1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_page(struct page * page,unsigned int order)56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 1 << order);
60 }
61 #else
hugetlb_cma_page(struct page * page,unsigned int order)62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64 return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 /*
70 * Minimum page order among possible hugepage sizes, set to a proper value
71 * at boot time.
72 */
73 static unsigned int minimum_order __read_mostly = UINT_MAX;
74
75 __initdata LIST_HEAD(huge_boot_pages);
76
77 /* for command line parsing */
78 static struct hstate * __initdata parsed_hstate;
79 static unsigned long __initdata default_hstate_max_huge_pages;
80 static bool __initdata parsed_valid_hugepagesz = true;
81 static bool __initdata parsed_default_hugepagesz;
82 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
83
84 /*
85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
86 * free_huge_pages, and surplus_huge_pages.
87 */
88 DEFINE_SPINLOCK(hugetlb_lock);
89
90 /*
91 * Serializes faults on the same logical page. This is used to
92 * prevent spurious OOMs when the hugepage pool is fully utilized.
93 */
94 static int num_fault_mutexes;
95 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
subpool_is_free(struct hugepage_subpool * spool)100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110 }
111
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114 {
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126 }
127
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130 {
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150 }
151
hugepage_put_subpool(struct hugepage_subpool * spool)152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172 {
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204 unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207 }
208
209 /*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217 {
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248 }
249
subpool_inode(struct inode * inode)250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
subpool_vma(struct vm_area_struct * vma)255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257 return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /* Helper that removes a struct file_region from the resv_map cache and returns
261 * it for use.
262 */
263 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)264 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
265 {
266 struct file_region *nrg = NULL;
267
268 VM_BUG_ON(resv->region_cache_count <= 0);
269
270 resv->region_cache_count--;
271 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
272 list_del(&nrg->link);
273
274 nrg->from = from;
275 nrg->to = to;
276
277 return nrg;
278 }
279
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)280 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
281 struct file_region *rg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 nrg->reservation_counter = rg->reservation_counter;
285 nrg->css = rg->css;
286 if (rg->css)
287 css_get(rg->css);
288 #endif
289 }
290
291 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)292 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
293 struct hstate *h,
294 struct resv_map *resv,
295 struct file_region *nrg)
296 {
297 #ifdef CONFIG_CGROUP_HUGETLB
298 if (h_cg) {
299 nrg->reservation_counter =
300 &h_cg->rsvd_hugepage[hstate_index(h)];
301 nrg->css = &h_cg->css;
302 /*
303 * The caller will hold exactly one h_cg->css reference for the
304 * whole contiguous reservation region. But this area might be
305 * scattered when there are already some file_regions reside in
306 * it. As a result, many file_regions may share only one css
307 * reference. In order to ensure that one file_region must hold
308 * exactly one h_cg->css reference, we should do css_get for
309 * each file_region and leave the reference held by caller
310 * untouched.
311 */
312 css_get(&h_cg->css);
313 if (!resv->pages_per_hpage)
314 resv->pages_per_hpage = pages_per_huge_page(h);
315 /* pages_per_hpage should be the same for all entries in
316 * a resv_map.
317 */
318 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
319 } else {
320 nrg->reservation_counter = NULL;
321 nrg->css = NULL;
322 }
323 #endif
324 }
325
put_uncharge_info(struct file_region * rg)326 static void put_uncharge_info(struct file_region *rg)
327 {
328 #ifdef CONFIG_CGROUP_HUGETLB
329 if (rg->css)
330 css_put(rg->css);
331 #endif
332 }
333
has_same_uncharge_info(struct file_region * rg,struct file_region * org)334 static bool has_same_uncharge_info(struct file_region *rg,
335 struct file_region *org)
336 {
337 #ifdef CONFIG_CGROUP_HUGETLB
338 return rg->reservation_counter == org->reservation_counter &&
339 rg->css == org->css;
340
341 #else
342 return true;
343 #endif
344 }
345
coalesce_file_region(struct resv_map * resv,struct file_region * rg)346 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
347 {
348 struct file_region *nrg = NULL, *prg = NULL;
349
350 prg = list_prev_entry(rg, link);
351 if (&prg->link != &resv->regions && prg->to == rg->from &&
352 has_same_uncharge_info(prg, rg)) {
353 prg->to = rg->to;
354
355 list_del(&rg->link);
356 put_uncharge_info(rg);
357 kfree(rg);
358
359 rg = prg;
360 }
361
362 nrg = list_next_entry(rg, link);
363 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
364 has_same_uncharge_info(nrg, rg)) {
365 nrg->from = rg->from;
366
367 list_del(&rg->link);
368 put_uncharge_info(rg);
369 kfree(rg);
370 }
371 }
372
373 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)374 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
375 long to, struct hstate *h, struct hugetlb_cgroup *cg,
376 long *regions_needed)
377 {
378 struct file_region *nrg;
379
380 if (!regions_needed) {
381 nrg = get_file_region_entry_from_cache(map, from, to);
382 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
383 list_add(&nrg->link, rg);
384 coalesce_file_region(map, nrg);
385 } else
386 *regions_needed += 1;
387
388 return to - from;
389 }
390
391 /*
392 * Must be called with resv->lock held.
393 *
394 * Calling this with regions_needed != NULL will count the number of pages
395 * to be added but will not modify the linked list. And regions_needed will
396 * indicate the number of file_regions needed in the cache to carry out to add
397 * the regions for this range.
398 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)399 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
400 struct hugetlb_cgroup *h_cg,
401 struct hstate *h, long *regions_needed)
402 {
403 long add = 0;
404 struct list_head *head = &resv->regions;
405 long last_accounted_offset = f;
406 struct file_region *iter, *trg = NULL;
407 struct list_head *rg = NULL;
408
409 if (regions_needed)
410 *regions_needed = 0;
411
412 /* In this loop, we essentially handle an entry for the range
413 * [last_accounted_offset, iter->from), at every iteration, with some
414 * bounds checking.
415 */
416 list_for_each_entry_safe(iter, trg, head, link) {
417 /* Skip irrelevant regions that start before our range. */
418 if (iter->from < f) {
419 /* If this region ends after the last accounted offset,
420 * then we need to update last_accounted_offset.
421 */
422 if (iter->to > last_accounted_offset)
423 last_accounted_offset = iter->to;
424 continue;
425 }
426
427 /* When we find a region that starts beyond our range, we've
428 * finished.
429 */
430 if (iter->from >= t) {
431 rg = iter->link.prev;
432 break;
433 }
434
435 /* Add an entry for last_accounted_offset -> iter->from, and
436 * update last_accounted_offset.
437 */
438 if (iter->from > last_accounted_offset)
439 add += hugetlb_resv_map_add(resv, iter->link.prev,
440 last_accounted_offset,
441 iter->from, h, h_cg,
442 regions_needed);
443
444 last_accounted_offset = iter->to;
445 }
446
447 /* Handle the case where our range extends beyond
448 * last_accounted_offset.
449 */
450 if (!rg)
451 rg = head->prev;
452 if (last_accounted_offset < t)
453 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
454 t, h, h_cg, regions_needed);
455
456 return add;
457 }
458
459 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
460 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)461 static int allocate_file_region_entries(struct resv_map *resv,
462 int regions_needed)
463 __must_hold(&resv->lock)
464 {
465 struct list_head allocated_regions;
466 int to_allocate = 0, i = 0;
467 struct file_region *trg = NULL, *rg = NULL;
468
469 VM_BUG_ON(regions_needed < 0);
470
471 INIT_LIST_HEAD(&allocated_regions);
472
473 /*
474 * Check for sufficient descriptors in the cache to accommodate
475 * the number of in progress add operations plus regions_needed.
476 *
477 * This is a while loop because when we drop the lock, some other call
478 * to region_add or region_del may have consumed some region_entries,
479 * so we keep looping here until we finally have enough entries for
480 * (adds_in_progress + regions_needed).
481 */
482 while (resv->region_cache_count <
483 (resv->adds_in_progress + regions_needed)) {
484 to_allocate = resv->adds_in_progress + regions_needed -
485 resv->region_cache_count;
486
487 /* At this point, we should have enough entries in the cache
488 * for all the existing adds_in_progress. We should only be
489 * needing to allocate for regions_needed.
490 */
491 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
492
493 spin_unlock(&resv->lock);
494 for (i = 0; i < to_allocate; i++) {
495 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
496 if (!trg)
497 goto out_of_memory;
498 list_add(&trg->link, &allocated_regions);
499 }
500
501 spin_lock(&resv->lock);
502
503 list_splice(&allocated_regions, &resv->region_cache);
504 resv->region_cache_count += to_allocate;
505 }
506
507 return 0;
508
509 out_of_memory:
510 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
511 list_del(&rg->link);
512 kfree(rg);
513 }
514 return -ENOMEM;
515 }
516
517 /*
518 * Add the huge page range represented by [f, t) to the reserve
519 * map. Regions will be taken from the cache to fill in this range.
520 * Sufficient regions should exist in the cache due to the previous
521 * call to region_chg with the same range, but in some cases the cache will not
522 * have sufficient entries due to races with other code doing region_add or
523 * region_del. The extra needed entries will be allocated.
524 *
525 * regions_needed is the out value provided by a previous call to region_chg.
526 *
527 * Return the number of new huge pages added to the map. This number is greater
528 * than or equal to zero. If file_region entries needed to be allocated for
529 * this operation and we were not able to allocate, it returns -ENOMEM.
530 * region_add of regions of length 1 never allocate file_regions and cannot
531 * fail; region_chg will always allocate at least 1 entry and a region_add for
532 * 1 page will only require at most 1 entry.
533 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)534 static long region_add(struct resv_map *resv, long f, long t,
535 long in_regions_needed, struct hstate *h,
536 struct hugetlb_cgroup *h_cg)
537 {
538 long add = 0, actual_regions_needed = 0;
539
540 spin_lock(&resv->lock);
541 retry:
542
543 /* Count how many regions are actually needed to execute this add. */
544 add_reservation_in_range(resv, f, t, NULL, NULL,
545 &actual_regions_needed);
546
547 /*
548 * Check for sufficient descriptors in the cache to accommodate
549 * this add operation. Note that actual_regions_needed may be greater
550 * than in_regions_needed, as the resv_map may have been modified since
551 * the region_chg call. In this case, we need to make sure that we
552 * allocate extra entries, such that we have enough for all the
553 * existing adds_in_progress, plus the excess needed for this
554 * operation.
555 */
556 if (actual_regions_needed > in_regions_needed &&
557 resv->region_cache_count <
558 resv->adds_in_progress +
559 (actual_regions_needed - in_regions_needed)) {
560 /* region_add operation of range 1 should never need to
561 * allocate file_region entries.
562 */
563 VM_BUG_ON(t - f <= 1);
564
565 if (allocate_file_region_entries(
566 resv, actual_regions_needed - in_regions_needed)) {
567 return -ENOMEM;
568 }
569
570 goto retry;
571 }
572
573 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
574
575 resv->adds_in_progress -= in_regions_needed;
576
577 spin_unlock(&resv->lock);
578 return add;
579 }
580
581 /*
582 * Examine the existing reserve map and determine how many
583 * huge pages in the specified range [f, t) are NOT currently
584 * represented. This routine is called before a subsequent
585 * call to region_add that will actually modify the reserve
586 * map to add the specified range [f, t). region_chg does
587 * not change the number of huge pages represented by the
588 * map. A number of new file_region structures is added to the cache as a
589 * placeholder, for the subsequent region_add call to use. At least 1
590 * file_region structure is added.
591 *
592 * out_regions_needed is the number of regions added to the
593 * resv->adds_in_progress. This value needs to be provided to a follow up call
594 * to region_add or region_abort for proper accounting.
595 *
596 * Returns the number of huge pages that need to be added to the existing
597 * reservation map for the range [f, t). This number is greater or equal to
598 * zero. -ENOMEM is returned if a new file_region structure or cache entry
599 * is needed and can not be allocated.
600 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)601 static long region_chg(struct resv_map *resv, long f, long t,
602 long *out_regions_needed)
603 {
604 long chg = 0;
605
606 spin_lock(&resv->lock);
607
608 /* Count how many hugepages in this range are NOT represented. */
609 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
610 out_regions_needed);
611
612 if (*out_regions_needed == 0)
613 *out_regions_needed = 1;
614
615 if (allocate_file_region_entries(resv, *out_regions_needed))
616 return -ENOMEM;
617
618 resv->adds_in_progress += *out_regions_needed;
619
620 spin_unlock(&resv->lock);
621 return chg;
622 }
623
624 /*
625 * Abort the in progress add operation. The adds_in_progress field
626 * of the resv_map keeps track of the operations in progress between
627 * calls to region_chg and region_add. Operations are sometimes
628 * aborted after the call to region_chg. In such cases, region_abort
629 * is called to decrement the adds_in_progress counter. regions_needed
630 * is the value returned by the region_chg call, it is used to decrement
631 * the adds_in_progress counter.
632 *
633 * NOTE: The range arguments [f, t) are not needed or used in this
634 * routine. They are kept to make reading the calling code easier as
635 * arguments will match the associated region_chg call.
636 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)637 static void region_abort(struct resv_map *resv, long f, long t,
638 long regions_needed)
639 {
640 spin_lock(&resv->lock);
641 VM_BUG_ON(!resv->region_cache_count);
642 resv->adds_in_progress -= regions_needed;
643 spin_unlock(&resv->lock);
644 }
645
646 /*
647 * Delete the specified range [f, t) from the reserve map. If the
648 * t parameter is LONG_MAX, this indicates that ALL regions after f
649 * should be deleted. Locate the regions which intersect [f, t)
650 * and either trim, delete or split the existing regions.
651 *
652 * Returns the number of huge pages deleted from the reserve map.
653 * In the normal case, the return value is zero or more. In the
654 * case where a region must be split, a new region descriptor must
655 * be allocated. If the allocation fails, -ENOMEM will be returned.
656 * NOTE: If the parameter t == LONG_MAX, then we will never split
657 * a region and possibly return -ENOMEM. Callers specifying
658 * t == LONG_MAX do not need to check for -ENOMEM error.
659 */
region_del(struct resv_map * resv,long f,long t)660 static long region_del(struct resv_map *resv, long f, long t)
661 {
662 struct list_head *head = &resv->regions;
663 struct file_region *rg, *trg;
664 struct file_region *nrg = NULL;
665 long del = 0;
666
667 retry:
668 spin_lock(&resv->lock);
669 list_for_each_entry_safe(rg, trg, head, link) {
670 /*
671 * Skip regions before the range to be deleted. file_region
672 * ranges are normally of the form [from, to). However, there
673 * may be a "placeholder" entry in the map which is of the form
674 * (from, to) with from == to. Check for placeholder entries
675 * at the beginning of the range to be deleted.
676 */
677 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
678 continue;
679
680 if (rg->from >= t)
681 break;
682
683 if (f > rg->from && t < rg->to) { /* Must split region */
684 /*
685 * Check for an entry in the cache before dropping
686 * lock and attempting allocation.
687 */
688 if (!nrg &&
689 resv->region_cache_count > resv->adds_in_progress) {
690 nrg = list_first_entry(&resv->region_cache,
691 struct file_region,
692 link);
693 list_del(&nrg->link);
694 resv->region_cache_count--;
695 }
696
697 if (!nrg) {
698 spin_unlock(&resv->lock);
699 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
700 if (!nrg)
701 return -ENOMEM;
702 goto retry;
703 }
704
705 del += t - f;
706 hugetlb_cgroup_uncharge_file_region(
707 resv, rg, t - f, false);
708
709 /* New entry for end of split region */
710 nrg->from = t;
711 nrg->to = rg->to;
712
713 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
714
715 INIT_LIST_HEAD(&nrg->link);
716
717 /* Original entry is trimmed */
718 rg->to = f;
719
720 list_add(&nrg->link, &rg->link);
721 nrg = NULL;
722 break;
723 }
724
725 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
726 del += rg->to - rg->from;
727 hugetlb_cgroup_uncharge_file_region(resv, rg,
728 rg->to - rg->from, true);
729 list_del(&rg->link);
730 kfree(rg);
731 continue;
732 }
733
734 if (f <= rg->from) { /* Trim beginning of region */
735 hugetlb_cgroup_uncharge_file_region(resv, rg,
736 t - rg->from, false);
737
738 del += t - rg->from;
739 rg->from = t;
740 } else { /* Trim end of region */
741 hugetlb_cgroup_uncharge_file_region(resv, rg,
742 rg->to - f, false);
743
744 del += rg->to - f;
745 rg->to = f;
746 }
747 }
748
749 spin_unlock(&resv->lock);
750 kfree(nrg);
751 return del;
752 }
753
754 /*
755 * A rare out of memory error was encountered which prevented removal of
756 * the reserve map region for a page. The huge page itself was free'ed
757 * and removed from the page cache. This routine will adjust the subpool
758 * usage count, and the global reserve count if needed. By incrementing
759 * these counts, the reserve map entry which could not be deleted will
760 * appear as a "reserved" entry instead of simply dangling with incorrect
761 * counts.
762 */
hugetlb_fix_reserve_counts(struct inode * inode)763 void hugetlb_fix_reserve_counts(struct inode *inode)
764 {
765 struct hugepage_subpool *spool = subpool_inode(inode);
766 long rsv_adjust;
767 bool reserved = false;
768
769 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
770 if (rsv_adjust > 0) {
771 struct hstate *h = hstate_inode(inode);
772
773 if (!hugetlb_acct_memory(h, 1))
774 reserved = true;
775 } else if (!rsv_adjust) {
776 reserved = true;
777 }
778
779 if (!reserved)
780 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
781 }
782
783 /*
784 * Count and return the number of huge pages in the reserve map
785 * that intersect with the range [f, t).
786 */
region_count(struct resv_map * resv,long f,long t)787 static long region_count(struct resv_map *resv, long f, long t)
788 {
789 struct list_head *head = &resv->regions;
790 struct file_region *rg;
791 long chg = 0;
792
793 spin_lock(&resv->lock);
794 /* Locate each segment we overlap with, and count that overlap. */
795 list_for_each_entry(rg, head, link) {
796 long seg_from;
797 long seg_to;
798
799 if (rg->to <= f)
800 continue;
801 if (rg->from >= t)
802 break;
803
804 seg_from = max(rg->from, f);
805 seg_to = min(rg->to, t);
806
807 chg += seg_to - seg_from;
808 }
809 spin_unlock(&resv->lock);
810
811 return chg;
812 }
813
814 /*
815 * Convert the address within this vma to the page offset within
816 * the mapping, in pagecache page units; huge pages here.
817 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)818 static pgoff_t vma_hugecache_offset(struct hstate *h,
819 struct vm_area_struct *vma, unsigned long address)
820 {
821 return ((address - vma->vm_start) >> huge_page_shift(h)) +
822 (vma->vm_pgoff >> huge_page_order(h));
823 }
824
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)825 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
826 unsigned long address)
827 {
828 return vma_hugecache_offset(hstate_vma(vma), vma, address);
829 }
830 EXPORT_SYMBOL_GPL(linear_hugepage_index);
831
832 /*
833 * Return the size of the pages allocated when backing a VMA. In the majority
834 * cases this will be same size as used by the page table entries.
835 */
vma_kernel_pagesize(struct vm_area_struct * vma)836 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
837 {
838 if (vma->vm_ops && vma->vm_ops->pagesize)
839 return vma->vm_ops->pagesize(vma);
840 return PAGE_SIZE;
841 }
842 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
843
844 /*
845 * Return the page size being used by the MMU to back a VMA. In the majority
846 * of cases, the page size used by the kernel matches the MMU size. On
847 * architectures where it differs, an architecture-specific 'strong'
848 * version of this symbol is required.
849 */
vma_mmu_pagesize(struct vm_area_struct * vma)850 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
851 {
852 return vma_kernel_pagesize(vma);
853 }
854
855 /*
856 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
857 * bits of the reservation map pointer, which are always clear due to
858 * alignment.
859 */
860 #define HPAGE_RESV_OWNER (1UL << 0)
861 #define HPAGE_RESV_UNMAPPED (1UL << 1)
862 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
863
864 /*
865 * These helpers are used to track how many pages are reserved for
866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
867 * is guaranteed to have their future faults succeed.
868 *
869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
870 * the reserve counters are updated with the hugetlb_lock held. It is safe
871 * to reset the VMA at fork() time as it is not in use yet and there is no
872 * chance of the global counters getting corrupted as a result of the values.
873 *
874 * The private mapping reservation is represented in a subtly different
875 * manner to a shared mapping. A shared mapping has a region map associated
876 * with the underlying file, this region map represents the backing file
877 * pages which have ever had a reservation assigned which this persists even
878 * after the page is instantiated. A private mapping has a region map
879 * associated with the original mmap which is attached to all VMAs which
880 * reference it, this region map represents those offsets which have consumed
881 * reservation ie. where pages have been instantiated.
882 */
get_vma_private_data(struct vm_area_struct * vma)883 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
884 {
885 return (unsigned long)vma->vm_private_data;
886 }
887
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)888 static void set_vma_private_data(struct vm_area_struct *vma,
889 unsigned long value)
890 {
891 vma->vm_private_data = (void *)value;
892 }
893
894 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)895 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
896 struct hugetlb_cgroup *h_cg,
897 struct hstate *h)
898 {
899 #ifdef CONFIG_CGROUP_HUGETLB
900 if (!h_cg || !h) {
901 resv_map->reservation_counter = NULL;
902 resv_map->pages_per_hpage = 0;
903 resv_map->css = NULL;
904 } else {
905 resv_map->reservation_counter =
906 &h_cg->rsvd_hugepage[hstate_index(h)];
907 resv_map->pages_per_hpage = pages_per_huge_page(h);
908 resv_map->css = &h_cg->css;
909 }
910 #endif
911 }
912
resv_map_alloc(void)913 struct resv_map *resv_map_alloc(void)
914 {
915 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
916 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
917
918 if (!resv_map || !rg) {
919 kfree(resv_map);
920 kfree(rg);
921 return NULL;
922 }
923
924 kref_init(&resv_map->refs);
925 spin_lock_init(&resv_map->lock);
926 INIT_LIST_HEAD(&resv_map->regions);
927
928 resv_map->adds_in_progress = 0;
929 /*
930 * Initialize these to 0. On shared mappings, 0's here indicate these
931 * fields don't do cgroup accounting. On private mappings, these will be
932 * re-initialized to the proper values, to indicate that hugetlb cgroup
933 * reservations are to be un-charged from here.
934 */
935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
936
937 INIT_LIST_HEAD(&resv_map->region_cache);
938 list_add(&rg->link, &resv_map->region_cache);
939 resv_map->region_cache_count = 1;
940
941 return resv_map;
942 }
943
resv_map_release(struct kref * ref)944 void resv_map_release(struct kref *ref)
945 {
946 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
947 struct list_head *head = &resv_map->region_cache;
948 struct file_region *rg, *trg;
949
950 /* Clear out any active regions before we release the map. */
951 region_del(resv_map, 0, LONG_MAX);
952
953 /* ... and any entries left in the cache */
954 list_for_each_entry_safe(rg, trg, head, link) {
955 list_del(&rg->link);
956 kfree(rg);
957 }
958
959 VM_BUG_ON(resv_map->adds_in_progress);
960
961 kfree(resv_map);
962 }
963
inode_resv_map(struct inode * inode)964 static inline struct resv_map *inode_resv_map(struct inode *inode)
965 {
966 /*
967 * At inode evict time, i_mapping may not point to the original
968 * address space within the inode. This original address space
969 * contains the pointer to the resv_map. So, always use the
970 * address space embedded within the inode.
971 * The VERY common case is inode->mapping == &inode->i_data but,
972 * this may not be true for device special inodes.
973 */
974 return (struct resv_map *)(&inode->i_data)->private_data;
975 }
976
vma_resv_map(struct vm_area_struct * vma)977 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
978 {
979 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980 if (vma->vm_flags & VM_MAYSHARE) {
981 struct address_space *mapping = vma->vm_file->f_mapping;
982 struct inode *inode = mapping->host;
983
984 return inode_resv_map(inode);
985
986 } else {
987 return (struct resv_map *)(get_vma_private_data(vma) &
988 ~HPAGE_RESV_MASK);
989 }
990 }
991
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)992 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
993 {
994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
996
997 set_vma_private_data(vma, (get_vma_private_data(vma) &
998 HPAGE_RESV_MASK) | (unsigned long)map);
999 }
1000
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1001 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002 {
1003 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1005
1006 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1007 }
1008
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1009 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010 {
1011 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012
1013 return (get_vma_private_data(vma) & flag) != 0;
1014 }
1015
1016 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)1017 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018 {
1019 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1020 if (!(vma->vm_flags & VM_MAYSHARE))
1021 vma->vm_private_data = (void *)0;
1022 }
1023
1024 /*
1025 * Reset and decrement one ref on hugepage private reservation.
1026 * Called with mm->mmap_sem writer semaphore held.
1027 * This function should be only used by move_vma() and operate on
1028 * same sized vma. It should never come here with last ref on the
1029 * reservation.
1030 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1031 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1032 {
1033 /*
1034 * Clear the old hugetlb private page reservation.
1035 * It has already been transferred to new_vma.
1036 *
1037 * During a mremap() operation of a hugetlb vma we call move_vma()
1038 * which copies vma into new_vma and unmaps vma. After the copy
1039 * operation both new_vma and vma share a reference to the resv_map
1040 * struct, and at that point vma is about to be unmapped. We don't
1041 * want to return the reservation to the pool at unmap of vma because
1042 * the reservation still lives on in new_vma, so simply decrement the
1043 * ref here and remove the resv_map reference from this vma.
1044 */
1045 struct resv_map *reservations = vma_resv_map(vma);
1046
1047 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1049 kref_put(&reservations->refs, resv_map_release);
1050 }
1051
1052 reset_vma_resv_huge_pages(vma);
1053 }
1054
1055 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1056 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1057 {
1058 if (vma->vm_flags & VM_NORESERVE) {
1059 /*
1060 * This address is already reserved by other process(chg == 0),
1061 * so, we should decrement reserved count. Without decrementing,
1062 * reserve count remains after releasing inode, because this
1063 * allocated page will go into page cache and is regarded as
1064 * coming from reserved pool in releasing step. Currently, we
1065 * don't have any other solution to deal with this situation
1066 * properly, so add work-around here.
1067 */
1068 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1069 return true;
1070 else
1071 return false;
1072 }
1073
1074 /* Shared mappings always use reserves */
1075 if (vma->vm_flags & VM_MAYSHARE) {
1076 /*
1077 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1078 * be a region map for all pages. The only situation where
1079 * there is no region map is if a hole was punched via
1080 * fallocate. In this case, there really are no reserves to
1081 * use. This situation is indicated if chg != 0.
1082 */
1083 if (chg)
1084 return false;
1085 else
1086 return true;
1087 }
1088
1089 /*
1090 * Only the process that called mmap() has reserves for
1091 * private mappings.
1092 */
1093 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094 /*
1095 * Like the shared case above, a hole punch or truncate
1096 * could have been performed on the private mapping.
