1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/device.h>
4 #include <linux/err.h>
5 #include <linux/errno.h>
6 #include <linux/fs.h>
7 #include <linux/fsi-sbefifo.h>
8 #include <linux/gfp.h>
9 #include <linux/idr.h>
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/miscdevice.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/fsi-occ.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23 #include <asm/unaligned.h>
24
25 #define OCC_SRAM_BYTES 4096
26 #define OCC_CMD_DATA_BYTES 4090
27 #define OCC_RESP_DATA_BYTES 4089
28
29 #define OCC_P9_SRAM_CMD_ADDR 0xFFFBE000
30 #define OCC_P9_SRAM_RSP_ADDR 0xFFFBF000
31
32 #define OCC_P10_SRAM_CMD_ADDR 0xFFFFD000
33 #define OCC_P10_SRAM_RSP_ADDR 0xFFFFE000
34
35 #define OCC_P10_SRAM_MODE 0x58 /* Normal mode, OCB channel 2 */
36
37 #define OCC_TIMEOUT_MS 1000
38 #define OCC_CMD_IN_PRG_WAIT_MS 50
39
40 enum versions { occ_p9, occ_p10 };
41
42 struct occ {
43 struct device *dev;
44 struct device *sbefifo;
45 char name[32];
46 int idx;
47 u8 sequence_number;
48 void *buffer;
49 void *client_buffer;
50 size_t client_buffer_size;
51 size_t client_response_size;
52 enum versions version;
53 struct miscdevice mdev;
54 struct mutex occ_lock;
55 };
56
57 #define to_occ(x) container_of((x), struct occ, mdev)
58
59 struct occ_response {
60 u8 seq_no;
61 u8 cmd_type;
62 u8 return_status;
63 __be16 data_length;
64 u8 data[OCC_RESP_DATA_BYTES + 2]; /* two bytes checksum */
65 } __packed;
66
67 struct occ_client {
68 struct occ *occ;
69 struct mutex lock;
70 size_t data_size;
71 size_t read_offset;
72 u8 *buffer;
73 };
74
75 #define to_client(x) container_of((x), struct occ_client, xfr)
76
77 static DEFINE_IDA(occ_ida);
78
occ_open(struct inode * inode,struct file * file)79 static int occ_open(struct inode *inode, struct file *file)
80 {
81 struct occ_client *client = kzalloc(sizeof(*client), GFP_KERNEL);
82 struct miscdevice *mdev = file->private_data;
83 struct occ *occ = to_occ(mdev);
84
85 if (!client)
86 return -ENOMEM;
87
88 client->buffer = (u8 *)__get_free_page(GFP_KERNEL);
89 if (!client->buffer) {
90 kfree(client);
91 return -ENOMEM;
92 }
93
94 client->occ = occ;
95 mutex_init(&client->lock);
96 file->private_data = client;
97
98 /* We allocate a 1-page buffer, make sure it all fits */
99 BUILD_BUG_ON((OCC_CMD_DATA_BYTES + 3) > PAGE_SIZE);
100 BUILD_BUG_ON((OCC_RESP_DATA_BYTES + 7) > PAGE_SIZE);
101
102 return 0;
103 }
104
occ_read(struct file * file,char __user * buf,size_t len,loff_t * offset)105 static ssize_t occ_read(struct file *file, char __user *buf, size_t len,
106 loff_t *offset)
107 {
108 struct occ_client *client = file->private_data;
109 ssize_t rc = 0;
110
111 if (!client)
112 return -ENODEV;
113
114 if (len > OCC_SRAM_BYTES)
115 return -EINVAL;
116
117 mutex_lock(&client->lock);
118
119 /* This should not be possible ... */
120 if (WARN_ON_ONCE(client->read_offset > client->data_size)) {
121 rc = -EIO;
122 goto done;
123 }
124
125 /* Grab how much data we have to read */
126 rc = min(len, client->data_size - client->read_offset);
127 if (copy_to_user(buf, client->buffer + client->read_offset, rc))
128 rc = -EFAULT;
129 else
130 client->read_offset += rc;
131
132 done:
133 mutex_unlock(&client->lock);
134
135 return rc;
136 }
137
occ_write(struct file * file,const char __user * buf,size_t len,loff_t * offset)138 static ssize_t occ_write(struct file *file, const char __user *buf,
139 size_t len, loff_t *offset)
