1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14
15 #include "trace.h"
16 #include "trace_output.h"
17
18 #define DEFAULT_SYS_FILTER_MESSAGE \
19 "### global filter ###\n" \
20 "# Use this to set filters for multiple events.\n" \
21 "# Only events with the given fields will be affected.\n" \
22 "# If no events are modified, an error message will be displayed here"
23
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS \
26 C( OP_GLOB, "~" ), \
27 C( OP_NE, "!=" ), \
28 C( OP_EQ, "==" ), \
29 C( OP_LE, "<=" ), \
30 C( OP_LT, "<" ), \
31 C( OP_GE, ">=" ), \
32 C( OP_GT, ">" ), \
33 C( OP_BAND, "&" ), \
34 C( OP_MAX, NULL )
35
36 #undef C
37 #define C(a, b) a
38
39 enum filter_op_ids { OPS };
40
41 #undef C
42 #define C(a, b) b
43
44 static const char * ops[] = { OPS };
45
46 enum filter_pred_fn {
47 FILTER_PRED_FN_NOP,
48 FILTER_PRED_FN_64,
49 FILTER_PRED_FN_S64,
50 FILTER_PRED_FN_U64,
51 FILTER_PRED_FN_32,
52 FILTER_PRED_FN_S32,
53 FILTER_PRED_FN_U32,
54 FILTER_PRED_FN_16,
55 FILTER_PRED_FN_S16,
56 FILTER_PRED_FN_U16,
57 FILTER_PRED_FN_8,
58 FILTER_PRED_FN_S8,
59 FILTER_PRED_FN_U8,
60 FILTER_PRED_FN_COMM,
61 FILTER_PRED_FN_STRING,
62 FILTER_PRED_FN_STRLOC,
63 FILTER_PRED_FN_STRRELLOC,
64 FILTER_PRED_FN_PCHAR_USER,
65 FILTER_PRED_FN_PCHAR,
66 FILTER_PRED_FN_CPU,
67 FILTER_PRED_FN_,
68 FILTER_PRED_TEST_VISITED,
69 };
70
71 struct filter_pred {
72 enum filter_pred_fn fn_num;
73 u64 val;
74 struct regex regex;
75 unsigned short *ops;
76 struct ftrace_event_field *field;
77 int offset;
78 int not;
79 int op;
80 };
81
82 /*
83 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
84 * pred_funcs_##type below must match the order of them above.
85 */
86 #define PRED_FUNC_START OP_LE
87 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
88
89 #define ERRORS \
90 C(NONE, "No error"), \
91 C(INVALID_OP, "Invalid operator"), \
92 C(TOO_MANY_OPEN, "Too many '('"), \
93 C(TOO_MANY_CLOSE, "Too few '('"), \
94 C(MISSING_QUOTE, "Missing matching quote"), \
95 C(OPERAND_TOO_LONG, "Operand too long"), \
96 C(EXPECT_STRING, "Expecting string field"), \
97 C(EXPECT_DIGIT, "Expecting numeric field"), \
98 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
99 C(FIELD_NOT_FOUND, "Field not found"), \
100 C(ILLEGAL_INTVAL, "Illegal integer value"), \
101 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
102 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
103 C(INVALID_FILTER, "Meaningless filter expression"), \
104 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
105 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
106 C(ERRNO, "Error"), \
107 C(NO_FILTER, "No filter found")
108
109 #undef C
110 #define C(a, b) FILT_ERR_##a
111
112 enum { ERRORS };
113
114 #undef C
115 #define C(a, b) b
116
117 static const char *err_text[] = { ERRORS };
118
119 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)120 static bool is_not(const char *str)
121 {
122 switch (str[1]) {
123 case '=':
124 case '~':
125 return false;
126 }
127 return true;
128 }
129
130 /**
131 * prog_entry - a singe entry in the filter program
132 * @target: Index to jump to on a branch (actually one minus the index)
133 * @when_to_branch: The value of the result of the predicate to do a branch
134 * @pred: The predicate to execute.
135 */
136 struct prog_entry {
137 int target;
138 int when_to_branch;
139 struct filter_pred *pred;
140 };
141
142 /**
143 * update_preds- assign a program entry a label target
144 * @prog: The program array
145 * @N: The index of the current entry in @prog
146 * @when_to_branch: What to assign a program entry for its branch condition
147 *
148 * The program entry at @N has a target that points to the index of a program
149 * entry that can have its target and when_to_branch fields updated.
150 * Update the current program entry denoted by index @N target field to be
151 * that of the updated entry. This will denote the entry to update if
152 * we are processing an "||" after an "&&"
153 */
update_preds(struct prog_entry * prog,int N,int invert)154 static void update_preds(struct prog_entry *prog, int N, int invert)
155 {
156 int t, s;
157
158 t = prog[N].target;
159 s = prog[t].target;
160 prog[t].when_to_branch = invert;
161 prog[t].target = N;
162 prog[N].target = s;
163 }
164
165 struct filter_parse_error {
166 int lasterr;
167 int lasterr_pos;
168 };
169
parse_error(struct filter_parse_error * pe,int err,int pos)170 static void parse_error(struct filter_parse_error *pe, int err, int pos)
171 {
172 pe->lasterr = err;
173 pe->lasterr_pos = pos;
174 }
175
176 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
177 struct filter_parse_error *pe,
178 struct filter_pred **pred);
179
180 enum {
181 INVERT = 1,
182 PROCESS_AND = 2,
183 PROCESS_OR = 4,
184 };
185
186 /*
187 * Without going into a formal proof, this explains the method that is used in
188 * parsing the logical expressions.
189 *
190 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
191 * The first pass will convert it into the following program:
192 *
193 * n1: r=a; l1: if (!r) goto l4;
194 * n2: r=b; l2: if (!r) goto l4;
195 * n3: r=c; r=!r; l3: if (r) goto l4;
196 * n4: r=g; r=!r; l4: if (r) goto l5;
197 * n5: r=d; l5: if (r) goto T
198 * n6: r=e; l6: if (!r) goto l7;
199 * n7: r=f; r=!r; l7: if (!r) goto F
200 * T: return TRUE
201 * F: return FALSE
202 *
203 * To do this, we use a data structure to represent each of the above
204 * predicate and conditions that has:
205 *
206 * predicate, when_to_branch, invert, target
207 *
208 * The "predicate" will hold the function to determine the result "r".
209 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
210 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
211 * The "invert" holds whether the value should be reversed before testing.
212 * The "target" contains the label "l#" to jump to.
213 *
214 * A stack is created to hold values when parentheses are used.
215 *
216 * To simplify the logic, the labels will start at 0 and not 1.
217 *
218 * The possible invert values are 1 and 0. The number of "!"s that are in scope
219 * before the predicate determines the invert value, if the number is odd then
220 * the invert value is 1 and 0 otherwise. This means the invert value only
221 * needs to be toggled when a new "!" is introduced compared to what is stored
222 * on the stack, where parentheses were used.
223 *
224 * The top of the stack and "invert" are initialized to zero.
225 *
226 * ** FIRST PASS **
227 *
228 * #1 A loop through all the tokens is done:
229 *
230 * #2 If the token is an "(", the stack is push, and the current stack value
231 * gets the current invert value, and the loop continues to the next token.
232 * The top of the stack saves the "invert" value to keep track of what
233 * the current inversion is. As "!(a && !b || c)" would require all
234 * predicates being affected separately by the "!" before the parentheses.
235 * And that would end up being equivalent to "(!a || b) && !c"
236 *
237 * #3 If the token is an "!", the current "invert" value gets inverted, and
238 * the loop continues. Note, if the next token is a predicate, then
239 * this "invert" value is only valid for the current program entry,
240 * and does not affect other predicates later on.
241 *
242 * The only other acceptable token is the predicate string.
243 *
244 * #4 A new entry into the program is added saving: the predicate and the
245 * current value of "invert". The target is currently assigned to the
246 * previous program index (this will not be its final value).
247 *
248 * #5 We now enter another loop and look at the next token. The only valid
249 * tokens are ")", "&&", "||" or end of the input string "\0".
250 *
251 * #6 The invert variable is reset to the current value saved on the top of
252 * the stack.
253 *
254 * #7 The top of the stack holds not only the current invert value, but also
255 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
256 * precedence than "||". That is "a && b || c && d" is equivalent to
257 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
258 * to be processed. This is the case if an "&&" was the last token. If it was
259 * then we call update_preds(). This takes the program, the current index in
260 * the program, and the current value of "invert". More will be described
261 * below about this function.
262 *
263 * #8 If the next token is "&&" then we set a flag in the top of the stack
264 * that denotes that "&&" needs to be processed, break out of this loop
265 * and continue with the outer loop.
266 *
267 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
268 * This is called with the program, the current index in the program, but
269 * this time with an inverted value of "invert" (that is !invert). This is
270 * because the value taken will become the "when_to_branch" value of the
271 * program.
272 * Note, this is called when the next token is not an "&&". As stated before,
273 * "&&" takes higher precedence, and "||" should not be processed yet if the
274 * next logical operation is "&&".
275 *
276 * #10 If the next token is "||" then we set a flag in the top of the stack
277 * that denotes that "||" needs to be processed, break out of this loop
278 * and continue with the outer loop.