1097 * Examine the value of chg to determine if reserves
1098 * actually exist or were previously consumed.
1099 * Very Subtle - The value of chg comes from a previous
1100 * call to vma_needs_reserves(). The reserve map for
1101 * private mappings has different (opposite) semantics
1102 * than that of shared mappings. vma_needs_reserves()
1103 * has already taken this difference in semantics into
1104 * account. Therefore, the meaning of chg is the same
1105 * as in the shared case above. Code could easily be
1106 * combined, but keeping it separate draws attention to
1107 * subtle differences.
1108 */
1109 if (chg)
1110 return false;
1111 else
1112 return true;
1113 }
1114
1115 return false;
1116 }
1117
enqueue_huge_page(struct hstate * h,struct page * page)1118 static void enqueue_huge_page(struct hstate *h, struct page *page)
1119 {
1120 int nid = page_to_nid(page);
1121
1122 lockdep_assert_held(&hugetlb_lock);
1123 VM_BUG_ON_PAGE(page_count(page), page);
1124
1125 list_move(&page->lru, &h->hugepage_freelists[nid]);
1126 h->free_huge_pages++;
1127 h->free_huge_pages_node[nid]++;
1128 SetHPageFreed(page);
1129 }
1130
dequeue_huge_page_node_exact(struct hstate * h,int nid)1131 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1132 {
1133 struct page *page;
1134 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1135
1136 lockdep_assert_held(&hugetlb_lock);
1137 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1138 if (pin && !is_pinnable_page(page))
1139 continue;
1140
1141 if (PageHWPoison(page))
1142 continue;
1143
1144 list_move(&page->lru, &h->hugepage_activelist);
1145 set_page_refcounted(page);
1146 ClearHPageFreed(page);
1147 h->free_huge_pages--;
1148 h->free_huge_pages_node[nid]--;
1149 return page;
1150 }
1151
1152 return NULL;
1153 }
1154
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1155 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1156 nodemask_t *nmask)
1157 {
1158 unsigned int cpuset_mems_cookie;
1159 struct zonelist *zonelist;
1160 struct zone *zone;
1161 struct zoneref *z;
1162 int node = NUMA_NO_NODE;
1163
1164 zonelist = node_zonelist(nid, gfp_mask);
1165
1166 retry_cpuset:
1167 cpuset_mems_cookie = read_mems_allowed_begin();
1168 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1169 struct page *page;
1170
1171 if (!cpuset_zone_allowed(zone, gfp_mask))
1172 continue;
1173 /*
1174 * no need to ask again on the same node. Pool is node rather than
1175 * zone aware
1176 */
1177 if (zone_to_nid(zone) == node)
1178 continue;
1179 node = zone_to_nid(zone);
1180
1181 page = dequeue_huge_page_node_exact(h, node);
1182 if (page)
1183 return page;
1184 }
1185 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1186 goto retry_cpuset;
1187
1188 return NULL;
1189 }
1190
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1191 static struct page *dequeue_huge_page_vma(struct hstate *h,
1192 struct vm_area_struct *vma,
1193 unsigned long address, int avoid_reserve,
1194 long chg)
1195 {
1196 struct page *page = NULL;
1197 struct mempolicy *mpol;
1198 gfp_t gfp_mask;
1199 nodemask_t *nodemask;
1200 int nid;
1201
1202 /*
1203 * A child process with MAP_PRIVATE mappings created by their parent
1204 * have no page reserves. This check ensures that reservations are
1205 * not "stolen". The child may still get SIGKILLed
1206 */
1207 if (!vma_has_reserves(vma, chg) &&
1208 h->free_huge_pages - h->resv_huge_pages == 0)
1209 goto err;
1210
1211 /* If reserves cannot be used, ensure enough pages are in the pool */
1212 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1213 goto err;
1214
1215 gfp_mask = htlb_alloc_mask(h);
1216 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1217
1218 if (mpol_is_preferred_many(mpol)) {
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221 /* Fallback to all nodes if page==NULL */
1222 nodemask = NULL;
1223 }
1224
1225 if (!page)
1226 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227
1228 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1229 SetHPageRestoreReserve(page);
1230 h->resv_huge_pages--;
1231 }
1232
1233 mpol_cond_put(mpol);
1234 return page;
1235
1236 err:
1237 return NULL;
1238 }
1239
1240 /*
1241 * common helper functions for hstate_next_node_to_{alloc|free}.
1242 * We may have allocated or freed a huge page based on a different
1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244 * be outside of *nodes_allowed. Ensure that we use an allowed
1245 * node for alloc or free.
1246 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1247 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 {
1249 nid = next_node_in(nid, *nodes_allowed);
1250 VM_BUG_ON(nid >= MAX_NUMNODES);
1251
1252 return nid;
1253 }
1254
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1255 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 {
1257 if (!node_isset(nid, *nodes_allowed))
1258 nid = next_node_allowed(nid, nodes_allowed);
1259 return nid;
1260 }
1261
1262 /*
1263 * returns the previously saved node ["this node"] from which to
1264 * allocate a persistent huge page for the pool and advance the
1265 * next node from which to allocate, handling wrap at end of node
1266 * mask.
1267 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1268 static int hstate_next_node_to_alloc(struct hstate *h,
1269 nodemask_t *nodes_allowed)
1270 {
1271 int nid;
1272
1273 VM_BUG_ON(!nodes_allowed);
1274
1275 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1277
1278 return nid;
1279 }
1280
1281 /*
1282 * helper for remove_pool_huge_page() - return the previously saved
1283 * node ["this node"] from which to free a huge page. Advance the
1284 * next node id whether or not we find a free huge page to free so
1285 * that the next attempt to free addresses the next node.
1286 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1287 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1288 {
1289 int nid;
1290
1291 VM_BUG_ON(!nodes_allowed);
1292
1293 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1295
1296 return nid;
1297 }
1298
1299 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1300 for (nr_nodes = nodes_weight(*mask); \
1301 nr_nodes > 0 && \
1302 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1303 nr_nodes--)
1304
1305 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1306 for (nr_nodes = nodes_weight(*mask); \
1307 nr_nodes > 0 && \
1308 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1309 nr_nodes--)
1310
1311 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_page(struct page * page,unsigned int order,bool demote)1312 static void __destroy_compound_gigantic_page(struct page *page,
1313 unsigned int order, bool demote)
1314 {
1315 int i;
1316 int nr_pages = 1 << order;
1317 struct page *p = page + 1;
1318
1319 atomic_set(compound_mapcount_ptr(page), 0);
1320 atomic_set(compound_pincount_ptr(page), 0);
1321
1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323 p->mapping = NULL;
1324 clear_compound_head(p);
1325 if (!demote)
1326 set_page_refcounted(p);
1327 }
1328
1329 set_compound_order(page, 0);
1330 #ifdef CONFIG_64BIT
1331 page[1].compound_nr = 0;
1332 #endif
1333 __ClearPageHead(page);
1334 }
1335
destroy_compound_hugetlb_page_for_demote(struct page * page,unsigned int order)1336 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1337 unsigned int order)
1338 {
1339 __destroy_compound_gigantic_page(page, order, true);
1340 }
1341
1342 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1343 static void destroy_compound_gigantic_page(struct page *page,
1344 unsigned int order)
1345 {
1346 __destroy_compound_gigantic_page(page, order, false);
1347 }
1348
free_gigantic_page(struct page * page,unsigned int order)1349 static void free_gigantic_page(struct page *page, unsigned int order)
1350 {
1351 /*
1352 * If the page isn't allocated using the cma allocator,
1353 * cma_release() returns false.
1354 */
1355 #ifdef CONFIG_CMA
1356 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1357 return;
1358 #endif
1359
1360 free_contig_range(page_to_pfn(page), 1 << order);
1361 }
1362
1363 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1364 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365 int nid, nodemask_t *nodemask)
1366 {
1367 unsigned long nr_pages = pages_per_huge_page(h);
1368 if (nid == NUMA_NO_NODE)
1369 nid = numa_mem_id();
1370
1371 #ifdef CONFIG_CMA
1372 {
1373 struct page *page;
1374 int node;
1375
1376 if (hugetlb_cma[nid]) {
1377 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378 huge_page_order(h), true);
1379 if (page)
1380 return page;
1381 }
1382
1383 if (!(gfp_mask & __GFP_THISNODE)) {
1384 for_each_node_mask(node, *nodemask) {
1385 if (node == nid || !hugetlb_cma[node])
1386 continue;
1387
1388 page = cma_alloc(hugetlb_cma[node], nr_pages,
1389 huge_page_order(h), true);
1390 if (page)
1391 return page;
1392 }
1393 }
1394 }
1395 #endif
1396
1397 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1398 }
1399
1400 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402 int nid, nodemask_t *nodemask)
1403 {
1404 return NULL;
1405 }
1406 #endif /* CONFIG_CONTIG_ALLOC */
1407
1408 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1409 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1410 int nid, nodemask_t *nodemask)
1411 {
1412 return NULL;
1413 }
free_gigantic_page(struct page * page,unsigned int order)1414 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1415 static inline void destroy_compound_gigantic_page(struct page *page,
1416 unsigned int order) { }
1417 #endif
1418
1419 /*
1420 * Remove hugetlb page from lists, and update dtor so that page appears
1421 * as just a compound page.
1422 *
1423 * A reference is held on the page, except in the case of demote.
1424 *
1425 * Must be called with hugetlb lock held.
1426 */
__remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus,bool demote)1427 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428 bool adjust_surplus,
1429 bool demote)
1430 {
1431 int nid = page_to_nid(page);
1432
1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435
1436 lockdep_assert_held(&hugetlb_lock);
1437 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1438 return;
1439
1440 list_del(&page->lru);
1441
1442 if (HPageFreed(page)) {
1443 h->free_huge_pages--;
1444 h->free_huge_pages_node[nid]--;
1445 }
1446 if (adjust_surplus) {
1447 h->surplus_huge_pages--;
1448 h->surplus_huge_pages_node[nid]--;
1449 }
1450
1451 /*
1452 * Very subtle
1453 *
1454 * For non-gigantic pages set the destructor to the normal compound
1455 * page dtor. This is needed in case someone takes an additional
1456 * temporary ref to the page, and freeing is delayed until they drop
1457 * their reference.
1458 *
1459 * For gigantic pages set the destructor to the null dtor. This
1460 * destructor will never be called. Before freeing the gigantic
1461 * page destroy_compound_gigantic_page will turn the compound page
1462 * into a simple group of pages. After this the destructor does not
1463 * apply.
1464 *
1465 * This handles the case where more than one ref is held when and
1466 * after update_and_free_page is called.
1467 *
1468 * In the case of demote we do not ref count the page as it will soon
1469 * be turned into a page of smaller size.
1470 */
1471 if (!demote)
1472 set_page_refcounted(page);
1473 if (hstate_is_gigantic(h))
1474 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475 else
1476 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1477
1478 h->nr_huge_pages--;
1479 h->nr_huge_pages_node[nid]--;
1480 }
1481
remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1482 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483 bool adjust_surplus)
1484 {
1485 __remove_hugetlb_page(h, page, adjust_surplus, false);
1486 }
1487
remove_hugetlb_page_for_demote(struct hstate * h,struct page * page,bool adjust_surplus)1488 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489 bool adjust_surplus)
1490 {
1491 __remove_hugetlb_page(h, page, adjust_surplus, true);
1492 }
1493
add_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1494 static void add_hugetlb_page(struct hstate *h, struct page *page,
1495 bool adjust_surplus)
1496 {
1497 int zeroed;
1498 int nid = page_to_nid(page);
1499
1500 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501
1502 lockdep_assert_held(&hugetlb_lock);
1503
1504 INIT_LIST_HEAD(&page->lru);
1505 h->nr_huge_pages++;
1506 h->nr_huge_pages_node[nid]++;
1507
1508 if (adjust_surplus) {
1509 h->surplus_huge_pages++;
1510 h->surplus_huge_pages_node[nid]++;
1511 }
1512
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 set_page_private(page, 0);
1515 SetHPageVmemmapOptimized(page);
1516
1517 /*
1518 * This page is about to be managed by the hugetlb allocator and
1519 * should have no users. Drop our reference, and check for others
1520 * just in case.
1521 */
1522 zeroed = put_page_testzero(page);
1523 if (!zeroed)
1524 /*
1525 * It is VERY unlikely soneone else has taken a ref on
1526 * the page. In this case, we simply return as the
1527 * hugetlb destructor (free_huge_page) will be called
1528 * when this other ref is dropped.
1529 */
1530 return;
1531
1532 arch_clear_hugepage_flags(page);
1533 enqueue_huge_page(h, page);
1534 }
1535
__update_and_free_page(struct hstate * h,struct page * page)1536 static void __update_and_free_page(struct hstate *h, struct page *page)
1537 {
1538 int i;
1539 struct page *subpage = page;
1540
1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1542 return;
1543
1544 if (hugetlb_vmemmap_alloc(h, page)) {
1545 spin_lock_irq(&hugetlb_lock);
1546 /*
1547 * If we cannot allocate vmemmap pages, just refuse to free the
1548 * page and put the page back on the hugetlb free list and treat
1549 * as a surplus page.
1550 */
1551 add_hugetlb_page(h, page, true);
1552 spin_unlock_irq(&hugetlb_lock);
1553 return;
1554 }
1555
1556 for (i = 0; i < pages_per_huge_page(h);
1557 i++, subpage = mem_map_next(subpage, page, i)) {
1558 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1559 1 << PG_referenced | 1 << PG_dirty |
1560 1 << PG_active | 1 << PG_private |
1561 1 << PG_writeback);
1562 }
1563
1564 /*
1565 * Non-gigantic pages demoted from CMA allocated gigantic pages
1566 * need to be given back to CMA in free_gigantic_page.
1567 */
1568 if (hstate_is_gigantic(h) ||
1569 hugetlb_cma_page(page, huge_page_order(h))) {
1570 destroy_compound_gigantic_page(page, huge_page_order(h));
1571 free_gigantic_page(page, huge_page_order(h));
1572 } else {
1573 __free_pages(page, huge_page_order(h));
1574 }
1575 }
1576
1577 /*
1578 * As update_and_free_page() can be called under any context, so we cannot
1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581 * the vmemmap pages.
1582 *
1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584 * freed and frees them one-by-one. As the page->mapping pointer is going
1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586 * structure of a lockless linked list of huge pages to be freed.
1587 */
1588 static LLIST_HEAD(hpage_freelist);
1589
free_hpage_workfn(struct work_struct * work)1590 static void free_hpage_workfn(struct work_struct *work)
1591 {
1592 struct llist_node *node;
1593
1594 node = llist_del_all(&hpage_freelist);
1595
1596 while (node) {
1597 struct page *page;
1598 struct hstate *h;
1599
1600 page = container_of((struct address_space **)node,
1601 struct page, mapping);
1602 node = node->next;
1603 page->mapping = NULL;
1604 /*
1605 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606 * is going to trigger because a previous call to
1607 * remove_hugetlb_page() will set_compound_page_dtor(page,
1608 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609 */
1610 h = size_to_hstate(page_size(page));
1611
1612 __update_and_free_page(h, page);
1613
1614 cond_resched();
1615 }
1616 }
1617 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618
flush_free_hpage_work(struct hstate * h)1619 static inline void flush_free_hpage_work(struct hstate *h)
1620 {
1621 if (hugetlb_optimize_vmemmap_pages(h))
1622 flush_work(&free_hpage_work);
1623 }
1624
update_and_free_page(struct hstate * h,struct page * page,bool atomic)1625 static void update_and_free_page(struct hstate *h, struct page *page,
1626 bool atomic)
1627 {
1628 if (!HPageVmemmapOptimized(page) || !atomic) {
1629 __update_and_free_page(h, page);
1630 return;
1631 }
1632
1633 /*
1634 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635 *
1636 * Only call schedule_work() if hpage_freelist is previously
1637 * empty. Otherwise, schedule_work() had been called but the workfn
1638 * hasn't retrieved the list yet.
1639 */
1640 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641 schedule_work(&free_hpage_work);
1642 }
1643
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1644 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645 {
1646 struct page *page, *t_page;
1647
1648 list_for_each_entry_safe(page, t_page, list, lru) {
1649 update_and_free_page(h, page, false);
1650 cond_resched();
1651 }
1652 }
1653
size_to_hstate(unsigned long size)1654 struct hstate *size_to_hstate(unsigned long size)
1655 {
1656 struct hstate *h;
1657
1658 for_each_hstate(h) {
1659 if (huge_page_size(h) == size)
1660 return h;
1661 }
1662 return NULL;
1663 }
1664
free_huge_page(struct page * page)1665 void free_huge_page(struct page *page)
1666 {
1667 /*
1668 * Can't pass hstate in here because it is called from the
1669 * compound page destructor.
1670 */
1671 struct hstate *h = page_hstate(page);
1672 int nid = page_to_nid(page);
1673 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1674 bool restore_reserve;
1675 unsigned long flags;
1676
1677 VM_BUG_ON_PAGE(page_count(page), page);
1678 VM_BUG_ON_PAGE(page_mapcount(page), page);
1679
1680 hugetlb_set_page_subpool(page, NULL);
1681 if (PageAnon(page))
1682 __ClearPageAnonExclusive(page);
1683 page->mapping = NULL;
1684 restore_reserve = HPageRestoreReserve(page);
1685 ClearHPageRestoreReserve(page);
1686
1687 /*
1688 * If HPageRestoreReserve was set on page, page allocation consumed a
1689 * reservation. If the page was associated with a subpool, there
1690 * would have been a page reserved in the subpool before allocation
1691 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1692 * reservation, do not call hugepage_subpool_put_pages() as this will
1693 * remove the reserved page from the subpool.
1694 */
1695 if (!restore_reserve) {
1696 /*
1697 * A return code of zero implies that the subpool will be
1698 * under its minimum size if the reservation is not restored
1699 * after page is free. Therefore, force restore_reserve
1700 * operation.
1701 */
1702 if (hugepage_subpool_put_pages(spool, 1) == 0)
1703 restore_reserve = true;
1704 }
1705
1706 spin_lock_irqsave(&hugetlb_lock, flags);
1707 ClearHPageMigratable(page);
1708 hugetlb_cgroup_uncharge_page(hstate_index(h),
1709 pages_per_huge_page(h), page);
1710 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711 pages_per_huge_page(h), page);
1712 if (restore_reserve)
1713 h->resv_huge_pages++;
1714
1715 if (HPageTemporary(page)) {
1716 remove_hugetlb_page(h, page, false);
1717 spin_unlock_irqrestore(&hugetlb_lock, flags);
1718 update_and_free_page(h, page, true);
1719 } else if (h->surplus_huge_pages_node[nid]) {
1720 /* remove the page from active list */
1721 remove_hugetlb_page(h, page, true);
1722 spin_unlock_irqrestore(&hugetlb_lock, flags);
1723 update_and_free_page(h, page, true);
1724 } else {
1725 arch_clear_hugepage_flags(page);
1726 enqueue_huge_page(h, page);
1727 spin_unlock_irqrestore(&hugetlb_lock, flags);
1728 }
1729 }
1730
1731 /*
1732 * Must be called with the hugetlb lock held
1733 */
__prep_account_new_huge_page(struct hstate * h,int nid)1734 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735 {
1736 lockdep_assert_held(&hugetlb_lock);
1737 h->nr_huge_pages++;
1738 h->nr_huge_pages_node[nid]++;
1739 }
1740
__prep_new_huge_page(struct hstate * h,struct page * page)1741 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1742 {
1743 hugetlb_vmemmap_free(h, page);
1744 INIT_LIST_HEAD(&page->lru);
1745 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1746 hugetlb_set_page_subpool(page, NULL);
1747 set_hugetlb_cgroup(page, NULL);
1748 set_hugetlb_cgroup_rsvd(page, NULL);
1749 }
1750
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1751 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752 {
1753 __prep_new_huge_page(h, page);
1754 spin_lock_irq(&hugetlb_lock);
1755 __prep_account_new_huge_page(h, nid);
1756 spin_unlock_irq(&hugetlb_lock);
1757 }
1758
__prep_compound_gigantic_page(struct page * page,unsigned int order,bool demote)1759 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1760 bool demote)
1761 {
1762 int i, j;
1763 int nr_pages = 1 << order;
1764 struct page *p = page + 1;
1765
1766 /* we rely on prep_new_huge_page to set the destructor */
1767 set_compound_order(page, order);
1768 __ClearPageReserved(page);
1769 __SetPageHead(page);
1770 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1771 /*
1772 * For gigantic hugepages allocated through bootmem at
1773 * boot, it's safer to be consistent with the not-gigantic
1774 * hugepages and clear the PG_reserved bit from all tail pages
1775 * too. Otherwise drivers using get_user_pages() to access tail
1776 * pages may get the reference counting wrong if they see
1777 * PG_reserved set on a tail page (despite the head page not
1778 * having PG_reserved set). Enforcing this consistency between
1779 * head and tail pages allows drivers to optimize away a check
1780 * on the head page when they need know if put_page() is needed
1781 * after get_user_pages().
1782 */
1783 __ClearPageReserved(p);
1784 /*
1785 * Subtle and very unlikely
1786 *
1787 * Gigantic 'page allocators' such as memblock or cma will
1788 * return a set of pages with each page ref counted. We need
1789 * to turn this set of pages into a compound page with tail
1790 * page ref counts set to zero. Code such as speculative page
1791 * cache adding could take a ref on a 'to be' tail page.
1792 * We need to respect any increased ref count, and only set
1793 * the ref count to zero if count is currently 1. If count
1794 * is not 1, we return an error. An error return indicates
1795 * the set of pages can not be converted to a gigantic page.
1796 * The caller who allocated the pages should then discard the
1797 * pages using the appropriate free interface.
1798 *
1799 * In the case of demote, the ref count will be zero.
1800 */
1801 if (!demote) {
1802 if (!page_ref_freeze(p, 1)) {
1803 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1804 goto out_error;
1805 }
1806 } else {
1807 VM_BUG_ON_PAGE(page_count(p), p);
1808 }
1809 set_compound_head(p, page);
1810 }
1811 atomic_set(compound_mapcount_ptr(page), -1);
1812 atomic_set(compound_pincount_ptr(page), 0);
1813 return true;
1814
1815 out_error:
1816 /* undo tail page modifications made above */
1817 p = page + 1;
1818 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819 clear_compound_head(p);
1820 set_page_refcounted(p);
1821 }
1822 /* need to clear PG_reserved on remaining tail pages */
1823 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824 __ClearPageReserved(p);
1825 set_compound_order(page, 0);
1826 #ifdef CONFIG_64BIT
1827 page[1].compound_nr = 0;
1828 #endif
1829 __ClearPageHead(page);
1830 return false;
1831 }
1832
prep_compound_gigantic_page(struct page * page,unsigned int order)1833 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834 {
1835 return __prep_compound_gigantic_page(page, order, false);
1836 }
1837
prep_compound_gigantic_page_for_demote(struct page * page,unsigned int order)1838 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1839 unsigned int order)
1840 {
1841 return __prep_compound_gigantic_page(page, order, true);
1842 }
1843
1844 /*
1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846 * transparent huge pages. See the PageTransHuge() documentation for more
1847 * details.
1848 */
PageHuge(struct page * page)1849 int PageHuge(struct page *page)
1850 {
1851 if (!PageCompound(page))
1852 return 0;
1853
1854 page = compound_head(page);
1855 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 }
1857 EXPORT_SYMBOL_GPL(PageHuge);
1858
1859 /*
1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861 * normal or transparent huge pages.
1862 */
PageHeadHuge(struct page * page_head)1863 int PageHeadHuge(struct page *page_head)
1864 {
1865 if (!PageHead(page_head))
1866 return 0;
1867
1868 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1869 }
1870 EXPORT_SYMBOL_GPL(PageHeadHuge);
1871
1872 /*
1873 * Find and lock address space (mapping) in write mode.
1874 *
1875 * Upon entry, the page is locked which means that page_mapping() is
1876 * stable. Due to locking order, we can only trylock_write. If we can
1877 * not get the lock, simply return NULL to caller.
1878 */
hugetlb_page_mapping_lock_write(struct page * hpage)1879 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880 {
1881 struct address_space *mapping = page_mapping(hpage);
1882
1883 if (!mapping)
1884 return mapping;
1885
1886 if (i_mmap_trylock_write(mapping))
1887 return mapping;
1888
1889 return NULL;
1890 }
1891
hugetlb_basepage_index(struct page * page)1892 pgoff_t hugetlb_basepage_index(struct page *page)
1893 {
1894 struct page *page_head = compound_head(page);
1895 pgoff_t index = page_index(page_head);
1896 unsigned long compound_idx;
1897
1898 if (compound_order(page_head) >= MAX_ORDER)
1899 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900 else
1901 compound_idx = page - page_head;
1902
1903 return (index << compound_order(page_head)) + compound_idx;
1904 }
1905
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1906 static struct page *alloc_buddy_huge_page(struct hstate *h,
1907 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908 nodemask_t *node_alloc_noretry)
1909 {
1910 int order = huge_page_order(h);
1911 struct page *page;
1912 bool alloc_try_hard = true;
1913
1914 /*
1915 * By default we always try hard to allocate the page with
1916 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1917 * a loop (to adjust global huge page counts) and previous allocation
1918 * failed, do not continue to try hard on the same node. Use the
1919 * node_alloc_noretry bitmap to manage this state information.
1920 */
1921 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922 alloc_try_hard = false;
1923 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924 if (alloc_try_hard)
1925 gfp_mask |= __GFP_RETRY_MAYFAIL;
1926 if (nid == NUMA_NO_NODE)
1927 nid = numa_mem_id();
1928 page = __alloc_pages(gfp_mask, order, nid, nmask);
1929 if (page)
1930 __count_vm_event(HTLB_BUDDY_PGALLOC);
1931 else
1932 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1933
1934 /*
1935 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936 * indicates an overall state change. Clear bit so that we resume
1937 * normal 'try hard' allocations.
1938 */
1939 if (node_alloc_noretry && page && !alloc_try_hard)
1940 node_clear(nid, *node_alloc_noretry);
1941
1942 /*
1943 * If we tried hard to get a page but failed, set bit so that
1944 * subsequent attempts will not try as hard until there is an
1945 * overall state change.
1946 */
1947 if (node_alloc_noretry && !page && alloc_try_hard)
1948 node_set(nid, *node_alloc_noretry);
1949
1950 return page;
1951 }
1952
1953 /*
1954 * Common helper to allocate a fresh hugetlb page. All specific allocators
1955 * should use this function to get new hugetlb pages
1956 */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1957 static struct page *alloc_fresh_huge_page(struct hstate *h,
1958 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959 nodemask_t *node_alloc_noretry)
1960 {
1961 struct page *page;
1962 bool retry = false;
1963
1964 retry:
1965 if (hstate_is_gigantic(h))
1966 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967 else
1968 page = alloc_buddy_huge_page(h, gfp_mask,
1969 nid, nmask, node_alloc_noretry);
1970 if (!page)
1971 return NULL;
1972
1973 if (hstate_is_gigantic(h)) {
1974 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975 /*
1976 * Rare failure to convert pages to compound page.