140 {
141 struct occ_client *client = file->private_data;
142 size_t rlen, data_length;
143 ssize_t rc;
144 u8 *cmd;
145
146 if (!client)
147 return -ENODEV;
148
149 if (len > (OCC_CMD_DATA_BYTES + 3) || len < 3)
150 return -EINVAL;
151
152 mutex_lock(&client->lock);
153
154 /* Construct the command */
155 cmd = client->buffer;
156
157 /*
158 * Copy the user command (assume user data follows the occ command
159 * format)
160 * byte 0: command type
161 * bytes 1-2: data length (msb first)
162 * bytes 3-n: data
163 */
164 if (copy_from_user(&cmd[1], buf, len)) {
165 rc = -EFAULT;
166 goto done;
167 }
168
169 /* Extract data length */
170 data_length = (cmd[2] << 8) + cmd[3];
171 if (data_length > OCC_CMD_DATA_BYTES) {
172 rc = -EINVAL;
173 goto done;
174 }
175
176 /* Submit command; 4 bytes before the data and 2 bytes after */
177 rlen = PAGE_SIZE;
178 rc = fsi_occ_submit(client->occ->dev, cmd, data_length + 6, cmd,
179 &rlen);
180 if (rc)
181 goto done;
182
183 /* Set read tracking data */
184 client->data_size = rlen;
185 client->read_offset = 0;
186
187 /* Done */
188 rc = len;
189
190 done:
191 mutex_unlock(&client->lock);
192
193 return rc;
194 }
195
occ_release(struct inode * inode,struct file * file)196 static int occ_release(struct inode *inode, struct file *file)
197 {
198 struct occ_client *client = file->private_data;
199
200 free_page((unsigned long)client->buffer);
201 kfree(client);
202
203 return 0;
204 }
205
206 static const struct file_operations occ_fops = {
207 .owner = THIS_MODULE,
208 .open = occ_open,
209 .read = occ_read,
210 .write = occ_write,
211 .release = occ_release,
212 };
213
occ_save_ffdc(struct occ * occ,__be32 * resp,size_t parsed_len,size_t resp_len)214 static void occ_save_ffdc(struct occ *occ, __be32 *resp, size_t parsed_len,
215 size_t resp_len)
216 {
217 if (resp_len > parsed_len) {
218 size_t dh = resp_len - parsed_len;
219 size_t ffdc_len = (dh - 1) * 4; /* SBE words are four bytes */
220 __be32 *ffdc = &resp[parsed_len];
221
222 if (ffdc_len > occ->client_buffer_size)
223 ffdc_len = occ->client_buffer_size;
224
225 memcpy(occ->client_buffer, ffdc, ffdc_len);
226 occ->client_response_size = ffdc_len;
227 }
228 }
229
occ_verify_checksum(struct occ * occ,struct occ_response * resp,u16 data_length)230 static int occ_verify_checksum(struct occ *occ, struct occ_response *resp,
231 u16 data_length)
232 {
233 /* Fetch the two bytes after the data for the checksum. */
234 u16 checksum_resp = get_unaligned_be16(&resp->data[data_length]);
235 u16 checksum;
236 u16 i;
237
238 checksum = resp->seq_no;
239 checksum += resp->cmd_type;
240 checksum += resp->return_status;
241 checksum += (data_length >> 8) + (data_length & 0xFF);
242
243 for (i = 0; i < data_length; ++i)
244 checksum += resp->data[i];
245
246 if (checksum != checksum_resp) {
247 dev_err(occ->dev, "Bad checksum: %04x!=%04x\n", checksum,
248 checksum_resp);
249 return -EBADMSG;
250 }
251
252 return 0;
253 }
254
occ_getsram(struct occ * occ,u32 offset,void * data,ssize_t len)255 static int occ_getsram(struct occ *occ, u32 offset, void *data, ssize_t len)
256 {
257 u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */
258 size_t cmd_len, parsed_len, resp_data_len;
259 size_t resp_len = OCC_MAX_RESP_WORDS;
260 __be32 *resp = occ->buffer;
261 __be32 cmd[6];
262 int idx = 0, rc;
263
264 /*
265 * Magic sequence to do SBE getsram command. SBE will fetch data from
266 * specified SRAM address.
