1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
46
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65
66 #include <linux/nospec.h>
67
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75
76 #include "uid16.h"
77
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b) (-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a) (-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a) (-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b) (-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a) (-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL() (-EINVAL)
119 #endif
120 #ifndef SME_SET_VL
121 # define SME_SET_VL(a) (-EINVAL)
122 #endif
123 #ifndef SME_GET_VL
124 # define SME_GET_VL() (-EINVAL)
125 #endif
126 #ifndef PAC_RESET_KEYS
127 # define PAC_RESET_KEYS(a, b) (-EINVAL)
128 #endif
129 #ifndef PAC_SET_ENABLED_KEYS
130 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
131 #endif
132 #ifndef PAC_GET_ENABLED_KEYS
133 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
134 #endif
135 #ifndef SET_TAGGED_ADDR_CTRL
136 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
137 #endif
138 #ifndef GET_TAGGED_ADDR_CTRL
139 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
140 #endif
141
142 /*
143 * this is where the system-wide overflow UID and GID are defined, for
144 * architectures that now have 32-bit UID/GID but didn't in the past
145 */
146
147 int overflowuid = DEFAULT_OVERFLOWUID;
148 int overflowgid = DEFAULT_OVERFLOWGID;
149
150 EXPORT_SYMBOL(overflowuid);
151 EXPORT_SYMBOL(overflowgid);
152
153 /*
154 * the same as above, but for filesystems which can only store a 16-bit
155 * UID and GID. as such, this is needed on all architectures
156 */
157
158 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
159 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
160
161 EXPORT_SYMBOL(fs_overflowuid);
162 EXPORT_SYMBOL(fs_overflowgid);
163
164 /*
165 * Returns true if current's euid is same as p's uid or euid,
166 * or has CAP_SYS_NICE to p's user_ns.
167 *
168 * Called with rcu_read_lock, creds are safe
169 */
set_one_prio_perm(struct task_struct * p)170 static bool set_one_prio_perm(struct task_struct *p)
171 {
172 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
173
174 if (uid_eq(pcred->uid, cred->euid) ||
175 uid_eq(pcred->euid, cred->euid))
176 return true;
177 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
178 return true;
179 return false;
180 }
181
182 /*
183 * set the priority of a task
184 * - the caller must hold the RCU read lock
185 */
set_one_prio(struct task_struct * p,int niceval,int error)186 static int set_one_prio(struct task_struct *p, int niceval, int error)
187 {
188 int no_nice;
189
190 if (!set_one_prio_perm(p)) {
191 error = -EPERM;
192 goto out;
193 }
194 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
195 error = -EACCES;
196 goto out;
197 }
198 no_nice = security_task_setnice(p, niceval);
199 if (no_nice) {
200 error = no_nice;
201 goto out;
202 }
203 if (error == -ESRCH)
204 error = 0;
205 set_user_nice(p, niceval);
206 out:
207 return error;
208 }
209
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)210 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
211 {
212 struct task_struct *g, *p;
213 struct user_struct *user;
214 const struct cred *cred = current_cred();
215 int error = -EINVAL;
216 struct pid *pgrp;
217 kuid_t uid;
218
219 if (which > PRIO_USER || which < PRIO_PROCESS)
220 goto out;
221
222 /* normalize: avoid signed division (rounding problems) */
223 error = -ESRCH;
224 if (niceval < MIN_NICE)
225 niceval = MIN_NICE;
226 if (niceval > MAX_NICE)
227 niceval = MAX_NICE;
228
229 rcu_read_lock();
230 switch (which) {
231 case PRIO_PROCESS:
232 if (who)
233 p = find_task_by_vpid(who);
234 else
235 p = current;
236 if (p)
237 error = set_one_prio(p, niceval, error);
238 break;
239 case PRIO_PGRP:
240 if (who)
241 pgrp = find_vpid(who);
242 else
243 pgrp = task_pgrp(current);
244 read_lock(&tasklist_lock);
245 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
246 error = set_one_prio(p, niceval, error);
247 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
248 read_unlock(&tasklist_lock);
249 break;
250 case PRIO_USER:
251 uid = make_kuid(cred->user_ns, who);
252 user = cred->user;
253 if (!who)
254 uid = cred->uid;
255 else if (!uid_eq(uid, cred->uid)) {
256 user = find_user(uid);
257 if (!user)
258 goto out_unlock; /* No processes for this user */
259 }
260 for_each_process_thread(g, p) {
261 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
262 error = set_one_prio(p, niceval, error);
263 }
264 if (!uid_eq(uid, cred->uid))
265 free_uid(user); /* For find_user() */
266 break;
267 }
268 out_unlock:
269 rcu_read_unlock();
270 out:
271 return error;
272 }
273
274 /*
275 * Ugh. To avoid negative return values, "getpriority()" will
276 * not return the normal nice-value, but a negated value that
277 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
278 * to stay compatible.
279 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)280 SYSCALL_DEFINE2(getpriority, int, which, int, who)
281 {
282 struct task_struct *g, *p;
283 struct user_struct *user;
284 const struct cred *cred = current_cred();
285 long niceval, retval = -ESRCH;
286 struct pid *pgrp;
287 kuid_t uid;
288
289 if (which > PRIO_USER || which < PRIO_PROCESS)
290 return -EINVAL;
291
292 rcu_read_lock();
293 switch (which) {
294 case PRIO_PROCESS:
295 if (who)
296 p = find_task_by_vpid(who);
297 else
298 p = current;
299 if (p) {
300 niceval = nice_to_rlimit(task_nice(p));
301 if (niceval > retval)
302 retval = niceval;
303 }
304 break;
305 case PRIO_PGRP:
306 if (who)
307 pgrp = find_vpid(who);
308 else
309 pgrp = task_pgrp(current);
310 read_lock(&tasklist_lock);
311 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
312 niceval = nice_to_rlimit(task_nice(p));
313 if (niceval > retval)
314 retval = niceval;
315 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
316 read_unlock(&tasklist_lock);
317 break;
318 case PRIO_USER:
319 uid = make_kuid(cred->user_ns, who);
320 user = cred->user;
321 if (!who)
322 uid = cred->uid;
323 else if (!uid_eq(uid, cred->uid)) {
324 user = find_user(uid);
325 if (!user)
326 goto out_unlock; /* No processes for this user */
327 }
328 for_each_process_thread(g, p) {
329 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
330 niceval = nice_to_rlimit(task_nice(p));
331 if (niceval > retval)
332 retval = niceval;
333 }
334 }
335 if (!uid_eq(uid, cred->uid))
336 free_uid(user); /* for find_user() */
337 break;
338 }
339 out_unlock:
340 rcu_read_unlock();
341
342 return retval;
343 }
344
345 /*
346 * Unprivileged users may change the real gid to the effective gid
347 * or vice versa. (BSD-style)
348 *
349 * If you set the real gid at all, or set the effective gid to a value not
350 * equal to the real gid, then the saved gid is set to the new effective gid.
351 *
352 * This makes it possible for a setgid program to completely drop its
353 * privileges, which is often a useful assertion to make when you are doing
354 * a security audit over a program.
355 *
356 * The general idea is that a program which uses just setregid() will be
357 * 100% compatible with BSD. A program which uses just setgid() will be
358 * 100% compatible with POSIX with saved IDs.
359 *
360 * SMP: There are not races, the GIDs are checked only by filesystem
361 * operations (as far as semantic preservation is concerned).
362 */
363 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)364 long __sys_setregid(gid_t rgid, gid_t egid)
365 {
366 struct user_namespace *ns = current_user_ns();
367 const struct cred *old;
368 struct cred *new;
369 int retval;
370 kgid_t krgid, kegid;
371
372 krgid = make_kgid(ns, rgid);
373 kegid = make_kgid(ns, egid);
374
375 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
376 return -EINVAL;
377 if ((egid != (gid_t) -1) && !gid_valid(kegid))
378 return -EINVAL;
379
380 new = prepare_creds();
381 if (!new)
382 return -ENOMEM;
383 old = current_cred();
384
385 retval = -EPERM;
386 if (rgid != (gid_t) -1) {
387 if (gid_eq(old->gid, krgid) ||
388 gid_eq(old->egid, krgid) ||
389 ns_capable_setid(old->user_ns, CAP_SETGID))
390 new->gid = krgid;
391 else
392 goto error;
393 }
394 if (egid != (gid_t) -1) {
395 if (gid_eq(old->gid, kegid) ||
396 gid_eq(old->egid, kegid) ||
397 gid_eq(old->sgid, kegid) ||
398 ns_capable_setid(old->user_ns, CAP_SETGID))
399 new->egid = kegid;
400 else
401 goto error;
402 }
403
404 if (rgid != (gid_t) -1 ||
405 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
406 new->sgid = new->egid;
407 new->fsgid = new->egid;
408
409 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
410 if (retval < 0)
411 goto error;
412
413 return commit_creds(new);
414
415 error:
416 abort_creds(new);
417 return retval;
418 }
419
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)420 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
421 {
422 return __sys_setregid(rgid, egid);
423 }
424
425 /*
426 * setgid() is implemented like SysV w/ SAVED_IDS
427 *
428 * SMP: Same implicit races as above.