279 *
280 * #11 If this is the end of the input string "\0" then we break out of both
281 * loops.
282 *
283 * #12 Otherwise, the next token is ")", where we pop the stack and continue
284 * this inner loop.
285 *
286 * Now to discuss the update_pred() function, as that is key to the setting up
287 * of the program. Remember the "target" of the program is initialized to the
288 * previous index and not the "l" label. The target holds the index into the
289 * program that gets affected by the operand. Thus if we have something like
290 * "a || b && c", when we process "a" the target will be "-1" (undefined).
291 * When we process "b", its target is "0", which is the index of "a", as that's
292 * the predicate that is affected by "||". But because the next token after "b"
293 * is "&&" we don't call update_preds(). Instead continue to "c". As the
294 * next token after "c" is not "&&" but the end of input, we first process the
295 * "&&" by calling update_preds() for the "&&" then we process the "||" by
296 * calling updates_preds() with the values for processing "||".
297 *
298 * What does that mean? What update_preds() does is to first save the "target"
299 * of the program entry indexed by the current program entry's "target"
300 * (remember the "target" is initialized to previous program entry), and then
301 * sets that "target" to the current index which represents the label "l#".
302 * That entry's "when_to_branch" is set to the value passed in (the "invert"
303 * or "!invert"). Then it sets the current program entry's target to the saved
304 * "target" value (the old value of the program that had its "target" updated
305 * to the label).
306 *
307 * Looking back at "a || b && c", we have the following steps:
308 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
309 * "||" - flag that we need to process "||"; continue outer loop
310 * "b" - prog[1] = { "b", X, 0 }
311 * "&&" - flag that we need to process "&&"; continue outer loop
312 * (Notice we did not process "||")
313 * "c" - prog[2] = { "c", X, 1 }
314 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
315 * t = prog[2].target; // t = 1
316 * s = prog[t].target; // s = 0
317 * prog[t].target = 2; // Set target to "l2"
318 * prog[t].when_to_branch = 0;
319 * prog[2].target = s;
320 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
321 * t = prog[2].target; // t = 0
322 * s = prog[t].target; // s = -1
323 * prog[t].target = 2; // Set target to "l2"
324 * prog[t].when_to_branch = 1;
325 * prog[2].target = s;
326 *
327 * #13 Which brings us to the final step of the first pass, which is to set
328 * the last program entry's when_to_branch and target, which will be
329 * when_to_branch = 0; target = N; ( the label after the program entry after
330 * the last program entry processed above).
331 *
332 * If we denote "TRUE" to be the entry after the last program entry processed,
333 * and "FALSE" the program entry after that, we are now done with the first
334 * pass.
335 *
336 * Making the above "a || b && c" have a program of:
337 * prog[0] = { "a", 1, 2 }
338 * prog[1] = { "b", 0, 2 }
339 * prog[2] = { "c", 0, 3 }
340 *
341 * Which translates into:
342 * n0: r = a; l0: if (r) goto l2;
343 * n1: r = b; l1: if (!r) goto l2;
344 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
345 * T: return TRUE; l3:
346 * F: return FALSE
347 *
348 * Although, after the first pass, the program is correct, it is
349 * inefficient. The simple sample of "a || b && c" could be easily been
350 * converted into:
351 * n0: r = a; if (r) goto T
352 * n1: r = b; if (!r) goto F
353 * n2: r = c; if (!r) goto F
354 * T: return TRUE;
355 * F: return FALSE;
356 *
357 * The First Pass is over the input string. The next too passes are over
358 * the program itself.
359 *
360 * ** SECOND PASS **
361 *
362 * Which brings us to the second pass. If a jump to a label has the
363 * same condition as that label, it can instead jump to its target.
364 * The original example of "a && !(!b || (c && g)) || d || e && !f"
365 * where the first pass gives us:
366 *
367 * n1: r=a; l1: if (!r) goto l4;
368 * n2: r=b; l2: if (!r) goto l4;
369 * n3: r=c; r=!r; l3: if (r) goto l4;
370 * n4: r=g; r=!r; l4: if (r) goto l5;
371 * n5: r=d; l5: if (r) goto T
372 * n6: r=e; l6: if (!r) goto l7;
373 * n7: r=f; r=!r; l7: if (!r) goto F:
374 * T: return TRUE;
375 * F: return FALSE
376 *
377 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
378 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
379 * to go directly to T. To accomplish this, we start from the last
380 * entry in the program and work our way back. If the target of the entry
381 * has the same "when_to_branch" then we could use that entry's target.
382 * Doing this, the above would end up as:
383 *
384 * n1: r=a; l1: if (!r) goto l4;
385 * n2: r=b; l2: if (!r) goto l4;
386 * n3: r=c; r=!r; l3: if (r) goto T;
387 * n4: r=g; r=!r; l4: if (r) goto T;
388 * n5: r=d; l5: if (r) goto T;
389 * n6: r=e; l6: if (!r) goto F;
390 * n7: r=f; r=!r; l7: if (!r) goto F;
391 * T: return TRUE
392 * F: return FALSE
393 *
394 * In that same pass, if the "when_to_branch" doesn't match, we can simply
395 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
396 * where "l4: if (r) goto T;", then we can convert l2 to be:
397 * "l2: if (!r) goto n5;".
398 *
399 * This will have the second pass give us:
400 * n1: r=a; l1: if (!r) goto n5;
401 * n2: r=b; l2: if (!r) goto n5;
402 * n3: r=c; r=!r; l3: if (r) goto T;
403 * n4: r=g; r=!r; l4: if (r) goto T;
404 * n5: r=d; l5: if (r) goto T
405 * n6: r=e; l6: if (!r) goto F;
406 * n7: r=f; r=!r; l7: if (!r) goto F
407 * T: return TRUE
408 * F: return FALSE
409 *
410 * Notice, all the "l#" labels are no longer used, and they can now
411 * be discarded.
412 *
413 * ** THIRD PASS **
414 *
415 * For the third pass we deal with the inverts. As they simply just
416 * make the "when_to_branch" get inverted, a simple loop over the
417 * program to that does: "when_to_branch ^= invert;" will do the
418 * job, leaving us with:
419 * n1: r=a; if (!r) goto n5;
420 * n2: r=b; if (!r) goto n5;
421 * n3: r=c: if (!r) goto T;
422 * n4: r=g; if (!r) goto T;
423 * n5: r=d; if (r) goto T
424 * n6: r=e; if (!r) goto F;
425 * n7: r=f; if (r) goto F
426 * T: return TRUE
427 * F: return FALSE
428 *
429 * As "r = a; if (!r) goto n5;" is obviously the same as
430 * "if (!a) goto n5;" without doing anything we can interpret the
431 * program as:
432 * n1: if (!a) goto n5;
433 * n2: if (!b) goto n5;
434 * n3: if (!c) goto T;
435 * n4: if (!g) goto T;
436 * n5: if (d) goto T
437 * n6: if (!e) goto F;
438 * n7: if (f) goto F
439 * T: return TRUE
440 * F: return FALSE
441 *
442 * Since the inverts are discarded at the end, there's no reason to store
443 * them in the program array (and waste memory). A separate array to hold
444 * the inverts is used and freed at the end.