1977 * Free pages and try again - ONCE!
1978 */
1979 free_gigantic_page(page, huge_page_order(h));
1980 if (!retry) {
1981 retry = true;
1982 goto retry;
1983 }
1984 return NULL;
1985 }
1986 }
1987 prep_new_huge_page(h, page, page_to_nid(page));
1988
1989 return page;
1990 }
1991
1992 /*
1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1994 * manner.
1995 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1996 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997 nodemask_t *node_alloc_noretry)
1998 {
1999 struct page *page;
2000 int nr_nodes, node;
2001 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2002
2003 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2004 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005 node_alloc_noretry);
2006 if (page)
2007 break;
2008 }
2009
2010 if (!page)
2011 return 0;
2012
2013 put_page(page); /* free it into the hugepage allocator */
2014
2015 return 1;
2016 }
2017
2018 /*
2019 * Remove huge page from pool from next node to free. Attempt to keep
2020 * persistent huge pages more or less balanced over allowed nodes.
2021 * This routine only 'removes' the hugetlb page. The caller must make
2022 * an additional call to free the page to low level allocators.
2023 * Called with hugetlb_lock locked.
2024 */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2025 static struct page *remove_pool_huge_page(struct hstate *h,
2026 nodemask_t *nodes_allowed,
2027 bool acct_surplus)
2028 {
2029 int nr_nodes, node;
2030 struct page *page = NULL;
2031
2032 lockdep_assert_held(&hugetlb_lock);
2033 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2034 /*
2035 * If we're returning unused surplus pages, only examine
2036 * nodes with surplus pages.
2037 */
2038 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039 !list_empty(&h->hugepage_freelists[node])) {
2040 page = list_entry(h->hugepage_freelists[node].next,
2041 struct page, lru);
2042 remove_hugetlb_page(h, page, acct_surplus);
2043 break;
2044 }
2045 }
2046
2047 return page;
2048 }
2049
2050 /*
2051 * Dissolve a given free hugepage into free buddy pages. This function does
2052 * nothing for in-use hugepages and non-hugepages.
2053 * This function returns values like below:
2054 *
2055 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056 * when the system is under memory pressure and the feature of
2057 * freeing unused vmemmap pages associated with each hugetlb page
2058 * is enabled.
2059 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2060 * (allocated or reserved.)
2061 * 0: successfully dissolved free hugepages or the page is not a
2062 * hugepage (considered as already dissolved)
2063 */
dissolve_free_huge_page(struct page * page)2064 int dissolve_free_huge_page(struct page *page)
2065 {
2066 int rc = -EBUSY;
2067
2068 retry:
2069 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070 if (!PageHuge(page))
2071 return 0;
2072
2073 spin_lock_irq(&hugetlb_lock);
2074 if (!PageHuge(page)) {
2075 rc = 0;
2076 goto out;
2077 }
2078
2079 if (!page_count(page)) {
2080 struct page *head = compound_head(page);
2081 struct hstate *h = page_hstate(head);
2082 if (h->free_huge_pages - h->resv_huge_pages == 0)
2083 goto out;
2084
2085 /*
2086 * We should make sure that the page is already on the free list
2087 * when it is dissolved.
2088 */
2089 if (unlikely(!HPageFreed(head))) {
2090 spin_unlock_irq(&hugetlb_lock);
2091 cond_resched();
2092
2093 /*
2094 * Theoretically, we should return -EBUSY when we
2095 * encounter this race. In fact, we have a chance
2096 * to successfully dissolve the page if we do a
2097 * retry. Because the race window is quite small.
2098 * If we seize this opportunity, it is an optimization
2099 * for increasing the success rate of dissolving page.
2100 */
2101 goto retry;
2102 }
2103
2104 remove_hugetlb_page(h, head, false);
2105 h->max_huge_pages--;
2106 spin_unlock_irq(&hugetlb_lock);
2107
2108 /*
2109 * Normally update_and_free_page will allocate required vmemmmap
2110 * before freeing the page. update_and_free_page will fail to
2111 * free the page if it can not allocate required vmemmap. We
2112 * need to adjust max_huge_pages if the page is not freed.
2113 * Attempt to allocate vmemmmap here so that we can take
2114 * appropriate action on failure.
2115 */
2116 rc = hugetlb_vmemmap_alloc(h, head);
2117 if (!rc) {
2118 /*
2119 * Move PageHWPoison flag from head page to the raw
2120 * error page, which makes any subpages rather than
2121 * the error page reusable.
2122 */
2123 if (PageHWPoison(head) && page != head) {
2124 SetPageHWPoison(page);
2125 ClearPageHWPoison(head);
2126 }
2127 update_and_free_page(h, head, false);
2128 } else {
2129 spin_lock_irq(&hugetlb_lock);
2130 add_hugetlb_page(h, head, false);
2131 h->max_huge_pages++;
2132 spin_unlock_irq(&hugetlb_lock);
2133 }
2134
2135 return rc;
2136 }
2137 out:
2138 spin_unlock_irq(&hugetlb_lock);
2139 return rc;
2140 }
2141
2142 /*
2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144 * make specified memory blocks removable from the system.
2145 * Note that this will dissolve a free gigantic hugepage completely, if any
2146 * part of it lies within the given range.
2147 * Also note that if dissolve_free_huge_page() returns with an error, all
2148 * free hugepages that were dissolved before that error are lost.
2149 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2150 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2151 {
2152 unsigned long pfn;
2153 struct page *page;
2154 int rc = 0;
2155
2156 if (!hugepages_supported())
2157 return rc;
2158
2159 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160 page = pfn_to_page(pfn);
2161 rc = dissolve_free_huge_page(page);
2162 if (rc)
2163 break;
2164 }
2165
2166 return rc;
2167 }
2168
2169 /*
2170 * Allocates a fresh surplus page from the page allocator.
2171 */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,bool zero_ref)2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173 int nid, nodemask_t *nmask, bool zero_ref)
2174 {
2175 struct page *page = NULL;
2176 bool retry = false;
2177
2178 if (hstate_is_gigantic(h))
2179 return NULL;
2180
2181 spin_lock_irq(&hugetlb_lock);
2182 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183 goto out_unlock;
2184 spin_unlock_irq(&hugetlb_lock);
2185
2186 retry:
2187 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188 if (!page)
2189 return NULL;
2190
2191 spin_lock_irq(&hugetlb_lock);
2192 /*
2193 * We could have raced with the pool size change.
2194 * Double check that and simply deallocate the new page
2195 * if we would end up overcommiting the surpluses. Abuse
2196 * temporary page to workaround the nasty free_huge_page
2197 * codeflow
2198 */
2199 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200 SetHPageTemporary(page);
2201 spin_unlock_irq(&hugetlb_lock);
2202 put_page(page);
2203 return NULL;
2204 }
2205
2206 if (zero_ref) {
2207 /*
2208 * Caller requires a page with zero ref count.
2209 * We will drop ref count here. If someone else is holding
2210 * a ref, the page will be freed when they drop it. Abuse
2211 * temporary page flag to accomplish this.
2212 */
2213 SetHPageTemporary(page);
2214 if (!put_page_testzero(page)) {
2215 /*
2216 * Unexpected inflated ref count on freshly allocated
2217 * huge. Retry once.
2218 */
2219 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220 spin_unlock_irq(&hugetlb_lock);
2221 if (retry)
2222 return NULL;
2223
2224 retry = true;
2225 goto retry;
2226 }
2227 ClearHPageTemporary(page);
2228 }
2229
2230 h->surplus_huge_pages++;
2231 h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
2233 out_unlock:
2234 spin_unlock_irq(&hugetlb_lock);
2235
2236 return page;
2237 }
2238
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240 int nid, nodemask_t *nmask)
2241 {
2242 struct page *page;
2243
2244 if (hstate_is_gigantic(h))
2245 return NULL;
2246
2247 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248 if (!page)
2249 return NULL;
2250
2251 /*
2252 * We do not account these pages as surplus because they are only
2253 * temporary and will be released properly on the last reference
2254 */
2255 SetHPageTemporary(page);
2256
2257 return page;
2258 }
2259
2260 /*
2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262 */
2263 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265 struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 struct page *page = NULL;
2268 struct mempolicy *mpol;
2269 gfp_t gfp_mask = htlb_alloc_mask(h);
2270 int nid;
2271 nodemask_t *nodemask;
2272
2273 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274 if (mpol_is_preferred_many(mpol)) {
2275 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279
2280 /* Fallback to all nodes if page==NULL */
2281 nodemask = NULL;
2282 }
2283
2284 if (!page)
2285 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286 mpol_cond_put(mpol);
2287 return page;
2288 }
2289
2290 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292 nodemask_t *nmask, gfp_t gfp_mask)
2293 {
2294 spin_lock_irq(&hugetlb_lock);
2295 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296 struct page *page;
2297
2298 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299 if (page) {
2300 spin_unlock_irq(&hugetlb_lock);
2301 return page;
2302 }
2303 }
2304 spin_unlock_irq(&hugetlb_lock);
2305
2306 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307 }
2308
2309 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311 unsigned long address)
2312 {
2313 struct mempolicy *mpol;
2314 nodemask_t *nodemask;
2315 struct page *page;
2316 gfp_t gfp_mask;
2317 int node;
2318
2319 gfp_mask = htlb_alloc_mask(h);
2320 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322 mpol_cond_put(mpol);
2323
2324 return page;
2325 }
2326
2327 /*
2328 * Increase the hugetlb pool such that it can accommodate a reservation
2329 * of size 'delta'.
2330 */
gather_surplus_pages(struct hstate * h,long delta)2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332 __must_hold(&hugetlb_lock)
2333 {
2334 struct list_head surplus_list;
2335 struct page *page, *tmp;
2336 int ret;
2337 long i;
2338 long needed, allocated;
2339 bool alloc_ok = true;
2340
2341 lockdep_assert_held(&hugetlb_lock);
2342 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343 if (needed <= 0) {
2344 h->resv_huge_pages += delta;
2345 return 0;
2346 }
2347
2348 allocated = 0;
2349 INIT_LIST_HEAD(&surplus_list);
2350
2351 ret = -ENOMEM;
2352 retry:
2353 spin_unlock_irq(&hugetlb_lock);
2354 for (i = 0; i < needed; i++) {
2355 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356 NUMA_NO_NODE, NULL, true);
2357 if (!page) {
2358 alloc_ok = false;
2359 break;
2360 }
2361 list_add(&page->lru, &surplus_list);
2362 cond_resched();
2363 }
2364 allocated += i;
2365
2366 /*
2367 * After retaking hugetlb_lock, we need to recalculate 'needed'
2368 * because either resv_huge_pages or free_huge_pages may have changed.
2369 */
2370 spin_lock_irq(&hugetlb_lock);
2371 needed = (h->resv_huge_pages + delta) -
2372 (h->free_huge_pages + allocated);
2373 if (needed > 0) {
2374 if (alloc_ok)
2375 goto retry;
2376 /*
2377 * We were not able to allocate enough pages to
2378 * satisfy the entire reservation so we free what
2379 * we've allocated so far.
2380 */
2381 goto free;
2382 }
2383 /*
2384 * The surplus_list now contains _at_least_ the number of extra pages
2385 * needed to accommodate the reservation. Add the appropriate number
2386 * of pages to the hugetlb pool and free the extras back to the buddy
2387 * allocator. Commit the entire reservation here to prevent another
2388 * process from stealing the pages as they are added to the pool but
2389 * before they are reserved.
2390 */
2391 needed += allocated;
2392 h->resv_huge_pages += delta;
2393 ret = 0;
2394
2395 /* Free the needed pages to the hugetlb pool */
2396 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397 if ((--needed) < 0)
2398 break;
2399 /* Add the page to the hugetlb allocator */
2400 enqueue_huge_page(h, page);
2401 }
2402 free:
2403 spin_unlock_irq(&hugetlb_lock);
2404
2405 /*
2406 * Free unnecessary surplus pages to the buddy allocator.
2407 * Pages have no ref count, call free_huge_page directly.
2408 */
2409 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410 free_huge_page(page);
2411 spin_lock_irq(&hugetlb_lock);
2412
2413 return ret;
2414 }
2415
2416 /*
2417 * This routine has two main purposes:
2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419 * in unused_resv_pages. This corresponds to the prior adjustments made
2420 * to the associated reservation map.
2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
2422 * the reservation. As many as unused_resv_pages may be freed.
2423 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2424 static void return_unused_surplus_pages(struct hstate *h,
2425 unsigned long unused_resv_pages)
2426 {
2427 unsigned long nr_pages;
2428 struct page *page;
2429 LIST_HEAD(page_list);
2430
2431 lockdep_assert_held(&hugetlb_lock);
2432 /* Uncommit the reservation */
2433 h->resv_huge_pages -= unused_resv_pages;
2434
2435 /* Cannot return gigantic pages currently */
2436 if (hstate_is_gigantic(h))
2437 goto out;
2438
2439 /*
2440 * Part (or even all) of the reservation could have been backed
2441 * by pre-allocated pages. Only free surplus pages.
2442 */
2443 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444
2445 /*
2446 * We want to release as many surplus pages as possible, spread
2447 * evenly across all nodes with memory. Iterate across these nodes
2448 * until we can no longer free unreserved surplus pages. This occurs
2449 * when the nodes with surplus pages have no free pages.
2450 * remove_pool_huge_page() will balance the freed pages across the
2451 * on-line nodes with memory and will handle the hstate accounting.
2452 */
2453 while (nr_pages--) {
2454 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455 if (!page)
2456 goto out;
2457
2458 list_add(&page->lru, &page_list);
2459 }
2460
2461 out:
2462 spin_unlock_irq(&hugetlb_lock);
2463 update_and_free_pages_bulk(h, &page_list);
2464 spin_lock_irq(&hugetlb_lock);
2465 }
2466
2467
2468 /*
2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470 * are used by the huge page allocation routines to manage reservations.
2471 *
2472 * vma_needs_reservation is called to determine if the huge page at addr
2473 * within the vma has an associated reservation. If a reservation is
2474 * needed, the value 1 is returned. The caller is then responsible for
2475 * managing the global reservation and subpool usage counts. After
2476 * the huge page has been allocated, vma_commit_reservation is called
2477 * to add the page to the reservation map. If the page allocation fails,
2478 * the reservation must be ended instead of committed. vma_end_reservation
2479 * is called in such cases.
2480 *
2481 * In the normal case, vma_commit_reservation returns the same value
2482 * as the preceding vma_needs_reservation call. The only time this
2483 * is not the case is if a reserve map was changed between calls. It
2484 * is the responsibility of the caller to notice the difference and
2485 * take appropriate action.
2486 *
2487 * vma_add_reservation is used in error paths where a reservation must
2488 * be restored when a newly allocated huge page must be freed. It is
2489 * to be called after calling vma_needs_reservation to determine if a
2490 * reservation exists.
2491 *
2492 * vma_del_reservation is used in error paths where an entry in the reserve
2493 * map was created during huge page allocation and must be removed. It is to
2494 * be called after calling vma_needs_reservation to determine if a reservation
2495 * exists.
2496 */
2497 enum vma_resv_mode {
2498 VMA_NEEDS_RESV,
2499 VMA_COMMIT_RESV,
2500 VMA_END_RESV,
2501 VMA_ADD_RESV,
2502 VMA_DEL_RESV,
2503 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2504 static long __vma_reservation_common(struct hstate *h,
2505 struct vm_area_struct *vma, unsigned long addr,
2506 enum vma_resv_mode mode)
2507 {
2508 struct resv_map *resv;
2509 pgoff_t idx;
2510 long ret;
2511 long dummy_out_regions_needed;
2512
2513 resv = vma_resv_map(vma);
2514 if (!resv)
2515 return 1;
2516
2517 idx = vma_hugecache_offset(h, vma, addr);
2518 switch (mode) {
2519 case VMA_NEEDS_RESV:
2520 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521 /* We assume that vma_reservation_* routines always operate on
2522 * 1 page, and that adding to resv map a 1 page entry can only
2523 * ever require 1 region.
2524 */
2525 VM_BUG_ON(dummy_out_regions_needed != 1);
2526 break;
2527 case VMA_COMMIT_RESV:
2528 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529 /* region_add calls of range 1 should never fail. */
2530 VM_BUG_ON(ret < 0);
2531 break;
2532 case VMA_END_RESV:
2533 region_abort(resv, idx, idx + 1, 1);
2534 ret = 0;
2535 break;
2536 case VMA_ADD_RESV:
2537 if (vma->vm_flags & VM_MAYSHARE) {
2538 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539 /* region_add calls of range 1 should never fail. */
2540 VM_BUG_ON(ret < 0);
2541 } else {
2542 region_abort(resv, idx, idx + 1, 1);
2543 ret = region_del(resv, idx, idx + 1);
2544 }
2545 break;
2546 case VMA_DEL_RESV:
2547 if (vma->vm_flags & VM_MAYSHARE) {
2548 region_abort(resv, idx, idx + 1, 1);
2549 ret = region_del(resv, idx, idx + 1);
2550 } else {
2551 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552 /* region_add calls of range 1 should never fail. */
2553 VM_BUG_ON(ret < 0);
2554 }
2555 break;
2556 default:
2557 BUG();
2558 }
2559
2560 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561 return ret;
2562 /*
2563 * We know private mapping must have HPAGE_RESV_OWNER set.
2564 *
2565 * In most cases, reserves always exist for private mappings.
2566 * However, a file associated with mapping could have been
2567 * hole punched or truncated after reserves were consumed.
2568 * As subsequent fault on such a range will not use reserves.
2569 * Subtle - The reserve map for private mappings has the
2570 * opposite meaning than that of shared mappings. If NO
2571 * entry is in the reserve map, it means a reservation exists.
2572 * If an entry exists in the reserve map, it means the
2573 * reservation has already been consumed. As a result, the
2574 * return value of this routine is the opposite of the
2575 * value returned from reserve map manipulation routines above.
2576 */
2577 if (ret > 0)
2578 return 0;
2579 if (ret == 0)
2580 return 1;
2581 return ret;
2582 }
2583
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2584 static long vma_needs_reservation(struct hstate *h,
2585 struct vm_area_struct *vma, unsigned long addr)
2586 {
2587 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588 }
2589
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2590 static long vma_commit_reservation(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long addr)
2592 {
2593 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594 }
2595
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2596 static void vma_end_reservation(struct hstate *h,
2597 struct vm_area_struct *vma, unsigned long addr)
2598 {
2599 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600 }
2601
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2602 static long vma_add_reservation(struct hstate *h,
2603 struct vm_area_struct *vma, unsigned long addr)
2604 {
2605 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606 }
2607
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2608 static long vma_del_reservation(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr)
2610 {
2611 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612 }
2613
2614 /*
2615 * This routine is called to restore reservation information on error paths.
2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617 * the hugetlb mutex should remain held when calling this routine.
2618 *
2619 * It handles two specific cases:
2620 * 1) A reservation was in place and the page consumed the reservation.
2621 * HPageRestoreReserve is set in the page.
2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623 * not set. However, alloc_huge_page always updates the reserve map.
2624 *
2625 * In case 1, free_huge_page later in the error path will increment the
2626 * global reserve count. But, free_huge_page does not have enough context
2627 * to adjust the reservation map. This case deals primarily with private
2628 * mappings. Adjust the reserve map here to be consistent with global
2629 * reserve count adjustments to be made by free_huge_page. Make sure the
2630 * reserve map indicates there is a reservation present.
2631 *
2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635 unsigned long address, struct page *page)
2636 {
2637 long rc = vma_needs_reservation(h, vma, address);
2638
2639 if (HPageRestoreReserve(page)) {
2640 if (unlikely(rc < 0))
2641 /*
2642 * Rare out of memory condition in reserve map
2643 * manipulation. Clear HPageRestoreReserve so that
2644 * global reserve count will not be incremented
2645 * by free_huge_page. This will make it appear
2646 * as though the reservation for this page was
2647 * consumed. This may prevent the task from
2648 * faulting in the page at a later time. This
2649 * is better than inconsistent global huge page
2650 * accounting of reserve counts.
2651 */
2652 ClearHPageRestoreReserve(page);
2653 else if (rc)
2654 (void)vma_add_reservation(h, vma, address);
2655 else
2656 vma_end_reservation(h, vma, address);
2657 } else {
2658 if (!rc) {
2659 /*
2660 * This indicates there is an entry in the reserve map
2661 * not added by alloc_huge_page. We know it was added
2662 * before the alloc_huge_page call, otherwise
2663 * HPageRestoreReserve would be set on the page.
2664 * Remove the entry so that a subsequent allocation
2665 * does not consume a reservation.
2666 */
2667 rc = vma_del_reservation(h, vma, address);
2668 if (rc < 0)
2669 /*
2670 * VERY rare out of memory condition. Since
2671 * we can not delete the entry, set
2672 * HPageRestoreReserve so that the reserve
2673 * count will be incremented when the page
2674 * is freed. This reserve will be consumed
2675 * on a subsequent allocation.
2676 */
2677 SetHPageRestoreReserve(page);
2678 } else if (rc < 0) {
2679 /*
2680 * Rare out of memory condition from
2681 * vma_needs_reservation call. Memory allocation is
2682 * only attempted if a new entry is needed. Therefore,
2683 * this implies there is not an entry in the
2684 * reserve map.
2685 *
2686 * For shared mappings, no entry in the map indicates
2687 * no reservation. We are done.
2688 */
2689 if (!(vma->vm_flags & VM_MAYSHARE))
2690 /*
2691 * For private mappings, no entry indicates
2692 * a reservation is present. Since we can
2693 * not add an entry, set SetHPageRestoreReserve
2694 * on the page so reserve count will be
2695 * incremented when freed. This reserve will
2696 * be consumed on a subsequent allocation.
2697 */
2698 SetHPageRestoreReserve(page);
2699 } else
2700 /*
2701 * No reservation present, do nothing
2702 */
2703 vma_end_reservation(h, vma, address);
2704 }
2705 }
2706
2707 /*
2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709 * @h: struct hstate old page belongs to
2710 * @old_page: Old page to dissolve
2711 * @list: List to isolate the page in case we need to
2712 * Returns 0 on success, otherwise negated error.
2713 */
alloc_and_dissolve_huge_page(struct hstate * h,struct page * old_page,struct list_head * list)2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715 struct list_head *list)
2716 {
2717 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718 int nid = page_to_nid(old_page);
2719 bool alloc_retry = false;
2720 struct page *new_page;
2721 int ret = 0;
2722
2723 /*
2724 * Before dissolving the page, we need to allocate a new one for the
2725 * pool to remain stable. Here, we allocate the page and 'prep' it
2726 * by doing everything but actually updating counters and adding to
2727 * the pool. This simplifies and let us do most of the processing
2728 * under the lock.
2729 */
2730 alloc_retry:
2731 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732 if (!new_page)
2733 return -ENOMEM;
2734 /*
2735 * If all goes well, this page will be directly added to the free
2736 * list in the pool. For this the ref count needs to be zero.
2737 * Attempt to drop now, and retry once if needed. It is VERY
2738 * unlikely there is another ref on the page.
2739 *
2740 * If someone else has a reference to the page, it will be freed
2741 * when they drop their ref. Abuse temporary page flag to accomplish
2742 * this. Retry once if there is an inflated ref count.
2743 */
2744 SetHPageTemporary(new_page);
2745 if (!put_page_testzero(new_page)) {
2746 if (alloc_retry)
2747 return -EBUSY;
2748
2749 alloc_retry = true;
2750 goto alloc_retry;
2751 }
2752 ClearHPageTemporary(new_page);
2753
2754 __prep_new_huge_page(h, new_page);
2755
2756 retry:
2757 spin_lock_irq(&hugetlb_lock);
2758 if (!PageHuge(old_page)) {
2759 /*
2760 * Freed from under us. Drop new_page too.
2761 */
2762 goto free_new;
2763 } else if (page_count(old_page)) {
2764 /*
2765 * Someone has grabbed the page, try to isolate it here.
2766 * Fail with -EBUSY if not possible.
2767 */
2768 spin_unlock_irq(&hugetlb_lock);
2769 ret = isolate_hugetlb(old_page, list);
2770 spin_lock_irq(&hugetlb_lock);
2771 goto free_new;
2772 } else if (!HPageFreed(old_page)) {
2773 /*
2774 * Page's refcount is 0 but it has not been enqueued in the
2775 * freelist yet. Race window is small, so we can succeed here if
2776 * we retry.
2777 */
2778 spin_unlock_irq(&hugetlb_lock);
2779 cond_resched();
2780 goto retry;
2781 } else {
2782 /*
2783 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 * the freelist and decrease the counters. These will be
2785 * incremented again when calling __prep_account_new_huge_page()
2786 * and enqueue_huge_page() for new_page. The counters will remain
2787 * stable since this happens under the lock.
2788 */
2789 remove_hugetlb_page(h, old_page, false);
2790
2791 /*
2792 * Ref count on new page is already zero as it was dropped
2793 * earlier. It can be directly added to the pool free list.
2794 */
2795 __prep_account_new_huge_page(h, nid);
2796 enqueue_huge_page(h, new_page);
2797
2798 /*
2799 * Pages have been replaced, we can safely free the old one.
2800 */
2801 spin_unlock_irq(&hugetlb_lock);
2802 update_and_free_page(h, old_page, false);
2803 }
2804
2805 return ret;
2806
2807 free_new:
2808 spin_unlock_irq(&hugetlb_lock);
2809 /* Page has a zero ref count, but needs a ref to be freed */
2810 set_page_refcounted(new_page);
2811 update_and_free_page(h, new_page, false);
2812
2813 return ret;
2814 }
2815
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818 struct hstate *h;
2819 struct page *head;
2820 int ret = -EBUSY;
2821
2822 /*
2823 * The page might have been dissolved from under our feet, so make sure
2824 * to carefully check the state under the lock.
2825 * Return success when racing as if we dissolved the page ourselves.
2826 */
2827 spin_lock_irq(&hugetlb_lock);
2828 if (PageHuge(page)) {
2829 head = compound_head(page);
2830 h = page_hstate(head);
2831 } else {
2832 spin_unlock_irq(&hugetlb_lock);
2833 return 0;
2834 }
2835 spin_unlock_irq(&hugetlb_lock);
2836
2837 /*
2838 * Fence off gigantic pages as there is a cyclic dependency between
2839 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 * of bailing out right away without further retrying.
2841 */
2842 if (hstate_is_gigantic(h))
2843 return -ENOMEM;
2844
2845 if (page_count(head) && !isolate_hugetlb(head, list))
2846 ret = 0;
2847 else if (!page_count(head))
2848 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850 return ret;
2851 }
2852
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 unsigned long addr, int avoid_reserve)
2855 {
2856 struct hugepage_subpool *spool = subpool_vma(vma);
2857 struct hstate *h = hstate_vma(vma);
2858 struct page *page;
2859 long map_chg, map_commit;
2860 long gbl_chg;
2861 int ret, idx;
2862 struct hugetlb_cgroup *h_cg;
2863 bool deferred_reserve;
2864
2865 idx = hstate_index(h);
2866 /*
2867 * Examine the region/reserve map to determine if the process
2868 * has a reservation for the page to be allocated. A return
2869 * code of zero indicates a reservation exists (no change).