429 */
__sys_setgid(gid_t gid)430 long __sys_setgid(gid_t gid)
431 {
432 struct user_namespace *ns = current_user_ns();
433 const struct cred *old;
434 struct cred *new;
435 int retval;
436 kgid_t kgid;
437
438 kgid = make_kgid(ns, gid);
439 if (!gid_valid(kgid))
440 return -EINVAL;
441
442 new = prepare_creds();
443 if (!new)
444 return -ENOMEM;
445 old = current_cred();
446
447 retval = -EPERM;
448 if (ns_capable_setid(old->user_ns, CAP_SETGID))
449 new->gid = new->egid = new->sgid = new->fsgid = kgid;
450 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
451 new->egid = new->fsgid = kgid;
452 else
453 goto error;
454
455 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
456 if (retval < 0)
457 goto error;
458
459 return commit_creds(new);
460
461 error:
462 abort_creds(new);
463 return retval;
464 }
465
SYSCALL_DEFINE1(setgid,gid_t,gid)466 SYSCALL_DEFINE1(setgid, gid_t, gid)
467 {
468 return __sys_setgid(gid);
469 }
470
471 /*
472 * change the user struct in a credentials set to match the new UID
473 */
set_user(struct cred * new)474 static int set_user(struct cred *new)
475 {
476 struct user_struct *new_user;
477
478 new_user = alloc_uid(new->uid);
479 if (!new_user)
480 return -EAGAIN;
481
482 free_uid(new->user);
483 new->user = new_user;
484 return 0;
485 }
486
flag_nproc_exceeded(struct cred * new)487 static void flag_nproc_exceeded(struct cred *new)
488 {
489 if (new->ucounts == current_ucounts())
490 return;
491
492 /*
493 * We don't fail in case of NPROC limit excess here because too many
494 * poorly written programs don't check set*uid() return code, assuming
495 * it never fails if called by root. We may still enforce NPROC limit
496 * for programs doing set*uid()+execve() by harmlessly deferring the
497 * failure to the execve() stage.
498 */
499 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
500 new->user != INIT_USER)
501 current->flags |= PF_NPROC_EXCEEDED;
502 else
503 current->flags &= ~PF_NPROC_EXCEEDED;
504 }
505
506 /*
507 * Unprivileged users may change the real uid to the effective uid
508 * or vice versa. (BSD-style)
509 *
510 * If you set the real uid at all, or set the effective uid to a value not
511 * equal to the real uid, then the saved uid is set to the new effective uid.
512 *
513 * This makes it possible for a setuid program to completely drop its
514 * privileges, which is often a useful assertion to make when you are doing
515 * a security audit over a program.
516 *
517 * The general idea is that a program which uses just setreuid() will be
518 * 100% compatible with BSD. A program which uses just setuid() will be
519 * 100% compatible with POSIX with saved IDs.
520 */
__sys_setreuid(uid_t ruid,uid_t euid)521 long __sys_setreuid(uid_t ruid, uid_t euid)
522 {
523 struct user_namespace *ns = current_user_ns();
524 const struct cred *old;
525 struct cred *new;
526 int retval;
527 kuid_t kruid, keuid;
528
529 kruid = make_kuid(ns, ruid);
530 keuid = make_kuid(ns, euid);
531
532 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
533 return -EINVAL;
534 if ((euid != (uid_t) -1) && !uid_valid(keuid))
535 return -EINVAL;
536
537 new = prepare_creds();
538 if (!new)
539 return -ENOMEM;
540 old = current_cred();
541
542 retval = -EPERM;
543 if (ruid != (uid_t) -1) {
544 new->uid = kruid;
545 if (!uid_eq(old->uid, kruid) &&
546 !uid_eq(old->euid, kruid) &&
547 !ns_capable_setid(old->user_ns, CAP_SETUID))
548 goto error;
549 }
550
551 if (euid != (uid_t) -1) {
552 new->euid = keuid;
553 if (!uid_eq(old->uid, keuid) &&
554 !uid_eq(old->euid, keuid) &&
555 !uid_eq(old->suid, keuid) &&
556 !ns_capable_setid(old->user_ns, CAP_SETUID))
557 goto error;
558 }
559
560 if (!uid_eq(new->uid, old->uid)) {
561 retval = set_user(new);
562 if (retval < 0)
563 goto error;
564 }
565 if (ruid != (uid_t) -1 ||
566 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
567 new->suid = new->euid;
568 new->fsuid = new->euid;
569
570 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
571 if (retval < 0)
572 goto error;
573
574 retval = set_cred_ucounts(new);
575 if (retval < 0)
576 goto error;
577
578 flag_nproc_exceeded(new);
579 return commit_creds(new);
580
581 error:
582 abort_creds(new);
583 return retval;
584 }
585
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)586 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
587 {
588 return __sys_setreuid(ruid, euid);
589 }
590
591 /*
592 * setuid() is implemented like SysV with SAVED_IDS
593 *
594 * Note that SAVED_ID's is deficient in that a setuid root program
595 * like sendmail, for example, cannot set its uid to be a normal
596 * user and then switch back, because if you're root, setuid() sets
597 * the saved uid too. If you don't like this, blame the bright people
598 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
599 * will allow a root program to temporarily drop privileges and be able to
600 * regain them by swapping the real and effective uid.
601 */
__sys_setuid(uid_t uid)602 long __sys_setuid(uid_t uid)
603 {
604 struct user_namespace *ns = current_user_ns();
605 const struct cred *old;
606 struct cred *new;
607 int retval;
608 kuid_t kuid;
609
610 kuid = make_kuid(ns, uid);
611 if (!uid_valid(kuid))
612 return -EINVAL;
613
614 new = prepare_creds();
615 if (!new)
616 return -ENOMEM;
617 old = current_cred();
618
619 retval = -EPERM;
620 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
621 new->suid = new->uid = kuid;
622 if (!uid_eq(kuid, old->uid)) {
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
627 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
628 goto error;
629 }
630
631 new->fsuid = new->euid = kuid;
632
633 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
634 if (retval < 0)
635 goto error;
636
637 retval = set_cred_ucounts(new);
638 if (retval < 0)
639 goto error;
640
641 flag_nproc_exceeded(new);
642 return commit_creds(new);
643
644 error:
645 abort_creds(new);
646 return retval;
647 }
648
SYSCALL_DEFINE1(setuid,uid_t,uid)649 SYSCALL_DEFINE1(setuid, uid_t, uid)
650 {
651 return __sys_setuid(uid);
652 }
653
654
655 /*
656 * This function implements a generic ability to update ruid, euid,
657 * and suid. This allows you to implement the 4.4 compatible seteuid().
658 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)659 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
660 {
661 struct user_namespace *ns = current_user_ns();
662 const struct cred *old;
663 struct cred *new;
664 int retval;
665 kuid_t kruid, keuid, ksuid;
666
667 kruid = make_kuid(ns, ruid);
668 keuid = make_kuid(ns, euid);
669 ksuid = make_kuid(ns, suid);
670
671 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
672 return -EINVAL;
673
674 if ((euid != (uid_t) -1) && !uid_valid(keuid))
675 return -EINVAL;
676
677 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
678 return -EINVAL;
679
680 new = prepare_creds();
681 if (!new)
682 return -ENOMEM;
683
684 old = current_cred();
685
686 retval = -EPERM;
687 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
688 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
689 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
690 goto error;
691 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
692 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
693 goto error;
694 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
695 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
696 goto error;
697 }
698
699 if (ruid != (uid_t) -1) {
700 new->uid = kruid;
701 if (!uid_eq(kruid, old->uid)) {
702 retval = set_user(new);
703 if (retval < 0)
704 goto error;
705 }
706 }
707 if (euid != (uid_t) -1)
708 new->euid = keuid;
709 if (suid != (uid_t) -1)
710 new->suid = ksuid;
711 new->fsuid = new->euid;
712
713 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
714 if (retval < 0)
715 goto error;
716
717 retval = set_cred_ucounts(new);
718 if (retval < 0)
719 goto error;
720
721 flag_nproc_exceeded(new);
722 return commit_creds(new);
723
724 error:
725 abort_creds(new);
726 return retval;
727 }
728
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)729 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
730 {
731 return __sys_setresuid(ruid, euid, suid);
732 }
733
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)734 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
735 {
736 const struct cred *cred = current_cred();
737 int retval;
738 uid_t ruid, euid, suid;
739
740 ruid = from_kuid_munged(cred->user_ns, cred->uid);
741 euid = from_kuid_munged(cred->user_ns, cred->euid);
742 suid = from_kuid_munged(cred->user_ns, cred->suid);
743
744 retval = put_user(ruid, ruidp);
745 if (!retval) {
746 retval = put_user(euid, euidp);
747 if (!retval)
748 return put_user(suid, suidp);
749 }
750 return retval;
751 }
752
753 /*
754 * Same as above, but for rgid, egid, sgid.
755 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)756 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
757 {
758 struct user_namespace *ns = current_user_ns();
759 const struct cred *old;
760 struct cred *new;
761 int retval;
762 kgid_t krgid, kegid, ksgid;
763
764 krgid = make_kgid(ns, rgid);
765 kegid = make_kgid(ns, egid);
766 ksgid = make_kgid(ns, sgid);
767
768 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
769 return -EINVAL;
770 if ((egid != (gid_t) -1) && !gid_valid(kegid))
771 return -EINVAL;
772 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
773 return -EINVAL;
774
775 new = prepare_creds();
776 if (!new)
777 return -ENOMEM;
778 old = current_cred();
779
780 retval = -EPERM;
781 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
782 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
783 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
784 goto error;
785 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
786 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
787 goto error;
788 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
789 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
790 goto error;
791 }
792
793 if (rgid != (gid_t) -1)
794 new->gid = krgid;
795 if (egid != (gid_t) -1)
796 new->egid = kegid;
797 if (sgid != (gid_t) -1)
798 new->sgid = ksgid;
799 new->fsgid = new->egid;
800
801 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
802 if (retval < 0)
803 goto error;
804
805 return commit_creds(new);
806
807 error:
808 abort_creds(new);
809 return retval;
810 }
811
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)812 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
813 {
814 return __sys_setresgid(rgid, egid, sgid);
815 }
816
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)817 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
818 {
819 const struct cred *cred = current_cred();
820 int retval;
821 gid_t rgid, egid, sgid;
822
823 rgid = from_kgid_munged(cred->user_ns, cred->gid);
824 egid = from_kgid_munged(cred->user_ns, cred->egid);
825 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
826
827 retval = put_user(rgid, rgidp);
828 if (!retval) {
829 retval = put_user(egid, egidp);
830 if (!retval)
831 retval = put_user(sgid, sgidp);
832 }
833
834 return retval;
835 }
836
837
838 /*
839 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
840 * is used for "access()" and for the NFS daemon (letting nfsd stay at
841 * whatever uid it wants to). It normally shadows "euid", except when
842 * explicitly set by setfsuid() or for access..