445 */
446 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)447 predicate_parse(const char *str, int nr_parens, int nr_preds,
448 parse_pred_fn parse_pred, void *data,
449 struct filter_parse_error *pe)
450 {
451 struct prog_entry *prog_stack;
452 struct prog_entry *prog;
453 const char *ptr = str;
454 char *inverts = NULL;
455 int *op_stack;
456 int *top;
457 int invert = 0;
458 int ret = -ENOMEM;
459 int len;
460 int N = 0;
461 int i;
462
463 nr_preds += 2; /* For TRUE and FALSE */
464
465 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
466 if (!op_stack)
467 return ERR_PTR(-ENOMEM);
468 prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
469 if (!prog_stack) {
470 parse_error(pe, -ENOMEM, 0);
471 goto out_free;
472 }
473 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
474 if (!inverts) {
475 parse_error(pe, -ENOMEM, 0);
476 goto out_free;
477 }
478
479 top = op_stack;
480 prog = prog_stack;
481 *top = 0;
482
483 /* First pass */
484 while (*ptr) { /* #1 */
485 const char *next = ptr++;
486
487 if (isspace(*next))
488 continue;
489
490 switch (*next) {
491 case '(': /* #2 */
492 if (top - op_stack > nr_parens) {
493 ret = -EINVAL;
494 goto out_free;
495 }
496 *(++top) = invert;
497 continue;
498 case '!': /* #3 */
499 if (!is_not(next))
500 break;
501 invert = !invert;
502 continue;
503 }
504
505 if (N >= nr_preds) {
506 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
507 goto out_free;
508 }
509
510 inverts[N] = invert; /* #4 */
511 prog[N].target = N-1;
512
513 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
514 if (len < 0) {
515 ret = len;
516 goto out_free;
517 }
518 ptr = next + len;
519
520 N++;
521
522 ret = -1;
523 while (1) { /* #5 */
524 next = ptr++;
525 if (isspace(*next))
526 continue;
527
528 switch (*next) {
529 case ')':
530 case '\0':
531 break;
532 case '&':
533 case '|':
534 /* accepting only "&&" or "||" */
535 if (next[1] == next[0]) {
536 ptr++;
537 break;
538 }
539 fallthrough;
540 default:
541 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
542 next - str);
543 goto out_free;
544 }
545
546 invert = *top & INVERT;
547
548 if (*top & PROCESS_AND) { /* #7 */
549 update_preds(prog, N - 1, invert);
550 *top &= ~PROCESS_AND;
551 }
552 if (*next == '&') { /* #8 */
553 *top |= PROCESS_AND;
554 break;
555 }
556 if (*top & PROCESS_OR) { /* #9 */
557 update_preds(prog, N - 1, !invert);
558 *top &= ~PROCESS_OR;
559 }
560 if (*next == '|') { /* #10 */
561 *top |= PROCESS_OR;
562 break;
563 }
564 if (!*next) /* #11 */
565 goto out;
566
567 if (top == op_stack) {
568 ret = -1;
569 /* Too few '(' */
570 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
571 goto out_free;
572 }
573 top--; /* #12 */
574 }
575 }
576 out:
577 if (top != op_stack) {
578 /* Too many '(' */
579 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
580 goto out_free;
581 }
582
583 if (!N) {
584 /* No program? */
585 ret = -EINVAL;
586 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
587 goto out_free;
588 }
589
590 prog[N].pred = NULL; /* #13 */
591 prog[N].target = 1; /* TRUE */
592 prog[N+1].pred = NULL;
593 prog[N+1].target = 0; /* FALSE */
594 prog[N-1].target = N;
595 prog[N-1].when_to_branch = false;
596
597 /* Second Pass */
598 for (i = N-1 ; i--; ) {
599 int target = prog[i].target;
600 if (prog[i].when_to_branch == prog[target].when_to_branch)
601 prog[i].target = prog[target].target;
602 }
603
604 /* Third Pass */
605 for (i = 0; i < N; i++) {
606 invert = inverts[i] ^ prog[i].when_to_branch;
607 prog[i].when_to_branch = invert;
608 /* Make sure the program always moves forward */
609 if (WARN_ON(prog[i].target <= i)) {
610 ret = -EINVAL;
611 goto out_free;
612 }
613 }
614
615 kfree(op_stack);
616 kfree(inverts);
617 return prog;
618 out_free:
619 kfree(op_stack);
620 kfree(inverts);
621 if (prog_stack) {
622 for (i = 0; prog_stack[i].pred; i++)
623 kfree(prog_stack[i].pred);
624 kfree(prog_stack);
625 }
626 return ERR_PTR(ret);
627 }
628
629 enum pred_cmp_types {
630 PRED_CMP_TYPE_NOP,
631 PRED_CMP_TYPE_LT,
632 PRED_CMP_TYPE_LE,
633 PRED_CMP_TYPE_GT,
634 PRED_CMP_TYPE_GE,
635 PRED_CMP_TYPE_BAND,
636 };
637
638 #define DEFINE_COMPARISON_PRED(type) \
639 static int filter_pred_##type(struct filter_pred *pred, void *event) \
640 { \
641 switch (pred->op) { \
642 case OP_LT: { \
643 type *addr = (type *)(event + pred->offset); \
644 type val = (type)pred->val; \
645 return *addr < val; \
646 } \
647 case OP_LE: { \
648 type *addr = (type *)(event + pred->offset); \
649 type val = (type)pred->val; \
650 return *addr <= val; \
651 } \
652 case OP_GT: { \
653 type *addr = (type *)(event + pred->offset); \
654 type val = (type)pred->val; \
655 return *addr > val; \
656 } \
657 case OP_GE: { \
658 type *addr = (type *)(event + pred->offset); \
659 type val = (type)pred->val; \
660 return *addr >= val; \
661 } \
662 case OP_BAND: { \
663 type *addr = (type *)(event + pred->offset); \
664 type val = (type)pred->val; \
665 return !!(*addr & val); \
666 } \
667 default: \
668 return 0; \
669 } \
670 }
671
672 #define DEFINE_EQUALITY_PRED(size) \
673 static int filter_pred_##size(struct filter_pred *pred, void *event) \
674 { \
675 u##size *addr = (u##size *)(event + pred->offset); \
676 u##size val = (u##size)pred->val; \
677 int match; \
678 \
679 match = (val == *addr) ^ pred->not; \
680 \
681 return match; \
682 }
683
684 DEFINE_COMPARISON_PRED(s64);
685 DEFINE_COMPARISON_PRED(u64);
686 DEFINE_COMPARISON_PRED(s32);
687 DEFINE_COMPARISON_PRED(u32);
688 DEFINE_COMPARISON_PRED(s16);
689 DEFINE_COMPARISON_PRED(u16);
690 DEFINE_COMPARISON_PRED(s8);
691 DEFINE_COMPARISON_PRED(u8);
692
693 DEFINE_EQUALITY_PRED(64);
694 DEFINE_EQUALITY_PRED(32);
695 DEFINE_EQUALITY_PRED(16);
696 DEFINE_EQUALITY_PRED(8);
697
698 /* user space strings temp buffer */
699 #define USTRING_BUF_SIZE 1024
700
701 struct ustring_buffer {
702 char buffer[USTRING_BUF_SIZE];
703 };
704
705 static __percpu struct ustring_buffer *ustring_per_cpu;
706
test_string(char * str)707 static __always_inline char *test_string(char *str)
708 {
709 struct ustring_buffer *ubuf;
710 char *kstr;
711
712 if (!ustring_per_cpu)
713 return NULL;
714
715 ubuf = this_cpu_ptr(ustring_per_cpu);
716 kstr = ubuf->buffer;
717
718 /* For safety, do not trust the string pointer */
719 if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
720 return NULL;
721 return kstr;
722 }
723
test_ustring(char * str)724 static __always_inline char *test_ustring(char *str)
725 {
726 struct ustring_buffer *ubuf;
727 char __user *ustr;
728 char *kstr;
729
730 if (!ustring_per_cpu)
731 return NULL;
732
733 ubuf = this_cpu_ptr(ustring_per_cpu);
734 kstr = ubuf->buffer;
735
736 /* user space address? */
737 ustr = (char __user *)str;
738 if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
739 return NULL;
740
741 return kstr;
742 }
743
744 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)745 static int filter_pred_string(struct filter_pred *pred, void *event)
746 {
747 char *addr = (char *)(event + pred->offset);
748 int cmp, match;
749
750 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
751
752 match = cmp ^ pred->not;
753
754 return match;
755 }
756
filter_pchar(struct filter_pred * pred,char * str)757 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
758 {
759 int cmp, match;
760 int len;
761
762 len = strlen(str) + 1; /* including tailing '\0' */
763 cmp = pred->regex.match(str, &pred->regex, len);
764
765 match = cmp ^ pred->not;
766
767 return match;
768 }
769 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)770 static int filter_pred_pchar(struct filter_pred *pred, void *event)
771 {
772 char **addr = (char **)(event + pred->offset);
773 char *str;
774
775 str = test_string(*addr);
776 if (!str)
777 return 0;
778
779 return filter_pchar(pred, str);
780 }
781
782 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)783 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
784 {
785 char **addr = (char **)(event + pred->offset);
786 char *str;
787
788 str = test_ustring(*addr);
789 if (!str)
790 return 0;
791
792 return filter_pchar(pred, str);
793 }
794
795 /*
796 * Filter predicate for dynamic sized arrays of characters.
797 * These are implemented through a list of strings at the end
798 * of the entry.
799 * Also each of these strings have a field in the entry which
800 * contains its offset from the beginning of the entry.
801 * We have then first to get this field, dereference it
802 * and add it to the address of the entry, and at last we have
803 * the address of the string.
804 */
filter_pred_strloc(struct filter_pred * pred,void * event)805 static int filter_pred_strloc(struct filter_pred *pred, void *event)
806 {
807 u32 str_item = *(u32 *)(event + pred->offset);
808 int str_loc = str_item & 0xffff;
809 int str_len = str_item >> 16;
810 char *addr = (char *)(event + str_loc);
811 int cmp, match;
812
813 cmp = pred->regex.match(addr, &pred->regex, str_len);
814
815 match = cmp ^ pred->not;
816
817 return match;
818 }
819
820 /*
821 * Filter predicate for relative dynamic sized arrays of characters.
822 * These are implemented through a list of strings at the end
823 * of the entry as same as dynamic string.
824 * The difference is that the relative one records the location offset
825 * from the field itself, not the event entry.
