1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs-verity hash algorithms
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 #include "fsverity_private.h"
9
10 #include <crypto/hash.h>
11 #include <linux/scatterlist.h>
12
13 /* The hash algorithms supported by fs-verity */
14 struct fsverity_hash_alg fsverity_hash_algs[] = {
15 [FS_VERITY_HASH_ALG_SHA256] = {
16 .name = "sha256",
17 .digest_size = SHA256_DIGEST_SIZE,
18 .block_size = SHA256_BLOCK_SIZE,
19 },
20 [FS_VERITY_HASH_ALG_SHA512] = {
21 .name = "sha512",
22 .digest_size = SHA512_DIGEST_SIZE,
23 .block_size = SHA512_BLOCK_SIZE,
24 },
25 };
26
27 static DEFINE_MUTEX(fsverity_hash_alg_init_mutex);
28
29 /**
30 * fsverity_get_hash_alg() - validate and prepare a hash algorithm
31 * @inode: optional inode for logging purposes
32 * @num: the hash algorithm number
33 *
34 * Get the struct fsverity_hash_alg for the given hash algorithm number, and
35 * ensure it has a hash transform ready to go. The hash transforms are
36 * allocated on-demand so that we don't waste resources unnecessarily, and
37 * because the crypto modules may be initialized later than fs/verity/.
38 *
39 * Return: pointer to the hash alg on success, else an ERR_PTR()
40 */
fsverity_get_hash_alg(const struct inode * inode,unsigned int num)41 struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
42 unsigned int num)
43 {
44 struct fsverity_hash_alg *alg;
45 struct crypto_ahash *tfm;
46 int err;
47
48 if (num >= ARRAY_SIZE(fsverity_hash_algs) ||
49 !fsverity_hash_algs[num].name) {
50 fsverity_warn(inode, "Unknown hash algorithm number: %u", num);
51 return ERR_PTR(-EINVAL);
52 }
53 alg = &fsverity_hash_algs[num];
54
55 /* pairs with smp_store_release() below */
56 if (likely(smp_load_acquire(&alg->tfm) != NULL))
57 return alg;
58
59 mutex_lock(&fsverity_hash_alg_init_mutex);
60
61 if (alg->tfm != NULL)
62 goto out_unlock;
63
64 /*
65 * Using the shash API would make things a bit simpler, but the ahash
66 * API is preferable as it allows the use of crypto accelerators.
67 */
68 tfm = crypto_alloc_ahash(alg->name, 0, 0);
69 if (IS_ERR(tfm)) {
70 if (PTR_ERR(tfm) == -ENOENT) {
71 fsverity_warn(inode,
72 "Missing crypto API support for hash algorithm \"%s\"",
73 alg->name);
74 alg = ERR_PTR(-ENOPKG);
75 goto out_unlock;
76 }
77 fsverity_err(inode,
78 "Error allocating hash algorithm \"%s\": %ld",
79 alg->name, PTR_ERR(tfm));
80 alg = ERR_CAST(tfm);
81 goto out_unlock;
82 }
83
84 err = -EINVAL;
85 if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm)))
86 goto err_free_tfm;
87 if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm)))
88 goto err_free_tfm;
89
90 err = mempool_init_kmalloc_pool(&alg->req_pool, 1,
91 sizeof(struct ahash_request) +
92 crypto_ahash_reqsize(tfm));
93 if (err)
94 goto err_free_tfm;
95
96 pr_info("%s using implementation \"%s\"\n",
97 alg->name, crypto_ahash_driver_name(tfm));
98
99 /* pairs with smp_load_acquire() above */
100 smp_store_release(&alg->tfm, tfm);
101 goto out_unlock;
102
103 err_free_tfm:
104 crypto_free_ahash(tfm);
105 alg = ERR_PTR(err);
106 out_unlock:
107 mutex_unlock(&fsverity_hash_alg_init_mutex);
108 return alg;
109 }
110
111 /**
112 * fsverity_alloc_hash_request() - allocate a hash request object
113 * @alg: the hash algorithm for which to allocate the request
114 * @gfp_flags: memory allocation flags
115 *
116 * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in
117 * @gfp_flags. However, in that case this might need to wait for all
118 * previously-allocated requests to be freed. So to avoid deadlocks, callers
119 * must never need multiple requests at a time to make forward progress.