843 */
__sys_setfsuid(uid_t uid)844 long __sys_setfsuid(uid_t uid)
845 {
846 const struct cred *old;
847 struct cred *new;
848 uid_t old_fsuid;
849 kuid_t kuid;
850
851 old = current_cred();
852 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
853
854 kuid = make_kuid(old->user_ns, uid);
855 if (!uid_valid(kuid))
856 return old_fsuid;
857
858 new = prepare_creds();
859 if (!new)
860 return old_fsuid;
861
862 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
863 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
864 ns_capable_setid(old->user_ns, CAP_SETUID)) {
865 if (!uid_eq(kuid, old->fsuid)) {
866 new->fsuid = kuid;
867 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
868 goto change_okay;
869 }
870 }
871
872 abort_creds(new);
873 return old_fsuid;
874
875 change_okay:
876 commit_creds(new);
877 return old_fsuid;
878 }
879
SYSCALL_DEFINE1(setfsuid,uid_t,uid)880 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
881 {
882 return __sys_setfsuid(uid);
883 }
884
885 /*
886 * Samma på svenska..
887 */
__sys_setfsgid(gid_t gid)888 long __sys_setfsgid(gid_t gid)
889 {
890 const struct cred *old;
891 struct cred *new;
892 gid_t old_fsgid;
893 kgid_t kgid;
894
895 old = current_cred();
896 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
897
898 kgid = make_kgid(old->user_ns, gid);
899 if (!gid_valid(kgid))
900 return old_fsgid;
901
902 new = prepare_creds();
903 if (!new)
904 return old_fsgid;
905
906 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
907 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
908 ns_capable_setid(old->user_ns, CAP_SETGID)) {
909 if (!gid_eq(kgid, old->fsgid)) {
910 new->fsgid = kgid;
911 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
912 goto change_okay;
913 }
914 }
915
916 abort_creds(new);
917 return old_fsgid;
918
919 change_okay:
920 commit_creds(new);
921 return old_fsgid;
922 }
923
SYSCALL_DEFINE1(setfsgid,gid_t,gid)924 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
925 {
926 return __sys_setfsgid(gid);
927 }
928 #endif /* CONFIG_MULTIUSER */
929
930 /**
931 * sys_getpid - return the thread group id of the current process
932 *
933 * Note, despite the name, this returns the tgid not the pid. The tgid and
934 * the pid are identical unless CLONE_THREAD was specified on clone() in
935 * which case the tgid is the same in all threads of the same group.
936 *
937 * This is SMP safe as current->tgid does not change.
938 */
SYSCALL_DEFINE0(getpid)939 SYSCALL_DEFINE0(getpid)
940 {
941 return task_tgid_vnr(current);
942 }
943
944 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)945 SYSCALL_DEFINE0(gettid)
946 {
947 return task_pid_vnr(current);
948 }
949
950 /*
951 * Accessing ->real_parent is not SMP-safe, it could
952 * change from under us. However, we can use a stale
953 * value of ->real_parent under rcu_read_lock(), see
954 * release_task()->call_rcu(delayed_put_task_struct).
955 */
SYSCALL_DEFINE0(getppid)956 SYSCALL_DEFINE0(getppid)
957 {
958 int pid;
959
960 rcu_read_lock();
961 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
962 rcu_read_unlock();
963
964 return pid;
965 }
966
SYSCALL_DEFINE0(getuid)967 SYSCALL_DEFINE0(getuid)
968 {
969 /* Only we change this so SMP safe */
970 return from_kuid_munged(current_user_ns(), current_uid());
971 }
972
SYSCALL_DEFINE0(geteuid)973 SYSCALL_DEFINE0(geteuid)
974 {
975 /* Only we change this so SMP safe */
976 return from_kuid_munged(current_user_ns(), current_euid());
977 }
978
SYSCALL_DEFINE0(getgid)979 SYSCALL_DEFINE0(getgid)
980 {
981 /* Only we change this so SMP safe */
982 return from_kgid_munged(current_user_ns(), current_gid());
983 }
984
SYSCALL_DEFINE0(getegid)985 SYSCALL_DEFINE0(getegid)
986 {
987 /* Only we change this so SMP safe */
988 return from_kgid_munged(current_user_ns(), current_egid());
989 }
990
do_sys_times(struct tms * tms)991 static void do_sys_times(struct tms *tms)
992 {
993 u64 tgutime, tgstime, cutime, cstime;
994
995 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
996 cutime = current->signal->cutime;
997 cstime = current->signal->cstime;
998 tms->tms_utime = nsec_to_clock_t(tgutime);
999 tms->tms_stime = nsec_to_clock_t(tgstime);
1000 tms->tms_cutime = nsec_to_clock_t(cutime);
1001 tms->tms_cstime = nsec_to_clock_t(cstime);
1002 }
1003
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1004 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1005 {
1006 if (tbuf) {
1007 struct tms tmp;
1008
1009 do_sys_times(&tmp);
1010 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1011 return -EFAULT;
1012 }
1013 force_successful_syscall_return();
1014 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1015 }
1016
1017 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1018 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1019 {
1020 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1021 }
1022
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1023 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1024 {
1025 if (tbuf) {
1026 struct tms tms;
1027 struct compat_tms tmp;
1028
1029 do_sys_times(&tms);
1030 /* Convert our struct tms to the compat version. */
1031 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1032 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1033 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1034 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1035 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1036 return -EFAULT;
1037 }
1038 force_successful_syscall_return();
1039 return compat_jiffies_to_clock_t(jiffies);
1040 }
1041 #endif
1042
1043 /*
1044 * This needs some heavy checking ...
1045 * I just haven't the stomach for it. I also don't fully
1046 * understand sessions/pgrp etc. Let somebody who does explain it.
1047 *
1048 * OK, I think I have the protection semantics right.... this is really
1049 * only important on a multi-user system anyway, to make sure one user
1050 * can't send a signal to a process owned by another. -TYT, 12/12/91
1051 *
1052 * !PF_FORKNOEXEC check to conform completely to POSIX.
1053 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1054 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1055 {
1056 struct task_struct *p;
1057 struct task_struct *group_leader = current->group_leader;
1058 struct pid *pgrp;
1059 int err;
1060
1061 if (!pid)
1062 pid = task_pid_vnr(group_leader);
1063 if (!pgid)
1064 pgid = pid;
1065 if (pgid < 0)
1066 return -EINVAL;
1067 rcu_read_lock();
1068
1069 /* From this point forward we keep holding onto the tasklist lock
1070 * so that our parent does not change from under us. -DaveM
1071 */
1072 write_lock_irq(&tasklist_lock);
1073
1074 err = -ESRCH;
1075 p = find_task_by_vpid(pid);
1076 if (!p)
1077 goto out;
1078
1079 err = -EINVAL;
1080 if (!thread_group_leader(p))
1081 goto out;
1082
1083 if (same_thread_group(p->real_parent, group_leader)) {
1084 err = -EPERM;
1085 if (task_session(p) != task_session(group_leader))
1086 goto out;
1087 err = -EACCES;
1088 if (!(p->flags & PF_FORKNOEXEC))
1089 goto out;
1090 } else {
1091 err = -ESRCH;
1092 if (p != group_leader)
1093 goto out;
1094 }
1095
1096 err = -EPERM;
1097 if (p->signal->leader)
1098 goto out;
1099
1100 pgrp = task_pid(p);
1101 if (pgid != pid) {
1102 struct task_struct *g;
1103
1104 pgrp = find_vpid(pgid);
1105 g = pid_task(pgrp, PIDTYPE_PGID);
1106 if (!g || task_session(g) != task_session(group_leader))
1107 goto out;
1108 }
1109
1110 err = security_task_setpgid(p, pgid);
1111 if (err)
1112 goto out;
1113
1114 if (task_pgrp(p) != pgrp)
1115 change_pid(p, PIDTYPE_PGID, pgrp);
1116
1117 err = 0;
1118 out:
1119 /* All paths lead to here, thus we are safe. -DaveM */
1120 write_unlock_irq(&tasklist_lock);
1121 rcu_read_unlock();
1122 return err;
1123 }
1124
do_getpgid(pid_t pid)1125 static int do_getpgid(pid_t pid)
1126 {
1127 struct task_struct *p;
1128 struct pid *grp;
1129 int retval;
1130
1131 rcu_read_lock();
1132 if (!pid)
1133 grp = task_pgrp(current);
1134 else {
1135 retval = -ESRCH;
1136 p = find_task_by_vpid(pid);
1137 if (!p)
1138 goto out;
1139 grp = task_pgrp(p);
1140 if (!grp)
1141 goto out;
1142
1143 retval = security_task_getpgid(p);
1144 if (retval)
1145 goto out;
1146 }
1147 retval = pid_vnr(grp);
1148 out:
1149 rcu_read_unlock();
1150 return retval;
1151 }
1152
SYSCALL_DEFINE1(getpgid,pid_t,pid)1153 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1154 {
1155 return do_getpgid(pid);
1156 }
1157
1158 #ifdef __ARCH_WANT_SYS_GETPGRP
1159
SYSCALL_DEFINE0(getpgrp)1160 SYSCALL_DEFINE0(getpgrp)
1161 {
1162 return do_getpgid(0);
1163 }
1164
1165 #endif
1166
SYSCALL_DEFINE1(getsid,pid_t,pid)1167 SYSCALL_DEFINE1(getsid, pid_t, pid)
1168 {
1169 struct task_struct *p;
1170 struct pid *sid;
1171 int retval;
1172
1173 rcu_read_lock();
1174 if (!pid)
1175 sid = task_session(current);
1176 else {
1177 retval = -ESRCH;
1178 p = find_task_by_vpid(pid);
1179 if (!p)
1180 goto out;
1181 sid = task_session(p);
1182 if (!sid)
1183 goto out;
1184
1185 retval = security_task_getsid(p);
1186 if (retval)
1187 goto out;
1188 }
1189 retval = pid_vnr(sid);
1190 out:
1191 rcu_read_unlock();
1192 return retval;
1193 }
1194
set_special_pids(struct pid * pid)1195 static void set_special_pids(struct pid *pid)
1196 {
1197 struct task_struct *curr = current->group_leader;
1198
1199 if (task_session(curr) != pid)
1200 change_pid(curr, PIDTYPE_SID, pid);
1201
1202 if (task_pgrp(curr) != pid)
1203 change_pid(curr, PIDTYPE_PGID, pid);
1204 }
1205
ksys_setsid(void)1206 int ksys_setsid(void)
1207 {
1208 struct task_struct *group_leader = current->group_leader;
1209 struct pid *sid = task_pid(group_leader);
1210 pid_t session = pid_vnr(sid);
1211 int err = -EPERM;
1212
1213 write_lock_irq(&tasklist_lock);
1214 /* Fail if I am already a session leader */
1215 if (group_leader->signal->leader)
1216 goto out;
1217
1218 /* Fail if a process group id already exists that equals the
1219 * proposed session id.