826 */
filter_pred_strrelloc(struct filter_pred * pred,void * event)827 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
828 {
829 u32 *item = (u32 *)(event + pred->offset);
830 u32 str_item = *item;
831 int str_loc = str_item & 0xffff;
832 int str_len = str_item >> 16;
833 char *addr = (char *)(&item[1]) + str_loc;
834 int cmp, match;
835
836 cmp = pred->regex.match(addr, &pred->regex, str_len);
837
838 match = cmp ^ pred->not;
839
840 return match;
841 }
842
843 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)844 static int filter_pred_cpu(struct filter_pred *pred, void *event)
845 {
846 int cpu, cmp;
847
848 cpu = raw_smp_processor_id();
849 cmp = pred->val;
850
851 switch (pred->op) {
852 case OP_EQ:
853 return cpu == cmp;
854 case OP_NE:
855 return cpu != cmp;
856 case OP_LT:
857 return cpu < cmp;
858 case OP_LE:
859 return cpu <= cmp;
860 case OP_GT:
861 return cpu > cmp;
862 case OP_GE:
863 return cpu >= cmp;
864 default:
865 return 0;
866 }
867 }
868
869 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)870 static int filter_pred_comm(struct filter_pred *pred, void *event)
871 {
872 int cmp;
873
874 cmp = pred->regex.match(current->comm, &pred->regex,
875 TASK_COMM_LEN);
876 return cmp ^ pred->not;
877 }
878
879 /*
880 * regex_match_foo - Basic regex callbacks
881 *
882 * @str: the string to be searched
883 * @r: the regex structure containing the pattern string
884 * @len: the length of the string to be searched (including '\0')
885 *
886 * Note:
887 * - @str might not be NULL-terminated if it's of type DYN_STRING
888 * RDYN_STRING, or STATIC_STRING, unless @len is zero.
889 */
890
regex_match_full(char * str,struct regex * r,int len)891 static int regex_match_full(char *str, struct regex *r, int len)
892 {
893 /* len of zero means str is dynamic and ends with '\0' */
894 if (!len)
895 return strcmp(str, r->pattern) == 0;
896
897 return strncmp(str, r->pattern, len) == 0;
898 }
899
regex_match_front(char * str,struct regex * r,int len)900 static int regex_match_front(char *str, struct regex *r, int len)
901 {
902 if (len && len < r->len)
903 return 0;
904
905 return strncmp(str, r->pattern, r->len) == 0;
906 }
907
regex_match_middle(char * str,struct regex * r,int len)908 static int regex_match_middle(char *str, struct regex *r, int len)
909 {
910 if (!len)
911 return strstr(str, r->pattern) != NULL;
912
913 return strnstr(str, r->pattern, len) != NULL;
914 }
915
regex_match_end(char * str,struct regex * r,int len)916 static int regex_match_end(char *str, struct regex *r, int len)
917 {
918 int strlen = len - 1;
919
920 if (strlen >= r->len &&
921 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
922 return 1;
923 return 0;
924 }
925
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)926 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
927 {
928 if (glob_match(r->pattern, str))
929 return 1;
930 return 0;
931 }
932
933 /**
934 * filter_parse_regex - parse a basic regex
935 * @buff: the raw regex
936 * @len: length of the regex
937 * @search: will point to the beginning of the string to compare
938 * @not: tell whether the match will have to be inverted
939 *
940 * This passes in a buffer containing a regex and this function will
941 * set search to point to the search part of the buffer and
942 * return the type of search it is (see enum above).
943 * This does modify buff.
944 *
945 * Returns enum type.
946 * search returns the pointer to use for comparison.
947 * not returns 1 if buff started with a '!'
948 * 0 otherwise.
949 */
filter_parse_regex(char * buff,int len,char ** search,int * not)950 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
951 {
952 int type = MATCH_FULL;
953 int i;
954
955 if (buff[0] == '!') {
956 *not = 1;
957 buff++;
958 len--;
959 } else
960 *not = 0;
961
962 *search = buff;
963
964 if (isdigit(buff[0]))
965 return MATCH_INDEX;
966
967 for (i = 0; i < len; i++) {
968 if (buff[i] == '*') {
969 if (!i) {
970 type = MATCH_END_ONLY;
971 } else if (i == len - 1) {
972 if (type == MATCH_END_ONLY)
973 type = MATCH_MIDDLE_ONLY;
974 else
975 type = MATCH_FRONT_ONLY;
976 buff[i] = 0;
977 break;
978 } else { /* pattern continues, use full glob */
979 return MATCH_GLOB;
980 }
981 } else if (strchr("[?\\", buff[i])) {
982 return MATCH_GLOB;
983 }
984 }
985 if (buff[0] == '*')
986 *search = buff + 1;
987
988 return type;
989 }
990
filter_build_regex(struct filter_pred * pred)991 static void filter_build_regex(struct filter_pred *pred)
992 {
993 struct regex *r = &pred->regex;
994 char *search;
995 enum regex_type type = MATCH_FULL;
996
997 if (pred->op == OP_GLOB) {
998 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
999 r->len = strlen(search);
1000 memmove(r->pattern, search, r->len+1);
1001 }
1002
1003 switch (type) {
1004 /* MATCH_INDEX should not happen, but if it does, match full */
1005 case MATCH_INDEX:
1006 case MATCH_FULL:
1007 r->match = regex_match_full;
1008 break;
1009 case MATCH_FRONT_ONLY:
1010 r->match = regex_match_front;
1011 break;
1012 case MATCH_MIDDLE_ONLY:
1013 r->match = regex_match_middle;
1014 break;
1015 case MATCH_END_ONLY:
1016 r->match = regex_match_end;
1017 break;
1018 case MATCH_GLOB:
1019 r->match = regex_match_glob;
1020 break;
1021 }
1022 }
1023
1024
1025 #ifdef CONFIG_FTRACE_STARTUP_TEST
1026 static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1027 #else
test_pred_visited_fn(struct filter_pred * pred,void * event)1028 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1029 {
1030 return 0;
1031 }
1032 #endif
1033
1034
1035 static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1036
1037 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)1038 int filter_match_preds(struct event_filter *filter, void *rec)
1039 {
1040 struct prog_entry *prog;
1041 int i;
1042
1043 /* no filter is considered a match */
1044 if (!filter)
1045 return 1;
1046
1047 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1048 prog = rcu_dereference_raw(filter->prog);
1049 if (!prog)
1050 return 1;
1051
1052 for (i = 0; prog[i].pred; i++) {
1053 struct filter_pred *pred = prog[i].pred;
1054 int match = filter_pred_fn_call(pred, rec);
1055 if (match == prog[i].when_to_branch)
1056 i = prog[i].target;
1057 }
1058 return prog[i].target;
1059 }
1060 EXPORT_SYMBOL_GPL(filter_match_preds);
1061
remove_filter_string(struct event_filter * filter)1062 static void remove_filter_string(struct event_filter *filter)
1063 {
1064 if (!filter)
1065 return;
1066
1067 kfree(filter->filter_string);
1068 filter->filter_string = NULL;
1069 }
1070
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1071 static void append_filter_err(struct trace_array *tr,
1072 struct filter_parse_error *pe,
1073 struct event_filter *filter)
1074 {
1075 struct trace_seq *s;
1076 int pos = pe->lasterr_pos;
1077 char *buf;
1078 int len;
1079
1080 if (WARN_ON(!filter->filter_string))
1081 return;
1082
1083 s = kmalloc(sizeof(*s), GFP_KERNEL);
1084 if (!s)
1085 return;
1086 trace_seq_init(s);
1087
1088 len = strlen(filter->filter_string);
1089 if (pos > len)
1090 pos = len;
1091
1092 /* indexing is off by one */
1093 if (pos)
1094 pos++;
1095
1096 trace_seq_puts(s, filter->filter_string);
1097 if (pe->lasterr > 0) {
1098 trace_seq_printf(s, "\n%*s", pos, "^");
1099 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1100 tracing_log_err(tr, "event filter parse error",
1101 filter->filter_string, err_text,
1102 pe->lasterr, pe->lasterr_pos);
1103 } else {
1104 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1105 tracing_log_err(tr, "event filter parse error",
1106 filter->filter_string, err_text,
1107 FILT_ERR_ERRNO, 0);
1108 }
1109 trace_seq_putc(s, 0);
1110 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1111 if (buf) {
1112 kfree(filter->filter_string);
1113 filter->filter_string = buf;
1114 }
1115 kfree(s);
1116 }
1117
event_filter(struct trace_event_file * file)1118 static inline struct event_filter *event_filter(struct trace_event_file *file)
1119 {
1120 return file->filter;
1121 }
1122
1123 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1124 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1125 {
1126 struct event_filter *filter = event_filter(file);
1127
1128 if (filter && filter->filter_string)
1129 trace_seq_printf(s, "%s\n", filter->filter_string);
1130 else
1131 trace_seq_puts(s, "none\n");
1132 }
1133
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1134 void print_subsystem_event_filter(struct event_subsystem *system,
1135 struct trace_seq *s)
1136 {