120 *
121 * Return: the request object on success; NULL on failure (but see above)
122 */
fsverity_alloc_hash_request(struct fsverity_hash_alg * alg,gfp_t gfp_flags)123 struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg,
124 gfp_t gfp_flags)
125 {
126 struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags);
127
128 if (req)
129 ahash_request_set_tfm(req, alg->tfm);
130 return req;
131 }
132
133 /**
134 * fsverity_free_hash_request() - free a hash request object
135 * @alg: the hash algorithm
136 * @req: the hash request object to free
137 */
fsverity_free_hash_request(struct fsverity_hash_alg * alg,struct ahash_request * req)138 void fsverity_free_hash_request(struct fsverity_hash_alg *alg,
139 struct ahash_request *req)
140 {
141 if (req) {
142 ahash_request_zero(req);
143 mempool_free(req, &alg->req_pool);
144 }
145 }
146
147 /**
148 * fsverity_prepare_hash_state() - precompute the initial hash state
149 * @alg: hash algorithm
150 * @salt: a salt which is to be prepended to all data to be hashed
151 * @salt_size: salt size in bytes, possibly 0
152 *
153 * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed
154 * initial hash state on success or an ERR_PTR() on failure.
155 */
fsverity_prepare_hash_state(struct fsverity_hash_alg * alg,const u8 * salt,size_t salt_size)156 const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg,
157 const u8 *salt, size_t salt_size)
158 {
159 u8 *hashstate = NULL;
160 struct ahash_request *req = NULL;
161 u8 *padded_salt = NULL;
162 size_t padded_salt_size;
163 struct scatterlist sg;
164 DECLARE_CRYPTO_WAIT(wait);
165 int err;
166
167 if (salt_size == 0)
168 return NULL;
169
170 hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL);
171 if (!hashstate)
172 return ERR_PTR(-ENOMEM);
173
174 /* This allocation never fails, since it's mempool-backed. */
175 req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
176
177 /*
178 * Zero-pad the salt to the next multiple of the input size of the hash
179 * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128
180 * bytes for SHA-512. This ensures that the hash algorithm won't have
181 * any bytes buffered internally after processing the salt, thus making
182 * salted hashing just as fast as unsalted hashing.
183 */
184 padded_salt_size = round_up(salt_size, alg->block_size);
185 padded_salt = kzalloc(padded_salt_size, GFP_KERNEL);
186 if (!padded_salt) {
187 err = -ENOMEM;
188 goto err_free;
189 }
190 memcpy(padded_salt, salt, salt_size);
191
192 sg_init_one(&sg, padded_salt, padded_salt_size);
193 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
194 CRYPTO_TFM_REQ_MAY_BACKLOG,
195 crypto_req_done, &wait);
196 ahash_request_set_crypt(req, &sg, NULL, padded_salt_size);
197
198 err = crypto_wait_req(crypto_ahash_init(req), &wait);
199 if (err)
200 goto err_free;
201
202 err = crypto_wait_req(crypto_ahash_update(req), &wait);
203 if (err)
204 goto err_free;
205
206 err = crypto_ahash_export(req, hashstate);
207 if (err)
208 goto err_free;
209 out:
210 fsverity_free_hash_request(alg, req);
211 kfree(padded_salt);
212 return hashstate;
213
214 err_free:
215 kfree(hashstate);
216 hashstate = ERR_PTR(err);
217 goto out;
218 }
219
220 /**
221 * fsverity_hash_page() - hash a single data or hash page
222 * @params: the Merkle tree's parameters
223 * @inode: inode for which the hashing is being done
224 * @req: preallocated hash request
225 * @page: the page to hash
226 * @out: output digest, size 'params->digest_size' bytes
227 *
228 * Hash a single data or hash block, assuming block_size == PAGE_SIZE.