1220 */
1221 if (pid_task(sid, PIDTYPE_PGID))
1222 goto out;
1223
1224 group_leader->signal->leader = 1;
1225 set_special_pids(sid);
1226
1227 proc_clear_tty(group_leader);
1228
1229 err = session;
1230 out:
1231 write_unlock_irq(&tasklist_lock);
1232 if (err > 0) {
1233 proc_sid_connector(group_leader);
1234 sched_autogroup_create_attach(group_leader);
1235 }
1236 return err;
1237 }
1238
SYSCALL_DEFINE0(setsid)1239 SYSCALL_DEFINE0(setsid)
1240 {
1241 return ksys_setsid();
1242 }
1243
1244 DECLARE_RWSEM(uts_sem);
1245
1246 #ifdef COMPAT_UTS_MACHINE
1247 #define override_architecture(name) \
1248 (personality(current->personality) == PER_LINUX32 && \
1249 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1250 sizeof(COMPAT_UTS_MACHINE)))
1251 #else
1252 #define override_architecture(name) 0
1253 #endif
1254
1255 /*
1256 * Work around broken programs that cannot handle "Linux 3.0".
1257 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1258 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1259 * 2.6.60.
1260 */
override_release(char __user * release,size_t len)1261 static int override_release(char __user *release, size_t len)
1262 {
1263 int ret = 0;
1264
1265 if (current->personality & UNAME26) {
1266 const char *rest = UTS_RELEASE;
1267 char buf[65] = { 0 };
1268 int ndots = 0;
1269 unsigned v;
1270 size_t copy;
1271
1272 while (*rest) {
1273 if (*rest == '.' && ++ndots >= 3)
1274 break;
1275 if (!isdigit(*rest) && *rest != '.')
1276 break;
1277 rest++;
1278 }
1279 v = LINUX_VERSION_PATCHLEVEL + 60;
1280 copy = clamp_t(size_t, len, 1, sizeof(buf));
1281 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1282 ret = copy_to_user(release, buf, copy + 1);
1283 }
1284 return ret;
1285 }
1286
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1287 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1288 {
1289 struct new_utsname tmp;
1290
1291 down_read(&uts_sem);
1292 memcpy(&tmp, utsname(), sizeof(tmp));
1293 up_read(&uts_sem);
1294 if (copy_to_user(name, &tmp, sizeof(tmp)))
1295 return -EFAULT;
1296
1297 if (override_release(name->release, sizeof(name->release)))
1298 return -EFAULT;
1299 if (override_architecture(name))
1300 return -EFAULT;
1301 return 0;
1302 }
1303
1304 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1305 /*
1306 * Old cruft
1307 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1308 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1309 {
1310 struct old_utsname tmp;
1311
1312 if (!name)
1313 return -EFAULT;
1314
1315 down_read(&uts_sem);
1316 memcpy(&tmp, utsname(), sizeof(tmp));
1317 up_read(&uts_sem);
1318 if (copy_to_user(name, &tmp, sizeof(tmp)))
1319 return -EFAULT;
1320
1321 if (override_release(name->release, sizeof(name->release)))
1322 return -EFAULT;
1323 if (override_architecture(name))
1324 return -EFAULT;
1325 return 0;
1326 }
1327
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1328 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1329 {
1330 struct oldold_utsname tmp;
1331
1332 if (!name)
1333 return -EFAULT;
1334
1335 memset(&tmp, 0, sizeof(tmp));
1336
1337 down_read(&uts_sem);
1338 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1339 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1340 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1341 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1342 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1343 up_read(&uts_sem);
1344 if (copy_to_user(name, &tmp, sizeof(tmp)))
1345 return -EFAULT;
1346
1347 if (override_architecture(name))
1348 return -EFAULT;
1349 if (override_release(name->release, sizeof(name->release)))
1350 return -EFAULT;
1351 return 0;
1352 }
1353 #endif
1354
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1355 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1356 {
1357 int errno;
1358 char tmp[__NEW_UTS_LEN];
1359
1360 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1361 return -EPERM;
1362
1363 if (len < 0 || len > __NEW_UTS_LEN)
1364 return -EINVAL;
1365 errno = -EFAULT;
1366 if (!copy_from_user(tmp, name, len)) {
1367 struct new_utsname *u;
1368
1369 down_write(&uts_sem);
1370 u = utsname();
1371 memcpy(u->nodename, tmp, len);
1372 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1373 errno = 0;
1374 uts_proc_notify(UTS_PROC_HOSTNAME);
1375 up_write(&uts_sem);
1376 }
1377 return errno;
1378 }
1379
1380 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1381
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1382 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1383 {
1384 int i;
1385 struct new_utsname *u;
1386 char tmp[__NEW_UTS_LEN + 1];
1387
1388 if (len < 0)
1389 return -EINVAL;
1390 down_read(&uts_sem);
1391 u = utsname();
1392 i = 1 + strlen(u->nodename);
1393 if (i > len)
1394 i = len;
1395 memcpy(tmp, u->nodename, i);
1396 up_read(&uts_sem);
1397 if (copy_to_user(name, tmp, i))
1398 return -EFAULT;
1399 return 0;
1400 }
1401
1402 #endif
1403
1404 /*
1405 * Only setdomainname; getdomainname can be implemented by calling
1406 * uname()
1407 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1408 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1409 {
1410 int errno;
1411 char tmp[__NEW_UTS_LEN];
1412
1413 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1414 return -EPERM;
1415 if (len < 0 || len > __NEW_UTS_LEN)
1416 return -EINVAL;
1417
1418 errno = -EFAULT;
1419 if (!copy_from_user(tmp, name, len)) {
1420 struct new_utsname *u;
1421
1422 down_write(&uts_sem);
1423 u = utsname();
1424 memcpy(u->domainname, tmp, len);
1425 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1426 errno = 0;
1427 uts_proc_notify(UTS_PROC_DOMAINNAME);
1428 up_write(&uts_sem);
1429 }
1430 return errno;
1431 }
1432
1433 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1434 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1435 struct rlimit *new_rlim, struct rlimit *old_rlim)
1436 {
1437 struct rlimit *rlim;
1438 int retval = 0;
1439
1440 if (resource >= RLIM_NLIMITS)
1441 return -EINVAL;
1442 if (new_rlim) {
1443 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1444 return -EINVAL;
1445 if (resource == RLIMIT_NOFILE &&
1446 new_rlim->rlim_max > sysctl_nr_open)
1447 return -EPERM;
1448 }
1449
1450 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1451 rlim = tsk->signal->rlim + resource;
1452 task_lock(tsk->group_leader);
1453 if (new_rlim) {
1454 /*
1455 * Keep the capable check against init_user_ns until cgroups can
1456 * contain all limits.
1457 */
1458 if (new_rlim->rlim_max > rlim->rlim_max &&
1459 !capable(CAP_SYS_RESOURCE))
1460 retval = -EPERM;
1461 if (!retval)
1462 retval = security_task_setrlimit(tsk, resource, new_rlim);
1463 }
1464 if (!retval) {
1465 if (old_rlim)
1466 *old_rlim = *rlim;
1467 if (new_rlim)
1468 *rlim = *new_rlim;
1469 }
1470 task_unlock(tsk->group_leader);
1471
1472 /*
1473 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1474 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1475 * ignores the rlimit.
1476 */
1477 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1478 new_rlim->rlim_cur != RLIM_INFINITY &&
1479 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1480 /*
1481 * update_rlimit_cpu can fail if the task is exiting, but there
1482 * may be other tasks in the thread group that are not exiting,
1483 * and they need their cpu timers adjusted.
1484 *
1485 * The group_leader is the last task to be released, so if we
1486 * cannot update_rlimit_cpu on it, then the entire process is
1487 * exiting and we do not need to update at all.
1488 */
1489 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1490 }
1491
1492 return retval;
1493 }
1494
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1495 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1496 {
1497 struct rlimit value;
1498 int ret;
1499
1500 ret = do_prlimit(current, resource, NULL, &value);
1501 if (!ret)
1502 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1503
1504 return ret;
1505 }
1506
1507 #ifdef CONFIG_COMPAT
1508
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1509 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1510 struct compat_rlimit __user *, rlim)
1511 {
1512 struct rlimit r;
1513 struct compat_rlimit r32;
1514
1515 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1516 return -EFAULT;
1517
1518 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1519 r.rlim_cur = RLIM_INFINITY;
1520 else
1521 r.rlim_cur = r32.rlim_cur;
1522 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1523 r.rlim_max = RLIM_INFINITY;
1524 else
1525 r.rlim_max = r32.rlim_max;
1526 return do_prlimit(current, resource, &r, NULL);
1527 }
1528
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1529 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1530 struct compat_rlimit __user *, rlim)
1531 {
1532 struct rlimit r;
1533 int ret;
1534
1535 ret = do_prlimit(current, resource, NULL, &r);
1536 if (!ret) {
1537 struct compat_rlimit r32;
1538 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1539 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1540 else
1541 r32.rlim_cur = r.rlim_cur;
1542 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1543 r32.rlim_max = COMPAT_RLIM_INFINITY;
1544 else
1545 r32.rlim_max = r.rlim_max;
1546
1547 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1548 return -EFAULT;
1549 }
1550 return ret;
1551 }
1552
1553 #endif
1554
1555 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1556
1557 /*
1558 * Back compatibility for getrlimit. Needed for some apps.