267 */
268 switch (occ->version) {
269 default:
270 case occ_p9:
271 cmd_len = 5;
272 cmd[2] = cpu_to_be32(1); /* Normal mode */
273 cmd[3] = cpu_to_be32(OCC_P9_SRAM_RSP_ADDR + offset);
274 break;
275 case occ_p10:
276 idx = 1;
277 cmd_len = 6;
278 cmd[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
279 cmd[3] = 0;
280 cmd[4] = cpu_to_be32(OCC_P10_SRAM_RSP_ADDR + offset);
281 break;
282 }
283
284 cmd[0] = cpu_to_be32(cmd_len);
285 cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_OCC_SRAM);
286 cmd[4 + idx] = cpu_to_be32(data_len);
287
288 rc = sbefifo_submit(occ->sbefifo, cmd, cmd_len, resp, &resp_len);
289 if (rc)
290 return rc;
291
292 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_GET_OCC_SRAM,
293 resp, resp_len, &parsed_len);
294 if (rc > 0) {
295 dev_err(occ->dev, "SRAM read returned failure status: %08x\n",
296 rc);
297 occ_save_ffdc(occ, resp, parsed_len, resp_len);
298 return -ECOMM;
299 } else if (rc) {
300 return rc;
301 }
302
303 resp_data_len = be32_to_cpu(resp[parsed_len - 1]);
304 if (resp_data_len != data_len) {
305 dev_err(occ->dev, "SRAM read expected %d bytes got %zd\n",
306 data_len, resp_data_len);
307 rc = -EBADMSG;
308 } else {
309 memcpy(data, resp, len);
310 }
311
312 return rc;
313 }
314
occ_putsram(struct occ * occ,const void * data,ssize_t len,u8 seq_no,u16 checksum)315 static int occ_putsram(struct occ *occ, const void *data, ssize_t len,
316 u8 seq_no, u16 checksum)
317 {
318 u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */
319 size_t cmd_len, parsed_len, resp_data_len;
320 size_t resp_len = OCC_MAX_RESP_WORDS;
321 __be32 *buf = occ->buffer;
322 u8 *byte_buf;
323 int idx = 0, rc;
324
325 cmd_len = (occ->version == occ_p10) ? 6 : 5;
326 cmd_len += data_len >> 2;
327
328 /*
329 * Magic sequence to do SBE putsram command. SBE will transfer
330 * data to specified SRAM address.
331 */
332 buf[0] = cpu_to_be32(cmd_len);
333 buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
334
335 switch (occ->version) {
336 default:
337 case occ_p9:
338 buf[2] = cpu_to_be32(1); /* Normal mode */
339 buf[3] = cpu_to_be32(OCC_P9_SRAM_CMD_ADDR);
340 break;
341 case occ_p10:
342 idx = 1;
343 buf[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
344 buf[3] = 0;
345 buf[4] = cpu_to_be32(OCC_P10_SRAM_CMD_ADDR);
346 break;
347 }
348
349 buf[4 + idx] = cpu_to_be32(data_len);
350 memcpy(&buf[5 + idx], data, len);
351
352 byte_buf = (u8 *)&buf[5 + idx];
353 /*
354 * Overwrite the first byte with our sequence number and the last two
355 * bytes with the checksum.
