1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2011 Freescale Semiconductor, Inc
4 *
5 * Freescale Integrated Flash Controller
6 *
7 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27
28 /*
29 * convert_ifc_address - convert the base address
30 * @addr_base: base address of the memory bank
31 */
convert_ifc_address(phys_addr_t addr_base)32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34 return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37
38 /*
39 * fsl_ifc_find - find IFC bank
40 * @addr_base: base address of the memory bank
41 *
42 * This function walks IFC banks comparing "Base address" field of the CSPR
43 * registers with the supplied addr_base argument. When bases match this
44 * function returns bank number (starting with 0), otherwise it returns
45 * appropriate errno value.
46 */
fsl_ifc_find(phys_addr_t addr_base)47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49 int i = 0;
50
51 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52 return -ENODEV;
53
54 for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56
57 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58 convert_ifc_address(addr_base))
59 return i;
60 }
61
62 return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65
fsl_ifc_ctrl_init(struct fsl_ifc_ctrl * ctrl)66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69
70 /*
71 * Clear all the common status and event registers
72 */
73 if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75
76 /* enable all error and events */
77 ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78
79 /* enable all error and event interrupts */
80 ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81 ifc_out32(0x0, &ifc->cm_erattr0);
82 ifc_out32(0x0, &ifc->cm_erattr1);
83
84 return 0;
85 }
86
fsl_ifc_ctrl_remove(struct platform_device * dev)87 static int fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90
91 of_platform_depopulate(&dev->dev);
92 free_irq(ctrl->nand_irq, ctrl);
93 free_irq(ctrl->irq, ctrl);
94
95 irq_dispose_mapping(ctrl->nand_irq);
96 irq_dispose_mapping(ctrl->irq);
97
98 iounmap(ctrl->gregs);
99
100 dev_set_drvdata(&dev->dev, NULL);
101
102 return 0;
103 }
104
105 /*
106 * NAND events are split between an operational interrupt which only
107 * receives OPC, and an error interrupt that receives everything else,
108 * including non-NAND errors. Whichever interrupt gets to it first
109 * records the status and wakes the wait queue.
110 */
111 static DEFINE_SPINLOCK(nand_irq_lock);
112
check_nand_stat(struct fsl_ifc_ctrl * ctrl)113 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
114 {
115 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
116 unsigned long flags;
117 u32 stat;
118
119 spin_lock_irqsave(&nand_irq_lock, flags);
120
121 stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
122 if (stat) {
123 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
124 ctrl->nand_stat = stat;
125 wake_up(&ctrl->nand_wait);
126 }
127
128 spin_unlock_irqrestore(&nand_irq_lock, flags);
129
130 return stat;
131 }
132
fsl_ifc_nand_irq(int irqno,void * data)133 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
134 {
135 struct fsl_ifc_ctrl *ctrl = data;
136
137 if (check_nand_stat(ctrl))
138 return IRQ_HANDLED;
139
140 return IRQ_NONE;
141 }
142
143 /*
144 * NOTE: This interrupt is used to report ifc events of various kinds,
145 * such as transaction errors on the chipselects.
146 */
fsl_ifc_ctrl_irq(int irqno,void * data)147 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
148 {
149 struct fsl_ifc_ctrl *ctrl = data;
150 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
151 u32 err_axiid, err_srcid, status, cs_err, err_addr;
152 irqreturn_t ret = IRQ_NONE;
153
154 /* read for chip select error */
155 cs_err = ifc_in32(&ifc->cm_evter_stat);
156 if (cs_err) {
157 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
158 cs_err);
159 /* clear the chip select error */
160 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
161
162 /* read error attribute registers print the error information */
163 status = ifc_in32(&ifc->cm_erattr0);
164 err_addr = ifc_in32(&ifc->cm_erattr1);
165
166 if (status & IFC_CM_ERATTR0_ERTYP_READ)
167 dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
168 status);
169 else
170 dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
171 status);
172
173 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
174 IFC_CM_ERATTR0_ERAID_SHIFT;
175 dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
176 err_axiid);
177
178 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
179 IFC_CM_ERATTR0_ESRCID_SHIFT;
180 dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
181 err_srcid);
182
183 dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
184 err_addr);
185
186 ret = IRQ_HANDLED;
187 }
188
189 if (check_nand_stat(ctrl))
190 ret = IRQ_HANDLED;
191
192 return ret;
193 }
194
195 /*
196 * fsl_ifc_ctrl_probe
197 *
198 * called by device layer when it finds a device matching
199 * one our driver can handled. This code allocates all of
200 * the resources needed for the controller only. The
201 * resources for the NAND banks themselves are allocated
202 * in the chip probe function.