1559 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1560 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1561 struct rlimit __user *, rlim)
1562 {
1563 struct rlimit x;
1564 if (resource >= RLIM_NLIMITS)
1565 return -EINVAL;
1566
1567 resource = array_index_nospec(resource, RLIM_NLIMITS);
1568 task_lock(current->group_leader);
1569 x = current->signal->rlim[resource];
1570 task_unlock(current->group_leader);
1571 if (x.rlim_cur > 0x7FFFFFFF)
1572 x.rlim_cur = 0x7FFFFFFF;
1573 if (x.rlim_max > 0x7FFFFFFF)
1574 x.rlim_max = 0x7FFFFFFF;
1575 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1576 }
1577
1578 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1579 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1580 struct compat_rlimit __user *, rlim)
1581 {
1582 struct rlimit r;
1583
1584 if (resource >= RLIM_NLIMITS)
1585 return -EINVAL;
1586
1587 resource = array_index_nospec(resource, RLIM_NLIMITS);
1588 task_lock(current->group_leader);
1589 r = current->signal->rlim[resource];
1590 task_unlock(current->group_leader);
1591 if (r.rlim_cur > 0x7FFFFFFF)
1592 r.rlim_cur = 0x7FFFFFFF;
1593 if (r.rlim_max > 0x7FFFFFFF)
1594 r.rlim_max = 0x7FFFFFFF;
1595
1596 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1597 put_user(r.rlim_max, &rlim->rlim_max))
1598 return -EFAULT;
1599 return 0;
1600 }
1601 #endif
1602
1603 #endif
1604
rlim64_is_infinity(__u64 rlim64)1605 static inline bool rlim64_is_infinity(__u64 rlim64)
1606 {
1607 #if BITS_PER_LONG < 64
1608 return rlim64 >= ULONG_MAX;
1609 #else
1610 return rlim64 == RLIM64_INFINITY;
1611 #endif
1612 }
1613
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1614 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1615 {
1616 if (rlim->rlim_cur == RLIM_INFINITY)
1617 rlim64->rlim_cur = RLIM64_INFINITY;
1618 else
1619 rlim64->rlim_cur = rlim->rlim_cur;
1620 if (rlim->rlim_max == RLIM_INFINITY)
1621 rlim64->rlim_max = RLIM64_INFINITY;
1622 else
1623 rlim64->rlim_max = rlim->rlim_max;
1624 }
1625
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1626 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1627 {
1628 if (rlim64_is_infinity(rlim64->rlim_cur))
1629 rlim->rlim_cur = RLIM_INFINITY;
1630 else
1631 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1632 if (rlim64_is_infinity(rlim64->rlim_max))
1633 rlim->rlim_max = RLIM_INFINITY;
1634 else
1635 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1636 }
1637
1638 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1639 static int check_prlimit_permission(struct task_struct *task,
1640 unsigned int flags)
1641 {
1642 const struct cred *cred = current_cred(), *tcred;
1643 bool id_match;
1644
1645 if (current == task)
1646 return 0;
1647
1648 tcred = __task_cred(task);
1649 id_match = (uid_eq(cred->uid, tcred->euid) &&
1650 uid_eq(cred->uid, tcred->suid) &&
1651 uid_eq(cred->uid, tcred->uid) &&
1652 gid_eq(cred->gid, tcred->egid) &&
1653 gid_eq(cred->gid, tcred->sgid) &&
1654 gid_eq(cred->gid, tcred->gid));
1655 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1656 return -EPERM;
1657
1658 return security_task_prlimit(cred, tcred, flags);
1659 }
1660
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1661 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1662 const struct rlimit64 __user *, new_rlim,
1663 struct rlimit64 __user *, old_rlim)
1664 {
1665 struct rlimit64 old64, new64;
1666 struct rlimit old, new;
1667 struct task_struct *tsk;
1668 unsigned int checkflags = 0;
1669 int ret;
1670
1671 if (old_rlim)
1672 checkflags |= LSM_PRLIMIT_READ;
1673
1674 if (new_rlim) {
1675 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1676 return -EFAULT;
1677 rlim64_to_rlim(&new64, &new);
1678 checkflags |= LSM_PRLIMIT_WRITE;
1679 }
1680
1681 rcu_read_lock();
1682 tsk = pid ? find_task_by_vpid(pid) : current;
1683 if (!tsk) {
1684 rcu_read_unlock();
1685 return -ESRCH;
1686 }
1687 ret = check_prlimit_permission(tsk, checkflags);
1688 if (ret) {
1689 rcu_read_unlock();
1690 return ret;
1691 }
1692 get_task_struct(tsk);
1693 rcu_read_unlock();
1694
1695 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1696 old_rlim ? &old : NULL);
1697
1698 if (!ret && old_rlim) {
1699 rlim_to_rlim64(&old, &old64);
1700 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1701 ret = -EFAULT;
1702 }
1703
1704 put_task_struct(tsk);
1705 return ret;
1706 }
1707
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1708 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1709 {
1710 struct rlimit new_rlim;
1711
1712 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1713 return -EFAULT;
1714 return do_prlimit(current, resource, &new_rlim, NULL);
1715 }
1716
1717 /*
1718 * It would make sense to put struct rusage in the task_struct,
1719 * except that would make the task_struct be *really big*. After
1720 * task_struct gets moved into malloc'ed memory, it would
1721 * make sense to do this. It will make moving the rest of the information
1722 * a lot simpler! (Which we're not doing right now because we're not
1723 * measuring them yet).
1724 *
1725 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1726 * races with threads incrementing their own counters. But since word
1727 * reads are atomic, we either get new values or old values and we don't
1728 * care which for the sums. We always take the siglock to protect reading
1729 * the c* fields from p->signal from races with exit.c updating those
1730 * fields when reaping, so a sample either gets all the additions of a
1731 * given child after it's reaped, or none so this sample is before reaping.
1732 *
1733 * Locking:
1734 * We need to take the siglock for CHILDEREN, SELF and BOTH
1735 * for the cases current multithreaded, non-current single threaded
1736 * non-current multithreaded. Thread traversal is now safe with
1737 * the siglock held.
1738 * Strictly speaking, we donot need to take the siglock if we are current and
1739 * single threaded, as no one else can take our signal_struct away, no one
1740 * else can reap the children to update signal->c* counters, and no one else
1741 * can race with the signal-> fields. If we do not take any lock, the
1742 * signal-> fields could be read out of order while another thread was just
1743 * exiting. So we should place a read memory barrier when we avoid the lock.
1744 * On the writer side, write memory barrier is implied in __exit_signal
1745 * as __exit_signal releases the siglock spinlock after updating the signal->
1746 * fields. But we don't do this yet to keep things simple.
1747 *
1748 */
1749
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1750 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1751 {
1752 r->ru_nvcsw += t->nvcsw;
1753 r->ru_nivcsw += t->nivcsw;
1754 r->ru_minflt += t->min_flt;
1755 r->ru_majflt += t->maj_flt;
1756 r->ru_inblock += task_io_get_inblock(t);
1757 r->ru_oublock += task_io_get_oublock(t);
1758 }
1759
getrusage(struct task_struct * p,int who,struct rusage * r)1760 void getrusage(struct task_struct *p, int who, struct rusage *r)
1761 {
1762 struct task_struct *t;
1763 unsigned long flags;
1764 u64 tgutime, tgstime, utime, stime;
1765 unsigned long maxrss = 0;
1766
1767 memset((char *)r, 0, sizeof (*r));
1768 utime = stime = 0;
1769
1770 if (who == RUSAGE_THREAD) {
1771 task_cputime_adjusted(current, &utime, &stime);
1772 accumulate_thread_rusage(p, r);
1773 maxrss = p->signal->maxrss;
1774 goto out;
1775 }
1776
1777 if (!lock_task_sighand(p, &flags))
1778 return;
1779
1780 switch (who) {
1781 case RUSAGE_BOTH:
1782 case RUSAGE_CHILDREN:
1783 utime = p->signal->cutime;
1784 stime = p->signal->cstime;
1785 r->ru_nvcsw = p->signal->cnvcsw;
1786 r->ru_nivcsw = p->signal->cnivcsw;
1787 r->ru_minflt = p->signal->cmin_flt;
1788 r->ru_majflt = p->signal->cmaj_flt;
1789 r->ru_inblock = p->signal->cinblock;
1790 r->ru_oublock = p->signal->coublock;
1791 maxrss = p->signal->cmaxrss;
1792
1793 if (who == RUSAGE_CHILDREN)
1794 break;
1795 fallthrough;
1796
1797 case RUSAGE_SELF:
1798 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1799 utime += tgutime;
1800 stime += tgstime;
1801 r->ru_nvcsw += p->signal->nvcsw;
1802 r->ru_nivcsw += p->signal->nivcsw;
1803 r->ru_minflt += p->signal->min_flt;
1804 r->ru_majflt += p->signal->maj_flt;
1805 r->ru_inblock += p->signal->inblock;
1806 r->ru_oublock += p->signal->oublock;
1807 if (maxrss < p->signal->maxrss)
1808 maxrss = p->signal->maxrss;
1809 t = p;
1810 do {
1811 accumulate_thread_rusage(t, r);
1812 } while_each_thread(p, t);
1813 break;
1814
1815 default:
1816 BUG();
1817 }
1818 unlock_task_sighand(p, &flags);
1819
1820 out:
1821 r->ru_utime = ns_to_kernel_old_timeval(utime);
1822 r->ru_stime = ns_to_kernel_old_timeval(stime);
1823
1824 if (who != RUSAGE_CHILDREN) {
1825 struct mm_struct *mm = get_task_mm(p);
1826
1827 if (mm) {
1828 setmax_mm_hiwater_rss(&maxrss, mm);
1829 mmput(mm);
1830 }
1831 }
1832 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1833 }
1834
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1835 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1836 {
1837 struct rusage r;
1838
1839 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1840 who != RUSAGE_THREAD)
1841 return -EINVAL;
1842
1843 getrusage(current, who, &r);
1844 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1845 }
1846
1847 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1848 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1849 {
1850 struct rusage r;
1851
1852 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1853 who != RUSAGE_THREAD)
1854 return -EINVAL;
1855
1856 getrusage(current, who, &r);
1857 return put_compat_rusage(&r, ru);
1858 }
1859 #endif
1860
SYSCALL_DEFINE1(umask,int,mask)1861 SYSCALL_DEFINE1(umask, int, mask)
1862 {
1863 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1864 return mask;
1865 }
1866
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1867 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1868 {
1869 struct fd exe;
1870 struct inode *inode;
1871 int err;
1872
1873 exe = fdget(fd);
1874 if (!exe.file)
1875 return -EBADF;
1876
1877 inode = file_inode(exe.file);
1878
1879 /*
1880 * Because the original mm->exe_file points to executable file, make
1881 * sure that this one is executable as well, to avoid breaking an
1882 * overall picture.