229 * The hash is salted if a salt is specified in the Merkle tree parameters.
230 *
231 * Return: 0 on success, -errno on failure
232 */
fsverity_hash_page(const struct merkle_tree_params * params,const struct inode * inode,struct ahash_request * req,struct page * page,u8 * out)233 int fsverity_hash_page(const struct merkle_tree_params *params,
234 const struct inode *inode,
235 struct ahash_request *req, struct page *page, u8 *out)
236 {
237 struct scatterlist sg;
238 DECLARE_CRYPTO_WAIT(wait);
239 int err;
240
241 if (WARN_ON(params->block_size != PAGE_SIZE))
242 return -EINVAL;
243
244 sg_init_table(&sg, 1);
245 sg_set_page(&sg, page, PAGE_SIZE, 0);
246 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
247 CRYPTO_TFM_REQ_MAY_BACKLOG,
248 crypto_req_done, &wait);
249 ahash_request_set_crypt(req, &sg, out, PAGE_SIZE);
250
251 if (params->hashstate) {
252 err = crypto_ahash_import(req, params->hashstate);
253 if (err) {
254 fsverity_err(inode,
255 "Error %d importing hash state", err);
256 return err;
257 }
258 err = crypto_ahash_finup(req);
259 } else {
260 err = crypto_ahash_digest(req);
261 }
262
263 err = crypto_wait_req(err, &wait);
264 if (err)
265 fsverity_err(inode, "Error %d computing page hash", err);
266 return err;
267 }
268
269 /**
270 * fsverity_hash_buffer() - hash some data
271 * @alg: the hash algorithm to use
272 * @data: the data to hash
273 * @size: size of data to hash, in bytes
274 * @out: output digest, size 'alg->digest_size' bytes
275 *
276 * Hash some data which is located in physically contiguous memory (i.e. memory
277 * allocated by kmalloc(), not by vmalloc()). No salt is used.
278 *
279 * Return: 0 on success, -errno on failure
280 */
fsverity_hash_buffer(struct fsverity_hash_alg * alg,const void * data,size_t size,u8 * out)281 int fsverity_hash_buffer(struct fsverity_hash_alg *alg,
282 const void *data, size_t size, u8 *out)
283 {
284 struct ahash_request *req;
285 struct scatterlist sg;
286 DECLARE_CRYPTO_WAIT(wait);
287 int err;
288
289 /* This allocation never fails, since it's mempool-backed. */
290 req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
291
292 sg_init_one(&sg, data, size);
293 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
294 CRYPTO_TFM_REQ_MAY_BACKLOG,
295 crypto_req_done, &wait);
296 ahash_request_set_crypt(req, &sg, out, size);
297
298 err = crypto_wait_req(crypto_ahash_digest(req), &wait);
299
300 fsverity_free_hash_request(alg, req);
301 return err;
302 }
303
fsverity_check_hash_algs(void)304 void __init fsverity_check_hash_algs(void)
305 {
306 size_t i;
307
308 /*
309 * Sanity check the hash algorithms (could be a build-time check, but
310 * they're in an array)
311 */
312 for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) {
313 const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i];
314
315 if (!alg->name)
316 continue;
317
318 BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE);
319
320 /*
321 * For efficiency, the implementation currently assumes the
322 * digest and block sizes are powers of 2. This limitation can
323 * be lifted if the code is updated to handle other values.
324 */
325 BUG_ON(!is_power_of_2(alg->digest_size));
326 BUG_ON(!is_power_of_2(alg->block_size));
327 }
328 }
329