2870 */
2871 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872 if (map_chg < 0)
2873 return ERR_PTR(-ENOMEM);
2874
2875 /*
2876 * Processes that did not create the mapping will have no
2877 * reserves as indicated by the region/reserve map. Check
2878 * that the allocation will not exceed the subpool limit.
2879 * Allocations for MAP_NORESERVE mappings also need to be
2880 * checked against any subpool limit.
2881 */
2882 if (map_chg || avoid_reserve) {
2883 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884 if (gbl_chg < 0) {
2885 vma_end_reservation(h, vma, addr);
2886 return ERR_PTR(-ENOSPC);
2887 }
2888
2889 /*
2890 * Even though there was no reservation in the region/reserve
2891 * map, there could be reservations associated with the
2892 * subpool that can be used. This would be indicated if the
2893 * return value of hugepage_subpool_get_pages() is zero.
2894 * However, if avoid_reserve is specified we still avoid even
2895 * the subpool reservations.
2896 */
2897 if (avoid_reserve)
2898 gbl_chg = 1;
2899 }
2900
2901 /* If this allocation is not consuming a reservation, charge it now.
2902 */
2903 deferred_reserve = map_chg || avoid_reserve;
2904 if (deferred_reserve) {
2905 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 idx, pages_per_huge_page(h), &h_cg);
2907 if (ret)
2908 goto out_subpool_put;
2909 }
2910
2911 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912 if (ret)
2913 goto out_uncharge_cgroup_reservation;
2914
2915 spin_lock_irq(&hugetlb_lock);
2916 /*
2917 * glb_chg is passed to indicate whether or not a page must be taken
2918 * from the global free pool (global change). gbl_chg == 0 indicates
2919 * a reservation exists for the allocation.
2920 */
2921 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922 if (!page) {
2923 spin_unlock_irq(&hugetlb_lock);
2924 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925 if (!page)
2926 goto out_uncharge_cgroup;
2927 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 SetHPageRestoreReserve(page);
2929 h->resv_huge_pages--;
2930 }
2931 spin_lock_irq(&hugetlb_lock);
2932 list_add(&page->lru, &h->hugepage_activelist);
2933 /* Fall through */
2934 }
2935 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936 /* If allocation is not consuming a reservation, also store the
2937 * hugetlb_cgroup pointer on the page.
2938 */
2939 if (deferred_reserve) {
2940 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941 h_cg, page);
2942 }
2943
2944 spin_unlock_irq(&hugetlb_lock);
2945
2946 hugetlb_set_page_subpool(page, spool);
2947
2948 map_commit = vma_commit_reservation(h, vma, addr);
2949 if (unlikely(map_chg > map_commit)) {
2950 /*
2951 * The page was added to the reservation map between
2952 * vma_needs_reservation and vma_commit_reservation.
2953 * This indicates a race with hugetlb_reserve_pages.
2954 * Adjust for the subpool count incremented above AND
2955 * in hugetlb_reserve_pages for the same page. Also,
2956 * the reservation count added in hugetlb_reserve_pages
2957 * no longer applies.
2958 */
2959 long rsv_adjust;
2960
2961 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962 hugetlb_acct_memory(h, -rsv_adjust);
2963 if (deferred_reserve)
2964 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965 pages_per_huge_page(h), page);
2966 }
2967 return page;
2968
2969 out_uncharge_cgroup:
2970 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972 if (deferred_reserve)
2973 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974 h_cg);
2975 out_subpool_put:
2976 if (map_chg || avoid_reserve)
2977 hugepage_subpool_put_pages(spool, 1);
2978 vma_end_reservation(h, vma, addr);
2979 return ERR_PTR(-ENOSPC);
2980 }
2981
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987 int nr_nodes, node;
2988
2989 /* do node specific alloc */
2990 if (nid != NUMA_NO_NODE) {
2991 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993 if (!m)
2994 return 0;
2995 goto found;
2996 }
2997 /* allocate from next node when distributing huge pages */
2998 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999 m = memblock_alloc_try_nid_raw(
3000 huge_page_size(h), huge_page_size(h),
3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002 /*
3003 * Use the beginning of the huge page to store the
3004 * huge_bootmem_page struct (until gather_bootmem
3005 * puts them into the mem_map).
3006 */
3007 if (!m)
3008 return 0;
3009 goto found;
3010 }
3011
3012 found:
3013 /* Put them into a private list first because mem_map is not up yet */
3014 INIT_LIST_HEAD(&m->list);
3015 list_add(&m->list, &huge_boot_pages);
3016 m->hstate = h;
3017 return 1;
3018 }
3019
3020 /*
3021 * Put bootmem huge pages into the standard lists after mem_map is up.
3022 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023 */
gather_bootmem_prealloc(void)3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026 struct huge_bootmem_page *m;
3027
3028 list_for_each_entry(m, &huge_boot_pages, list) {
3029 struct page *page = virt_to_page(m);
3030 struct hstate *h = m->hstate;
3031
3032 VM_BUG_ON(!hstate_is_gigantic(h));
3033 WARN_ON(page_count(page) != 1);
3034 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 WARN_ON(PageReserved(page));
3036 prep_new_huge_page(h, page, page_to_nid(page));
3037 put_page(page); /* add to the hugepage allocator */
3038 } else {
3039 /* VERY unlikely inflated ref count on a tail page */
3040 free_gigantic_page(page, huge_page_order(h));
3041 }
3042
3043 /*
3044 * We need to restore the 'stolen' pages to totalram_pages
3045 * in order to fix confusing memory reports from free(1) and
3046 * other side-effects, like CommitLimit going negative.
3047 */
3048 adjust_managed_page_count(page, pages_per_huge_page(h));
3049 cond_resched();
3050 }
3051 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054 unsigned long i;
3055 char buf[32];
3056
3057 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 if (hstate_is_gigantic(h)) {
3059 if (!alloc_bootmem_huge_page(h, nid))
3060 break;
3061 } else {
3062 struct page *page;
3063 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064
3065 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 &node_states[N_MEMORY], NULL);
3067 if (!page)
3068 break;
3069 put_page(page); /* free it into the hugepage allocator */
3070 }
3071 cond_resched();
3072 }
3073 if (i == h->max_huge_pages_node[nid])
3074 return;
3075
3076 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3078 h->max_huge_pages_node[nid], buf, nid, i);
3079 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 h->max_huge_pages_node[nid] = i;
3081 }
3082
hugetlb_hstate_alloc_pages(struct hstate * h)3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085 unsigned long i;
3086 nodemask_t *node_alloc_noretry;
3087 bool node_specific_alloc = false;
3088
3089 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092 return;
3093 }
3094
3095 /* do node specific alloc */
3096 for_each_online_node(i) {
3097 if (h->max_huge_pages_node[i] > 0) {
3098 hugetlb_hstate_alloc_pages_onenode(h, i);
3099 node_specific_alloc = true;
3100 }
3101 }
3102
3103 if (node_specific_alloc)
3104 return;
3105
3106 /* below will do all node balanced alloc */
3107 if (!hstate_is_gigantic(h)) {
3108 /*
3109 * Bit mask controlling how hard we retry per-node allocations.
3110 * Ignore errors as lower level routines can deal with
3111 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3112 * time, we are likely in bigger trouble.
3113 */
3114 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115 GFP_KERNEL);
3116 } else {
3117 /* allocations done at boot time */
3118 node_alloc_noretry = NULL;
3119 }
3120
3121 /* bit mask controlling how hard we retry per-node allocations */
3122 if (node_alloc_noretry)
3123 nodes_clear(*node_alloc_noretry);
3124
3125 for (i = 0; i < h->max_huge_pages; ++i) {
3126 if (hstate_is_gigantic(h)) {
3127 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128 break;
3129 } else if (!alloc_pool_huge_page(h,
3130 &node_states[N_MEMORY],
3131 node_alloc_noretry))
3132 break;
3133 cond_resched();
3134 }
3135 if (i < h->max_huge_pages) {
3136 char buf[32];
3137
3138 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3140 h->max_huge_pages, buf, i);
3141 h->max_huge_pages = i;
3142 }
3143 kfree(node_alloc_noretry);
3144 }
3145
hugetlb_init_hstates(void)3146 static void __init hugetlb_init_hstates(void)
3147 {
3148 struct hstate *h, *h2;
3149
3150 for_each_hstate(h) {
3151 if (minimum_order > huge_page_order(h))
3152 minimum_order = huge_page_order(h);
3153
3154 /* oversize hugepages were init'ed in early boot */
3155 if (!hstate_is_gigantic(h))
3156 hugetlb_hstate_alloc_pages(h);
3157
3158 /*
3159 * Set demote order for each hstate. Note that
3160 * h->demote_order is initially 0.
3161 * - We can not demote gigantic pages if runtime freeing
3162 * is not supported, so skip this.
3163 * - If CMA allocation is possible, we can not demote
3164 * HUGETLB_PAGE_ORDER or smaller size pages.
3165 */
3166 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3167 continue;
3168 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3169 continue;
3170 for_each_hstate(h2) {
3171 if (h2 == h)
3172 continue;
3173 if (h2->order < h->order &&
3174 h2->order > h->demote_order)
3175 h->demote_order = h2->order;
3176 }
3177 }
3178 VM_BUG_ON(minimum_order == UINT_MAX);
3179 }
3180
report_hugepages(void)3181 static void __init report_hugepages(void)
3182 {
3183 struct hstate *h;
3184
3185 for_each_hstate(h) {
3186 char buf[32];
3187
3188 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190 buf, h->free_huge_pages);
3191 }
3192 }
3193
3194 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196 nodemask_t *nodes_allowed)
3197 {
3198 int i;
3199 LIST_HEAD(page_list);
3200
3201 lockdep_assert_held(&hugetlb_lock);
3202 if (hstate_is_gigantic(h))
3203 return;
3204
3205 /*
3206 * Collect pages to be freed on a list, and free after dropping lock
3207 */
3208 for_each_node_mask(i, *nodes_allowed) {
3209 struct page *page, *next;
3210 struct list_head *freel = &h->hugepage_freelists[i];
3211 list_for_each_entry_safe(page, next, freel, lru) {
3212 if (count >= h->nr_huge_pages)
3213 goto out;
3214 if (PageHighMem(page))
3215 continue;
3216 remove_hugetlb_page(h, page, false);
3217 list_add(&page->lru, &page_list);
3218 }
3219 }
3220
3221 out:
3222 spin_unlock_irq(&hugetlb_lock);
3223 update_and_free_pages_bulk(h, &page_list);
3224 spin_lock_irq(&hugetlb_lock);
3225 }
3226 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228 nodemask_t *nodes_allowed)
3229 {
3230 }
3231 #endif
3232
3233 /*
3234 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3235 * balanced by operating on them in a round-robin fashion.
3236 * Returns 1 if an adjustment was made.
3237 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3239 int delta)
3240 {
3241 int nr_nodes, node;
3242
3243 lockdep_assert_held(&hugetlb_lock);
3244 VM_BUG_ON(delta != -1 && delta != 1);
3245
3246 if (delta < 0) {
3247 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248 if (h->surplus_huge_pages_node[node])
3249 goto found;
3250 }
3251 } else {
3252 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253 if (h->surplus_huge_pages_node[node] <
3254 h->nr_huge_pages_node[node])
3255 goto found;
3256 }
3257 }
3258 return 0;
3259
3260 found:
3261 h->surplus_huge_pages += delta;
3262 h->surplus_huge_pages_node[node] += delta;
3263 return 1;
3264 }
3265
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268 nodemask_t *nodes_allowed)
3269 {
3270 unsigned long min_count, ret;
3271 struct page *page;
3272 LIST_HEAD(page_list);
3273 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3274
3275 /*
3276 * Bit mask controlling how hard we retry per-node allocations.
3277 * If we can not allocate the bit mask, do not attempt to allocate
3278 * the requested huge pages.
3279 */
3280 if (node_alloc_noretry)
3281 nodes_clear(*node_alloc_noretry);
3282 else
3283 return -ENOMEM;
3284
3285 /*
3286 * resize_lock mutex prevents concurrent adjustments to number of
3287 * pages in hstate via the proc/sysfs interfaces.
3288 */
3289 mutex_lock(&h->resize_lock);
3290 flush_free_hpage_work(h);
3291 spin_lock_irq(&hugetlb_lock);
3292
3293 /*
3294 * Check for a node specific request.
3295 * Changing node specific huge page count may require a corresponding
3296 * change to the global count. In any case, the passed node mask
3297 * (nodes_allowed) will restrict alloc/free to the specified node.
3298 */
3299 if (nid != NUMA_NO_NODE) {
3300 unsigned long old_count = count;
3301
3302 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303 /*
3304 * User may have specified a large count value which caused the
3305 * above calculation to overflow. In this case, they wanted
3306 * to allocate as many huge pages as possible. Set count to
3307 * largest possible value to align with their intention.
3308 */
3309 if (count < old_count)
3310 count = ULONG_MAX;
3311 }
3312
3313 /*
3314 * Gigantic pages runtime allocation depend on the capability for large
3315 * page range allocation.
3316 * If the system does not provide this feature, return an error when
3317 * the user tries to allocate gigantic pages but let the user free the
3318 * boottime allocated gigantic pages.
3319 */
3320 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321 if (count > persistent_huge_pages(h)) {
3322 spin_unlock_irq(&hugetlb_lock);
3323 mutex_unlock(&h->resize_lock);
3324 NODEMASK_FREE(node_alloc_noretry);
3325 return -EINVAL;
3326 }
3327 /* Fall through to decrease pool */
3328 }
3329
3330 /*
3331 * Increase the pool size
3332 * First take pages out of surplus state. Then make up the
3333 * remaining difference by allocating fresh huge pages.
3334 *
3335 * We might race with alloc_surplus_huge_page() here and be unable
3336 * to convert a surplus huge page to a normal huge page. That is
3337 * not critical, though, it just means the overall size of the
3338 * pool might be one hugepage larger than it needs to be, but
3339 * within all the constraints specified by the sysctls.
3340 */
3341 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3343 break;
3344 }
3345
3346 while (count > persistent_huge_pages(h)) {
3347 /*
3348 * If this allocation races such that we no longer need the
3349 * page, free_huge_page will handle it by freeing the page
3350 * and reducing the surplus.
3351 */
3352 spin_unlock_irq(&hugetlb_lock);
3353
3354 /* yield cpu to avoid soft lockup */
3355 cond_resched();
3356
3357 ret = alloc_pool_huge_page(h, nodes_allowed,
3358 node_alloc_noretry);
3359 spin_lock_irq(&hugetlb_lock);
3360 if (!ret)
3361 goto out;
3362
3363 /* Bail for signals. Probably ctrl-c from user */
3364 if (signal_pending(current))
3365 goto out;
3366 }
3367
3368 /*
3369 * Decrease the pool size
3370 * First return free pages to the buddy allocator (being careful
3371 * to keep enough around to satisfy reservations). Then place
3372 * pages into surplus state as needed so the pool will shrink
3373 * to the desired size as pages become free.
3374 *
3375 * By placing pages into the surplus state independent of the
3376 * overcommit value, we are allowing the surplus pool size to
3377 * exceed overcommit. There are few sane options here. Since
3378 * alloc_surplus_huge_page() is checking the global counter,
3379 * though, we'll note that we're not allowed to exceed surplus
3380 * and won't grow the pool anywhere else. Not until one of the
3381 * sysctls are changed, or the surplus pages go out of use.
3382 */
3383 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384 min_count = max(count, min_count);
3385 try_to_free_low(h, min_count, nodes_allowed);
3386
3387 /*
3388 * Collect pages to be removed on list without dropping lock
3389 */
3390 while (min_count < persistent_huge_pages(h)) {
3391 page = remove_pool_huge_page(h, nodes_allowed, 0);
3392 if (!page)
3393 break;
3394
3395 list_add(&page->lru, &page_list);
3396 }
3397 /* free the pages after dropping lock */
3398 spin_unlock_irq(&hugetlb_lock);
3399 update_and_free_pages_bulk(h, &page_list);
3400 flush_free_hpage_work(h);
3401 spin_lock_irq(&hugetlb_lock);
3402
3403 while (count < persistent_huge_pages(h)) {
3404 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3405 break;
3406 }
3407 out:
3408 h->max_huge_pages = persistent_huge_pages(h);
3409 spin_unlock_irq(&hugetlb_lock);
3410 mutex_unlock(&h->resize_lock);
3411
3412 NODEMASK_FREE(node_alloc_noretry);
3413
3414 return 0;
3415 }
3416
demote_free_huge_page(struct hstate * h,struct page * page)3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 {
3419 int i, nid = page_to_nid(page);
3420 struct hstate *target_hstate;
3421 int rc = 0;
3422
3423 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424
3425 remove_hugetlb_page_for_demote(h, page, false);
3426 spin_unlock_irq(&hugetlb_lock);
3427
3428 rc = hugetlb_vmemmap_alloc(h, page);
3429 if (rc) {
3430 /* Allocation of vmemmmap failed, we can not demote page */
3431 spin_lock_irq(&hugetlb_lock);
3432 set_page_refcounted(page);
3433 add_hugetlb_page(h, page, false);
3434 return rc;
3435 }
3436
3437 /*
3438 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 * sizes as it will not ref count pages.
3440 */
3441 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442
3443 /*
3444 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 * Without the mutex, pages added to target hstate could be marked
3446 * as surplus.
3447 *
3448 * Note that we already hold h->resize_lock. To prevent deadlock,
3449 * use the convention of always taking larger size hstate mutex first.
3450 */
3451 mutex_lock(&target_hstate->resize_lock);
3452 for (i = 0; i < pages_per_huge_page(h);
3453 i += pages_per_huge_page(target_hstate)) {
3454 if (hstate_is_gigantic(target_hstate))
3455 prep_compound_gigantic_page_for_demote(page + i,
3456 target_hstate->order);
3457 else
3458 prep_compound_page(page + i, target_hstate->order);
3459 set_page_private(page + i, 0);
3460 set_page_refcounted(page + i);
3461 prep_new_huge_page(target_hstate, page + i, nid);
3462 put_page(page + i);
3463 }
3464 mutex_unlock(&target_hstate->resize_lock);
3465
3466 spin_lock_irq(&hugetlb_lock);
3467
3468 /*
3469 * Not absolutely necessary, but for consistency update max_huge_pages
3470 * based on pool changes for the demoted page.
3471 */
3472 h->max_huge_pages--;
3473 target_hstate->max_huge_pages += pages_per_huge_page(h);
3474
3475 return rc;
3476 }
3477
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479 __must_hold(&hugetlb_lock)
3480 {
3481 int nr_nodes, node;
3482 struct page *page;
3483
3484 lockdep_assert_held(&hugetlb_lock);
3485
3486 /* We should never get here if no demote order */
3487 if (!h->demote_order) {
3488 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489 return -EINVAL; /* internal error */
3490 }
3491
3492 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494 if (PageHWPoison(page))
3495 continue;
3496
3497 return demote_free_huge_page(h, page);
3498 }
3499 }
3500
3501 /*
3502 * Only way to get here is if all pages on free lists are poisoned.
3503 * Return -EBUSY so that caller will not retry.
3504 */
3505 return -EBUSY;
3506 }
3507
3508 #define HSTATE_ATTR_RO(_name) \
3509 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3510
3511 #define HSTATE_ATTR_WO(_name) \
3512 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3513
3514 #define HSTATE_ATTR(_name) \
3515 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3516
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3519
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3521
kobj_to_hstate(struct kobject * kobj,int * nidp)3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3523 {
3524 int i;
3525
3526 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527 if (hstate_kobjs[i] == kobj) {
3528 if (nidp)
3529 *nidp = NUMA_NO_NODE;
3530 return &hstates[i];
3531 }
3532
3533 return kobj_to_node_hstate(kobj, nidp);
3534 }
3535
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537 struct kobj_attribute *attr, char *buf)
3538 {
3539 struct hstate *h;
3540 unsigned long nr_huge_pages;
3541 int nid;
3542
3543 h = kobj_to_hstate(kobj, &nid);
3544 if (nid == NUMA_NO_NODE)
3545 nr_huge_pages = h->nr_huge_pages;
3546 else
3547 nr_huge_pages = h->nr_huge_pages_node[nid];
3548
3549 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3550 }
3551
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553 struct hstate *h, int nid,
3554 unsigned long count, size_t len)
3555 {
3556 int err;
3557 nodemask_t nodes_allowed, *n_mask;
3558
3559 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3560 return -EINVAL;
3561
3562 if (nid == NUMA_NO_NODE) {
3563 /*
3564 * global hstate attribute
3565 */
3566 if (!(obey_mempolicy &&
3567 init_nodemask_of_mempolicy(&nodes_allowed)))
3568 n_mask = &node_states[N_MEMORY];
3569 else
3570 n_mask = &nodes_allowed;
3571 } else {
3572 /*
3573 * Node specific request. count adjustment happens in
3574 * set_max_huge_pages() after acquiring hugetlb_lock.
3575 */
3576 init_nodemask_of_node(&nodes_allowed, nid);
3577 n_mask = &nodes_allowed;
3578 }
3579
3580 err = set_max_huge_pages(h, count, nid, n_mask);
3581
3582 return err ? err : len;
3583 }
3584
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586 struct kobject *kobj, const char *buf,
3587 size_t len)
3588 {
3589 struct hstate *h;
3590 unsigned long count;
3591 int nid;
3592 int err;
3593
3594 err = kstrtoul(buf, 10, &count);
3595 if (err)
3596 return err;
3597
3598 h = kobj_to_hstate(kobj, &nid);
3599 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3600 }
3601
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603 struct kobj_attribute *attr, char *buf)
3604 {
3605 return nr_hugepages_show_common(kobj, attr, buf);
3606 }
3607
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609 struct kobj_attribute *attr, const char *buf, size_t len)
3610 {
3611 return nr_hugepages_store_common(false, kobj, buf, len);
3612 }
3613 HSTATE_ATTR(nr_hugepages);
3614
3615 #ifdef CONFIG_NUMA
3616
3617 /*
3618 * hstate attribute for optionally mempolicy-based constraint on persistent
3619 * huge page alloc/free.
3620 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622 struct kobj_attribute *attr,
3623 char *buf)
3624 {
3625 return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629 struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631 return nr_hugepages_store_common(true, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3634 #endif
3635
3636
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638 struct kobj_attribute *attr, char *buf)
3639 {
3640 struct hstate *h = kobj_to_hstate(kobj, NULL);
3641 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3642 }
3643
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645 struct kobj_attribute *attr, const char *buf, size_t count)
3646 {
3647 int err;
3648 unsigned long input;
3649 struct hstate *h = kobj_to_hstate(kobj, NULL);
3650
3651 if (hstate_is_gigantic(h))
3652 return -EINVAL;
3653
3654 err = kstrtoul(buf, 10, &input);
3655 if (err)
3656 return err;
3657
3658 spin_lock_irq(&hugetlb_lock);
3659 h->nr_overcommit_huge_pages = input;
3660 spin_unlock_irq(&hugetlb_lock);
3661
3662 return count;
3663 }
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3665
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667 struct kobj_attribute *attr, char *buf)
3668 {
3669 struct hstate *h;
3670 unsigned long free_huge_pages;
3671 int nid;
3672
3673 h = kobj_to_hstate(kobj, &nid);
3674 if (nid == NUMA_NO_NODE)
3675 free_huge_pages = h->free_huge_pages;
3676 else
3677 free_huge_pages = h->free_huge_pages_node[nid];
3678
3679 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3680 }
3681 HSTATE_ATTR_RO(free_hugepages);
3682
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684 struct kobj_attribute *attr, char *buf)
3685 {
3686 struct hstate *h = kobj_to_hstate(kobj, NULL);
3687 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3688 }
3689 HSTATE_ATTR_RO(resv_hugepages);
3690
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692 struct kobj_attribute *attr, char *buf)
3693 {
3694 struct hstate *h;
3695 unsigned long surplus_huge_pages;
3696 int nid;
3697
3698 h = kobj_to_hstate(kobj, &nid);
3699 if (nid == NUMA_NO_NODE)
3700 surplus_huge_pages = h->surplus_huge_pages;
3701 else
3702 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3703
3704 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3705 }
3706 HSTATE_ATTR_RO(surplus_hugepages);
3707
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3708 static ssize_t demote_store(struct kobject *kobj,
3709 struct kobj_attribute *attr, const char *buf, size_t len)
3710 {
3711 unsigned long nr_demote;
3712 unsigned long nr_available;
3713 nodemask_t nodes_allowed, *n_mask;
3714 struct hstate *h;
3715 int err = 0;
3716 int nid;
3717
3718 err = kstrtoul(buf, 10, &nr_demote);
3719 if (err)
3720 return err;
3721 h = kobj_to_hstate(kobj, &nid);
3722
3723 if (nid != NUMA_NO_NODE) {
3724 init_nodemask_of_node(&nodes_allowed, nid);
3725 n_mask = &nodes_allowed;
3726 } else {
3727 n_mask = &node_states[N_MEMORY];
3728 }
3729
3730 /* Synchronize with other sysfs operations modifying huge pages */
3731 mutex_lock(&h->resize_lock);
3732 spin_lock_irq(&hugetlb_lock);
3733
3734 while (nr_demote) {
3735 /*
3736 * Check for available pages to demote each time thorough the
3737 * loop as demote_pool_huge_page will drop hugetlb_lock.