1883 */
1884 err = -EACCES;
1885 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1886 goto exit;
1887
1888 err = file_permission(exe.file, MAY_EXEC);
1889 if (err)
1890 goto exit;
1891
1892 err = replace_mm_exe_file(mm, exe.file);
1893 exit:
1894 fdput(exe);
1895 return err;
1896 }
1897
1898 /*
1899 * Check arithmetic relations of passed addresses.
1900 *
1901 * WARNING: we don't require any capability here so be very careful
1902 * in what is allowed for modification from userspace.
1903 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1904 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1905 {
1906 unsigned long mmap_max_addr = TASK_SIZE;
1907 int error = -EINVAL, i;
1908
1909 static const unsigned char offsets[] = {
1910 offsetof(struct prctl_mm_map, start_code),
1911 offsetof(struct prctl_mm_map, end_code),
1912 offsetof(struct prctl_mm_map, start_data),
1913 offsetof(struct prctl_mm_map, end_data),
1914 offsetof(struct prctl_mm_map, start_brk),
1915 offsetof(struct prctl_mm_map, brk),
1916 offsetof(struct prctl_mm_map, start_stack),
1917 offsetof(struct prctl_mm_map, arg_start),
1918 offsetof(struct prctl_mm_map, arg_end),
1919 offsetof(struct prctl_mm_map, env_start),
1920 offsetof(struct prctl_mm_map, env_end),
1921 };
1922
1923 /*
1924 * Make sure the members are not somewhere outside
1925 * of allowed address space.
1926 */
1927 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1928 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1929
1930 if ((unsigned long)val >= mmap_max_addr ||
1931 (unsigned long)val < mmap_min_addr)
1932 goto out;
1933 }
1934
1935 /*
1936 * Make sure the pairs are ordered.
1937 */
1938 #define __prctl_check_order(__m1, __op, __m2) \
1939 ((unsigned long)prctl_map->__m1 __op \
1940 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1941 error = __prctl_check_order(start_code, <, end_code);
1942 error |= __prctl_check_order(start_data,<=, end_data);
1943 error |= __prctl_check_order(start_brk, <=, brk);
1944 error |= __prctl_check_order(arg_start, <=, arg_end);
1945 error |= __prctl_check_order(env_start, <=, env_end);
1946 if (error)
1947 goto out;
1948 #undef __prctl_check_order
1949
1950 error = -EINVAL;
1951
1952 /*
1953 * Neither we should allow to override limits if they set.
1954 */
1955 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1956 prctl_map->start_brk, prctl_map->end_data,
1957 prctl_map->start_data))
1958 goto out;
1959
1960 error = 0;
1961 out:
1962 return error;
1963 }
1964
1965 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1966 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1967 {
1968 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1969 unsigned long user_auxv[AT_VECTOR_SIZE];
1970 struct mm_struct *mm = current->mm;
1971 int error;
1972
1973 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1974 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1975
1976 if (opt == PR_SET_MM_MAP_SIZE)
1977 return put_user((unsigned int)sizeof(prctl_map),
1978 (unsigned int __user *)addr);
1979
1980 if (data_size != sizeof(prctl_map))
1981 return -EINVAL;
1982
1983 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1984 return -EFAULT;
1985
1986 error = validate_prctl_map_addr(&prctl_map);
1987 if (error)
1988 return error;
1989
1990 if (prctl_map.auxv_size) {
1991 /*
1992 * Someone is trying to cheat the auxv vector.
1993 */
1994 if (!prctl_map.auxv ||
1995 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1996 return -EINVAL;
1997
1998 memset(user_auxv, 0, sizeof(user_auxv));
1999 if (copy_from_user(user_auxv,
2000 (const void __user *)prctl_map.auxv,
2001 prctl_map.auxv_size))
2002 return -EFAULT;
2003
2004 /* Last entry must be AT_NULL as specification requires */
2005 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2006 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2007 }
2008
2009 if (prctl_map.exe_fd != (u32)-1) {
2010 /*
2011 * Check if the current user is checkpoint/restore capable.
2012 * At the time of this writing, it checks for CAP_SYS_ADMIN
2013 * or CAP_CHECKPOINT_RESTORE.
2014 * Note that a user with access to ptrace can masquerade an
2015 * arbitrary program as any executable, even setuid ones.
2016 * This may have implications in the tomoyo subsystem.
2017 */
2018 if (!checkpoint_restore_ns_capable(current_user_ns()))
2019 return -EPERM;
2020
2021 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2022 if (error)
2023 return error;
2024 }
2025
2026 /*
2027 * arg_lock protects concurrent updates but we still need mmap_lock for
2028 * read to exclude races with sys_brk.
2029 */
2030 mmap_read_lock(mm);
2031
2032 /*
2033 * We don't validate if these members are pointing to
2034 * real present VMAs because application may have correspond
2035 * VMAs already unmapped and kernel uses these members for statistics
2036 * output in procfs mostly, except
2037 *
2038 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2039 * for VMAs when updating these members so anything wrong written
2040 * here cause kernel to swear at userspace program but won't lead
2041 * to any problem in kernel itself
2042 */
2043
2044 spin_lock(&mm->arg_lock);
2045 mm->start_code = prctl_map.start_code;
2046 mm->end_code = prctl_map.end_code;
2047 mm->start_data = prctl_map.start_data;
2048 mm->end_data = prctl_map.end_data;
2049 mm->start_brk = prctl_map.start_brk;
2050 mm->brk = prctl_map.brk;
2051 mm->start_stack = prctl_map.start_stack;
2052 mm->arg_start = prctl_map.arg_start;
2053 mm->arg_end = prctl_map.arg_end;
2054 mm->env_start = prctl_map.env_start;
2055 mm->env_end = prctl_map.env_end;
2056 spin_unlock(&mm->arg_lock);
2057
2058 /*
2059 * Note this update of @saved_auxv is lockless thus
2060 * if someone reads this member in procfs while we're
2061 * updating -- it may get partly updated results. It's
2062 * known and acceptable trade off: we leave it as is to
2063 * not introduce additional locks here making the kernel
2064 * more complex.
2065 */
2066 if (prctl_map.auxv_size)
2067 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2068
2069 mmap_read_unlock(mm);
2070 return 0;
2071 }
2072 #endif /* CONFIG_CHECKPOINT_RESTORE */
2073
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2074 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2075 unsigned long len)
2076 {
2077 /*
2078 * This doesn't move the auxiliary vector itself since it's pinned to
2079 * mm_struct, but it permits filling the vector with new values. It's
2080 * up to the caller to provide sane values here, otherwise userspace
2081 * tools which use this vector might be unhappy.
2082 */
2083 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2084
2085 if (len > sizeof(user_auxv))
2086 return -EINVAL;
2087
2088 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2089 return -EFAULT;
2090
2091 /* Make sure the last entry is always AT_NULL */
2092 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2093 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2094
2095 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2096
2097 task_lock(current);
2098 memcpy(mm->saved_auxv, user_auxv, len);
2099 task_unlock(current);
2100
2101 return 0;
2102 }
2103
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2104 static int prctl_set_mm(int opt, unsigned long addr,
2105 unsigned long arg4, unsigned long arg5)
2106 {
2107 struct mm_struct *mm = current->mm;
2108 struct prctl_mm_map prctl_map = {
2109 .auxv = NULL,
2110 .auxv_size = 0,
2111 .exe_fd = -1,
2112 };
2113 struct vm_area_struct *vma;
2114 int error;
2115
2116 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2117 opt != PR_SET_MM_MAP &&
2118 opt != PR_SET_MM_MAP_SIZE)))
2119 return -EINVAL;
2120
2121 #ifdef CONFIG_CHECKPOINT_RESTORE
2122 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2123 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2124 #endif
2125
2126 if (!capable(CAP_SYS_RESOURCE))
2127 return -EPERM;
2128
2129 if (opt == PR_SET_MM_EXE_FILE)
2130 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2131
2132 if (opt == PR_SET_MM_AUXV)
2133 return prctl_set_auxv(mm, addr, arg4);
2134
2135 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2136 return -EINVAL;
2137
2138 error = -EINVAL;
2139
2140 /*
2141 * arg_lock protects concurrent updates of arg boundaries, we need
2142 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2143 * validation.