203 */
fsl_ifc_ctrl_probe(struct platform_device * dev)204 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
205 {
206 int ret = 0;
207 int version, banks;
208 void __iomem *addr;
209
210 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
211
212 fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
213 GFP_KERNEL);
214 if (!fsl_ifc_ctrl_dev)
215 return -ENOMEM;
216
217 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
218
219 /* IOMAP the entire IFC region */
220 fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
221 if (!fsl_ifc_ctrl_dev->gregs) {
222 dev_err(&dev->dev, "failed to get memory region\n");
223 return -ENODEV;
224 }
225
226 if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
227 fsl_ifc_ctrl_dev->little_endian = true;
228 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
229 } else {
230 fsl_ifc_ctrl_dev->little_endian = false;
231 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
232 }
233
234 version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
235 FSL_IFC_VERSION_MASK;
236
237 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
238 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
239 version >> 24, (version >> 16) & 0xf, banks);
240
241 fsl_ifc_ctrl_dev->version = version;
242 fsl_ifc_ctrl_dev->banks = banks;
243
244 addr = fsl_ifc_ctrl_dev->gregs;
245 if (version >= FSL_IFC_VERSION_2_0_0)
246 addr += PGOFFSET_64K;
247 else
248 addr += PGOFFSET_4K;
249 fsl_ifc_ctrl_dev->rregs = addr;
250
251 /* get the Controller level irq */
252 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
253 if (fsl_ifc_ctrl_dev->irq == 0) {
254 dev_err(&dev->dev, "failed to get irq resource for IFC\n");
255 ret = -ENODEV;
256 goto err;
257 }
258
259 /* get the nand machine irq */
260 fsl_ifc_ctrl_dev->nand_irq =
261 irq_of_parse_and_map(dev->dev.of_node, 1);
262
263 fsl_ifc_ctrl_dev->dev = &dev->dev;
264
265 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
266 if (ret < 0)
267 goto err_unmap_nandirq;
268
269 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
270
271 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
272 "fsl-ifc", fsl_ifc_ctrl_dev);
273 if (ret != 0) {
274 dev_err(&dev->dev, "failed to install irq (%d)\n",
275 fsl_ifc_ctrl_dev->irq);
276 goto err_unmap_nandirq;
277 }
278
279 if (fsl_ifc_ctrl_dev->nand_irq) {
280 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
281 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
282 if (ret != 0) {
283 dev_err(&dev->dev, "failed to install irq (%d)\n",
284 fsl_ifc_ctrl_dev->nand_irq);
285 goto err_free_irq;
286 }
287 }
288
289 /* legacy dts may still use "simple-bus" compatible */
290 ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
291 if (ret)
292 goto err_free_nandirq;
293
294 return 0;
295
296 err_free_nandirq:
297 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
298 err_free_irq:
299 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
300 err_unmap_nandirq:
301 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
302 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
303 err:
304 iounmap(fsl_ifc_ctrl_dev->gregs);
305 return ret;
306 }
307
308 static const struct of_device_id fsl_ifc_match[] = {
309 {
310 .compatible = "fsl,ifc",
311 },
312 {},
313 };
314
315 static struct platform_driver fsl_ifc_ctrl_driver = {
316 .driver = {
317 .name = "fsl-ifc",
318 .of_match_table = fsl_ifc_match,
319 },
320 .probe = fsl_ifc_ctrl_probe,
321 .remove = fsl_ifc_ctrl_remove,
322 };
323
fsl_ifc_init(void)324 static int __init fsl_ifc_init(void)
325 {
326 return platform_driver_register(&fsl_ifc_ctrl_driver);
327 }
328 subsys_initcall(fsl_ifc_init);
329
330 MODULE_AUTHOR("Freescale Semiconductor");
331 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
332