1137 struct event_filter *filter;
1138
1139 mutex_lock(&event_mutex);
1140 filter = system->filter;
1141 if (filter && filter->filter_string)
1142 trace_seq_printf(s, "%s\n", filter->filter_string);
1143 else
1144 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1145 mutex_unlock(&event_mutex);
1146 }
1147
free_prog(struct event_filter * filter)1148 static void free_prog(struct event_filter *filter)
1149 {
1150 struct prog_entry *prog;
1151 int i;
1152
1153 prog = rcu_access_pointer(filter->prog);
1154 if (!prog)
1155 return;
1156
1157 for (i = 0; prog[i].pred; i++)
1158 kfree(prog[i].pred);
1159 kfree(prog);
1160 }
1161
filter_disable(struct trace_event_file * file)1162 static void filter_disable(struct trace_event_file *file)
1163 {
1164 unsigned long old_flags = file->flags;
1165
1166 file->flags &= ~EVENT_FILE_FL_FILTERED;
1167
1168 if (old_flags != file->flags)
1169 trace_buffered_event_disable();
1170 }
1171
__free_filter(struct event_filter * filter)1172 static void __free_filter(struct event_filter *filter)
1173 {
1174 if (!filter)
1175 return;
1176
1177 free_prog(filter);
1178 kfree(filter->filter_string);
1179 kfree(filter);
1180 }
1181
free_event_filter(struct event_filter * filter)1182 void free_event_filter(struct event_filter *filter)
1183 {
1184 __free_filter(filter);
1185 }
1186
__remove_filter(struct trace_event_file * file)1187 static inline void __remove_filter(struct trace_event_file *file)
1188 {
1189 filter_disable(file);
1190 remove_filter_string(file->filter);
1191 }
1192
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1193 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1194 struct trace_array *tr)
1195 {
1196 struct trace_event_file *file;
1197
1198 list_for_each_entry(file, &tr->events, list) {
1199 if (file->system != dir)
1200 continue;
1201 __remove_filter(file);
1202 }
1203 }
1204
__free_subsystem_filter(struct trace_event_file * file)1205 static inline void __free_subsystem_filter(struct trace_event_file *file)
1206 {
1207 __free_filter(file->filter);
1208 file->filter = NULL;
1209 }
1210
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1211 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1212 struct trace_array *tr)
1213 {
1214 struct trace_event_file *file;
1215
1216 list_for_each_entry(file, &tr->events, list) {
1217 if (file->system != dir)
1218 continue;
1219 __free_subsystem_filter(file);
1220 }
1221 }
1222
filter_assign_type(const char * type)1223 int filter_assign_type(const char *type)
1224 {
1225 if (strstr(type, "__data_loc") && strstr(type, "char"))
1226 return FILTER_DYN_STRING;
1227
1228 if (strstr(type, "__rel_loc") && strstr(type, "char"))
1229 return FILTER_RDYN_STRING;
1230
1231 if (strchr(type, '[') && strstr(type, "char"))
1232 return FILTER_STATIC_STRING;
1233
1234 if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1235 return FILTER_PTR_STRING;
1236
1237 return FILTER_OTHER;
1238 }
1239
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1240 static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1241 int field_size, int field_is_signed)
1242 {
1243 enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1244 int pred_func_index = -1;
1245
1246 switch (op) {
1247 case OP_EQ:
1248 case OP_NE:
1249 break;
1250 default:
1251 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1252 return fn;
1253 pred_func_index = op - PRED_FUNC_START;
1254 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1255 return fn;
1256 }
1257
1258 switch (field_size) {
1259 case 8:
1260 if (pred_func_index < 0)
1261 fn = FILTER_PRED_FN_64;
1262 else if (field_is_signed)
1263 fn = FILTER_PRED_FN_S64;
1264 else
1265 fn = FILTER_PRED_FN_U64;
1266 break;
1267 case 4:
1268 if (pred_func_index < 0)
1269 fn = FILTER_PRED_FN_32;
1270 else if (field_is_signed)
1271 fn = FILTER_PRED_FN_S32;
1272 else
1273 fn = FILTER_PRED_FN_U32;
1274 break;
1275 case 2:
1276 if (pred_func_index < 0)
1277 fn = FILTER_PRED_FN_16;
1278 else if (field_is_signed)
1279 fn = FILTER_PRED_FN_S16;
1280 else
1281 fn = FILTER_PRED_FN_U16;
1282 break;
1283 case 1:
1284 if (pred_func_index < 0)
1285 fn = FILTER_PRED_FN_8;
1286 else if (field_is_signed)
1287 fn = FILTER_PRED_FN_S8;
1288 else
1289 fn = FILTER_PRED_FN_U8;
1290 break;
1291 }
1292
1293 return fn;
1294 }
1295
1296
filter_pred_fn_call(struct filter_pred * pred,void * event)1297 static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1298 {
1299 switch (pred->fn_num) {
1300 case FILTER_PRED_FN_64:
1301 return filter_pred_64(pred, event);
1302 case FILTER_PRED_FN_S64:
1303 return filter_pred_s64(pred, event);
1304 case FILTER_PRED_FN_U64:
1305 return filter_pred_u64(pred, event);
1306 case FILTER_PRED_FN_32:
1307 return filter_pred_32(pred, event);
1308 case FILTER_PRED_FN_S32:
1309 return filter_pred_s32(pred, event);
1310 case FILTER_PRED_FN_U32:
1311 return filter_pred_u32(pred, event);
1312 case FILTER_PRED_FN_16:
1313 return filter_pred_16(pred, event);
1314 case FILTER_PRED_FN_S16:
1315 return filter_pred_s16(pred, event);
1316 case FILTER_PRED_FN_U16:
1317 return filter_pred_u16(pred, event);
1318 case FILTER_PRED_FN_8:
1319 return filter_pred_8(pred, event);
1320 case FILTER_PRED_FN_S8:
1321 return filter_pred_s8(pred, event);
1322 case FILTER_PRED_FN_U8:
1323 return filter_pred_u8(pred, event);
1324 case FILTER_PRED_FN_COMM:
1325 return filter_pred_comm(pred, event);
1326 case FILTER_PRED_FN_STRING:
1327 return filter_pred_string(pred, event);
1328 case FILTER_PRED_FN_STRLOC:
1329 return filter_pred_strloc(pred, event);
1330 case FILTER_PRED_FN_STRRELLOC:
1331 return filter_pred_strrelloc(pred, event);
1332 case FILTER_PRED_FN_PCHAR_USER:
1333 return filter_pred_pchar_user(pred, event);
1334 case FILTER_PRED_FN_PCHAR:
1335 return filter_pred_pchar(pred, event);
1336 case FILTER_PRED_FN_CPU:
1337 return filter_pred_cpu(pred, event);
1338 case FILTER_PRED_TEST_VISITED:
1339 return test_pred_visited_fn(pred, event);
1340 default:
1341 return 0;
1342 }
1343 }
1344
1345 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1346 static int parse_pred(const char *str, void *data,
1347 int pos, struct filter_parse_error *pe,
1348 struct filter_pred **pred_ptr)
1349 {
1350 struct trace_event_call *call = data;
1351 struct ftrace_event_field *field;
1352 struct filter_pred *pred = NULL;
1353 char num_buf[24]; /* Big enough to hold an address */
1354 char *field_name;
1355 bool ustring = false;
1356 char q;
1357 u64 val;
1358 int len;
1359 int ret;
1360 int op;
1361 int s;
1362 int i = 0;
1363
1364 /* First find the field to associate to */
1365 while (isspace(str[i]))
1366 i++;
1367 s = i;
1368
1369 while (isalnum(str[i]) || str[i] == '_')
1370 i++;
1371
1372 len = i - s;
1373
1374 if (!len)
1375 return -1;
1376
1377 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1378 if (!field_name)
1379 return -ENOMEM;
1380
1381 /* Make sure that the field exists */
1382
1383 field = trace_find_event_field(call, field_name);
1384 kfree(field_name);
1385 if (!field) {
1386 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1387 return -EINVAL;
1388 }
1389
1390 /* See if the field is a user space string */
1391 if ((len = str_has_prefix(str + i, ".ustring"))) {
1392 ustring = true;
1393 i += len;
1394 }
1395
1396 while (isspace(str[i]))
1397 i++;
1398
1399 /* Make sure this op is supported */
1400 for (op = 0; ops[op]; op++) {
1401 /* This is why '<=' must come before '<' in ops[] */
1402 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1403 break;
1404 }
1405
1406 if (!ops[op]) {
1407 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1408 goto err_free;
1409 }
1410
1411 i += strlen(ops[op]);
1412
1413 while (isspace(str[i]))
1414 i++;
1415
1416 s = i;
1417
1418 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1419 if (!pred)
1420 return -ENOMEM;
1421
1422 pred->field = field;
1423 pred->offset = field->offset;
1424 pred->op = op;
1425
1426 if (ftrace_event_is_function(call)) {
1427 /*
1428 * Perf does things different with function events.
1429 * It only allows an "ip" field, and expects a string.
1430 * But the string does not need to be surrounded by quotes.
1431 * If it is a string, the assigned function as a nop,
1432 * (perf doesn't use it) and grab everything.
1433 */
1434 if (strcmp(field->name, "ip") != 0) {
1435 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1436 goto err_free;
1437 }
1438 pred->fn_num = FILTER_PRED_FN_NOP;
1439
1440 /*
1441 * Quotes are not required, but if they exist then we need
1442 * to read them till we hit a matching one.