356 */
357 byte_buf[0] = seq_no;
358 byte_buf[len - 2] = checksum >> 8;
359 byte_buf[len - 1] = checksum & 0xff;
360
361 rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
362 if (rc)
363 return rc;
364
365 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
366 buf, resp_len, &parsed_len);
367 if (rc > 0) {
368 dev_err(occ->dev, "SRAM write returned failure status: %08x\n",
369 rc);
370 occ_save_ffdc(occ, buf, parsed_len, resp_len);
371 return -ECOMM;
372 } else if (rc) {
373 return rc;
374 }
375
376 if (parsed_len != 1) {
377 dev_err(occ->dev, "SRAM write response length invalid: %zd\n",
378 parsed_len);
379 rc = -EBADMSG;
380 } else {
381 resp_data_len = be32_to_cpu(buf[0]);
382 if (resp_data_len != data_len) {
383 dev_err(occ->dev,
384 "SRAM write expected %d bytes got %zd\n",
385 data_len, resp_data_len);
386 rc = -EBADMSG;
387 }
388 }
389
390 return rc;
391 }
392
occ_trigger_attn(struct occ * occ)393 static int occ_trigger_attn(struct occ *occ)
394 {
395 __be32 *buf = occ->buffer;
396 size_t cmd_len, parsed_len, resp_data_len;
397 size_t resp_len = OCC_MAX_RESP_WORDS;
398 int idx = 0, rc;
399
400 switch (occ->version) {
401 default:
402 case occ_p9:
403 cmd_len = 7;
404 buf[2] = cpu_to_be32(3); /* Circular mode */
405 buf[3] = 0;
406 break;
407 case occ_p10:
408 idx = 1;
409 cmd_len = 8;
410 buf[2] = cpu_to_be32(0xd0); /* Circular mode, OCB Channel 1 */
411 buf[3] = 0;
412 buf[4] = 0;
413 break;
414 }
415
416 buf[0] = cpu_to_be32(cmd_len); /* Chip-op length in words */
417 buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
418 buf[4 + idx] = cpu_to_be32(8); /* Data length in bytes */
419 buf[5 + idx] = cpu_to_be32(0x20010000); /* Trigger OCC attention */
420 buf[6 + idx] = 0;
421
422 rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
423 if (rc)
424 return rc;
425
426 rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
427 buf, resp_len, &parsed_len);
428 if (rc > 0) {
429 dev_err(occ->dev, "SRAM attn returned failure status: %08x\n",
430 rc);
431 occ_save_ffdc(occ, buf, parsed_len, resp_len);
432 return -ECOMM;
433 } else if (rc) {
434 return rc;
435 }
436
437 if (parsed_len != 1) {
438 dev_err(occ->dev, "SRAM attn response length invalid: %zd\n",
439 parsed_len);
440 rc = -EBADMSG;
441 } else {
442 resp_data_len = be32_to_cpu(buf[0]);
443 if (resp_data_len != 8) {
444 dev_err(occ->dev,
445 "SRAM attn expected 8 bytes got %zd\n",
446 resp_data_len);
447 rc = -EBADMSG;
448 }
449 }
450
451 return rc;
452 }
453
fsi_occ_response_not_ready(struct occ_response * resp,u8 seq_no,u8 cmd_type)454 static bool fsi_occ_response_not_ready(struct occ_response *resp, u8 seq_no,
455 u8 cmd_type)
456 {
457 return resp->return_status == OCC_RESP_CMD_IN_PRG ||
458 resp->return_status == OCC_RESP_CRIT_INIT ||
459 resp->seq_no != seq_no || resp->cmd_type != cmd_type;
460 }
461
fsi_occ_submit(struct device * dev,const void * request,size_t req_len,void * response,size_t * resp_len)462 int fsi_occ_submit(struct device *dev, const void *request, size_t req_len,
463 void *response, size_t *resp_len)
464 {
465 const unsigned long timeout = msecs_to_jiffies(OCC_TIMEOUT_MS);
466 const unsigned long wait_time =
467 msecs_to_jiffies(OCC_CMD_IN_PRG_WAIT_MS);
468 struct occ *occ = dev_get_drvdata(dev);
469 struct occ_response *resp = response;
470 size_t user_resp_len = *resp_len;
471 u8 seq_no;
472 u8 cmd_type;
473 u16 checksum = 0;
474 u16 resp_data_length;
475 const u8 *byte_request = (const u8 *)request;
476 unsigned long end;
477 int rc;
478 size_t i;
479
480 *resp_len = 0;
481
482 if (!occ)
483 return -ENODEV;
484
485 if (user_resp_len < 7) {
486 dev_dbg(dev, "Bad resplen %zd\n", user_resp_len);
487 return -EINVAL;
488 }
489
490 cmd_type = byte_request[1];
491
492 /* Checksum the request, ignoring first byte (sequence number). */
493 for (i = 1; i < req_len - 2; ++i)
494 checksum += byte_request[i];
495
496 mutex_lock(&occ->occ_lock);
497
498 occ->client_buffer = response;
499 occ->client_buffer_size = user_resp_len;
500 occ->client_response_size = 0;
501
502 /*
503 * Get a sequence number and update the counter. Avoid a sequence
504 * number of 0 which would pass the response check below even if the
505 * OCC response is uninitialized. Any sequence number the user is
506 * trying to send is overwritten since this function is the only common
507 * interface to the OCC and therefore the only place we can guarantee
508 * unique sequence numbers.