2144 */
2145 mmap_read_lock(mm);
2146 vma = find_vma(mm, addr);
2147
2148 spin_lock(&mm->arg_lock);
2149 prctl_map.start_code = mm->start_code;
2150 prctl_map.end_code = mm->end_code;
2151 prctl_map.start_data = mm->start_data;
2152 prctl_map.end_data = mm->end_data;
2153 prctl_map.start_brk = mm->start_brk;
2154 prctl_map.brk = mm->brk;
2155 prctl_map.start_stack = mm->start_stack;
2156 prctl_map.arg_start = mm->arg_start;
2157 prctl_map.arg_end = mm->arg_end;
2158 prctl_map.env_start = mm->env_start;
2159 prctl_map.env_end = mm->env_end;
2160
2161 switch (opt) {
2162 case PR_SET_MM_START_CODE:
2163 prctl_map.start_code = addr;
2164 break;
2165 case PR_SET_MM_END_CODE:
2166 prctl_map.end_code = addr;
2167 break;
2168 case PR_SET_MM_START_DATA:
2169 prctl_map.start_data = addr;
2170 break;
2171 case PR_SET_MM_END_DATA:
2172 prctl_map.end_data = addr;
2173 break;
2174 case PR_SET_MM_START_STACK:
2175 prctl_map.start_stack = addr;
2176 break;
2177 case PR_SET_MM_START_BRK:
2178 prctl_map.start_brk = addr;
2179 break;
2180 case PR_SET_MM_BRK:
2181 prctl_map.brk = addr;
2182 break;
2183 case PR_SET_MM_ARG_START:
2184 prctl_map.arg_start = addr;
2185 break;
2186 case PR_SET_MM_ARG_END:
2187 prctl_map.arg_end = addr;
2188 break;
2189 case PR_SET_MM_ENV_START:
2190 prctl_map.env_start = addr;
2191 break;
2192 case PR_SET_MM_ENV_END:
2193 prctl_map.env_end = addr;
2194 break;
2195 default:
2196 goto out;
2197 }
2198
2199 error = validate_prctl_map_addr(&prctl_map);
2200 if (error)
2201 goto out;
2202
2203 switch (opt) {
2204 /*
2205 * If command line arguments and environment
2206 * are placed somewhere else on stack, we can
2207 * set them up here, ARG_START/END to setup
2208 * command line arguments and ENV_START/END
2209 * for environment.
2210 */
2211 case PR_SET_MM_START_STACK:
2212 case PR_SET_MM_ARG_START:
2213 case PR_SET_MM_ARG_END:
2214 case PR_SET_MM_ENV_START:
2215 case PR_SET_MM_ENV_END:
2216 if (!vma) {
2217 error = -EFAULT;
2218 goto out;
2219 }
2220 }
2221
2222 mm->start_code = prctl_map.start_code;
2223 mm->end_code = prctl_map.end_code;
2224 mm->start_data = prctl_map.start_data;
2225 mm->end_data = prctl_map.end_data;
2226 mm->start_brk = prctl_map.start_brk;
2227 mm->brk = prctl_map.brk;
2228 mm->start_stack = prctl_map.start_stack;
2229 mm->arg_start = prctl_map.arg_start;
2230 mm->arg_end = prctl_map.arg_end;
2231 mm->env_start = prctl_map.env_start;
2232 mm->env_end = prctl_map.env_end;
2233
2234 error = 0;
2235 out:
2236 spin_unlock(&mm->arg_lock);
2237 mmap_read_unlock(mm);
2238 return error;
2239 }
2240
2241 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2242 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2243 {
2244 return put_user(me->clear_child_tid, tid_addr);
2245 }
2246 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2247 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2248 {
2249 return -EINVAL;
2250 }
2251 #endif
2252
propagate_has_child_subreaper(struct task_struct * p,void * data)2253 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2254 {
2255 /*
2256 * If task has has_child_subreaper - all its descendants
2257 * already have these flag too and new descendants will
2258 * inherit it on fork, skip them.
2259 *
2260 * If we've found child_reaper - skip descendants in
2261 * it's subtree as they will never get out pidns.
2262 */
2263 if (p->signal->has_child_subreaper ||
2264 is_child_reaper(task_pid(p)))
2265 return 0;
2266
2267 p->signal->has_child_subreaper = 1;
2268 return 1;
2269 }
2270
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2271 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2272 {
2273 return -EINVAL;
2274 }
2275
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2276 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2277 unsigned long ctrl)
2278 {
2279 return -EINVAL;
2280 }
2281
2282 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2283
2284 #ifdef CONFIG_ANON_VMA_NAME
2285
2286 #define ANON_VMA_NAME_MAX_LEN 80
2287 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2288
is_valid_name_char(char ch)2289 static inline bool is_valid_name_char(char ch)
2290 {
2291 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2292 return ch > 0x1f && ch < 0x7f &&
2293 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2294 }
2295
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2296 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2297 unsigned long size, unsigned long arg)
2298 {
2299 struct mm_struct *mm = current->mm;
2300 const char __user *uname;
2301 struct anon_vma_name *anon_name = NULL;
2302 int error;
2303
2304 switch (opt) {
2305 case PR_SET_VMA_ANON_NAME:
2306 uname = (const char __user *)arg;
2307 if (uname) {
2308 char *name, *pch;
2309
2310 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2311 if (IS_ERR(name))
2312 return PTR_ERR(name);
2313
2314 for (pch = name; *pch != '\0'; pch++) {
2315 if (!is_valid_name_char(*pch)) {
2316 kfree(name);
2317 return -EINVAL;
2318 }
2319 }
2320 /* anon_vma has its own copy */
2321 anon_name = anon_vma_name_alloc(name);
2322 kfree(name);
2323 if (!anon_name)
2324 return -ENOMEM;
2325
2326 }
2327
2328 mmap_write_lock(mm);
2329 error = madvise_set_anon_name(mm, addr, size, anon_name);
2330 mmap_write_unlock(mm);
2331 anon_vma_name_put(anon_name);
2332 break;
2333 default:
2334 error = -EINVAL;
2335 }
2336
2337 return error;
2338 }
2339
2340 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2341 static int prctl_set_vma(unsigned long opt, unsigned long start,
2342 unsigned long size, unsigned long arg)
2343 {
2344 return -EINVAL;
2345 }
2346 #endif /* CONFIG_ANON_VMA_NAME */
2347
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2348 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2349 unsigned long, arg4, unsigned long, arg5)
2350 {
2351 struct task_struct *me = current;
2352 unsigned char comm[sizeof(me->comm)];
2353 long error;
2354
2355 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2356 if (error != -ENOSYS)
2357 return error;
2358
2359 error = 0;
2360 switch (option) {
2361 case PR_SET_PDEATHSIG:
2362 if (!valid_signal(arg2)) {
2363 error = -EINVAL;
2364 break;
2365 }
2366 me->pdeath_signal = arg2;
2367 break;
2368 case PR_GET_PDEATHSIG:
2369 error = put_user(me->pdeath_signal, (int __user *)arg2);
2370 break;
2371 case PR_GET_DUMPABLE:
2372 error = get_dumpable(me->mm);
2373 break;
2374 case PR_SET_DUMPABLE:
2375 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2376 error = -EINVAL;
2377 break;
2378 }
2379 set_dumpable(me->mm, arg2);
2380 break;
2381
2382 case PR_SET_UNALIGN:
2383 error = SET_UNALIGN_CTL(me, arg2);
2384 break;
2385 case PR_GET_UNALIGN:
2386 error = GET_UNALIGN_CTL(me, arg2);
2387 break;
2388 case PR_SET_FPEMU:
2389 error = SET_FPEMU_CTL(me, arg2);
2390 break;
2391 case PR_GET_FPEMU:
2392 error = GET_FPEMU_CTL(me, arg2);
2393 break;
2394 case PR_SET_FPEXC:
2395 error = SET_FPEXC_CTL(me, arg2);
2396 break;
2397 case PR_GET_FPEXC:
2398 error = GET_FPEXC_CTL(me, arg2);
2399 break;
2400 case PR_GET_TIMING:
2401 error = PR_TIMING_STATISTICAL;
2402 break;
2403 case PR_SET_TIMING:
2404 if (arg2 != PR_TIMING_STATISTICAL)
2405 error = -EINVAL;
2406 break;
2407 case PR_SET_NAME:
2408 comm[sizeof(me->comm) - 1] = 0;
2409 if (strncpy_from_user(comm, (char __user *)arg2,
2410 sizeof(me->comm) - 1) < 0)
2411 return -EFAULT;
2412 set_task_comm(me, comm);
2413 proc_comm_connector(me);
2414 break;
2415 case PR_GET_NAME:
2416 get_task_comm(comm, me);
2417 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2418 return -EFAULT;
2419 break;
2420 case PR_GET_ENDIAN:
2421 error = GET_ENDIAN(me, arg2);
2422 break;
2423 case PR_SET_ENDIAN:
2424 error = SET_ENDIAN(me, arg2);
2425 break;
2426 case PR_GET_SECCOMP:
2427 error = prctl_get_seccomp();
2428 break;
2429 case PR_SET_SECCOMP:
2430 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2431 break;
2432 case PR_GET_TSC:
2433 error = GET_TSC_CTL(arg2);
2434 break;
2435 case PR_SET_TSC:
2436 error = SET_TSC_CTL(arg2);
2437 break;
2438 case PR_TASK_PERF_EVENTS_DISABLE:
2439 error = perf_event_task_disable();
2440 break;
2441 case PR_TASK_PERF_EVENTS_ENABLE:
2442 error = perf_event_task_enable();
2443 break;
2444 case PR_GET_TIMERSLACK:
2445 if (current->timer_slack_ns > ULONG_MAX)
2446 error = ULONG_MAX;
2447 else
2448 error = current->timer_slack_ns;
2449 break;
2450 case PR_SET_TIMERSLACK:
2451 if (arg2 <= 0)
2452 current->timer_slack_ns =
2453 current->default_timer_slack_ns;
2454 else
2455 current->timer_slack_ns = arg2;
2456 break;
2457 case PR_MCE_KILL:
2458 if (arg4 | arg5)
2459 return -EINVAL;
2460 switch (arg2) {
2461 case PR_MCE_KILL_CLEAR:
2462 if (arg3 != 0)
2463 return -EINVAL;
2464 current->flags &= ~PF_MCE_PROCESS;
2465 break;
2466 case PR_MCE_KILL_SET:
2467 current->flags |= PF_MCE_PROCESS;
2468 if (arg3 == PR_MCE_KILL_EARLY)
2469 current->flags |= PF_MCE_EARLY;
2470 else if (arg3 == PR_MCE_KILL_LATE)
2471 current->flags &= ~PF_MCE_EARLY;
2472 else if (arg3 == PR_MCE_KILL_DEFAULT)
2473 current->flags &=
2474 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2475 else
2476 return -EINVAL;
2477 break;
2478 default:
2479 return -EINVAL;
2480 }
2481 break;
2482 case PR_MCE_KILL_GET:
2483 if (arg2 | arg3 | arg4 | arg5)
2484 return -EINVAL;
2485 if (current->flags & PF_MCE_PROCESS)
2486 error = (current->flags & PF_MCE_EARLY) ?