1443 */
1444 if (str[i] == '\'' || str[i] == '"')
1445 q = str[i];
1446 else
1447 q = 0;
1448
1449 for (i++; str[i]; i++) {
1450 if (q && str[i] == q)
1451 break;
1452 if (!q && (str[i] == ')' || str[i] == '&' ||
1453 str[i] == '|'))
1454 break;
1455 }
1456 /* Skip quotes */
1457 if (q)
1458 s++;
1459 len = i - s;
1460 if (len >= MAX_FILTER_STR_VAL) {
1461 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1462 goto err_free;
1463 }
1464
1465 pred->regex.len = len;
1466 strncpy(pred->regex.pattern, str + s, len);
1467 pred->regex.pattern[len] = 0;
1468
1469 /* This is either a string, or an integer */
1470 } else if (str[i] == '\'' || str[i] == '"') {
1471 char q = str[i];
1472
1473 /* Make sure the op is OK for strings */
1474 switch (op) {
1475 case OP_NE:
1476 pred->not = 1;
1477 fallthrough;
1478 case OP_GLOB:
1479 case OP_EQ:
1480 break;
1481 default:
1482 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1483 goto err_free;
1484 }
1485
1486 /* Make sure the field is OK for strings */
1487 if (!is_string_field(field)) {
1488 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1489 goto err_free;
1490 }
1491
1492 for (i++; str[i]; i++) {
1493 if (str[i] == q)
1494 break;
1495 }
1496 if (!str[i]) {
1497 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1498 goto err_free;
1499 }
1500
1501 /* Skip quotes */
1502 s++;
1503 len = i - s;
1504 if (len >= MAX_FILTER_STR_VAL) {
1505 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1506 goto err_free;
1507 }
1508
1509 pred->regex.len = len;
1510 strncpy(pred->regex.pattern, str + s, len);
1511 pred->regex.pattern[len] = 0;
1512
1513 filter_build_regex(pred);
1514
1515 if (field->filter_type == FILTER_COMM) {
1516 pred->fn_num = FILTER_PRED_FN_COMM;
1517
1518 } else if (field->filter_type == FILTER_STATIC_STRING) {
1519 pred->fn_num = FILTER_PRED_FN_STRING;
1520 pred->regex.field_len = field->size;
1521
1522 } else if (field->filter_type == FILTER_DYN_STRING) {
1523 pred->fn_num = FILTER_PRED_FN_STRLOC;
1524 } else if (field->filter_type == FILTER_RDYN_STRING)
1525 pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1526 else {
1527
1528 if (!ustring_per_cpu) {
1529 /* Once allocated, keep it around for good */
1530 ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1531 if (!ustring_per_cpu)
1532 goto err_mem;
1533 }
1534
1535 if (ustring)
1536 pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
1537 else
1538 pred->fn_num = FILTER_PRED_FN_PCHAR;
1539 }
1540 /* go past the last quote */
1541 i++;
1542
1543 } else if (isdigit(str[i]) || str[i] == '-') {
1544
1545 /* Make sure the field is not a string */
1546 if (is_string_field(field)) {
1547 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1548 goto err_free;
1549 }
1550
1551 if (op == OP_GLOB) {
1552 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1553 goto err_free;
1554 }
1555
1556 if (str[i] == '-')
1557 i++;
1558
1559 /* We allow 0xDEADBEEF */
1560 while (isalnum(str[i]))
1561 i++;
1562
1563 len = i - s;
1564 /* 0xfeedfacedeadbeef is 18 chars max */
1565 if (len >= sizeof(num_buf)) {
1566 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1567 goto err_free;
1568 }
1569
1570 strncpy(num_buf, str + s, len);
1571 num_buf[len] = 0;
1572
1573 /* Make sure it is a value */
1574 if (field->is_signed)
1575 ret = kstrtoll(num_buf, 0, &val);
1576 else
1577 ret = kstrtoull(num_buf, 0, &val);
1578 if (ret) {
1579 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1580 goto err_free;
1581 }
1582
1583 pred->val = val;
1584
1585 if (field->filter_type == FILTER_CPU)
1586 pred->fn_num = FILTER_PRED_FN_CPU;
1587 else {
1588 pred->fn_num = select_comparison_fn(pred->op, field->size,
1589 field->is_signed);
1590 if (pred->op == OP_NE)
1591 pred->not = 1;
1592 }
1593
1594 } else {
1595 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1596 goto err_free;
1597 }
1598
1599 *pred_ptr = pred;
1600 return i;
1601
1602 err_free:
1603 kfree(pred);
1604 return -EINVAL;
1605 err_mem:
1606 kfree(pred);
1607 return -ENOMEM;
1608 }
1609
1610 enum {
1611 TOO_MANY_CLOSE = -1,
1612 TOO_MANY_OPEN = -2,
1613 MISSING_QUOTE = -3,
1614 };
1615
1616 /*
1617 * Read the filter string once to calculate the number of predicates
1618 * as well as how deep the parentheses go.
1619 *
1620 * Returns:
1621 * 0 - everything is fine (err is undefined)
1622 * -1 - too many ')'
1623 * -2 - too many '('
1624 * -3 - No matching quote
1625 */
calc_stack(const char * str,int * parens,int * preds,int * err)1626 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1627 {
1628 bool is_pred = false;
1629 int nr_preds = 0;
1630 int open = 1; /* Count the expression as "(E)" */
1631 int last_quote = 0;
1632 int max_open = 1;
1633 int quote = 0;
1634 int i;
1635
1636 *err = 0;
1637
1638 for (i = 0; str[i]; i++) {
1639 if (isspace(str[i]))
1640 continue;
1641 if (quote) {
1642 if (str[i] == quote)
1643 quote = 0;
1644 continue;
1645 }
1646
1647 switch (str[i]) {
1648 case '\'':
1649 case '"':
1650 quote = str[i];
1651 last_quote = i;
1652 break;
1653 case '|':
1654 case '&':
1655 if (str[i+1] != str[i])
1656 break;
1657 is_pred = false;
1658 continue;
1659 case '(':
1660 is_pred = false;
1661 open++;
1662 if (open > max_open)
1663 max_open = open;
1664 continue;
1665 case ')':
1666 is_pred = false;
1667 if (open == 1) {
1668 *err = i;
1669 return TOO_MANY_CLOSE;
1670 }
1671 open--;
1672 continue;
1673 }
1674 if (!is_pred) {
1675 nr_preds++;
1676 is_pred = true;
1677 }
1678 }
1679
1680 if (quote) {
1681 *err = last_quote;
1682 return MISSING_QUOTE;
1683 }
1684
1685 if (open != 1) {
1686 int level = open;
1687
1688 /* find the bad open */
1689 for (i--; i; i--) {
1690 if (quote) {
1691 if (str[i] == quote)
1692 quote = 0;
1693 continue;
1694 }
1695 switch (str[i]) {
1696 case '(':
1697 if (level == open) {
1698 *err = i;
1699 return TOO_MANY_OPEN;
1700 }
1701 level--;
1702 break;
1703 case ')':
1704 level++;
1705 break;
1706 case '\'':
1707 case '"':
1708 quote = str[i];
1709 break;
1710 }
1711 }
1712 /* First character is the '(' with missing ')' */
1713 *err = 0;
1714 return TOO_MANY_OPEN;
1715 }
1716
1717 /* Set the size of the required stacks */
1718 *parens = max_open;
1719 *preds = nr_preds;
1720 return 0;
1721 }
1722
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)1723 static int process_preds(struct trace_event_call *call,
1724 const char *filter_string,
1725 struct event_filter *filter,
1726 struct filter_parse_error *pe)
1727 {
1728 struct prog_entry *prog;
1729 int nr_parens;
1730 int nr_preds;
1731 int index;
1732 int ret;
1733
1734 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1735 if (ret < 0) {
1736 switch (ret) {
1737 case MISSING_QUOTE:
1738 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1739 break;
1740 case TOO_MANY_OPEN:
1741 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1742 break;
1743 default:
1744 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1745 }
1746 return ret;
1747 }
1748
1749 if (!nr_preds)
1750 return -EINVAL;
1751
1752 prog = predicate_parse(filter_string, nr_parens, nr_preds,
1753 parse_pred, call, pe);
1754 if (IS_ERR(prog))
1755 return PTR_ERR(prog);
1756
1757 rcu_assign_pointer(filter->prog, prog);
1758 return 0;
1759 }
1760
event_set_filtered_flag(struct trace_event_file * file)1761 static inline void event_set_filtered_flag(struct trace_event_file *file)
1762 {
1763 unsigned long old_flags = file->flags;
1764
1765 file->flags |= EVENT_FILE_FL_FILTERED;
1766
1767 if (old_flags != file->flags)
1768 trace_buffered_event_enable();
1769 }
1770
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1771 static inline void event_set_filter(struct trace_event_file *file,
1772 struct event_filter *filter)
1773 {
1774 rcu_assign_pointer(file->filter, filter);
1775 }
1776
event_clear_filter(struct trace_event_file * file)1777 static inline void event_clear_filter(struct trace_event_file *file)
1778 {
1779 RCU_INIT_POINTER(file->filter, NULL);
1780 }
1781
1782 struct filter_list {
1783 struct list_head list;
1784 struct event_filter *filter;
1785 };
1786
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)1787 static int process_system_preds(struct trace_subsystem_dir *dir,
1788 struct trace_array *tr,
1789 struct filter_parse_error *pe,
1790 char *filter_string)
1791 {
1792 struct trace_event_file *file;
1793 struct filter_list *filter_item;
1794 struct event_filter *filter = NULL;
1795 struct filter_list *tmp;
1796 LIST_HEAD(filter_list);
1797 bool fail = true;
1798 int err;
1799
1800 list_for_each_entry(file, &tr->events, list) {
1801
1802 if (file->system != dir)
1803 continue;
1804
1805 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1806 if (!filter)
1807 goto fail_mem;
1808
1809 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1810 if (!filter->filter_string)
1811 goto fail_mem;
1812
1813 err = process_preds(file->event_call, filter_string, filter, pe);
1814 if (err) {
1815 filter_disable(file);
1816 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1817 append_filter_err(tr, pe, filter);
1818 } else
1819 event_set_filtered_flag(file);
1820
1821
1822 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1823 if (!filter_item)
1824 goto fail_mem;
1825
1826 list_add_tail(&filter_item->list, &filter_list);
1827 /*
1828 * Regardless of if this returned an error, we still
1829 * replace the filter for the call.