3738 */
3739 if (nid != NUMA_NO_NODE)
3740 nr_available = h->free_huge_pages_node[nid];
3741 else
3742 nr_available = h->free_huge_pages;
3743 nr_available -= h->resv_huge_pages;
3744 if (!nr_available)
3745 break;
3746
3747 err = demote_pool_huge_page(h, n_mask);
3748 if (err)
3749 break;
3750
3751 nr_demote--;
3752 }
3753
3754 spin_unlock_irq(&hugetlb_lock);
3755 mutex_unlock(&h->resize_lock);
3756
3757 if (err)
3758 return err;
3759 return len;
3760 }
3761 HSTATE_ATTR_WO(demote);
3762
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3763 static ssize_t demote_size_show(struct kobject *kobj,
3764 struct kobj_attribute *attr, char *buf)
3765 {
3766 int nid;
3767 struct hstate *h = kobj_to_hstate(kobj, &nid);
3768 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769
3770 return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 struct kobj_attribute *attr,
3775 const char *buf, size_t count)
3776 {
3777 struct hstate *h, *demote_hstate;
3778 unsigned long demote_size;
3779 unsigned int demote_order;
3780 int nid;
3781
3782 demote_size = (unsigned long)memparse(buf, NULL);
3783
3784 demote_hstate = size_to_hstate(demote_size);
3785 if (!demote_hstate)
3786 return -EINVAL;
3787 demote_order = demote_hstate->order;
3788 if (demote_order < HUGETLB_PAGE_ORDER)
3789 return -EINVAL;
3790
3791 /* demote order must be smaller than hstate order */
3792 h = kobj_to_hstate(kobj, &nid);
3793 if (demote_order >= h->order)
3794 return -EINVAL;
3795
3796 /* resize_lock synchronizes access to demote size and writes */
3797 mutex_lock(&h->resize_lock);
3798 h->demote_order = demote_order;
3799 mutex_unlock(&h->resize_lock);
3800
3801 return count;
3802 }
3803 HSTATE_ATTR(demote_size);
3804
3805 static struct attribute *hstate_attrs[] = {
3806 &nr_hugepages_attr.attr,
3807 &nr_overcommit_hugepages_attr.attr,
3808 &free_hugepages_attr.attr,
3809 &resv_hugepages_attr.attr,
3810 &surplus_hugepages_attr.attr,
3811 #ifdef CONFIG_NUMA
3812 &nr_hugepages_mempolicy_attr.attr,
3813 #endif
3814 NULL,
3815 };
3816
3817 static const struct attribute_group hstate_attr_group = {
3818 .attrs = hstate_attrs,
3819 };
3820
3821 static struct attribute *hstate_demote_attrs[] = {
3822 &demote_size_attr.attr,
3823 &demote_attr.attr,
3824 NULL,
3825 };
3826
3827 static const struct attribute_group hstate_demote_attr_group = {
3828 .attrs = hstate_demote_attrs,
3829 };
3830
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832 struct kobject **hstate_kobjs,
3833 const struct attribute_group *hstate_attr_group)
3834 {
3835 int retval;
3836 int hi = hstate_index(h);
3837
3838 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839 if (!hstate_kobjs[hi])
3840 return -ENOMEM;
3841
3842 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843 if (retval) {
3844 kobject_put(hstate_kobjs[hi]);
3845 hstate_kobjs[hi] = NULL;
3846 }
3847
3848 if (h->demote_order) {
3849 if (sysfs_create_group(hstate_kobjs[hi],
3850 &hstate_demote_attr_group))
3851 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3852 }
3853
3854 return retval;
3855 }
3856
hugetlb_sysfs_init(void)3857 static void __init hugetlb_sysfs_init(void)
3858 {
3859 struct hstate *h;
3860 int err;
3861
3862 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863 if (!hugepages_kobj)
3864 return;
3865
3866 for_each_hstate(h) {
3867 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868 hstate_kobjs, &hstate_attr_group);
3869 if (err)
3870 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3871 }
3872 }
3873
3874 #ifdef CONFIG_NUMA
3875
3876 /*
3877 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878 * with node devices in node_devices[] using a parallel array. The array
3879 * index of a node device or _hstate == node id.
3880 * This is here to avoid any static dependency of the node device driver, in
3881 * the base kernel, on the hugetlb module.
3882 */
3883 struct node_hstate {
3884 struct kobject *hugepages_kobj;
3885 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888
3889 /*
3890 * A subset of global hstate attributes for node devices
3891 */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 &nr_hugepages_attr.attr,
3894 &free_hugepages_attr.attr,
3895 &surplus_hugepages_attr.attr,
3896 NULL,
3897 };
3898
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 .attrs = per_node_hstate_attrs,
3901 };
3902
3903 /*
3904 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905 * Returns node id via non-NULL nidp.
3906 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909 int nid;
3910
3911 for (nid = 0; nid < nr_node_ids; nid++) {
3912 struct node_hstate *nhs = &node_hstates[nid];
3913 int i;
3914 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 if (nhs->hstate_kobjs[i] == kobj) {
3916 if (nidp)
3917 *nidp = nid;
3918 return &hstates[i];
3919 }
3920 }
3921
3922 BUG();
3923 return NULL;
3924 }
3925
3926 /*
3927 * Unregister hstate attributes from a single node device.
3928 * No-op if no hstate attributes attached.
3929 */
hugetlb_unregister_node(struct node * node)3930 static void hugetlb_unregister_node(struct node *node)
3931 {
3932 struct hstate *h;
3933 struct node_hstate *nhs = &node_hstates[node->dev.id];
3934
3935 if (!nhs->hugepages_kobj)
3936 return; /* no hstate attributes */
3937
3938 for_each_hstate(h) {
3939 int idx = hstate_index(h);
3940 if (nhs->hstate_kobjs[idx]) {
3941 kobject_put(nhs->hstate_kobjs[idx]);
3942 nhs->hstate_kobjs[idx] = NULL;
3943 }
3944 }
3945
3946 kobject_put(nhs->hugepages_kobj);
3947 nhs->hugepages_kobj = NULL;
3948 }
3949
3950
3951 /*
3952 * Register hstate attributes for a single node device.
3953 * No-op if attributes already registered.
3954 */
hugetlb_register_node(struct node * node)3955 static void hugetlb_register_node(struct node *node)
3956 {
3957 struct hstate *h;
3958 struct node_hstate *nhs = &node_hstates[node->dev.id];
3959 int err;
3960
3961 if (nhs->hugepages_kobj)
3962 return; /* already allocated */
3963
3964 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3965 &node->dev.kobj);
3966 if (!nhs->hugepages_kobj)
3967 return;
3968
3969 for_each_hstate(h) {
3970 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3971 nhs->hstate_kobjs,
3972 &per_node_hstate_attr_group);
3973 if (err) {
3974 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975 h->name, node->dev.id);
3976 hugetlb_unregister_node(node);
3977 break;
3978 }
3979 }
3980 }
3981
3982 /*
3983 * hugetlb init time: register hstate attributes for all registered node
3984 * devices of nodes that have memory. All on-line nodes should have
3985 * registered their associated device by this time.
3986 */
hugetlb_register_all_nodes(void)3987 static void __init hugetlb_register_all_nodes(void)
3988 {
3989 int nid;
3990
3991 for_each_node_state(nid, N_MEMORY) {
3992 struct node *node = node_devices[nid];
3993 if (node->dev.id == nid)
3994 hugetlb_register_node(node);
3995 }
3996
3997 /*
3998 * Let the node device driver know we're here so it can
3999 * [un]register hstate attributes on node hotplug.
4000 */
4001 register_hugetlbfs_with_node(hugetlb_register_node,
4002 hugetlb_unregister_node);
4003 }
4004 #else /* !CONFIG_NUMA */
4005
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4007 {
4008 BUG();
4009 if (nidp)
4010 *nidp = -1;
4011 return NULL;
4012 }
4013
hugetlb_register_all_nodes(void)4014 static void hugetlb_register_all_nodes(void) { }
4015
4016 #endif
4017
hugetlb_init(void)4018 static int __init hugetlb_init(void)
4019 {
4020 int i;
4021
4022 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4023 __NR_HPAGEFLAGS);
4024
4025 if (!hugepages_supported()) {
4026 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4028 return 0;
4029 }
4030
4031 /*
4032 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4033 * architectures depend on setup being done here.
4034 */
4035 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036 if (!parsed_default_hugepagesz) {
4037 /*
4038 * If we did not parse a default huge page size, set
4039 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040 * number of huge pages for this default size was implicitly
4041 * specified, set that here as well.
4042 * Note that the implicit setting will overwrite an explicit
4043 * setting. A warning will be printed in this case.
4044 */
4045 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046 if (default_hstate_max_huge_pages) {
4047 if (default_hstate.max_huge_pages) {
4048 char buf[32];
4049
4050 string_get_size(huge_page_size(&default_hstate),
4051 1, STRING_UNITS_2, buf, 32);
4052 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053 default_hstate.max_huge_pages, buf);
4054 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055 default_hstate_max_huge_pages);
4056 }
4057 default_hstate.max_huge_pages =
4058 default_hstate_max_huge_pages;
4059
4060 for_each_online_node(i)
4061 default_hstate.max_huge_pages_node[i] =
4062 default_hugepages_in_node[i];
4063 }
4064 }
4065
4066 hugetlb_cma_check();
4067 hugetlb_init_hstates();
4068 gather_bootmem_prealloc();
4069 report_hugepages();
4070
4071 hugetlb_sysfs_init();
4072 hugetlb_register_all_nodes();
4073 hugetlb_cgroup_file_init();
4074
4075 #ifdef CONFIG_SMP
4076 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4077 #else
4078 num_fault_mutexes = 1;
4079 #endif
4080 hugetlb_fault_mutex_table =
4081 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4082 GFP_KERNEL);
4083 BUG_ON(!hugetlb_fault_mutex_table);
4084
4085 for (i = 0; i < num_fault_mutexes; i++)
4086 mutex_init(&hugetlb_fault_mutex_table[i]);
4087 return 0;
4088 }
4089 subsys_initcall(hugetlb_init);
4090
4091 /* Overwritten by architectures with more huge page sizes */
__init(weak)4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4093 {
4094 return size == HPAGE_SIZE;
4095 }
4096
hugetlb_add_hstate(unsigned int order)4097 void __init hugetlb_add_hstate(unsigned int order)
4098 {
4099 struct hstate *h;
4100 unsigned long i;
4101
4102 if (size_to_hstate(PAGE_SIZE << order)) {
4103 return;
4104 }
4105 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4106 BUG_ON(order == 0);
4107 h = &hstates[hugetlb_max_hstate++];
4108 mutex_init(&h->resize_lock);
4109 h->order = order;
4110 h->mask = ~(huge_page_size(h) - 1);
4111 for (i = 0; i < MAX_NUMNODES; ++i)
4112 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113 INIT_LIST_HEAD(&h->hugepage_activelist);
4114 h->next_nid_to_alloc = first_memory_node;
4115 h->next_nid_to_free = first_memory_node;
4116 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117 huge_page_size(h)/1024);
4118 hugetlb_vmemmap_init(h);
4119
4120 parsed_hstate = h;
4121 }
4122
hugetlb_node_alloc_supported(void)4123 bool __init __weak hugetlb_node_alloc_supported(void)
4124 {
4125 return true;
4126 }
4127
hugepages_clear_pages_in_node(void)4128 static void __init hugepages_clear_pages_in_node(void)
4129 {
4130 if (!hugetlb_max_hstate) {
4131 default_hstate_max_huge_pages = 0;
4132 memset(default_hugepages_in_node, 0,
4133 MAX_NUMNODES * sizeof(unsigned int));
4134 } else {
4135 parsed_hstate->max_huge_pages = 0;
4136 memset(parsed_hstate->max_huge_pages_node, 0,
4137 MAX_NUMNODES * sizeof(unsigned int));
4138 }
4139 }
4140
4141 /*
4142 * hugepages command line processing
4143 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4144 * specification. If not, ignore the hugepages value. hugepages can also
4145 * be the first huge page command line option in which case it implicitly
4146 * specifies the number of huge pages for the default size.
4147 */
hugepages_setup(char * s)4148 static int __init hugepages_setup(char *s)
4149 {
4150 unsigned long *mhp;
4151 static unsigned long *last_mhp;
4152 int node = NUMA_NO_NODE;
4153 int count;
4154 unsigned long tmp;
4155 char *p = s;
4156
4157 if (!parsed_valid_hugepagesz) {
4158 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4159 parsed_valid_hugepagesz = true;
4160 return 1;
4161 }
4162
4163 /*
4164 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4165 * yet, so this hugepages= parameter goes to the "default hstate".
4166 * Otherwise, it goes with the previously parsed hugepagesz or
4167 * default_hugepagesz.
4168 */
4169 else if (!hugetlb_max_hstate)
4170 mhp = &default_hstate_max_huge_pages;
4171 else
4172 mhp = &parsed_hstate->max_huge_pages;
4173
4174 if (mhp == last_mhp) {
4175 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4176 return 1;
4177 }
4178
4179 while (*p) {
4180 count = 0;
4181 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4182 goto invalid;
4183 /* Parameter is node format */
4184 if (p[count] == ':') {
4185 if (!hugetlb_node_alloc_supported()) {
4186 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4187 return 1;
4188 }
4189 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4190 goto invalid;
4191 node = array_index_nospec(tmp, MAX_NUMNODES);
4192 p += count + 1;
4193 /* Parse hugepages */
4194 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4195 goto invalid;
4196 if (!hugetlb_max_hstate)
4197 default_hugepages_in_node[node] = tmp;
4198 else
4199 parsed_hstate->max_huge_pages_node[node] = tmp;
4200 *mhp += tmp;
4201 /* Go to parse next node*/
4202 if (p[count] == ',')
4203 p += count + 1;
4204 else
4205 break;
4206 } else {
4207 if (p != s)
4208 goto invalid;
4209 *mhp = tmp;
4210 break;
4211 }
4212 }
4213
4214 /*
4215 * Global state is always initialized later in hugetlb_init.
4216 * But we need to allocate gigantic hstates here early to still
4217 * use the bootmem allocator.
4218 */
4219 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4220 hugetlb_hstate_alloc_pages(parsed_hstate);
4221
4222 last_mhp = mhp;
4223
4224 return 1;
4225
4226 invalid:
4227 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4228 hugepages_clear_pages_in_node();
4229 return 1;
4230 }
4231 __setup("hugepages=", hugepages_setup);
4232
4233 /*
4234 * hugepagesz command line processing
4235 * A specific huge page size can only be specified once with hugepagesz.
4236 * hugepagesz is followed by hugepages on the command line. The global
4237 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4238 * hugepagesz argument was valid.
4239 */
hugepagesz_setup(char * s)4240 static int __init hugepagesz_setup(char *s)
4241 {
4242 unsigned long size;
4243 struct hstate *h;
4244
4245 parsed_valid_hugepagesz = false;
4246 size = (unsigned long)memparse(s, NULL);
4247
4248 if (!arch_hugetlb_valid_size(size)) {
4249 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4250 return 1;
4251 }
4252
4253 h = size_to_hstate(size);
4254 if (h) {
4255 /*
4256 * hstate for this size already exists. This is normally
4257 * an error, but is allowed if the existing hstate is the
4258 * default hstate. More specifically, it is only allowed if
4259 * the number of huge pages for the default hstate was not
4260 * previously specified.
4261 */
4262 if (!parsed_default_hugepagesz || h != &default_hstate ||
4263 default_hstate.max_huge_pages) {
4264 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4265 return 1;
4266 }
4267
4268 /*
4269 * No need to call hugetlb_add_hstate() as hstate already
4270 * exists. But, do set parsed_hstate so that a following
4271 * hugepages= parameter will be applied to this hstate.
4272 */
4273 parsed_hstate = h;
4274 parsed_valid_hugepagesz = true;
4275 return 1;
4276 }
4277
4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 parsed_valid_hugepagesz = true;
4280 return 1;
4281 }
4282 __setup("hugepagesz=", hugepagesz_setup);
4283
4284 /*
4285 * default_hugepagesz command line input
4286 * Only one instance of default_hugepagesz allowed on command line.
4287 */
default_hugepagesz_setup(char * s)4288 static int __init default_hugepagesz_setup(char *s)
4289 {
4290 unsigned long size;
4291 int i;
4292
4293 parsed_valid_hugepagesz = false;
4294 if (parsed_default_hugepagesz) {
4295 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4296 return 1;
4297 }
4298
4299 size = (unsigned long)memparse(s, NULL);
4300
4301 if (!arch_hugetlb_valid_size(size)) {
4302 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4303 return 1;
4304 }
4305
4306 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4307 parsed_valid_hugepagesz = true;
4308 parsed_default_hugepagesz = true;
4309 default_hstate_idx = hstate_index(size_to_hstate(size));
4310
4311 /*
4312 * The number of default huge pages (for this size) could have been
4313 * specified as the first hugetlb parameter: hugepages=X. If so,
4314 * then default_hstate_max_huge_pages is set. If the default huge
4315 * page size is gigantic (>= MAX_ORDER), then the pages must be
4316 * allocated here from bootmem allocator.
4317 */
4318 if (default_hstate_max_huge_pages) {
4319 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4320 for_each_online_node(i)
4321 default_hstate.max_huge_pages_node[i] =
4322 default_hugepages_in_node[i];
4323 if (hstate_is_gigantic(&default_hstate))
4324 hugetlb_hstate_alloc_pages(&default_hstate);
4325 default_hstate_max_huge_pages = 0;
4326 }
4327
4328 return 1;
4329 }
4330 __setup("default_hugepagesz=", default_hugepagesz_setup);
4331
allowed_mems_nr(struct hstate * h)4332 static unsigned int allowed_mems_nr(struct hstate *h)
4333 {
4334 int node;
4335 unsigned int nr = 0;
4336 nodemask_t *mpol_allowed;
4337 unsigned int *array = h->free_huge_pages_node;
4338 gfp_t gfp_mask = htlb_alloc_mask(h);
4339
4340 mpol_allowed = policy_nodemask_current(gfp_mask);
4341
4342 for_each_node_mask(node, cpuset_current_mems_allowed) {
4343 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4344 nr += array[node];
4345 }
4346
4347 return nr;
4348 }
4349
4350 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4351 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4352 void *buffer, size_t *length,
4353 loff_t *ppos, unsigned long *out)
4354 {
4355 struct ctl_table dup_table;
4356
4357 /*
4358 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4359 * can duplicate the @table and alter the duplicate of it.
4360 */
4361 dup_table = *table;
4362 dup_table.data = out;
4363
4364 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4365 }
4366
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4367 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4368 struct ctl_table *table, int write,
4369 void *buffer, size_t *length, loff_t *ppos)
4370 {
4371 struct hstate *h = &default_hstate;
4372 unsigned long tmp = h->max_huge_pages;
4373 int ret;
4374
4375 if (!hugepages_supported())
4376 return -EOPNOTSUPP;
4377
4378 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4379 &tmp);
4380 if (ret)
4381 goto out;
4382
4383 if (write)
4384 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4385 NUMA_NO_NODE, tmp, *length);
4386 out:
4387 return ret;
4388 }
4389
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4390 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4391 void *buffer, size_t *length, loff_t *ppos)
4392 {
4393
4394 return hugetlb_sysctl_handler_common(false, table, write,
4395 buffer, length, ppos);
4396 }
4397
4398 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4399 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4400 void *buffer, size_t *length, loff_t *ppos)
4401 {
4402 return hugetlb_sysctl_handler_common(true, table, write,
4403 buffer, length, ppos);
4404 }
4405 #endif /* CONFIG_NUMA */
4406
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4407 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4408 void *buffer, size_t *length, loff_t *ppos)
4409 {
4410 struct hstate *h = &default_hstate;
4411 unsigned long tmp;
4412 int ret;
4413
4414 if (!hugepages_supported())
4415 return -EOPNOTSUPP;
4416
4417 tmp = h->nr_overcommit_huge_pages;
4418
4419 if (write && hstate_is_gigantic(h))
4420 return -EINVAL;
4421
4422 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4423 &tmp);
4424 if (ret)
4425 goto out;
4426
4427 if (write) {
4428 spin_lock_irq(&hugetlb_lock);
4429 h->nr_overcommit_huge_pages = tmp;
4430 spin_unlock_irq(&hugetlb_lock);
4431 }
4432 out:
4433 return ret;
4434 }
4435
4436 #endif /* CONFIG_SYSCTL */
4437
hugetlb_report_meminfo(struct seq_file * m)4438 void hugetlb_report_meminfo(struct seq_file *m)
4439 {
4440 struct hstate *h;
4441 unsigned long total = 0;
4442
4443 if (!hugepages_supported())
4444 return;
4445
4446 for_each_hstate(h) {
4447 unsigned long count = h->nr_huge_pages;
4448
4449 total += huge_page_size(h) * count;
4450
4451 if (h == &default_hstate)
4452 seq_printf(m,
4453 "HugePages_Total: %5lu\n"
4454 "HugePages_Free: %5lu\n"
4455 "HugePages_Rsvd: %5lu\n"
4456 "HugePages_Surp: %5lu\n"
4457 "Hugepagesize: %8lu kB\n",
4458 count,
4459 h->free_huge_pages,
4460 h->resv_huge_pages,
4461 h->surplus_huge_pages,
4462 huge_page_size(h) / SZ_1K);
4463 }
4464
4465 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4466 }
4467
hugetlb_report_node_meminfo(char * buf,int len,int nid)4468 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4469 {
4470 struct hstate *h = &default_hstate;
4471
4472 if (!hugepages_supported())
4473 return 0;
4474
4475 return sysfs_emit_at(buf, len,
4476 "Node %d HugePages_Total: %5u\n"
4477 "Node %d HugePages_Free: %5u\n"
4478 "Node %d HugePages_Surp: %5u\n",
4479 nid, h->nr_huge_pages_node[nid],
4480 nid, h->free_huge_pages_node[nid],
4481 nid, h->surplus_huge_pages_node[nid]);
4482 }
4483
hugetlb_show_meminfo(void)4484 void hugetlb_show_meminfo(void)
4485 {
4486 struct hstate *h;
4487 int nid;
4488
4489 if (!hugepages_supported())
4490 return;
4491
4492 for_each_node_state(nid, N_MEMORY)
4493 for_each_hstate(h)
4494 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4495 nid,
4496 h->nr_huge_pages_node[nid],
4497 h->free_huge_pages_node[nid],
4498 h->surplus_huge_pages_node[nid],
4499 huge_page_size(h) / SZ_1K);
4500 }
4501
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4502 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4503 {
4504 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4505 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4506 }
4507
4508 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4509 unsigned long hugetlb_total_pages(void)
4510 {
4511 struct hstate *h;
4512 unsigned long nr_total_pages = 0;
4513
4514 for_each_hstate(h)
4515 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4516 return nr_total_pages;
4517 }
4518
hugetlb_acct_memory(struct hstate * h,long delta)4519 static int hugetlb_acct_memory(struct hstate *h, long delta)
4520 {
4521 int ret = -ENOMEM;
4522
4523 if (!delta)
4524 return 0;
4525
4526 spin_lock_irq(&hugetlb_lock);
4527 /*
4528 * When cpuset is configured, it breaks the strict hugetlb page
4529 * reservation as the accounting is done on a global variable. Such
4530 * reservation is completely rubbish in the presence of cpuset because
4531 * the reservation is not checked against page availability for the
4532 * current cpuset. Application can still potentially OOM'ed by kernel
4533 * with lack of free htlb page in cpuset that the task is in.
4534 * Attempt to enforce strict accounting with cpuset is almost
4535 * impossible (or too ugly) because cpuset is too fluid that
4536 * task or memory node can be dynamically moved between cpusets.
4537 *
4538 * The change of semantics for shared hugetlb mapping with cpuset is
4539 * undesirable. However, in order to preserve some of the semantics,
4540 * we fall back to check against current free page availability as
4541 * a best attempt and hopefully to minimize the impact of changing
4542 * semantics that cpuset has.
4543 *
4544 * Apart from cpuset, we also have memory policy mechanism that
4545 * also determines from which node the kernel will allocate memory
4546 * in a NUMA system. So similar to cpuset, we also should consider
4547 * the memory policy of the current task. Similar to the description
4548 * above.
4549 */
4550 if (delta > 0) {
4551 if (gather_surplus_pages(h, delta) < 0)
4552 goto out;
4553
4554 if (delta > allowed_mems_nr(h)) {
4555 return_unused_surplus_pages(h, delta);
4556 goto out;
4557 }
4558 }
4559
4560 ret = 0;
4561 if (delta < 0)
4562 return_unused_surplus_pages(h, (unsigned long) -delta);
4563
4564 out:
4565 spin_unlock_irq(&hugetlb_lock);
4566 return ret;
4567 }
4568
hugetlb_vm_op_open(struct vm_area_struct * vma)4569 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4570 {
4571 struct resv_map *resv = vma_resv_map(vma);
4572
4573 /*
4574 * This new VMA should share its siblings reservation map if present.
4575 * The VMA will only ever have a valid reservation map pointer where
4576 * it is being copied for another still existing VMA. As that VMA
4577 * has a reference to the reservation map it cannot disappear until
4578 * after this open call completes. It is therefore safe to take a
4579 * new reference here without additional locking.
4580 */
4581 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4582 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4583 kref_get(&resv->refs);
4584 }
4585 }
4586
hugetlb_vm_op_close(struct vm_area_struct * vma)4587 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4588 {
4589 struct hstate *h = hstate_vma(vma);
4590 struct resv_map *resv = vma_resv_map(vma);
4591 struct hugepage_subpool *spool = subpool_vma(vma);
4592 unsigned long reserve, start, end;
4593 long gbl_reserve;
4594
4595 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4596 return;
4597
4598 start = vma_hugecache_offset(h, vma, vma->vm_start);
4599 end = vma_hugecache_offset(h, vma, vma->vm_end);
4600
4601 reserve = (end - start) - region_count(resv, start, end);
4602 hugetlb_cgroup_uncharge_counter(resv, start, end);
4603 if (reserve) {
4604 /*
4605 * Decrement reserve counts. The global reserve count may be
4606 * adjusted if the subpool has a minimum size.
4607 */
4608 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4609 hugetlb_acct_memory(h, -gbl_reserve);
4610 }
4611
4612 kref_put(&resv->refs, resv_map_release);
4613 }
4614
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4615 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4616 {
4617 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4618 return -EINVAL;
4619 return 0;
4620 }
4621
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4622 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4623 {
4624 return huge_page_size(hstate_vma(vma));
4625 }
4626
4627 /*
4628 * We cannot handle pagefaults against hugetlb pages at all. They cause
4629 * handle_mm_fault() to try to instantiate regular-sized pages in the
4630 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4631 * this far.
4632 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4633 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4634 {
4635 BUG();
4636 return 0;
4637 }
4638
4639 /*
4640 * When a new function is introduced to vm_operations_struct and added
4641 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4642 * This is because under System V memory model, mappings created via
4643 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4644 * their original vm_ops are overwritten with shm_vm_ops.