2487 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2488 else
2489 error = PR_MCE_KILL_DEFAULT;
2490 break;
2491 case PR_SET_MM:
2492 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2493 break;
2494 case PR_GET_TID_ADDRESS:
2495 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2496 break;
2497 case PR_SET_CHILD_SUBREAPER:
2498 me->signal->is_child_subreaper = !!arg2;
2499 if (!arg2)
2500 break;
2501
2502 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2503 break;
2504 case PR_GET_CHILD_SUBREAPER:
2505 error = put_user(me->signal->is_child_subreaper,
2506 (int __user *)arg2);
2507 break;
2508 case PR_SET_NO_NEW_PRIVS:
2509 if (arg2 != 1 || arg3 || arg4 || arg5)
2510 return -EINVAL;
2511
2512 task_set_no_new_privs(current);
2513 break;
2514 case PR_GET_NO_NEW_PRIVS:
2515 if (arg2 || arg3 || arg4 || arg5)
2516 return -EINVAL;
2517 return task_no_new_privs(current) ? 1 : 0;
2518 case PR_GET_THP_DISABLE:
2519 if (arg2 || arg3 || arg4 || arg5)
2520 return -EINVAL;
2521 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2522 break;
2523 case PR_SET_THP_DISABLE:
2524 if (arg3 || arg4 || arg5)
2525 return -EINVAL;
2526 if (mmap_write_lock_killable(me->mm))
2527 return -EINTR;
2528 if (arg2)
2529 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2530 else
2531 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2532 mmap_write_unlock(me->mm);
2533 break;
2534 case PR_MPX_ENABLE_MANAGEMENT:
2535 case PR_MPX_DISABLE_MANAGEMENT:
2536 /* No longer implemented: */
2537 return -EINVAL;
2538 case PR_SET_FP_MODE:
2539 error = SET_FP_MODE(me, arg2);
2540 break;
2541 case PR_GET_FP_MODE:
2542 error = GET_FP_MODE(me);
2543 break;
2544 case PR_SVE_SET_VL:
2545 error = SVE_SET_VL(arg2);
2546 break;
2547 case PR_SVE_GET_VL:
2548 error = SVE_GET_VL();
2549 break;
2550 case PR_SME_SET_VL:
2551 error = SME_SET_VL(arg2);
2552 break;
2553 case PR_SME_GET_VL:
2554 error = SME_GET_VL();
2555 break;
2556 case PR_GET_SPECULATION_CTRL:
2557 if (arg3 || arg4 || arg5)
2558 return -EINVAL;
2559 error = arch_prctl_spec_ctrl_get(me, arg2);
2560 break;
2561 case PR_SET_SPECULATION_CTRL:
2562 if (arg4 || arg5)
2563 return -EINVAL;
2564 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2565 break;
2566 case PR_PAC_RESET_KEYS:
2567 if (arg3 || arg4 || arg5)
2568 return -EINVAL;
2569 error = PAC_RESET_KEYS(me, arg2);
2570 break;
2571 case PR_PAC_SET_ENABLED_KEYS:
2572 if (arg4 || arg5)
2573 return -EINVAL;
2574 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2575 break;
2576 case PR_PAC_GET_ENABLED_KEYS:
2577 if (arg2 || arg3 || arg4 || arg5)
2578 return -EINVAL;
2579 error = PAC_GET_ENABLED_KEYS(me);
2580 break;
2581 case PR_SET_TAGGED_ADDR_CTRL:
2582 if (arg3 || arg4 || arg5)
2583 return -EINVAL;
2584 error = SET_TAGGED_ADDR_CTRL(arg2);
2585 break;
2586 case PR_GET_TAGGED_ADDR_CTRL:
2587 if (arg2 || arg3 || arg4 || arg5)
2588 return -EINVAL;
2589 error = GET_TAGGED_ADDR_CTRL();
2590 break;
2591 case PR_SET_IO_FLUSHER:
2592 if (!capable(CAP_SYS_RESOURCE))
2593 return -EPERM;
2594
2595 if (arg3 || arg4 || arg5)
2596 return -EINVAL;
2597
2598 if (arg2 == 1)
2599 current->flags |= PR_IO_FLUSHER;
2600 else if (!arg2)
2601 current->flags &= ~PR_IO_FLUSHER;
2602 else
2603 return -EINVAL;
2604 break;
2605 case PR_GET_IO_FLUSHER:
2606 if (!capable(CAP_SYS_RESOURCE))
2607 return -EPERM;
2608
2609 if (arg2 || arg3 || arg4 || arg5)
2610 return -EINVAL;
2611
2612 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2613 break;
2614 case PR_SET_SYSCALL_USER_DISPATCH:
2615 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2616 (char __user *) arg5);
2617 break;
2618 #ifdef CONFIG_SCHED_CORE
2619 case PR_SCHED_CORE:
2620 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2621 break;
2622 #endif
2623 case PR_SET_VMA:
2624 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2625 break;
2626 default:
2627 error = -EINVAL;
2628 break;
2629 }
2630 return error;
2631 }
2632
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2633 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2634 struct getcpu_cache __user *, unused)
2635 {
2636 int err = 0;
2637 int cpu = raw_smp_processor_id();
2638
2639 if (cpup)
2640 err |= put_user(cpu, cpup);
2641 if (nodep)
2642 err |= put_user(cpu_to_node(cpu), nodep);
2643 return err ? -EFAULT : 0;
2644 }
2645
2646 /**
2647 * do_sysinfo - fill in sysinfo struct
2648 * @info: pointer to buffer to fill
2649 */
do_sysinfo(struct sysinfo * info)2650 static int do_sysinfo(struct sysinfo *info)
2651 {
2652 unsigned long mem_total, sav_total;
2653 unsigned int mem_unit, bitcount;
2654 struct timespec64 tp;
2655
2656 memset(info, 0, sizeof(struct sysinfo));
2657
2658 ktime_get_boottime_ts64(&tp);
2659 timens_add_boottime(&tp);
2660 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2661
2662 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2663
2664 info->procs = nr_threads;
2665
2666 si_meminfo(info);
2667 si_swapinfo(info);
2668
2669 /*
2670 * If the sum of all the available memory (i.e. ram + swap)
2671 * is less than can be stored in a 32 bit unsigned long then
2672 * we can be binary compatible with 2.2.x kernels. If not,
2673 * well, in that case 2.2.x was broken anyways...
2674 *
2675 * -Erik Andersen <andersee@debian.org>
2676 */
2677
2678 mem_total = info->totalram + info->totalswap;
2679 if (mem_total < info->totalram || mem_total < info->totalswap)
2680 goto out;
2681 bitcount = 0;
2682 mem_unit = info->mem_unit;
2683 while (mem_unit > 1) {
2684 bitcount++;
2685 mem_unit >>= 1;
2686 sav_total = mem_total;
2687 mem_total <<= 1;
2688 if (mem_total < sav_total)
2689 goto out;
2690 }
2691
2692 /*
2693 * If mem_total did not overflow, multiply all memory values by
2694 * info->mem_unit and set it to 1. This leaves things compatible
2695 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2696 * kernels...
2697 */
2698
2699 info->mem_unit = 1;
2700 info->totalram <<= bitcount;
2701 info->freeram <<= bitcount;
2702 info->sharedram <<= bitcount;
2703 info->bufferram <<= bitcount;
2704 info->totalswap <<= bitcount;
2705 info->freeswap <<= bitcount;
2706 info->totalhigh <<= bitcount;
2707 info->freehigh <<= bitcount;
2708
2709 out:
2710 return 0;
2711 }
2712
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2713 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2714 {
2715 struct sysinfo val;
2716
2717 do_sysinfo(&val);
2718
2719 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2720 return -EFAULT;
2721
2722 return 0;
2723 }
2724
2725 #ifdef CONFIG_COMPAT
2726 struct compat_sysinfo {
2727 s32 uptime;
2728 u32 loads[3];
2729 u32 totalram;
2730 u32 freeram;
2731 u32 sharedram;
2732 u32 bufferram;
2733 u32 totalswap;
2734 u32 freeswap;
2735 u16 procs;
2736 u16 pad;
2737 u32 totalhigh;
2738 u32 freehigh;
2739 u32 mem_unit;
2740 char _f[20-2*sizeof(u32)-sizeof(int)];
2741 };
2742
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2743 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2744 {
2745 struct sysinfo s;
2746 struct compat_sysinfo s_32;
2747
2748 do_sysinfo(&s);
2749
2750 /* Check to see if any memory value is too large for 32-bit and scale
2751 * down if needed
2752 */
2753 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2754 int bitcount = 0;
2755
2756 while (s.mem_unit < PAGE_SIZE) {
2757 s.mem_unit <<= 1;
2758 bitcount++;
2759 }
2760
2761 s.totalram >>= bitcount;
2762 s.freeram >>= bitcount;
2763 s.sharedram >>= bitcount;
2764 s.bufferram >>= bitcount;
2765 s.totalswap >>= bitcount;
2766 s.freeswap >>= bitcount;
2767 s.totalhigh >>= bitcount;
2768 s.freehigh >>= bitcount;
2769 }
2770
2771 memset(&s_32, 0, sizeof(s_32));
2772 s_32.uptime = s.uptime;
2773 s_32.loads[0] = s.loads[0];
2774 s_32.loads[1] = s.loads[1];
2775 s_32.loads[2] = s.loads[2];
2776 s_32.totalram = s.totalram;
2777 s_32.freeram = s.freeram;
2778 s_32.sharedram = s.sharedram;
2779 s_32.bufferram = s.bufferram;
2780 s_32.totalswap = s.totalswap;
2781 s_32.freeswap = s.freeswap;
2782 s_32.procs = s.procs;
2783 s_32.totalhigh = s.totalhigh;
2784 s_32.freehigh = s.freehigh;
2785 s_32.mem_unit = s.mem_unit;
2786 if (copy_to_user(info, &s_32, sizeof(s_32)))
2787 return -EFAULT;
2788 return 0;
2789 }
2790 #endif /* CONFIG_COMPAT */
2791