1830 */
1831 filter_item->filter = event_filter(file);
1832 event_set_filter(file, filter);
1833 filter = NULL;
1834
1835 fail = false;
1836 }
1837
1838 if (fail)
1839 goto fail;
1840
1841 /*
1842 * The calls can still be using the old filters.
1843 * Do a synchronize_rcu() and to ensure all calls are
1844 * done with them before we free them.
1845 */
1846 tracepoint_synchronize_unregister();
1847 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1848 __free_filter(filter_item->filter);
1849 list_del(&filter_item->list);
1850 kfree(filter_item);
1851 }
1852 return 0;
1853 fail:
1854 /* No call succeeded */
1855 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1856 list_del(&filter_item->list);
1857 kfree(filter_item);
1858 }
1859 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1860 return -EINVAL;
1861 fail_mem:
1862 __free_filter(filter);
1863 /* If any call succeeded, we still need to sync */
1864 if (!fail)
1865 tracepoint_synchronize_unregister();
1866 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1867 __free_filter(filter_item->filter);
1868 list_del(&filter_item->list);
1869 kfree(filter_item);
1870 }
1871 return -ENOMEM;
1872 }
1873
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)1874 static int create_filter_start(char *filter_string, bool set_str,
1875 struct filter_parse_error **pse,
1876 struct event_filter **filterp)
1877 {
1878 struct event_filter *filter;
1879 struct filter_parse_error *pe = NULL;
1880 int err = 0;
1881
1882 if (WARN_ON_ONCE(*pse || *filterp))
1883 return -EINVAL;
1884
1885 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1886 if (filter && set_str) {
1887 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1888 if (!filter->filter_string)
1889 err = -ENOMEM;
1890 }
1891
1892 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1893
1894 if (!filter || !pe || err) {
1895 kfree(pe);
1896 __free_filter(filter);
1897 return -ENOMEM;
1898 }
1899
1900 /* we're committed to creating a new filter */
1901 *filterp = filter;
1902 *pse = pe;
1903
1904 return 0;
1905 }
1906
create_filter_finish(struct filter_parse_error * pe)1907 static void create_filter_finish(struct filter_parse_error *pe)
1908 {
1909 kfree(pe);
1910 }
1911
1912 /**
1913 * create_filter - create a filter for a trace_event_call
1914 * @tr: the trace array associated with these events
1915 * @call: trace_event_call to create a filter for
1916 * @filter_string: filter string
1917 * @set_str: remember @filter_str and enable detailed error in filter
1918 * @filterp: out param for created filter (always updated on return)
1919 * Must be a pointer that references a NULL pointer.
1920 *
1921 * Creates a filter for @call with @filter_str. If @set_str is %true,
1922 * @filter_str is copied and recorded in the new filter.
1923 *
1924 * On success, returns 0 and *@filterp points to the new filter. On
1925 * failure, returns -errno and *@filterp may point to %NULL or to a new
1926 * filter. In the latter case, the returned filter contains error
1927 * information if @set_str is %true and the caller is responsible for
1928 * freeing it.
1929 */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)1930 static int create_filter(struct trace_array *tr,
1931 struct trace_event_call *call,
1932 char *filter_string, bool set_str,
1933 struct event_filter **filterp)
1934 {
1935 struct filter_parse_error *pe = NULL;
1936 int err;
1937
1938 /* filterp must point to NULL */
1939 if (WARN_ON(*filterp))
1940 *filterp = NULL;
1941
1942 err = create_filter_start(filter_string, set_str, &pe, filterp);
1943 if (err)
1944 return err;
1945
1946 err = process_preds(call, filter_string, *filterp, pe);
1947 if (err && set_str)
1948 append_filter_err(tr, pe, *filterp);
1949 create_filter_finish(pe);
1950
1951 return err;
1952 }
1953
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)1954 int create_event_filter(struct trace_array *tr,
1955 struct trace_event_call *call,
1956 char *filter_str, bool set_str,
1957 struct event_filter **filterp)
1958 {
1959 return create_filter(tr, call, filter_str, set_str, filterp);
1960 }
1961
1962 /**
1963 * create_system_filter - create a filter for an event subsystem
1964 * @dir: the descriptor for the subsystem directory
1965 * @filter_str: filter string
1966 * @filterp: out param for created filter (always updated on return)
1967 *
1968 * Identical to create_filter() except that it creates a subsystem filter
1969 * and always remembers @filter_str.
1970 */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)1971 static int create_system_filter(struct trace_subsystem_dir *dir,
1972 char *filter_str, struct event_filter **filterp)
1973 {
1974 struct filter_parse_error *pe = NULL;
1975 int err;
1976
1977 err = create_filter_start(filter_str, true, &pe, filterp);
1978 if (!err) {
1979 err = process_system_preds(dir, dir->tr, pe, filter_str);
1980 if (!err) {
1981 /* System filters just show a default message */
1982 kfree((*filterp)->filter_string);
1983 (*filterp)->filter_string = NULL;
1984 } else {
1985 append_filter_err(dir->tr, pe, *filterp);
1986 }
1987 }
1988 create_filter_finish(pe);
1989
1990 return err;
1991 }
1992
1993 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)1994 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1995 {
1996 struct trace_event_call *call = file->event_call;
1997 struct event_filter *filter = NULL;
1998 int err;
1999
2000 if (!strcmp(strstrip(filter_string), "0")) {
2001 filter_disable(file);
2002 filter = event_filter(file);
2003
2004 if (!filter)
2005 return 0;
2006
2007 event_clear_filter(file);
2008
2009 /* Make sure the filter is not being used */
2010 tracepoint_synchronize_unregister();
2011 __free_filter(filter);
2012
2013 return 0;
2014 }
2015
2016 err = create_filter(file->tr, call, filter_string, true, &filter);
2017
2018 /*
2019 * Always swap the call filter with the new filter
2020 * even if there was an error. If there was an error
2021 * in the filter, we disable the filter and show the error
2022 * string
2023 */
2024 if (filter) {
2025 struct event_filter *tmp;
2026
2027 tmp = event_filter(file);
2028 if (!err)
2029 event_set_filtered_flag(file);
2030 else
2031 filter_disable(file);
2032
2033 event_set_filter(file, filter);
2034
2035 if (tmp) {
2036 /* Make sure the call is done with the filter */
2037 tracepoint_synchronize_unregister();
2038 __free_filter(tmp);
2039 }
2040 }
2041
2042 return err;
2043 }
2044
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)2045 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2046 char *filter_string)
2047 {
2048 struct event_subsystem *system = dir->subsystem;
2049 struct trace_array *tr = dir->tr;
2050 struct event_filter *filter = NULL;
2051 int err = 0;
2052
2053 mutex_lock(&event_mutex);
2054
2055 /* Make sure the system still has events */
2056 if (!dir->nr_events) {
2057 err = -ENODEV;
2058 goto out_unlock;
2059 }
2060
2061 if (!strcmp(strstrip(filter_string), "0")) {
2062 filter_free_subsystem_preds(dir, tr);
2063 remove_filter_string(system->filter);
2064 filter = system->filter;
2065 system->filter = NULL;
2066 /* Ensure all filters are no longer used */
2067 tracepoint_synchronize_unregister();
2068 filter_free_subsystem_filters(dir, tr);
2069 __free_filter(filter);
2070 goto out_unlock;
2071 }
2072
2073 err = create_system_filter(dir, filter_string, &filter);
2074 if (filter) {
2075 /*
2076 * No event actually uses the system filter
2077 * we can free it without synchronize_rcu().
2078 */
2079 __free_filter(system->filter);
2080 system->filter = filter;
2081 }
2082 out_unlock:
2083 mutex_unlock(&event_mutex);
2084
2085 return err;
2086 }
2087
2088 #ifdef CONFIG_PERF_EVENTS
2089
ftrace_profile_free_filter(struct perf_event * event)2090 void ftrace_profile_free_filter(struct perf_event *event)
2091 {
2092 struct event_filter *filter = event->filter;
2093
2094 event->filter = NULL;
2095 __free_filter(filter);
2096 }
2097
2098 struct function_filter_data {
2099 struct ftrace_ops *ops;
2100 int first_filter;
2101 int first_notrace;
2102 };
2103
2104 #ifdef CONFIG_FUNCTION_TRACER
2105 static char **
ftrace_function_filter_re(char * buf,int len,int * count)2106 ftrace_function_filter_re(char *buf, int len, int *count)
2107 {
2108 char *str, **re;
2109
2110 str = kstrndup(buf, len, GFP_KERNEL);
2111 if (!str)
2112 return NULL;
2113
2114 /*
2115 * The argv_split function takes white space
2116 * as a separator, so convert ',' into spaces.