4645 */
4646 const struct vm_operations_struct hugetlb_vm_ops = {
4647 .fault = hugetlb_vm_op_fault,
4648 .open = hugetlb_vm_op_open,
4649 .close = hugetlb_vm_op_close,
4650 .may_split = hugetlb_vm_op_split,
4651 .pagesize = hugetlb_vm_op_pagesize,
4652 };
4653
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4654 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4655 int writable)
4656 {
4657 pte_t entry;
4658 unsigned int shift = huge_page_shift(hstate_vma(vma));
4659
4660 if (writable) {
4661 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4662 vma->vm_page_prot)));
4663 } else {
4664 entry = huge_pte_wrprotect(mk_huge_pte(page,
4665 vma->vm_page_prot));
4666 }
4667 entry = pte_mkyoung(entry);
4668 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4669
4670 return entry;
4671 }
4672
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4673 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4674 unsigned long address, pte_t *ptep)
4675 {
4676 pte_t entry;
4677
4678 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4679 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4680 update_mmu_cache(vma, address, ptep);
4681 }
4682
is_hugetlb_entry_migration(pte_t pte)4683 bool is_hugetlb_entry_migration(pte_t pte)
4684 {
4685 swp_entry_t swp;
4686
4687 if (huge_pte_none(pte) || pte_present(pte))
4688 return false;
4689 swp = pte_to_swp_entry(pte);
4690 if (is_migration_entry(swp))
4691 return true;
4692 else
4693 return false;
4694 }
4695
is_hugetlb_entry_hwpoisoned(pte_t pte)4696 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4697 {
4698 swp_entry_t swp;
4699
4700 if (huge_pte_none(pte) || pte_present(pte))
4701 return false;
4702 swp = pte_to_swp_entry(pte);
4703 if (is_hwpoison_entry(swp))
4704 return true;
4705 else
4706 return false;
4707 }
4708
4709 static void
hugetlb_install_page(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct page * new_page)4710 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4711 struct page *new_page)
4712 {
4713 __SetPageUptodate(new_page);
4714 hugepage_add_new_anon_rmap(new_page, vma, addr);
4715 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4716 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4717 ClearHPageRestoreReserve(new_page);
4718 SetHPageMigratable(new_page);
4719 }
4720
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)4721 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4722 struct vm_area_struct *dst_vma,
4723 struct vm_area_struct *src_vma)
4724 {
4725 pte_t *src_pte, *dst_pte, entry, dst_entry;
4726 struct page *ptepage;
4727 unsigned long addr;
4728 bool cow = is_cow_mapping(src_vma->vm_flags);
4729 struct hstate *h = hstate_vma(src_vma);
4730 unsigned long sz = huge_page_size(h);
4731 unsigned long npages = pages_per_huge_page(h);
4732 struct address_space *mapping = src_vma->vm_file->f_mapping;
4733 struct mmu_notifier_range range;
4734 int ret = 0;
4735
4736 if (cow) {
4737 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4738 src_vma->vm_start,
4739 src_vma->vm_end);
4740 mmu_notifier_invalidate_range_start(&range);
4741 mmap_assert_write_locked(src);
4742 raw_write_seqcount_begin(&src->write_protect_seq);
4743 } else {
4744 /*
4745 * For shared mappings i_mmap_rwsem must be held to call
4746 * huge_pte_alloc, otherwise the returned ptep could go
4747 * away if part of a shared pmd and another thread calls
4748 * huge_pmd_unshare.
4749 */
4750 i_mmap_lock_read(mapping);
4751 }
4752
4753 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4754 spinlock_t *src_ptl, *dst_ptl;
4755 src_pte = huge_pte_offset(src, addr, sz);
4756 if (!src_pte)
4757 continue;
4758 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4759 if (!dst_pte) {
4760 ret = -ENOMEM;
4761 break;
4762 }
4763
4764 /*
4765 * If the pagetables are shared don't copy or take references.
4766 * dst_pte == src_pte is the common case of src/dest sharing.
4767 *
4768 * However, src could have 'unshared' and dst shares with
4769 * another vma. If dst_pte !none, this implies sharing.
4770 * Check here before taking page table lock, and once again
4771 * after taking the lock below.
4772 */
4773 dst_entry = huge_ptep_get(dst_pte);
4774 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4775 continue;
4776
4777 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4778 src_ptl = huge_pte_lockptr(h, src, src_pte);
4779 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4780 entry = huge_ptep_get(src_pte);
4781 dst_entry = huge_ptep_get(dst_pte);
4782 again:
4783 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4784 /*
4785 * Skip if src entry none. Also, skip in the
4786 * unlikely case dst entry !none as this implies
4787 * sharing with another vma.
4788 */
4789 ;
4790 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4791 bool uffd_wp = huge_pte_uffd_wp(entry);
4792
4793 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4794 entry = huge_pte_clear_uffd_wp(entry);
4795 set_huge_pte_at(dst, addr, dst_pte, entry);
4796 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4797 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4798 bool uffd_wp = huge_pte_uffd_wp(entry);
4799
4800 if (!is_readable_migration_entry(swp_entry) && cow) {
4801 /*
4802 * COW mappings require pages in both
4803 * parent and child to be set to read.
4804 */
4805 swp_entry = make_readable_migration_entry(
4806 swp_offset(swp_entry));
4807 entry = swp_entry_to_pte(swp_entry);
4808 if (userfaultfd_wp(src_vma) && uffd_wp)
4809 entry = huge_pte_mkuffd_wp(entry);
4810 set_huge_swap_pte_at(src, addr, src_pte,
4811 entry, sz);
4812 }
4813 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4814 entry = huge_pte_clear_uffd_wp(entry);
4815 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4816 } else if (unlikely(is_pte_marker(entry))) {
4817 /*
4818 * We copy the pte marker only if the dst vma has
4819 * uffd-wp enabled.
4820 */
4821 if (userfaultfd_wp(dst_vma))
4822 set_huge_pte_at(dst, addr, dst_pte, entry);
4823 } else {
4824 entry = huge_ptep_get(src_pte);
4825 ptepage = pte_page(entry);
4826 get_page(ptepage);
4827
4828 /*
4829 * Failing to duplicate the anon rmap is a rare case
4830 * where we see pinned hugetlb pages while they're
4831 * prone to COW. We need to do the COW earlier during
4832 * fork.
4833 *
4834 * When pre-allocating the page or copying data, we
4835 * need to be without the pgtable locks since we could
4836 * sleep during the process.
4837 */
4838 if (!PageAnon(ptepage)) {
4839 page_dup_file_rmap(ptepage, true);
4840 } else if (page_try_dup_anon_rmap(ptepage, true,
4841 src_vma)) {
4842 pte_t src_pte_old = entry;
4843 struct page *new;
4844
4845 spin_unlock(src_ptl);
4846 spin_unlock(dst_ptl);
4847 /* Do not use reserve as it's private owned */
4848 new = alloc_huge_page(dst_vma, addr, 1);
4849 if (IS_ERR(new)) {
4850 put_page(ptepage);
4851 ret = PTR_ERR(new);
4852 break;
4853 }
4854 copy_user_huge_page(new, ptepage, addr, dst_vma,
4855 npages);
4856 put_page(ptepage);
4857
4858 /* Install the new huge page if src pte stable */
4859 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4860 src_ptl = huge_pte_lockptr(h, src, src_pte);
4861 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4862 entry = huge_ptep_get(src_pte);
4863 if (!pte_same(src_pte_old, entry)) {
4864 restore_reserve_on_error(h, dst_vma, addr,
4865 new);
4866 put_page(new);
4867 /* dst_entry won't change as in child */
4868 goto again;
4869 }
4870 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4871 spin_unlock(src_ptl);
4872 spin_unlock(dst_ptl);
4873 continue;
4874 }
4875
4876 if (cow) {
4877 /*
4878 * No need to notify as we are downgrading page
4879 * table protection not changing it to point
4880 * to a new page.
4881 *
4882 * See Documentation/vm/mmu_notifier.rst
4883 */
4884 huge_ptep_set_wrprotect(src, addr, src_pte);
4885 entry = huge_pte_wrprotect(entry);
4886 }
4887
4888 set_huge_pte_at(dst, addr, dst_pte, entry);
4889 hugetlb_count_add(npages, dst);
4890 }
4891 spin_unlock(src_ptl);
4892 spin_unlock(dst_ptl);
4893 }
4894
4895 if (cow) {
4896 raw_write_seqcount_end(&src->write_protect_seq);
4897 mmu_notifier_invalidate_range_end(&range);
4898 } else {
4899 i_mmap_unlock_read(mapping);
4900 }
4901
4902 return ret;
4903 }
4904
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte)4905 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4906 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4907 {
4908 struct hstate *h = hstate_vma(vma);
4909 struct mm_struct *mm = vma->vm_mm;
4910 spinlock_t *src_ptl, *dst_ptl;
4911 pte_t pte;
4912
4913 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4914 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4915
4916 /*
4917 * We don't have to worry about the ordering of src and dst ptlocks
4918 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4919 */
4920 if (src_ptl != dst_ptl)
4921 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922
4923 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4924 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4925
4926 if (src_ptl != dst_ptl)
4927 spin_unlock(src_ptl);
4928 spin_unlock(dst_ptl);
4929 }
4930
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)4931 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4932 struct vm_area_struct *new_vma,
4933 unsigned long old_addr, unsigned long new_addr,
4934 unsigned long len)
4935 {
4936 struct hstate *h = hstate_vma(vma);
4937 struct address_space *mapping = vma->vm_file->f_mapping;
4938 unsigned long sz = huge_page_size(h);
4939 struct mm_struct *mm = vma->vm_mm;
4940 unsigned long old_end = old_addr + len;
4941 unsigned long old_addr_copy;
4942 pte_t *src_pte, *dst_pte;
4943 struct mmu_notifier_range range;
4944 bool shared_pmd = false;
4945
4946 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4947 old_end);
4948 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4949 /*
4950 * In case of shared PMDs, we should cover the maximum possible
4951 * range.
4952 */
4953 flush_cache_range(vma, range.start, range.end);
4954
4955 mmu_notifier_invalidate_range_start(&range);
4956 /* Prevent race with file truncation */
4957 i_mmap_lock_write(mapping);
4958 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4959 src_pte = huge_pte_offset(mm, old_addr, sz);
4960 if (!src_pte)
4961 continue;
4962 if (huge_pte_none(huge_ptep_get(src_pte)))
4963 continue;
4964
4965 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4966 * arg may be modified. Pass a copy instead to preserve the
4967 * value in old_addr.
4968 */
4969 old_addr_copy = old_addr;
4970
4971 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4972 shared_pmd = true;
4973 continue;
4974 }
4975
4976 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4977 if (!dst_pte)
4978 break;
4979
4980 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4981 }
4982
4983 if (shared_pmd)
4984 flush_tlb_range(vma, range.start, range.end);
4985 else
4986 flush_tlb_range(vma, old_end - len, old_end);
4987 mmu_notifier_invalidate_range_end(&range);
4988 i_mmap_unlock_write(mapping);
4989
4990 return len + old_addr - old_end;
4991 }
4992
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)4993 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4994 unsigned long start, unsigned long end,
4995 struct page *ref_page, zap_flags_t zap_flags)
4996 {
4997 struct mm_struct *mm = vma->vm_mm;
4998 unsigned long address;
4999 pte_t *ptep;
5000 pte_t pte;
5001 spinlock_t *ptl;
5002 struct page *page;
5003 struct hstate *h = hstate_vma(vma);
5004 unsigned long sz = huge_page_size(h);
5005 struct mmu_notifier_range range;
5006 bool force_flush = false;
5007
5008 WARN_ON(!is_vm_hugetlb_page(vma));
5009 BUG_ON(start & ~huge_page_mask(h));
5010 BUG_ON(end & ~huge_page_mask(h));
5011
5012 /*
5013 * This is a hugetlb vma, all the pte entries should point
5014 * to huge page.
5015 */
5016 tlb_change_page_size(tlb, sz);
5017 tlb_start_vma(tlb, vma);
5018
5019 /*
5020 * If sharing possible, alert mmu notifiers of worst case.
5021 */
5022 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5023 end);
5024 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5025 mmu_notifier_invalidate_range_start(&range);
5026 address = start;
5027 for (; address < end; address += sz) {
5028 ptep = huge_pte_offset(mm, address, sz);
5029 if (!ptep)
5030 continue;
5031
5032 ptl = huge_pte_lock(h, mm, ptep);
5033 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5034 spin_unlock(ptl);
5035 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5036 force_flush = true;
5037 continue;
5038 }
5039
5040 pte = huge_ptep_get(ptep);
5041 if (huge_pte_none(pte)) {
5042 spin_unlock(ptl);
5043 continue;
5044 }
5045
5046 /*
5047 * Migrating hugepage or HWPoisoned hugepage is already
5048 * unmapped and its refcount is dropped, so just clear pte here.
5049 */
5050 if (unlikely(!pte_present(pte))) {
5051 /*
5052 * If the pte was wr-protected by uffd-wp in any of the
5053 * swap forms, meanwhile the caller does not want to
5054 * drop the uffd-wp bit in this zap, then replace the
5055 * pte with a marker.
5056 */
5057 if (pte_swp_uffd_wp_any(pte) &&
5058 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5059 set_huge_pte_at(mm, address, ptep,
5060 make_pte_marker(PTE_MARKER_UFFD_WP));
5061 else
5062 huge_pte_clear(mm, address, ptep, sz);
5063 spin_unlock(ptl);
5064 continue;
5065 }
5066
5067 page = pte_page(pte);
5068 /*
5069 * If a reference page is supplied, it is because a specific
5070 * page is being unmapped, not a range. Ensure the page we
5071 * are about to unmap is the actual page of interest.
5072 */
5073 if (ref_page) {
5074 if (page != ref_page) {
5075 spin_unlock(ptl);
5076 continue;
5077 }
5078 /*
5079 * Mark the VMA as having unmapped its page so that
5080 * future faults in this VMA will fail rather than
5081 * looking like data was lost
5082 */
5083 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5084 }
5085
5086 pte = huge_ptep_get_and_clear(mm, address, ptep);
5087 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5088 if (huge_pte_dirty(pte))
5089 set_page_dirty(page);
5090 /* Leave a uffd-wp pte marker if needed */
5091 if (huge_pte_uffd_wp(pte) &&
5092 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5093 set_huge_pte_at(mm, address, ptep,
5094 make_pte_marker(PTE_MARKER_UFFD_WP));
5095 hugetlb_count_sub(pages_per_huge_page(h), mm);
5096 page_remove_rmap(page, vma, true);
5097
5098 spin_unlock(ptl);
5099 tlb_remove_page_size(tlb, page, huge_page_size(h));
5100 /*
5101 * Bail out after unmapping reference page if supplied
5102 */
5103 if (ref_page)
5104 break;
5105 }
5106 mmu_notifier_invalidate_range_end(&range);
5107 tlb_end_vma(tlb, vma);
5108
5109 /*
5110 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5111 * could defer the flush until now, since by holding i_mmap_rwsem we
5112 * guaranteed that the last refernece would not be dropped. But we must
5113 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5114 * dropped and the last reference to the shared PMDs page might be
5115 * dropped as well.
5116 *
5117 * In theory we could defer the freeing of the PMD pages as well, but
5118 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5119 * detect sharing, so we cannot defer the release of the page either.
5120 * Instead, do flush now.
5121 */
5122 if (force_flush)
5123 tlb_flush_mmu_tlbonly(tlb);
5124 }
5125
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5126 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5127 struct vm_area_struct *vma, unsigned long start,
5128 unsigned long end, struct page *ref_page,
5129 zap_flags_t zap_flags)
5130 {
5131 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5132
5133 /*
5134 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5135 * test will fail on a vma being torn down, and not grab a page table
5136 * on its way out. We're lucky that the flag has such an appropriate
5137 * name, and can in fact be safely cleared here. We could clear it
5138 * before the __unmap_hugepage_range above, but all that's necessary
5139 * is to clear it before releasing the i_mmap_rwsem. This works
5140 * because in the context this is called, the VMA is about to be
5141 * destroyed and the i_mmap_rwsem is held.
5142 */
5143 vma->vm_flags &= ~VM_MAYSHARE;
5144 }
5145
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5146 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5147 unsigned long end, struct page *ref_page,
5148 zap_flags_t zap_flags)
5149 {
5150 struct mmu_gather tlb;
5151
5152 tlb_gather_mmu(&tlb, vma->vm_mm);
5153 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5154 tlb_finish_mmu(&tlb);
5155 }
5156
5157 /*
5158 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5159 * mapping it owns the reserve page for. The intention is to unmap the page
5160 * from other VMAs and let the children be SIGKILLed if they are faulting the
5161 * same region.
5162 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5163 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5164 struct page *page, unsigned long address)
5165 {
5166 struct hstate *h = hstate_vma(vma);
5167 struct vm_area_struct *iter_vma;
5168 struct address_space *mapping;
5169 pgoff_t pgoff;
5170
5171 /*
5172 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5173 * from page cache lookup which is in HPAGE_SIZE units.
5174 */
5175 address = address & huge_page_mask(h);
5176 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5177 vma->vm_pgoff;
5178 mapping = vma->vm_file->f_mapping;
5179
5180 /*
5181 * Take the mapping lock for the duration of the table walk. As
5182 * this mapping should be shared between all the VMAs,
5183 * __unmap_hugepage_range() is called as the lock is already held
5184 */
5185 i_mmap_lock_write(mapping);
5186 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5187 /* Do not unmap the current VMA */
5188 if (iter_vma == vma)
5189 continue;
5190
5191 /*
5192 * Shared VMAs have their own reserves and do not affect
5193 * MAP_PRIVATE accounting but it is possible that a shared
5194 * VMA is using the same page so check and skip such VMAs.
5195 */
5196 if (iter_vma->vm_flags & VM_MAYSHARE)
5197 continue;
5198
5199 /*
5200 * Unmap the page from other VMAs without their own reserves.
5201 * They get marked to be SIGKILLed if they fault in these
5202 * areas. This is because a future no-page fault on this VMA
5203 * could insert a zeroed page instead of the data existing
5204 * from the time of fork. This would look like data corruption
5205 */
5206 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5207 unmap_hugepage_range(iter_vma, address,
5208 address + huge_page_size(h), page, 0);
5209 }
5210 i_mmap_unlock_write(mapping);
5211 }
5212
5213 /*
5214 * hugetlb_wp() should be called with page lock of the original hugepage held.
5215 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5216 * cannot race with other handlers or page migration.
5217 * Keep the pte_same checks anyway to make transition from the mutex easier.
5218 */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct page * pagecache_page,spinlock_t * ptl)5219 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5220 unsigned long address, pte_t *ptep, unsigned int flags,
5221 struct page *pagecache_page, spinlock_t *ptl)
5222 {
5223 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5224 pte_t pte;
5225 struct hstate *h = hstate_vma(vma);
5226 struct page *old_page, *new_page;
5227 int outside_reserve = 0;
5228 vm_fault_t ret = 0;
5229 unsigned long haddr = address & huge_page_mask(h);
5230 struct mmu_notifier_range range;
5231
5232 VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5233 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5234
5235 /*
5236 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5237 * PTE mapped R/O such as maybe_mkwrite() would do.
5238 */
5239 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5240 return VM_FAULT_SIGSEGV;
5241
5242 /* Let's take out MAP_SHARED mappings first. */
5243 if (vma->vm_flags & VM_MAYSHARE) {
5244 if (unlikely(unshare))
5245 return 0;
5246 set_huge_ptep_writable(vma, haddr, ptep);
5247 return 0;
5248 }
5249
5250 pte = huge_ptep_get(ptep);
5251 old_page = pte_page(pte);
5252
5253 delayacct_wpcopy_start();
5254
5255 retry_avoidcopy:
5256 /*
5257 * If no-one else is actually using this page, we're the exclusive
5258 * owner and can reuse this page.
5259 */
5260 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5261 if (!PageAnonExclusive(old_page))
5262 page_move_anon_rmap(old_page, vma);
5263 if (likely(!unshare))
5264 set_huge_ptep_writable(vma, haddr, ptep);
5265
5266 delayacct_wpcopy_end();
5267 return 0;
5268 }
5269 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5270 old_page);
5271
5272 /*
5273 * If the process that created a MAP_PRIVATE mapping is about to
5274 * perform a COW due to a shared page count, attempt to satisfy
5275 * the allocation without using the existing reserves. The pagecache
5276 * page is used to determine if the reserve at this address was
5277 * consumed or not. If reserves were used, a partial faulted mapping
5278 * at the time of fork() could consume its reserves on COW instead
5279 * of the full address range.
5280 */
5281 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5282 old_page != pagecache_page)
5283 outside_reserve = 1;
5284
5285 get_page(old_page);
5286
5287 /*
5288 * Drop page table lock as buddy allocator may be called. It will
5289 * be acquired again before returning to the caller, as expected.
5290 */
5291 spin_unlock(ptl);
5292 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5293
5294 if (IS_ERR(new_page)) {
5295 /*
5296 * If a process owning a MAP_PRIVATE mapping fails to COW,
5297 * it is due to references held by a child and an insufficient
5298 * huge page pool. To guarantee the original mappers
5299 * reliability, unmap the page from child processes. The child
5300 * may get SIGKILLed if it later faults.
5301 */
5302 if (outside_reserve) {
5303 struct address_space *mapping = vma->vm_file->f_mapping;
5304 pgoff_t idx;
5305 u32 hash;
5306
5307 put_page(old_page);
5308 BUG_ON(huge_pte_none(pte));
5309 /*
5310 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5311 * unmapping. unmapping needs to hold i_mmap_rwsem
5312 * in write mode. Dropping i_mmap_rwsem in read mode
5313 * here is OK as COW mappings do not interact with
5314 * PMD sharing.
5315 *
5316 * Reacquire both after unmap operation.
5317 */
5318 idx = vma_hugecache_offset(h, vma, haddr);
5319 hash = hugetlb_fault_mutex_hash(mapping, idx);
5320 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5321 i_mmap_unlock_read(mapping);
5322
5323 unmap_ref_private(mm, vma, old_page, haddr);
5324
5325 i_mmap_lock_read(mapping);
5326 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5327 spin_lock(ptl);
5328 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5329 if (likely(ptep &&
5330 pte_same(huge_ptep_get(ptep), pte)))
5331 goto retry_avoidcopy;
5332 /*
5333 * race occurs while re-acquiring page table
5334 * lock, and our job is done.
5335 */
5336 delayacct_wpcopy_end();
5337 return 0;
5338 }
5339
5340 ret = vmf_error(PTR_ERR(new_page));
5341 goto out_release_old;
5342 }
5343
5344 /*
5345 * When the original hugepage is shared one, it does not have
5346 * anon_vma prepared.
5347 */
5348 if (unlikely(anon_vma_prepare(vma))) {
5349 ret = VM_FAULT_OOM;
5350 goto out_release_all;
5351 }
5352
5353 copy_user_huge_page(new_page, old_page, address, vma,
5354 pages_per_huge_page(h));
5355 __SetPageUptodate(new_page);
5356
5357 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5358 haddr + huge_page_size(h));
5359 mmu_notifier_invalidate_range_start(&range);
5360
5361 /*
5362 * Retake the page table lock to check for racing updates
5363 * before the page tables are altered
5364 */
5365 spin_lock(ptl);
5366 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5367 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5368 ClearHPageRestoreReserve(new_page);
5369
5370 /* Break COW or unshare */
5371 huge_ptep_clear_flush(vma, haddr, ptep);
5372 mmu_notifier_invalidate_range(mm, range.start, range.end);
5373 page_remove_rmap(old_page, vma, true);
5374 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5375 set_huge_pte_at(mm, haddr, ptep,
5376 make_huge_pte(vma, new_page, !unshare));
5377 SetHPageMigratable(new_page);
5378 /* Make the old page be freed below */
5379 new_page = old_page;
5380 }
5381 spin_unlock(ptl);
5382 mmu_notifier_invalidate_range_end(&range);
5383 out_release_all:
5384 /*
5385 * No restore in case of successful pagetable update (Break COW or
5386 * unshare)
5387 */
5388 if (new_page != old_page)
5389 restore_reserve_on_error(h, vma, haddr, new_page);
5390 put_page(new_page);
5391 out_release_old:
5392 put_page(old_page);
5393
5394 spin_lock(ptl); /* Caller expects lock to be held */
5395
5396 delayacct_wpcopy_end();
5397 return ret;
5398 }
5399
5400 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5401 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5402 struct vm_area_struct *vma, unsigned long address)
5403 {
5404 struct address_space *mapping;
5405 pgoff_t idx;
5406
5407 mapping = vma->vm_file->f_mapping;
5408 idx = vma_hugecache_offset(h, vma, address);
5409
5410 return find_lock_page(mapping, idx);
5411 }
5412
5413 /*
5414 * Return whether there is a pagecache page to back given address within VMA.
5415 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5416 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5417 static bool hugetlbfs_pagecache_present(struct hstate *h,
5418 struct vm_area_struct *vma, unsigned long address)
5419 {
5420 struct address_space *mapping;
5421 pgoff_t idx;
5422 struct page *page;
5423
5424 mapping = vma->vm_file->f_mapping;
5425 idx = vma_hugecache_offset(h, vma, address);
5426
5427 page = find_get_page(mapping, idx);
5428 if (page)
5429 put_page(page);
5430 return page != NULL;
5431 }
5432
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)5433 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5434 pgoff_t idx)
5435 {
5436 struct inode *inode = mapping->host;
5437 struct hstate *h = hstate_inode(inode);
5438 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5439
5440 if (err)
5441 return err;
5442 ClearHPageRestoreReserve(page);
5443
5444 /*
5445 * set page dirty so that it will not be removed from cache/file
5446 * by non-hugetlbfs specific code paths.
5447 */
5448 set_page_dirty(page);
5449
5450 spin_lock(&inode->i_lock);
5451 inode->i_blocks += blocks_per_huge_page(h);
5452 spin_unlock(&inode->i_lock);
5453 return 0;
5454 }
5455
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5456 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5457 struct address_space *mapping,
5458 pgoff_t idx,
5459 unsigned int flags,
5460 unsigned long haddr,
5461 unsigned long addr,
5462 unsigned long reason)
5463 {
5464 vm_fault_t ret;
5465 u32 hash;
5466 struct vm_fault vmf = {
5467 .vma = vma,
5468 .address = haddr,
5469 .real_address = addr,
5470 .flags = flags,
5471
5472 /*
5473 * Hard to debug if it ends up being
5474 * used by a callee that assumes
5475 * something about the other
5476 * uninitialized fields... same as in
5477 * memory.c
5478 */
5479 };
5480
5481 /*
5482 * hugetlb_fault_mutex and i_mmap_rwsem must be
5483 * dropped before handling userfault. Reacquire
5484 * after handling fault to make calling code simpler.
5485 */
5486 hash = hugetlb_fault_mutex_hash(mapping, idx);
5487 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5488 i_mmap_unlock_read(mapping);
5489 ret = handle_userfault(&vmf, reason);
5490 i_mmap_lock_read(mapping);
5491 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5492
5493 return ret;
5494 }
5495
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5496 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5497 struct vm_area_struct *vma,
5498 struct address_space *mapping, pgoff_t idx,
5499 unsigned long address, pte_t *ptep,
5500 pte_t old_pte, unsigned int flags)
5501 {
5502 struct hstate *h = hstate_vma(vma);
5503 vm_fault_t ret = VM_FAULT_SIGBUS;
5504 int anon_rmap = 0;
5505 unsigned long size;
5506 struct page *page;
5507 pte_t new_pte;
5508 spinlock_t *ptl;
5509 unsigned long haddr = address & huge_page_mask(h);
5510 bool new_page, new_pagecache_page = false;
5511
5512 /*
5513 * Currently, we are forced to kill the process in the event the
5514 * original mapper has unmapped pages from the child due to a failed
5515 * COW/unsharing. Warn that such a situation has occurred as it may not
5516 * be obvious.
5517 */
5518 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5519 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5520 current->pid);
5521 return ret;
5522 }
5523
5524 /*
5525 * We can not race with truncation due to holding i_mmap_rwsem.
5526 * i_size is modified when holding i_mmap_rwsem, so check here
5527 * once for faults beyond end of file.