509 */
510 seq_no = occ->sequence_number++;
511 if (!occ->sequence_number)
512 occ->sequence_number = 1;
513 checksum += seq_no;
514
515 rc = occ_putsram(occ, request, req_len, seq_no, checksum);
516 if (rc)
517 goto done;
518
519 rc = occ_trigger_attn(occ);
520 if (rc)
521 goto done;
522
523 end = jiffies + timeout;
524 while (true) {
525 /* Read occ response header */
526 rc = occ_getsram(occ, 0, resp, 8);
527 if (rc)
528 goto done;
529
530 if (fsi_occ_response_not_ready(resp, seq_no, cmd_type)) {
531 if (time_after(jiffies, end)) {
532 dev_err(occ->dev,
533 "resp timeout status=%02x seq=%d cmd=%d, our seq=%d cmd=%d\n",
534 resp->return_status, resp->seq_no,
535 resp->cmd_type, seq_no, cmd_type);
536 rc = -ETIMEDOUT;
537 goto done;
538 }
539
540 set_current_state(TASK_UNINTERRUPTIBLE);
541 schedule_timeout(wait_time);
542 } else {
543 /* Extract size of response data */
544 resp_data_length =
545 get_unaligned_be16(&resp->data_length);
546
547 /*
548 * Message size is data length + 5 bytes header + 2
549 * bytes checksum
550 */
551 if ((resp_data_length + 7) > user_resp_len) {
552 rc = -EMSGSIZE;
553 goto done;
554 }
555
556 /*
557 * Get the entire response including the header again,
558 * in case it changed
559 */
560 if (resp_data_length > 1) {
561 rc = occ_getsram(occ, 0, resp,
562 resp_data_length + 7);
563 if (rc)
564 goto done;
565
566 if (!fsi_occ_response_not_ready(resp, seq_no,
567 cmd_type))
568 break;
569 } else {
570 break;
571 }
572 }
573 }
574
575 dev_dbg(dev, "resp_status=%02x resp_data_len=%d\n",
576 resp->return_status, resp_data_length);
577
578 occ->client_response_size = resp_data_length + 7;
579 rc = occ_verify_checksum(occ, resp, resp_data_length);
580
581 done:
582 *resp_len = occ->client_response_size;
583 mutex_unlock(&occ->occ_lock);
584
585 return rc;
586 }
587 EXPORT_SYMBOL_GPL(fsi_occ_submit);
588
occ_unregister_child(struct device * dev,void * data)589 static int occ_unregister_child(struct device *dev, void *data)
590 {
591 struct platform_device *hwmon_dev = to_platform_device(dev);
592
593 platform_device_unregister(hwmon_dev);
594
595 return 0;
596 }
597
occ_probe(struct platform_device * pdev)598 static int occ_probe(struct platform_device *pdev)
599 {
600 int rc;
601 u32 reg;
602 struct occ *occ;
603 struct platform_device *hwmon_dev;
604 struct device *dev = &pdev->dev;
605 struct platform_device_info hwmon_dev_info = {
606 .parent = dev,
607 .name = "occ-hwmon",
608 };
609
610 occ = devm_kzalloc(dev, sizeof(*occ), GFP_KERNEL);
611 if (!occ)
612 return -ENOMEM;
613
614 /* SBE words are always four bytes */
615 occ->buffer = kvmalloc(OCC_MAX_RESP_WORDS * 4, GFP_KERNEL);
616 if (!occ->buffer)
617 return -ENOMEM;
618
619 occ->version = (uintptr_t)of_device_get_match_data(dev);
620 occ->dev = dev;
621 occ->sbefifo = dev->parent;
622 /*
623 * Quickly derive a pseudo-random number from jiffies so that
624 * re-probing the driver doesn't accidentally overlap sequence numbers.