2117 */
2118 strreplace(str, ',', ' ');
2119
2120 re = argv_split(GFP_KERNEL, str, count);
2121 kfree(str);
2122 return re;
2123 }
2124
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2125 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2126 int reset, char *re, int len)
2127 {
2128 int ret;
2129
2130 if (filter)
2131 ret = ftrace_set_filter(ops, re, len, reset);
2132 else
2133 ret = ftrace_set_notrace(ops, re, len, reset);
2134
2135 return ret;
2136 }
2137
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2138 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2139 struct function_filter_data *data)
2140 {
2141 int i, re_cnt, ret = -EINVAL;
2142 int *reset;
2143 char **re;
2144
2145 reset = filter ? &data->first_filter : &data->first_notrace;
2146
2147 /*
2148 * The 'ip' field could have multiple filters set, separated
2149 * either by space or comma. We first cut the filter and apply
2150 * all pieces separately.
2151 */
2152 re = ftrace_function_filter_re(buf, len, &re_cnt);
2153 if (!re)
2154 return -EINVAL;
2155
2156 for (i = 0; i < re_cnt; i++) {
2157 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2158 re[i], strlen(re[i]));
2159 if (ret)
2160 break;
2161
2162 if (*reset)
2163 *reset = 0;
2164 }
2165
2166 argv_free(re);
2167 return ret;
2168 }
2169
ftrace_function_check_pred(struct filter_pred * pred)2170 static int ftrace_function_check_pred(struct filter_pred *pred)
2171 {
2172 struct ftrace_event_field *field = pred->field;
2173
2174 /*
2175 * Check the predicate for function trace, verify:
2176 * - only '==' and '!=' is used
2177 * - the 'ip' field is used
2178 */
2179 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2180 return -EINVAL;
2181
2182 if (strcmp(field->name, "ip"))
2183 return -EINVAL;
2184
2185 return 0;
2186 }
2187
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2188 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2189 struct function_filter_data *data)
2190 {
2191 int ret;
2192
2193 /* Checking the node is valid for function trace. */
2194 ret = ftrace_function_check_pred(pred);
2195 if (ret)
2196 return ret;
2197
2198 return __ftrace_function_set_filter(pred->op == OP_EQ,
2199 pred->regex.pattern,
2200 pred->regex.len,
2201 data);
2202 }
2203
is_or(struct prog_entry * prog,int i)2204 static bool is_or(struct prog_entry *prog, int i)
2205 {
2206 int target;
2207
2208 /*
2209 * Only "||" is allowed for function events, thus,
2210 * all true branches should jump to true, and any
2211 * false branch should jump to false.
2212 */
2213 target = prog[i].target + 1;
2214 /* True and false have NULL preds (all prog entries should jump to one */
2215 if (prog[target].pred)
2216 return false;
2217
2218 /* prog[target].target is 1 for TRUE, 0 for FALSE */
2219 return prog[i].when_to_branch == prog[target].target;
2220 }
2221
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2222 static int ftrace_function_set_filter(struct perf_event *event,
2223 struct event_filter *filter)
2224 {
2225 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2226 lockdep_is_held(&event_mutex));
2227 struct function_filter_data data = {
2228 .first_filter = 1,
2229 .first_notrace = 1,
2230 .ops = &event->ftrace_ops,
2231 };
2232 int i;
2233
2234 for (i = 0; prog[i].pred; i++) {
2235 struct filter_pred *pred = prog[i].pred;
2236
2237 if (!is_or(prog, i))
2238 return -EINVAL;
2239
2240 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2241 return -EINVAL;
2242 }
2243 return 0;
2244 }
2245 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2246 static int ftrace_function_set_filter(struct perf_event *event,
2247 struct event_filter *filter)
2248 {
2249 return -ENODEV;
2250 }
2251 #endif /* CONFIG_FUNCTION_TRACER */
2252
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2253 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2254 char *filter_str)
2255 {
2256 int err;
2257 struct event_filter *filter = NULL;
2258 struct trace_event_call *call;
2259
2260 mutex_lock(&event_mutex);
2261
2262 call = event->tp_event;
2263
2264 err = -EINVAL;
2265 if (!call)
2266 goto out_unlock;
2267
2268 err = -EEXIST;
2269 if (event->filter)
2270 goto out_unlock;
2271
2272 err = create_filter(NULL, call, filter_str, false, &filter);
2273 if (err)
2274 goto free_filter;
2275
2276 if (ftrace_event_is_function(call))
2277 err = ftrace_function_set_filter(event, filter);
2278 else
2279 event->filter = filter;
2280
2281 free_filter:
2282 if (err || ftrace_event_is_function(call))
2283 __free_filter(filter);
2284
2285 out_unlock:
2286 mutex_unlock(&event_mutex);
2287
2288 return err;
2289 }
2290
2291 #endif /* CONFIG_PERF_EVENTS */
2292
2293 #ifdef CONFIG_FTRACE_STARTUP_TEST
2294
2295 #include <linux/types.h>
2296 #include <linux/tracepoint.h>
2297
2298 #define CREATE_TRACE_POINTS
2299 #include "trace_events_filter_test.h"
2300
2301 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2302 { \
2303 .filter = FILTER, \
2304 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2305 .e = ve, .f = vf, .g = vg, .h = vh }, \
2306 .match = m, \
2307 .not_visited = nvisit, \
2308 }
2309 #define YES 1
2310 #define NO 0
2311
2312 static struct test_filter_data_t {
2313 char *filter;
2314 struct trace_event_raw_ftrace_test_filter rec;
2315 int match;
2316 char *not_visited;
2317 } test_filter_data[] = {
2318 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2319 "e == 1 && f == 1 && g == 1 && h == 1"
2320 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2321 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2322 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2323 #undef FILTER
2324 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2325 "e == 1 || f == 1 || g == 1 || h == 1"
2326 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2327 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2328 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2329 #undef FILTER
2330 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2331 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2332 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2333 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2334 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2335 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2336 #undef FILTER
2337 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2338 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2339 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2340 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2341 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2342 #undef FILTER
2343 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2344 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2345 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2346 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2347 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2348 #undef FILTER
2349 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2350 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2351 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2352 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2353 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2354 #undef FILTER
2355 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2356 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2357 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2358 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2359 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2360 #undef FILTER
2361 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2362 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2363 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2364 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2365 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2366 };
2367
2368 #undef DATA_REC
2369 #undef FILTER
2370 #undef YES
2371 #undef NO
2372
2373 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2374
2375 static int test_pred_visited;
2376
test_pred_visited_fn(struct filter_pred * pred,void * event)2377 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2378 {
2379 struct ftrace_event_field *field = pred->field;
2380
2381 test_pred_visited = 1;
2382 printk(KERN_INFO "\npred visited %s\n", field->name);
2383 return 1;
2384 }
2385
update_pred_fn(struct event_filter * filter,char * fields)2386 static void update_pred_fn(struct event_filter *filter, char *fields)
2387 {
2388 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2389 lockdep_is_held(&event_mutex));
2390 int i;
2391
2392 for (i = 0; prog[i].pred; i++) {
2393 struct filter_pred *pred = prog[i].pred;
2394 struct ftrace_event_field *field = pred->field;
2395
2396 WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2397
2398 if (!field) {
2399 WARN_ONCE(1, "all leafs should have field defined %d", i);
2400 continue;
2401 }
2402
2403 if (!strchr(fields, *field->name))
2404 continue;
2405
2406 pred->fn_num = FILTER_PRED_TEST_VISITED;
2407 }
2408 }
2409
ftrace_test_event_filter(void)2410 static __init int ftrace_test_event_filter(void)
2411 {
2412 int i;
2413
2414 printk(KERN_INFO "Testing ftrace filter: ");
2415
2416 for (i = 0; i < DATA_CNT; i++) {
2417 struct event_filter *filter = NULL;
2418 struct test_filter_data_t *d = &test_filter_data[i];
2419 int err;
2420
2421 err = create_filter(NULL, &event_ftrace_test_filter,
2422 d->filter, false, &filter);
2423 if (err) {
2424 printk(KERN_INFO
2425 "Failed to get filter for '%s', err %d\n",
2426 d->filter, err);
2427 __free_filter(filter);
2428 break;
2429 }
2430
2431 /* Needed to dereference filter->prog */
2432 mutex_lock(&event_mutex);
2433 /*
2434 * The preemption disabling is not really needed for self
2435 * tests, but the rcu dereference will complain without it.
2436 */
2437 preempt_disable();
2438 if (*d->not_visited)
2439 update_pred_fn(filter, d->not_visited);
2440
2441 test_pred_visited = 0;
2442 err = filter_match_preds(filter, &d->rec);
2443 preempt_enable();
2444
2445 mutex_unlock(&event_mutex);
2446
2447 __free_filter(filter);
2448
2449 if (test_pred_visited) {
2450 printk(KERN_INFO
2451 "Failed, unwanted pred visited for filter %s\n",
2452 d->filter);
2453 break;
2454 }
2455
2456 if (err != d->match) {
2457 printk(KERN_INFO
2458 "Failed to match filter '%s', expected %d\n",
2459 d->filter, d->match);
2460 break;
2461 }
2462 }
2463
2464 if (i == DATA_CNT)
2465 printk(KERN_CONT "OK\n");
2466
2467 return 0;
2468 }
2469
2470 late_initcall(ftrace_test_event_filter);
2471
2472 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2473