5528 */
5529 size = i_size_read(mapping->host) >> huge_page_shift(h);
5530 if (idx >= size)
5531 goto out;
5532
5533 retry:
5534 new_page = false;
5535 page = find_lock_page(mapping, idx);
5536 if (!page) {
5537 /* Check for page in userfault range */
5538 if (userfaultfd_missing(vma)) {
5539 ret = hugetlb_handle_userfault(vma, mapping, idx,
5540 flags, haddr, address,
5541 VM_UFFD_MISSING);
5542 goto out;
5543 }
5544
5545 page = alloc_huge_page(vma, haddr, 0);
5546 if (IS_ERR(page)) {
5547 /*
5548 * Returning error will result in faulting task being
5549 * sent SIGBUS. The hugetlb fault mutex prevents two
5550 * tasks from racing to fault in the same page which
5551 * could result in false unable to allocate errors.
5552 * Page migration does not take the fault mutex, but
5553 * does a clear then write of pte's under page table
5554 * lock. Page fault code could race with migration,
5555 * notice the clear pte and try to allocate a page
5556 * here. Before returning error, get ptl and make
5557 * sure there really is no pte entry.
5558 */
5559 ptl = huge_pte_lock(h, mm, ptep);
5560 ret = 0;
5561 if (huge_pte_none(huge_ptep_get(ptep)))
5562 ret = vmf_error(PTR_ERR(page));
5563 spin_unlock(ptl);
5564 goto out;
5565 }
5566 clear_huge_page(page, address, pages_per_huge_page(h));
5567 __SetPageUptodate(page);
5568 new_page = true;
5569
5570 if (vma->vm_flags & VM_MAYSHARE) {
5571 int err = huge_add_to_page_cache(page, mapping, idx);
5572 if (err) {
5573 put_page(page);
5574 if (err == -EEXIST)
5575 goto retry;
5576 goto out;
5577 }
5578 new_pagecache_page = true;
5579 } else {
5580 lock_page(page);
5581 if (unlikely(anon_vma_prepare(vma))) {
5582 ret = VM_FAULT_OOM;
5583 goto backout_unlocked;
5584 }
5585 anon_rmap = 1;
5586 }
5587 } else {
5588 /*
5589 * If memory error occurs between mmap() and fault, some process
5590 * don't have hwpoisoned swap entry for errored virtual address.
5591 * So we need to block hugepage fault by PG_hwpoison bit check.
5592 */
5593 if (unlikely(PageHWPoison(page))) {
5594 ret = VM_FAULT_HWPOISON_LARGE |
5595 VM_FAULT_SET_HINDEX(hstate_index(h));
5596 goto backout_unlocked;
5597 }
5598
5599 /* Check for page in userfault range. */
5600 if (userfaultfd_minor(vma)) {
5601 unlock_page(page);
5602 put_page(page);
5603 ret = hugetlb_handle_userfault(vma, mapping, idx,
5604 flags, haddr, address,
5605 VM_UFFD_MINOR);
5606 goto out;
5607 }
5608 }
5609
5610 /*
5611 * If we are going to COW a private mapping later, we examine the
5612 * pending reservations for this page now. This will ensure that
5613 * any allocations necessary to record that reservation occur outside
5614 * the spinlock.
5615 */
5616 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5617 if (vma_needs_reservation(h, vma, haddr) < 0) {
5618 ret = VM_FAULT_OOM;
5619 goto backout_unlocked;
5620 }
5621 /* Just decrements count, does not deallocate */
5622 vma_end_reservation(h, vma, haddr);
5623 }
5624
5625 ptl = huge_pte_lock(h, mm, ptep);
5626 ret = 0;
5627 /* If pte changed from under us, retry */
5628 if (!pte_same(huge_ptep_get(ptep), old_pte))
5629 goto backout;
5630
5631 if (anon_rmap) {
5632 ClearHPageRestoreReserve(page);
5633 hugepage_add_new_anon_rmap(page, vma, haddr);
5634 } else
5635 page_dup_file_rmap(page, true);
5636 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5637 && (vma->vm_flags & VM_SHARED)));
5638 /*
5639 * If this pte was previously wr-protected, keep it wr-protected even
5640 * if populated.
5641 */
5642 if (unlikely(pte_marker_uffd_wp(old_pte)))
5643 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5644 set_huge_pte_at(mm, haddr, ptep, new_pte);
5645
5646 hugetlb_count_add(pages_per_huge_page(h), mm);
5647 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5648 /* Optimization, do the COW without a second fault */
5649 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5650 }
5651
5652 spin_unlock(ptl);
5653
5654 /*
5655 * Only set HPageMigratable in newly allocated pages. Existing pages
5656 * found in the pagecache may not have HPageMigratableset if they have
5657 * been isolated for migration.
5658 */
5659 if (new_page)
5660 SetHPageMigratable(page);
5661
5662 unlock_page(page);
5663 out:
5664 return ret;
5665
5666 backout:
5667 spin_unlock(ptl);
5668 backout_unlocked:
5669 unlock_page(page);
5670 /* restore reserve for newly allocated pages not in page cache */
5671 if (new_page && !new_pagecache_page)
5672 restore_reserve_on_error(h, vma, haddr, page);
5673 put_page(page);
5674 goto out;
5675 }
5676
5677 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5678 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5679 {
5680 unsigned long key[2];
5681 u32 hash;
5682
5683 key[0] = (unsigned long) mapping;
5684 key[1] = idx;
5685
5686 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5687
5688 return hash & (num_fault_mutexes - 1);
5689 }
5690 #else
5691 /*
5692 * For uniprocessor systems we always use a single mutex, so just
5693 * return 0 and avoid the hashing overhead.
5694 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5696 {
5697 return 0;
5698 }
5699 #endif
5700
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5701 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5702 unsigned long address, unsigned int flags)
5703 {
5704 pte_t *ptep, entry;
5705 spinlock_t *ptl;
5706 vm_fault_t ret;
5707 u32 hash;
5708 pgoff_t idx;
5709 struct page *page = NULL;
5710 struct page *pagecache_page = NULL;
5711 struct hstate *h = hstate_vma(vma);
5712 struct address_space *mapping;
5713 int need_wait_lock = 0;
5714 unsigned long haddr = address & huge_page_mask(h);
5715
5716 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5717 if (ptep) {
5718 /*
5719 * Since we hold no locks, ptep could be stale. That is
5720 * OK as we are only making decisions based on content and
5721 * not actually modifying content here.
5722 */
5723 entry = huge_ptep_get(ptep);
5724 if (unlikely(is_hugetlb_entry_migration(entry))) {
5725 migration_entry_wait_huge(vma, ptep);
5726 return 0;
5727 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5728 return VM_FAULT_HWPOISON_LARGE |
5729 VM_FAULT_SET_HINDEX(hstate_index(h));
5730 }
5731
5732 /*
5733 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5734 * until finished with ptep. This serves two purposes:
5735 * 1) It prevents huge_pmd_unshare from being called elsewhere
5736 * and making the ptep no longer valid.
5737 * 2) It synchronizes us with i_size modifications during truncation.
5738 *
5739 * ptep could have already be assigned via huge_pte_offset. That
5740 * is OK, as huge_pte_alloc will return the same value unless
5741 * something has changed.
5742 */
5743 mapping = vma->vm_file->f_mapping;
5744 i_mmap_lock_read(mapping);
5745 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5746 if (!ptep) {
5747 i_mmap_unlock_read(mapping);
5748 return VM_FAULT_OOM;
5749 }
5750
5751 /*
5752 * Serialize hugepage allocation and instantiation, so that we don't
5753 * get spurious allocation failures if two CPUs race to instantiate
5754 * the same page in the page cache.
5755 */
5756 idx = vma_hugecache_offset(h, vma, haddr);
5757 hash = hugetlb_fault_mutex_hash(mapping, idx);
5758 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5759
5760 entry = huge_ptep_get(ptep);
5761 /* PTE markers should be handled the same way as none pte */
5762 if (huge_pte_none_mostly(entry)) {
5763 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5764 entry, flags);
5765 goto out_mutex;
5766 }
5767
5768 ret = 0;
5769
5770 /*
5771 * entry could be a migration/hwpoison entry at this point, so this
5772 * check prevents the kernel from going below assuming that we have
5773 * an active hugepage in pagecache. This goto expects the 2nd page
5774 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5775 * properly handle it.
5776 */
5777 if (!pte_present(entry))
5778 goto out_mutex;
5779
5780 /*
5781 * If we are going to COW/unshare the mapping later, we examine the
5782 * pending reservations for this page now. This will ensure that any
5783 * allocations necessary to record that reservation occur outside the
5784 * spinlock. Also lookup the pagecache page now as it is used to
5785 * determine if a reservation has been consumed.
5786 */
5787 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5788 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5789 if (vma_needs_reservation(h, vma, haddr) < 0) {
5790 ret = VM_FAULT_OOM;
5791 goto out_mutex;
5792 }
5793 /* Just decrements count, does not deallocate */
5794 vma_end_reservation(h, vma, haddr);
5795
5796 pagecache_page = hugetlbfs_pagecache_page(h, vma, haddr);
5797 }
5798
5799 ptl = huge_pte_lock(h, mm, ptep);
5800
5801 /* Check for a racing update before calling hugetlb_wp() */
5802 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5803 goto out_ptl;
5804
5805 /* Handle userfault-wp first, before trying to lock more pages */
5806 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5807 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5808 struct vm_fault vmf = {
5809 .vma = vma,
5810 .address = haddr,
5811 .real_address = address,
5812 .flags = flags,
5813 };
5814
5815 spin_unlock(ptl);
5816 if (pagecache_page) {
5817 unlock_page(pagecache_page);
5818 put_page(pagecache_page);
5819 }
5820 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5821 i_mmap_unlock_read(mapping);
5822 return handle_userfault(&vmf, VM_UFFD_WP);
5823 }
5824
5825 /*
5826 * hugetlb_wp() requires page locks of pte_page(entry) and
5827 * pagecache_page, so here we need take the former one
5828 * when page != pagecache_page or !pagecache_page.
5829 */
5830 page = pte_page(entry);
5831 if (page != pagecache_page)
5832 if (!trylock_page(page)) {
5833 need_wait_lock = 1;
5834 goto out_ptl;
5835 }
5836
5837 get_page(page);
5838
5839 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5840 if (!huge_pte_write(entry)) {
5841 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5842 pagecache_page, ptl);
5843 goto out_put_page;
5844 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5845 entry = huge_pte_mkdirty(entry);
5846 }
5847 }
5848 entry = pte_mkyoung(entry);
5849 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5850 flags & FAULT_FLAG_WRITE))
5851 update_mmu_cache(vma, haddr, ptep);
5852 out_put_page:
5853 if (page != pagecache_page)
5854 unlock_page(page);
5855 put_page(page);
5856 out_ptl:
5857 spin_unlock(ptl);
5858
5859 if (pagecache_page) {
5860 unlock_page(pagecache_page);
5861 put_page(pagecache_page);
5862 }
5863 out_mutex:
5864 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5865 i_mmap_unlock_read(mapping);
5866 /*
5867 * Generally it's safe to hold refcount during waiting page lock. But
5868 * here we just wait to defer the next page fault to avoid busy loop and
5869 * the page is not used after unlocked before returning from the current
5870 * page fault. So we are safe from accessing freed page, even if we wait
5871 * here without taking refcount.
5872 */
5873 if (need_wait_lock)
5874 wait_on_page_locked(page);
5875 return ret;
5876 }
5877
5878 #ifdef CONFIG_USERFAULTFD
5879 /*
5880 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5881 * modifications for huge pages.
5882 */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep,bool wp_copy)5883 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5884 pte_t *dst_pte,
5885 struct vm_area_struct *dst_vma,
5886 unsigned long dst_addr,
5887 unsigned long src_addr,
5888 enum mcopy_atomic_mode mode,
5889 struct page **pagep,
5890 bool wp_copy)
5891 {
5892 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5893 struct hstate *h = hstate_vma(dst_vma);
5894 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5895 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5896 unsigned long size;
5897 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5898 pte_t _dst_pte;
5899 spinlock_t *ptl;
5900 int ret = -ENOMEM;
5901 struct page *page;
5902 int writable;
5903 bool page_in_pagecache = false;
5904
5905 if (is_continue) {
5906 ret = -EFAULT;
5907 page = find_lock_page(mapping, idx);
5908 if (!page)
5909 goto out;
5910 page_in_pagecache = true;
5911 } else if (!*pagep) {
5912 /* If a page already exists, then it's UFFDIO_COPY for
5913 * a non-missing case. Return -EEXIST.
5914 */
5915 if (vm_shared &&
5916 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5917 ret = -EEXIST;
5918 goto out;
5919 }
5920
5921 page = alloc_huge_page(dst_vma, dst_addr, 0);
5922 if (IS_ERR(page)) {
5923 ret = -ENOMEM;
5924 goto out;
5925 }
5926
5927 ret = copy_huge_page_from_user(page,
5928 (const void __user *) src_addr,
5929 pages_per_huge_page(h), false);
5930
5931 /* fallback to copy_from_user outside mmap_lock */
5932 if (unlikely(ret)) {
5933 ret = -ENOENT;
5934 /* Free the allocated page which may have
5935 * consumed a reservation.
5936 */
5937 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5938 put_page(page);
5939
5940 /* Allocate a temporary page to hold the copied
5941 * contents.
5942 */
5943 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5944 if (!page) {
5945 ret = -ENOMEM;
5946 goto out;
5947 }
5948 *pagep = page;
5949 /* Set the outparam pagep and return to the caller to
5950 * copy the contents outside the lock. Don't free the
5951 * page.
5952 */
5953 goto out;
5954 }
5955 } else {
5956 if (vm_shared &&
5957 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5958 put_page(*pagep);
5959 ret = -EEXIST;
5960 *pagep = NULL;
5961 goto out;
5962 }
5963
5964 page = alloc_huge_page(dst_vma, dst_addr, 0);
5965 if (IS_ERR(page)) {
5966 put_page(*pagep);
5967 ret = -ENOMEM;
5968 *pagep = NULL;
5969 goto out;
5970 }
5971 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5972 pages_per_huge_page(h));
5973 put_page(*pagep);
5974 *pagep = NULL;
5975 }
5976
5977 /*
5978 * The memory barrier inside __SetPageUptodate makes sure that
5979 * preceding stores to the page contents become visible before
5980 * the set_pte_at() write.
5981 */
5982 __SetPageUptodate(page);
5983
5984 /* Add shared, newly allocated pages to the page cache. */
5985 if (vm_shared && !is_continue) {
5986 size = i_size_read(mapping->host) >> huge_page_shift(h);
5987 ret = -EFAULT;
5988 if (idx >= size)
5989 goto out_release_nounlock;
5990
5991 /*
5992 * Serialization between remove_inode_hugepages() and
5993 * huge_add_to_page_cache() below happens through the
5994 * hugetlb_fault_mutex_table that here must be hold by
5995 * the caller.
5996 */
5997 ret = huge_add_to_page_cache(page, mapping, idx);
5998 if (ret)
5999 goto out_release_nounlock;
6000 page_in_pagecache = true;
6001 }
6002
6003 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6004 spin_lock(ptl);
6005
6006 /*
6007 * Recheck the i_size after holding PT lock to make sure not
6008 * to leave any page mapped (as page_mapped()) beyond the end
6009 * of the i_size (remove_inode_hugepages() is strict about
6010 * enforcing that). If we bail out here, we'll also leave a
6011 * page in the radix tree in the vm_shared case beyond the end
6012 * of the i_size, but remove_inode_hugepages() will take care
6013 * of it as soon as we drop the hugetlb_fault_mutex_table.
6014 */
6015 size = i_size_read(mapping->host) >> huge_page_shift(h);
6016 ret = -EFAULT;
6017 if (idx >= size)
6018 goto out_release_unlock;
6019
6020 ret = -EEXIST;
6021 /*
6022 * We allow to overwrite a pte marker: consider when both MISSING|WP
6023 * registered, we firstly wr-protect a none pte which has no page cache
6024 * page backing it, then access the page.
6025 */
6026 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6027 goto out_release_unlock;
6028
6029 if (page_in_pagecache) {
6030 page_dup_file_rmap(page, true);
6031 } else {
6032 ClearHPageRestoreReserve(page);
6033 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6034 }
6035
6036 /*
6037 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6038 * with wp flag set, don't set pte write bit.
6039 */
6040 if (wp_copy || (is_continue && !vm_shared))
6041 writable = 0;
6042 else
6043 writable = dst_vma->vm_flags & VM_WRITE;
6044
6045 _dst_pte = make_huge_pte(dst_vma, page, writable);
6046 /*
6047 * Always mark UFFDIO_COPY page dirty; note that this may not be
6048 * extremely important for hugetlbfs for now since swapping is not
6049 * supported, but we should still be clear in that this page cannot be
6050 * thrown away at will, even if write bit not set.
6051 */
6052 _dst_pte = huge_pte_mkdirty(_dst_pte);
6053 _dst_pte = pte_mkyoung(_dst_pte);
6054
6055 if (wp_copy)
6056 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6057
6058 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6059
6060 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6061 dst_vma->vm_flags & VM_WRITE);
6062 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6063
6064 /* No need to invalidate - it was non-present before */
6065 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6066
6067 spin_unlock(ptl);
6068 if (!is_continue)
6069 SetHPageMigratable(page);
6070 if (vm_shared || is_continue)
6071 unlock_page(page);
6072 ret = 0;
6073 out:
6074 return ret;
6075 out_release_unlock:
6076 spin_unlock(ptl);
6077 if (vm_shared || is_continue)
6078 unlock_page(page);
6079 out_release_nounlock:
6080 if (!page_in_pagecache)
6081 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6082 put_page(page);
6083 goto out;
6084 }
6085 #endif /* CONFIG_USERFAULTFD */
6086
record_subpages_vmas(struct page * page,struct vm_area_struct * vma,int refs,struct page ** pages,struct vm_area_struct ** vmas)6087 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6088 int refs, struct page **pages,
6089 struct vm_area_struct **vmas)
6090 {
6091 int nr;
6092
6093 for (nr = 0; nr < refs; nr++) {
6094 if (likely(pages))
6095 pages[nr] = mem_map_offset(page, nr);
6096 if (vmas)
6097 vmas[nr] = vma;
6098 }
6099 }
6100
__follow_hugetlb_must_fault(unsigned int flags,pte_t * pte,bool * unshare)6101 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6102 bool *unshare)
6103 {
6104 pte_t pteval = huge_ptep_get(pte);
6105
6106 *unshare = false;
6107 if (is_swap_pte(pteval))
6108 return true;
6109 if (huge_pte_write(pteval))
6110 return false;
6111 if (flags & FOLL_WRITE)
6112 return true;
6113 if (gup_must_unshare(flags, pte_page(pteval))) {
6114 *unshare = true;
6115 return true;
6116 }
6117 return false;
6118 }
6119
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)6120 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6121 struct page **pages, struct vm_area_struct **vmas,
6122 unsigned long *position, unsigned long *nr_pages,
6123 long i, unsigned int flags, int *locked)
6124 {
6125 unsigned long pfn_offset;
6126 unsigned long vaddr = *position;
6127 unsigned long remainder = *nr_pages;
6128 struct hstate *h = hstate_vma(vma);
6129 int err = -EFAULT, refs;
6130
6131 while (vaddr < vma->vm_end && remainder) {
6132 pte_t *pte;
6133 spinlock_t *ptl = NULL;
6134 bool unshare = false;
6135 int absent;
6136 struct page *page;
6137
6138 /*
6139 * If we have a pending SIGKILL, don't keep faulting pages and
6140 * potentially allocating memory.
6141 */
6142 if (fatal_signal_pending(current)) {
6143 remainder = 0;
6144 break;
6145 }
6146
6147 /*
6148 * Some archs (sparc64, sh*) have multiple pte_ts to
6149 * each hugepage. We have to make sure we get the
6150 * first, for the page indexing below to work.
6151 *
6152 * Note that page table lock is not held when pte is null.
6153 */
6154 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6155 huge_page_size(h));
6156 if (pte)
6157 ptl = huge_pte_lock(h, mm, pte);
6158 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6159
6160 /*
6161 * When coredumping, it suits get_dump_page if we just return
6162 * an error where there's an empty slot with no huge pagecache
6163 * to back it. This way, we avoid allocating a hugepage, and
6164 * the sparse dumpfile avoids allocating disk blocks, but its
6165 * huge holes still show up with zeroes where they need to be.
6166 */
6167 if (absent && (flags & FOLL_DUMP) &&
6168 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6169 if (pte)
6170 spin_unlock(ptl);
6171 remainder = 0;
6172 break;
6173 }
6174
6175 /*
6176 * We need call hugetlb_fault for both hugepages under migration
6177 * (in which case hugetlb_fault waits for the migration,) and
6178 * hwpoisoned hugepages (in which case we need to prevent the
6179 * caller from accessing to them.) In order to do this, we use
6180 * here is_swap_pte instead of is_hugetlb_entry_migration and
6181 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6182 * both cases, and because we can't follow correct pages
6183 * directly from any kind of swap entries.
6184 */
6185 if (absent ||
6186 __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6187 vm_fault_t ret;
6188 unsigned int fault_flags = 0;
6189
6190 if (pte)
6191 spin_unlock(ptl);
6192 if (flags & FOLL_WRITE)
6193 fault_flags |= FAULT_FLAG_WRITE;
6194 else if (unshare)
6195 fault_flags |= FAULT_FLAG_UNSHARE;
6196 if (locked)
6197 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6198 FAULT_FLAG_KILLABLE;
6199 if (flags & FOLL_NOWAIT)
6200 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6201 FAULT_FLAG_RETRY_NOWAIT;
6202 if (flags & FOLL_TRIED) {
6203 /*
6204 * Note: FAULT_FLAG_ALLOW_RETRY and
6205 * FAULT_FLAG_TRIED can co-exist
6206 */
6207 fault_flags |= FAULT_FLAG_TRIED;
6208 }
6209 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6210 if (ret & VM_FAULT_ERROR) {
6211 err = vm_fault_to_errno(ret, flags);
6212 remainder = 0;
6213 break;
6214 }
6215 if (ret & VM_FAULT_RETRY) {
6216 if (locked &&
6217 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6218 *locked = 0;
6219 *nr_pages = 0;
6220 /*
6221 * VM_FAULT_RETRY must not return an
6222 * error, it will return zero
6223 * instead.
6224 *
6225 * No need to update "position" as the
6226 * caller will not check it after
6227 * *nr_pages is set to 0.
6228 */
6229 return i;
6230 }
6231 continue;
6232 }
6233
6234 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6235 page = pte_page(huge_ptep_get(pte));
6236
6237 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6238 !PageAnonExclusive(page), page);
6239
6240 /*
6241 * If subpage information not requested, update counters
6242 * and skip the same_page loop below.
6243 */
6244 if (!pages && !vmas && !pfn_offset &&
6245 (vaddr + huge_page_size(h) < vma->vm_end) &&
6246 (remainder >= pages_per_huge_page(h))) {
6247 vaddr += huge_page_size(h);
6248 remainder -= pages_per_huge_page(h);
6249 i += pages_per_huge_page(h);
6250 spin_unlock(ptl);
6251 continue;
6252 }
6253
6254 /* vaddr may not be aligned to PAGE_SIZE */
6255 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6256 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6257
6258 if (pages || vmas)
6259 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6260 vma, refs,
6261 likely(pages) ? pages + i : NULL,
6262 vmas ? vmas + i : NULL);
6263
6264 if (pages) {
6265 /*
6266 * try_grab_folio() should always succeed here,
6267 * because: a) we hold the ptl lock, and b) we've just
6268 * checked that the huge page is present in the page
6269 * tables. If the huge page is present, then the tail
6270 * pages must also be present. The ptl prevents the
6271 * head page and tail pages from being rearranged in
6272 * any way. So this page must be available at this
6273 * point, unless the page refcount overflowed:
6274 */
6275 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6276 flags))) {
6277 spin_unlock(ptl);
6278 remainder = 0;
6279 err = -ENOMEM;
6280 break;
6281 }
6282 }
6283
6284 vaddr += (refs << PAGE_SHIFT);
6285 remainder -= refs;
6286 i += refs;
6287
6288 spin_unlock(ptl);
6289 }
6290 *nr_pages = remainder;
6291 /*
6292 * setting position is actually required only if remainder is
6293 * not zero but it's faster not to add a "if (remainder)"
6294 * branch.
6295 */
6296 *position = vaddr;
6297
6298 return i ? i : err;
6299 }
6300
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6301 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6302 unsigned long address, unsigned long end,
6303 pgprot_t newprot, unsigned long cp_flags)
6304 {
6305 struct mm_struct *mm = vma->vm_mm;
6306 unsigned long start = address;
6307 pte_t *ptep;
6308 pte_t pte;
6309 struct hstate *h = hstate_vma(vma);
6310 unsigned long pages = 0, psize = huge_page_size(h);
6311 bool shared_pmd = false;
6312 struct mmu_notifier_range range;
6313 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6314 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6315
6316 /*
6317 * In the case of shared PMDs, the area to flush could be beyond
6318 * start/end. Set range.start/range.end to cover the maximum possible
6319 * range if PMD sharing is possible.
6320 */
6321 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6322 0, vma, mm, start, end);
6323 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6324
6325 BUG_ON(address >= end);
6326 flush_cache_range(vma, range.start, range.end);
6327
6328 mmu_notifier_invalidate_range_start(&range);
6329 i_mmap_lock_write(vma->vm_file->f_mapping);
6330 for (; address < end; address += psize) {
6331 spinlock_t *ptl;
6332 ptep = huge_pte_offset(mm, address, psize);
6333 if (!ptep)
6334 continue;
6335 ptl = huge_pte_lock(h, mm, ptep);
6336 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6337 /*
6338 * When uffd-wp is enabled on the vma, unshare
6339 * shouldn't happen at all. Warn about it if it
6340 * happened due to some reason.
6341 */
6342 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6343 pages++;
6344 spin_unlock(ptl);
6345 shared_pmd = true;
6346 continue;
6347 }
6348 pte = huge_ptep_get(ptep);
6349 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6350 spin_unlock(ptl);
6351 continue;
6352 }
6353 if (unlikely(is_hugetlb_entry_migration(pte))) {
6354 swp_entry_t entry = pte_to_swp_entry(pte);
6355 struct page *page = pfn_swap_entry_to_page(entry);
6356
6357 if (!is_readable_migration_entry(entry)) {
6358 pte_t newpte;
6359
6360 if (PageAnon(page))
6361 entry = make_readable_exclusive_migration_entry(
6362 swp_offset(entry));
6363 else
6364 entry = make_readable_migration_entry(
6365 swp_offset(entry));
6366 newpte = swp_entry_to_pte(entry);
6367 if (uffd_wp)
6368 newpte = pte_swp_mkuffd_wp(newpte);
6369 else if (uffd_wp_resolve)
6370 newpte = pte_swp_clear_uffd_wp(newpte);
6371 set_huge_swap_pte_at(mm, address, ptep,
6372 newpte, psize);
6373 pages++;
6374 }
6375 spin_unlock(ptl);
6376 continue;
6377 }
6378 if (unlikely(pte_marker_uffd_wp(pte))) {
6379 /*
6380 * This is changing a non-present pte into a none pte,
6381 * no need for huge_ptep_modify_prot_start/commit().
