421 void __init
time_init(void)422 time_init (void)
423 {
424 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
425 	ia64_init_itm();
426 }
427 
428 /*
429  * Generic udelay assumes that if preemption is allowed and the thread
430  * migrates to another CPU, that the ITC values are synchronized across
431  * all CPUs.
432  */
433 static void
ia64_itc_udelay(unsigned long usecs)434 ia64_itc_udelay (unsigned long usecs)
435 {
436 	unsigned long start = ia64_get_itc();
437 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
438 
439 	while (time_before(ia64_get_itc(), end))
440 		cpu_relax();
441 }
442 
443 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
444 
445 void
udelay(unsigned long usecs)446 udelay (unsigned long usecs)
447 {
448 	(*ia64_udelay)(usecs);
449 }
450 EXPORT_SYMBOL(udelay);
451 
452 /* IA64 doesn't cache the timezone */
update_vsyscall_tz(void)453 void update_vsyscall_tz(void)
454 {
455 }
456 
update_vsyscall(struct timespec * wall,struct timespec * wtm,struct clocksource * c,u32 mult)457 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
458 			struct clocksource *c, u32 mult)
459 {
460 	write_seqcount_begin(&fsyscall_gtod_data.seq);
461 
462         /* copy fsyscall clock data */
463         fsyscall_gtod_data.clk_mask = c->mask;
464         fsyscall_gtod_data.clk_mult = mult;
465         fsyscall_gtod_data.clk_shift = c->shift;
466         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
467         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
468 
469 	/* copy kernel time structures */
470         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
471         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
472 	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
473 							+ wall->tv_sec;
474 	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
475 							+ wall->tv_nsec;
476 
477 	/* normalize */
478 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
479 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
480 		fsyscall_gtod_data.monotonic_time.tv_sec++;
481 	}
482 
483 	write_seqcount_end(&fsyscall_gtod_data.seq);
484 }
485 
486