625 */
626 occ->sequence_number = (u8)((jiffies % 0xff) + 1);
627 mutex_init(&occ->occ_lock);
628
629 if (dev->of_node) {
630 rc = of_property_read_u32(dev->of_node, "reg", ®);
631 if (!rc) {
632 /* make sure we don't have a duplicate from dts */
633 occ->idx = ida_simple_get(&occ_ida, reg, reg + 1,
634 GFP_KERNEL);
635 if (occ->idx < 0)
636 occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
637 GFP_KERNEL);
638 } else {
639 occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
640 GFP_KERNEL);
641 }
642 } else {
643 occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, GFP_KERNEL);
644 }
645
646 platform_set_drvdata(pdev, occ);
647
648 snprintf(occ->name, sizeof(occ->name), "occ%d", occ->idx);
649 occ->mdev.fops = &occ_fops;
650 occ->mdev.minor = MISC_DYNAMIC_MINOR;
651 occ->mdev.name = occ->name;
652 occ->mdev.parent = dev;
653
654 rc = misc_register(&occ->mdev);
655 if (rc) {
656 dev_err(dev, "failed to register miscdevice: %d\n", rc);
657 ida_simple_remove(&occ_ida, occ->idx);
658 kvfree(occ->buffer);
659 return rc;
660 }
661
662 hwmon_dev_info.id = occ->idx;
663 hwmon_dev = platform_device_register_full(&hwmon_dev_info);
664 if (IS_ERR(hwmon_dev))
665 dev_warn(dev, "failed to create hwmon device\n");
666
667 return 0;
668 }
669
occ_remove(struct platform_device * pdev)670 static int occ_remove(struct platform_device *pdev)
671 {
672 struct occ *occ = platform_get_drvdata(pdev);
673
674 kvfree(occ->buffer);
675
676 misc_deregister(&occ->mdev);
677
678 device_for_each_child(&pdev->dev, NULL, occ_unregister_child);
679
680 ida_simple_remove(&occ_ida, occ->idx);
681
682 return 0;
683 }
684
685 static const struct of_device_id occ_match[] = {
686 {
687 .compatible = "ibm,p9-occ",
688 .data = (void *)occ_p9
689 },
690 {
691 .compatible = "ibm,p10-occ",
692 .data = (void *)occ_p10
693 },
694 { },
695 };
696 MODULE_DEVICE_TABLE(of, occ_match);
697
698 static struct platform_driver occ_driver = {
699 .driver = {
700 .name = "occ",
701 .of_match_table = occ_match,
702 },
703 .probe = occ_probe,
704 .remove = occ_remove,
705 };
706
occ_init(void)707 static int occ_init(void)
708 {
709 return platform_driver_register(&occ_driver);
710 }
711
occ_exit(void)712 static void occ_exit(void)
713 {
714 platform_driver_unregister(&occ_driver);
715
716 ida_destroy(&occ_ida);
717 }
718
719 module_init(occ_init);
720 module_exit(occ_exit);
721
722 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
723 MODULE_DESCRIPTION("BMC P9 OCC driver");
724 MODULE_LICENSE("GPL");
725