6382 */
6383 if (uffd_wp_resolve)
6384 huge_pte_clear(mm, address, ptep, psize);
6385 }
6386 if (!huge_pte_none(pte)) {
6387 pte_t old_pte;
6388 unsigned int shift = huge_page_shift(hstate_vma(vma));
6389
6390 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6391 pte = huge_pte_modify(old_pte, newprot);
6392 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6393 if (uffd_wp)
6394 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6395 else if (uffd_wp_resolve)
6396 pte = huge_pte_clear_uffd_wp(pte);
6397 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6398 pages++;
6399 } else {
6400 /* None pte */
6401 if (unlikely(uffd_wp))
6402 /* Safe to modify directly (none->non-present). */
6403 set_huge_pte_at(mm, address, ptep,
6404 make_pte_marker(PTE_MARKER_UFFD_WP));
6405 }
6406 spin_unlock(ptl);
6407 }
6408 /*
6409 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6410 * may have cleared our pud entry and done put_page on the page table:
6411 * once we release i_mmap_rwsem, another task can do the final put_page
6412 * and that page table be reused and filled with junk. If we actually
6413 * did unshare a page of pmds, flush the range corresponding to the pud.
6414 */
6415 if (shared_pmd)
6416 flush_hugetlb_tlb_range(vma, range.start, range.end);
6417 else
6418 flush_hugetlb_tlb_range(vma, start, end);
6419 /*
6420 * No need to call mmu_notifier_invalidate_range() we are downgrading
6421 * page table protection not changing it to point to a new page.
6422 *
6423 * See Documentation/vm/mmu_notifier.rst
6424 */
6425 i_mmap_unlock_write(vma->vm_file->f_mapping);
6426 mmu_notifier_invalidate_range_end(&range);
6427
6428 return pages << h->order;
6429 }
6430
6431 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6432 bool hugetlb_reserve_pages(struct inode *inode,
6433 long from, long to,
6434 struct vm_area_struct *vma,
6435 vm_flags_t vm_flags)
6436 {
6437 long chg, add = -1;
6438 struct hstate *h = hstate_inode(inode);
6439 struct hugepage_subpool *spool = subpool_inode(inode);
6440 struct resv_map *resv_map;
6441 struct hugetlb_cgroup *h_cg = NULL;
6442 long gbl_reserve, regions_needed = 0;
6443
6444 /* This should never happen */
6445 if (from > to) {
6446 VM_WARN(1, "%s called with a negative range\n", __func__);
6447 return false;
6448 }
6449
6450 /*
6451 * Only apply hugepage reservation if asked. At fault time, an
6452 * attempt will be made for VM_NORESERVE to allocate a page
6453 * without using reserves
6454 */
6455 if (vm_flags & VM_NORESERVE)
6456 return true;
6457
6458 /*
6459 * Shared mappings base their reservation on the number of pages that
6460 * are already allocated on behalf of the file. Private mappings need
6461 * to reserve the full area even if read-only as mprotect() may be
6462 * called to make the mapping read-write. Assume !vma is a shm mapping
6463 */
6464 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6465 /*
6466 * resv_map can not be NULL as hugetlb_reserve_pages is only
6467 * called for inodes for which resv_maps were created (see
6468 * hugetlbfs_get_inode).
6469 */
6470 resv_map = inode_resv_map(inode);
6471
6472 chg = region_chg(resv_map, from, to, ®ions_needed);
6473
6474 } else {
6475 /* Private mapping. */
6476 resv_map = resv_map_alloc();
6477 if (!resv_map)
6478 return false;
6479
6480 chg = to - from;
6481
6482 set_vma_resv_map(vma, resv_map);
6483 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6484 }
6485
6486 if (chg < 0)
6487 goto out_err;
6488
6489 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6490 chg * pages_per_huge_page(h), &h_cg) < 0)
6491 goto out_err;
6492
6493 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6494 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6495 * of the resv_map.
6496 */
6497 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6498 }
6499
6500 /*
6501 * There must be enough pages in the subpool for the mapping. If
6502 * the subpool has a minimum size, there may be some global
6503 * reservations already in place (gbl_reserve).
6504 */
6505 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6506 if (gbl_reserve < 0)
6507 goto out_uncharge_cgroup;
6508
6509 /*
6510 * Check enough hugepages are available for the reservation.
6511 * Hand the pages back to the subpool if there are not
6512 */
6513 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6514 goto out_put_pages;
6515
6516 /*
6517 * Account for the reservations made. Shared mappings record regions
6518 * that have reservations as they are shared by multiple VMAs.
6519 * When the last VMA disappears, the region map says how much
6520 * the reservation was and the page cache tells how much of
6521 * the reservation was consumed. Private mappings are per-VMA and
6522 * only the consumed reservations are tracked. When the VMA
6523 * disappears, the original reservation is the VMA size and the
6524 * consumed reservations are stored in the map. Hence, nothing
6525 * else has to be done for private mappings here
6526 */
6527 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6528 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6529
6530 if (unlikely(add < 0)) {
6531 hugetlb_acct_memory(h, -gbl_reserve);
6532 goto out_put_pages;
6533 } else if (unlikely(chg > add)) {
6534 /*
6535 * pages in this range were added to the reserve
6536 * map between region_chg and region_add. This
6537 * indicates a race with alloc_huge_page. Adjust
6538 * the subpool and reserve counts modified above
6539 * based on the difference.
6540 */
6541 long rsv_adjust;
6542
6543 /*
6544 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6545 * reference to h_cg->css. See comment below for detail.
6546 */
6547 hugetlb_cgroup_uncharge_cgroup_rsvd(
6548 hstate_index(h),
6549 (chg - add) * pages_per_huge_page(h), h_cg);
6550
6551 rsv_adjust = hugepage_subpool_put_pages(spool,
6552 chg - add);
6553 hugetlb_acct_memory(h, -rsv_adjust);
6554 } else if (h_cg) {
6555 /*
6556 * The file_regions will hold their own reference to
6557 * h_cg->css. So we should release the reference held
6558 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6559 * done.
6560 */
6561 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6562 }
6563 }
6564 return true;
6565
6566 out_put_pages:
6567 /* put back original number of pages, chg */
6568 (void)hugepage_subpool_put_pages(spool, chg);
6569 out_uncharge_cgroup:
6570 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6571 chg * pages_per_huge_page(h), h_cg);
6572 out_err:
6573 if (!vma || vma->vm_flags & VM_MAYSHARE)
6574 /* Only call region_abort if the region_chg succeeded but the
6575 * region_add failed or didn't run.
6576 */
6577 if (chg >= 0 && add < 0)
6578 region_abort(resv_map, from, to, regions_needed);
6579 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6580 kref_put(&resv_map->refs, resv_map_release);
6581 return false;
6582 }
6583
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6584 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6585 long freed)
6586 {
6587 struct hstate *h = hstate_inode(inode);
6588 struct resv_map *resv_map = inode_resv_map(inode);
6589 long chg = 0;
6590 struct hugepage_subpool *spool = subpool_inode(inode);
6591 long gbl_reserve;
6592
6593 /*
6594 * Since this routine can be called in the evict inode path for all
6595 * hugetlbfs inodes, resv_map could be NULL.
6596 */
6597 if (resv_map) {
6598 chg = region_del(resv_map, start, end);
6599 /*
6600 * region_del() can fail in the rare case where a region
6601 * must be split and another region descriptor can not be
6602 * allocated. If end == LONG_MAX, it will not fail.
6603 */
6604 if (chg < 0)
6605 return chg;
6606 }
6607
6608 spin_lock(&inode->i_lock);
6609 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6610 spin_unlock(&inode->i_lock);
6611
6612 /*
6613 * If the subpool has a minimum size, the number of global
6614 * reservations to be released may be adjusted.
6615 *
6616 * Note that !resv_map implies freed == 0. So (chg - freed)
6617 * won't go negative.
6618 */
6619 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6620 hugetlb_acct_memory(h, -gbl_reserve);
6621
6622 return 0;
6623 }
6624
6625 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6626 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6627 struct vm_area_struct *vma,
6628 unsigned long addr, pgoff_t idx)
6629 {
6630 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6631 svma->vm_start;
6632 unsigned long sbase = saddr & PUD_MASK;
6633 unsigned long s_end = sbase + PUD_SIZE;
6634
6635 /* Allow segments to share if only one is marked locked */
6636 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6637 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6638
6639 /*
6640 * match the virtual addresses, permission and the alignment of the
6641 * page table page.
6642 */
6643 if (pmd_index(addr) != pmd_index(saddr) ||
6644 vm_flags != svm_flags ||
6645 !range_in_vma(svma, sbase, s_end))
6646 return 0;
6647
6648 return saddr;
6649 }
6650
vma_shareable(struct vm_area_struct * vma,unsigned long addr)6651 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6652 {
6653 unsigned long base = addr & PUD_MASK;
6654 unsigned long end = base + PUD_SIZE;
6655
6656 /*
6657 * check on proper vm_flags and page table alignment
6658 */
6659 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6660 return true;
6661 return false;
6662 }
6663
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6664 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6665 {
6666 #ifdef CONFIG_USERFAULTFD
6667 if (uffd_disable_huge_pmd_share(vma))
6668 return false;
6669 #endif
6670 return vma_shareable(vma, addr);
6671 }
6672
6673 /*
6674 * Determine if start,end range within vma could be mapped by shared pmd.
6675 * If yes, adjust start and end to cover range associated with possible
6676 * shared pmd mappings.
6677 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6678 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6679 unsigned long *start, unsigned long *end)
6680 {
6681 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6682 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6683
6684 /*
6685 * vma needs to span at least one aligned PUD size, and the range
6686 * must be at least partially within in.
6687 */
6688 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6689 (*end <= v_start) || (*start >= v_end))
6690 return;
6691
6692 /* Extend the range to be PUD aligned for a worst case scenario */
6693 if (*start > v_start)
6694 *start = ALIGN_DOWN(*start, PUD_SIZE);
6695
6696 if (*end < v_end)
6697 *end = ALIGN(*end, PUD_SIZE);
6698 }
6699
6700 /*
6701 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6702 * and returns the corresponding pte. While this is not necessary for the
6703 * !shared pmd case because we can allocate the pmd later as well, it makes the
6704 * code much cleaner.
6705 *
6706 * This routine must be called with i_mmap_rwsem held in at least read mode if
6707 * sharing is possible. For hugetlbfs, this prevents removal of any page
6708 * table entries associated with the address space. This is important as we
6709 * are setting up sharing based on existing page table entries (mappings).
6710 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6711 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6712 unsigned long addr, pud_t *pud)
6713 {
6714 struct address_space *mapping = vma->vm_file->f_mapping;
6715 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6716 vma->vm_pgoff;
6717 struct vm_area_struct *svma;
6718 unsigned long saddr;
6719 pte_t *spte = NULL;
6720 pte_t *pte;
6721 spinlock_t *ptl;
6722
6723 i_mmap_assert_locked(mapping);
6724 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6725 if (svma == vma)
6726 continue;
6727
6728 saddr = page_table_shareable(svma, vma, addr, idx);
6729 if (saddr) {
6730 spte = huge_pte_offset(svma->vm_mm, saddr,
6731 vma_mmu_pagesize(svma));
6732 if (spte) {
6733 get_page(virt_to_page(spte));
6734 break;
6735 }
6736 }
6737 }
6738
6739 if (!spte)
6740 goto out;
6741
6742 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6743 if (pud_none(*pud)) {
6744 pud_populate(mm, pud,
6745 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6746 mm_inc_nr_pmds(mm);
6747 } else {
6748 put_page(virt_to_page(spte));
6749 }
6750 spin_unlock(ptl);
6751 out:
6752 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6753 return pte;
6754 }
6755
6756 /*
6757 * unmap huge page backed by shared pte.
6758 *
6759 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6760 * indicated by page_count > 1, unmap is achieved by clearing pud and
6761 * decrementing the ref count. If count == 1, the pte page is not shared.
6762 *
6763 * Called with page table lock held and i_mmap_rwsem held in write mode.
6764 *
6765 * returns: 1 successfully unmapped a shared pte page
6766 * 0 the underlying pte page is not shared, or it is the last user
6767 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6768 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6769 unsigned long *addr, pte_t *ptep)
6770 {
6771 pgd_t *pgd = pgd_offset(mm, *addr);
6772 p4d_t *p4d = p4d_offset(pgd, *addr);
6773 pud_t *pud = pud_offset(p4d, *addr);
6774
6775 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6776 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6777 if (page_count(virt_to_page(ptep)) == 1)
6778 return 0;
6779
6780 pud_clear(pud);
6781 put_page(virt_to_page(ptep));
6782 mm_dec_nr_pmds(mm);
6783 /*
6784 * This update of passed address optimizes loops sequentially
6785 * processing addresses in increments of huge page size (PMD_SIZE
6786 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
6787 * Update address to the 'last page' in the cleared area so that
6788 * calling loop can move to first page past this area.
6789 */
6790 *addr |= PUD_SIZE - PMD_SIZE;
6791 return 1;
6792 }
6793
6794 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6795 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6796 unsigned long addr, pud_t *pud)
6797 {
6798 return NULL;
6799 }
6800
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6801 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6802 unsigned long *addr, pte_t *ptep)
6803 {
6804 return 0;
6805 }
6806
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6807 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6808 unsigned long *start, unsigned long *end)
6809 {
6810 }
6811
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6812 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6813 {
6814 return false;
6815 }
6816 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6817
6818 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)6819 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6820 unsigned long addr, unsigned long sz)
6821 {
6822 pgd_t *pgd;
6823 p4d_t *p4d;
6824 pud_t *pud;
6825 pte_t *pte = NULL;
6826
6827 pgd = pgd_offset(mm, addr);
6828 p4d = p4d_alloc(mm, pgd, addr);
6829 if (!p4d)
6830 return NULL;
6831 pud = pud_alloc(mm, p4d, addr);
6832 if (pud) {
6833 if (sz == PUD_SIZE) {
6834 pte = (pte_t *)pud;
6835 } else {
6836 BUG_ON(sz != PMD_SIZE);
6837 if (want_pmd_share(vma, addr) && pud_none(*pud))
6838 pte = huge_pmd_share(mm, vma, addr, pud);
6839 else
6840 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6841 }
6842 }
6843 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6844
6845 return pte;
6846 }
6847
6848 /*
6849 * huge_pte_offset() - Walk the page table to resolve the hugepage
6850 * entry at address @addr
6851 *
6852 * Return: Pointer to page table entry (PUD or PMD) for
6853 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6854 * size @sz doesn't match the hugepage size at this level of the page
6855 * table.
6856 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)6857 pte_t *huge_pte_offset(struct mm_struct *mm,
6858 unsigned long addr, unsigned long sz)
6859 {
6860 pgd_t *pgd;
6861 p4d_t *p4d;
6862 pud_t *pud;
6863 pmd_t *pmd;
6864
6865 pgd = pgd_offset(mm, addr);
6866 if (!pgd_present(*pgd))
6867 return NULL;
6868 p4d = p4d_offset(pgd, addr);
6869 if (!p4d_present(*p4d))
6870 return NULL;
6871
6872 pud = pud_offset(p4d, addr);
6873 if (sz == PUD_SIZE)
6874 /* must be pud huge, non-present or none */
6875 return (pte_t *)pud;
6876 if (!pud_present(*pud))
6877 return NULL;
6878 /* must have a valid entry and size to go further */
6879
6880 pmd = pmd_offset(pud, addr);
6881 /* must be pmd huge, non-present or none */
6882 return (pte_t *)pmd;
6883 }
6884
6885 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6886
6887 /*
6888 * These functions are overwritable if your architecture needs its own
6889 * behavior.
6890 */
6891 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)6892 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6893 int write)
6894 {
6895 return ERR_PTR(-EINVAL);
6896 }
6897
6898 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)6899 follow_huge_pd(struct vm_area_struct *vma,
6900 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6901 {
6902 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6903 return NULL;
6904 }
6905
6906 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)6907 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6908 pmd_t *pmd, int flags)
6909 {
6910 struct page *page = NULL;
6911 spinlock_t *ptl;
6912 pte_t pte;
6913
6914 /*
6915 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6916 * follow_hugetlb_page().
6917 */
6918 if (WARN_ON_ONCE(flags & FOLL_PIN))
6919 return NULL;
6920
6921 retry:
6922 ptl = pmd_lockptr(mm, pmd);
6923 spin_lock(ptl);
6924 /*
6925 * make sure that the address range covered by this pmd is not
6926 * unmapped from other threads.
6927 */
6928 if (!pmd_huge(*pmd))
6929 goto out;
6930 pte = huge_ptep_get((pte_t *)pmd);
6931 if (pte_present(pte)) {
6932 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6933 /*
6934 * try_grab_page() should always succeed here, because: a) we
6935 * hold the pmd (ptl) lock, and b) we've just checked that the
6936 * huge pmd (head) page is present in the page tables. The ptl
6937 * prevents the head page and tail pages from being rearranged
6938 * in any way. So this page must be available at this point,
6939 * unless the page refcount overflowed:
6940 */
6941 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6942 page = NULL;
6943 goto out;
6944 }
6945 } else {
6946 if (is_hugetlb_entry_migration(pte)) {
6947 spin_unlock(ptl);
6948 __migration_entry_wait_huge((pte_t *)pmd, ptl);
6949 goto retry;
6950 }
6951 /*
6952 * hwpoisoned entry is treated as no_page_table in
6953 * follow_page_mask().
6954 */
6955 }
6956 out:
6957 spin_unlock(ptl);
6958 return page;
6959 }
6960
6961 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)6962 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6963 pud_t *pud, int flags)
6964 {
6965 if (flags & (FOLL_GET | FOLL_PIN))
6966 return NULL;
6967
6968 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6969 }
6970
6971 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)6972 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6973 {
6974 if (flags & (FOLL_GET | FOLL_PIN))
6975 return NULL;
6976
6977 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6978 }
6979
isolate_hugetlb(struct page * page,struct list_head * list)6980 int isolate_hugetlb(struct page *page, struct list_head *list)
6981 {
6982 int ret = 0;
6983
6984 spin_lock_irq(&hugetlb_lock);
6985 if (!PageHeadHuge(page) ||
6986 !HPageMigratable(page) ||
6987 !get_page_unless_zero(page)) {
6988 ret = -EBUSY;
6989 goto unlock;
6990 }
6991 ClearHPageMigratable(page);
6992 list_move_tail(&page->lru, list);
6993 unlock:
6994 spin_unlock_irq(&hugetlb_lock);
6995 return ret;
6996 }
6997
get_hwpoison_huge_page(struct page * page,bool * hugetlb)6998 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6999 {
7000 int ret = 0;
7001
7002 *hugetlb = false;
7003 spin_lock_irq(&hugetlb_lock);
7004 if (PageHeadHuge(page)) {
7005 *hugetlb = true;
7006 if (HPageFreed(page))
7007 ret = 0;
7008 else if (HPageMigratable(page))
7009 ret = get_page_unless_zero(page);
7010 else
7011 ret = -EBUSY;
7012 }
7013 spin_unlock_irq(&hugetlb_lock);
7014 return ret;
7015 }
7016
get_huge_page_for_hwpoison(unsigned long pfn,int flags)7017 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7018 {
7019 int ret;
7020
7021 spin_lock_irq(&hugetlb_lock);
7022 ret = __get_huge_page_for_hwpoison(pfn, flags);
7023 spin_unlock_irq(&hugetlb_lock);
7024 return ret;
7025 }
7026
putback_active_hugepage(struct page * page)7027 void putback_active_hugepage(struct page *page)
7028 {
7029 spin_lock_irq(&hugetlb_lock);
7030 SetHPageMigratable(page);
7031 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7032 spin_unlock_irq(&hugetlb_lock);
7033 put_page(page);
7034 }
7035
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)7036 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7037 {
7038 struct hstate *h = page_hstate(oldpage);
7039
7040 hugetlb_cgroup_migrate(oldpage, newpage);
7041 set_page_owner_migrate_reason(newpage, reason);
7042
7043 /*
7044 * transfer temporary state of the new huge page. This is
7045 * reverse to other transitions because the newpage is going to
7046 * be final while the old one will be freed so it takes over
7047 * the temporary status.
7048 *
7049 * Also note that we have to transfer the per-node surplus state
7050 * here as well otherwise the global surplus count will not match
7051 * the per-node's.
7052 */
7053 if (HPageTemporary(newpage)) {
7054 int old_nid = page_to_nid(oldpage);
7055 int new_nid = page_to_nid(newpage);
7056
7057 SetHPageTemporary(oldpage);
7058 ClearHPageTemporary(newpage);
7059
7060 /*
7061 * There is no need to transfer the per-node surplus state
7062 * when we do not cross the node.
7063 */
7064 if (new_nid == old_nid)
7065 return;
7066 spin_lock_irq(&hugetlb_lock);
7067 if (h->surplus_huge_pages_node[old_nid]) {
7068 h->surplus_huge_pages_node[old_nid]--;
7069 h->surplus_huge_pages_node[new_nid]++;
7070 }
7071 spin_unlock_irq(&hugetlb_lock);
7072 }
7073 }
7074
7075 /*
7076 * This function will unconditionally remove all the shared pmd pgtable entries
7077 * within the specific vma for a hugetlbfs memory range.
7078 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7079 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7080 {
7081 struct hstate *h = hstate_vma(vma);
7082 unsigned long sz = huge_page_size(h);
7083 struct mm_struct *mm = vma->vm_mm;
7084 struct mmu_notifier_range range;
7085 unsigned long address, start, end;
7086 spinlock_t *ptl;
7087 pte_t *ptep;
7088
7089 if (!(vma->vm_flags & VM_MAYSHARE))
7090 return;
7091
7092 start = ALIGN(vma->vm_start, PUD_SIZE);
7093 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7094
7095 if (start >= end)
7096 return;
7097
7098 flush_cache_range(vma, start, end);
7099 /*
7100 * No need to call adjust_range_if_pmd_sharing_possible(), because
7101 * we have already done the PUD_SIZE alignment.
7102 */
7103 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7104 start, end);
7105 mmu_notifier_invalidate_range_start(&range);
7106 i_mmap_lock_write(vma->vm_file->f_mapping);
7107 for (address = start; address < end; address += PUD_SIZE) {
7108 unsigned long tmp = address;
7109
7110 ptep = huge_pte_offset(mm, address, sz);
7111 if (!ptep)
7112 continue;
7113 ptl = huge_pte_lock(h, mm, ptep);
7114 /* We don't want 'address' to be changed */
7115 huge_pmd_unshare(mm, vma, &tmp, ptep);
7116 spin_unlock(ptl);
7117 }
7118 flush_hugetlb_tlb_range(vma, start, end);
7119 i_mmap_unlock_write(vma->vm_file->f_mapping);
7120 /*
7121 * No need to call mmu_notifier_invalidate_range(), see
7122 * Documentation/vm/mmu_notifier.rst.
7123 */
7124 mmu_notifier_invalidate_range_end(&range);
7125 }
7126
7127 #ifdef CONFIG_CMA
7128 static bool cma_reserve_called __initdata;
7129
cmdline_parse_hugetlb_cma(char * p)7130 static int __init cmdline_parse_hugetlb_cma(char *p)
7131 {
7132 int nid, count = 0;
7133 unsigned long tmp;
7134 char *s = p;
7135
7136 while (*s) {
7137 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7138 break;
7139
7140 if (s[count] == ':') {
7141 if (tmp >= MAX_NUMNODES)
7142 break;
7143 nid = array_index_nospec(tmp, MAX_NUMNODES);
7144
7145 s += count + 1;
7146 tmp = memparse(s, &s);
7147 hugetlb_cma_size_in_node[nid] = tmp;
7148 hugetlb_cma_size += tmp;
7149
7150 /*
7151 * Skip the separator if have one, otherwise
7152 * break the parsing.
7153 */
7154 if (*s == ',')
7155 s++;
7156 else
7157 break;
7158 } else {
7159 hugetlb_cma_size = memparse(p, &p);
7160 break;
7161 }
7162 }
7163
7164 return 0;
7165 }
7166
7167 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7168
hugetlb_cma_reserve(int order)7169 void __init hugetlb_cma_reserve(int order)
7170 {
7171 unsigned long size, reserved, per_node;
7172 bool node_specific_cma_alloc = false;
7173 int nid;
7174
7175 cma_reserve_called = true;
7176
7177 if (!hugetlb_cma_size)
7178 return;
7179
7180 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7181 if (hugetlb_cma_size_in_node[nid] == 0)
7182 continue;
7183
7184 if (!node_online(nid)) {
7185 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7186 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7187 hugetlb_cma_size_in_node[nid] = 0;
7188 continue;
7189 }
7190
7191 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7192 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7193 nid, (PAGE_SIZE << order) / SZ_1M);
7194 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7195 hugetlb_cma_size_in_node[nid] = 0;
7196 } else {
7197 node_specific_cma_alloc = true;
7198 }
7199 }
7200
7201 /* Validate the CMA size again in case some invalid nodes specified. */
7202 if (!hugetlb_cma_size)
7203 return;
7204
7205 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7206 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7207 (PAGE_SIZE << order) / SZ_1M);
7208 hugetlb_cma_size = 0;
7209 return;
7210 }
7211
7212 if (!node_specific_cma_alloc) {
7213 /*
7214 * If 3 GB area is requested on a machine with 4 numa nodes,
7215 * let's allocate 1 GB on first three nodes and ignore the last one.
7216 */
7217 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7218 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7219 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7220 }
7221
7222 reserved = 0;
7223 for_each_online_node(nid) {
7224 int res;
7225 char name[CMA_MAX_NAME];
7226
7227 if (node_specific_cma_alloc) {
7228 if (hugetlb_cma_size_in_node[nid] == 0)
7229 continue;
7230
7231 size = hugetlb_cma_size_in_node[nid];
7232 } else {
7233 size = min(per_node, hugetlb_cma_size - reserved);
7234 }
7235
7236 size = round_up(size, PAGE_SIZE << order);
7237
7238 snprintf(name, sizeof(name), "hugetlb%d", nid);
7239 /*
7240 * Note that 'order per bit' is based on smallest size that
7241 * may be returned to CMA allocator in the case of
7242 * huge page demotion.
7243 */
7244 res = cma_declare_contiguous_nid(0, size, 0,
7245 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7246 0, false, name,
7247 &hugetlb_cma[nid], nid);
7248 if (res) {
7249 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7250 res, nid);
7251 continue;
7252 }
7253
7254 reserved += size;
7255 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7256 size / SZ_1M, nid);
7257
7258 if (reserved >= hugetlb_cma_size)
7259 break;
7260 }
7261
7262 if (!reserved)
7263 /*
7264 * hugetlb_cma_size is used to determine if allocations from
7265 * cma are possible. Set to zero if no cma regions are set up.
7266 */
7267 hugetlb_cma_size = 0;
7268 }
7269
hugetlb_cma_check(void)7270 void __init hugetlb_cma_check(void)
7271 {
7272 if (!hugetlb_cma_size || cma_reserve_called)
7273 return;
7274
7275 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7276 }
7277
7278 #endif /* CONFIG_CMA */
7279