1 /*
2  * SPI_PPC4XX SPI controller driver.
3  *
4  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
5  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
6  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
7  *
8  * Based in part on drivers/spi/spi_s3c24xx.c
9  *
10  * Copyright (c) 2006 Ben Dooks
11  * Copyright (c) 2006 Simtec Electronics
12  *	Ben Dooks <ben@simtec.co.uk>
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under the terms of the GNU General Public License version 2 as published
16  * by the Free Software Foundation.
17  */
18 
19 /*
20  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
21  * generate an interrupt to the CPU. This can cause high CPU utilization.
22  * This driver allows platforms to reduce the interrupt load on the CPU
23  * during SPI transfers by setting max_speed_hz via the device tree.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/errno.h>
31 #include <linux/wait.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_spi.h>
34 #include <linux/of_gpio.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 
38 #include <linux/gpio.h>
39 #include <linux/spi/spi.h>
40 #include <linux/spi/spi_bitbang.h>
41 
42 #include <asm/io.h>
43 #include <asm/dcr.h>
44 #include <asm/dcr-regs.h>
45 
46 /* bits in mode register - bit 0 is MSb */
47 
48 /*
49  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
50  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
51  * Note: This is the inverse of CPHA.
52  */
53 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
54 
55 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
56 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
57 
58 /*
59  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
60  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
61  * Note: This is identical to SPI_LSB_FIRST.
62  */
63 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
64 
65 /*
66  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
67  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
68  * Note: This is identical to CPOL.
69  */
70 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
71 
72 /*
73  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
74  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
75  */
76 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
77 
78 /* bits in control register */
79 /* starts a transfer when set */
80 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
81 
82 /* bits in status register */
83 /* port is busy with a transfer */
84 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
85 /* RxD ready */
86 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
87 
88 /* clock settings (SCP and CI) for various SPI modes */
89 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
90 #define SPI_CLK_MODE1	(0 | 0)
91 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
92 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
93 
94 #define DRIVER_NAME	"spi_ppc4xx_of"
95 
96 struct spi_ppc4xx_regs {
97 	u8 mode;
98 	u8 rxd;
99 	u8 txd;
100 	u8 cr;
101 	u8 sr;
102 	u8 dummy;
103 	/*
104 	 * Clock divisor modulus register
105 	 * This uses the follwing formula:
106 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
107 	 * or
108 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
109 	 * bit 0 is the MSb!
110 	 */
111 	u8 cdm;
112 };
113 
114 /* SPI Controller driver's private data. */
115 struct ppc4xx_spi {
116 	/* bitbang has to be first */
117 	struct spi_bitbang bitbang;
118 	struct completion done;
119 
120 	u64 mapbase;
121 	u64 mapsize;
122 	int irqnum;
123 	/* need this to set the SPI clock */
124 	unsigned int opb_freq;
125 
126 	/* for transfers */
127 	int len;
128 	int count;
129 	/* data buffers */
130 	const unsigned char *tx;
131 	unsigned char *rx;
132 
133 	int *gpios;
134 
135 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
136 	struct spi_master *master;
137 	struct device *dev;
138 };
139 
140 /* need this so we can set the clock in the chipselect routine */
141 struct spi_ppc4xx_cs {
142 	u8 mode;
143 };
144 
spi_ppc4xx_txrx(struct spi_device * spi,struct spi_transfer * t)145 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
146 {
147 	struct ppc4xx_spi *hw;
148 	u8 data;
149 
150 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
151 		t->tx_buf, t->rx_buf, t->len);
152 
153 	hw = spi_master_get_devdata(spi->master);
154 
155 	hw->tx = t->tx_buf;
156 	hw->rx = t->rx_buf;
157 	hw->len = t->len;
158 	hw->count = 0;
159 
160 	/* send the first byte */
161 	data = hw->tx ? hw->tx[0] : 0;
162 	out_8(&hw->regs->txd, data);
163 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
164 	wait_for_completion(&hw->done);
165 
166 	return hw->count;
167 }
168 
spi_ppc4xx_setupxfer(struct spi_device * spi,struct spi_transfer * t)169 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
170 {
171 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
172 	struct spi_ppc4xx_cs *cs = spi->controller_state;
173 	int scr;
174 	u8 cdm = 0;
175 	u32 speed;
176 	u8 bits_per_word;
177 
178 	/* Start with the generic configuration for this device. */
179 	bits_per_word = spi->bits_per_word;
180 	speed = spi->max_speed_hz;
181 
182 	/*
183 	 * Modify the configuration if the transfer overrides it.  Do not allow
184 	 * the transfer to overwrite the generic configuration with zeros.
185 	 */
186 	if (t) {
187 		if (t->bits_per_word)
188 			bits_per_word = t->bits_per_word;
189 
190 		if (t->speed_hz)
191 			speed = min(t->speed_hz, spi->max_speed_hz);
192 	}
193 
194 	if (bits_per_word != 8) {
195 		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
196 				bits_per_word);
197 		return -EINVAL;
198 	}
199 
200 	if (!speed || (speed > spi->max_speed_hz)) {
201 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
202 		return -EINVAL;
203 	}
204 
205 	/* Write new configration */
206 	out_8(&hw->regs->mode, cs->mode);
207 
208 	/* Set the clock */
209 	/* opb_freq was already divided by 4 */
210 	scr = (hw->opb_freq / speed) - 1;
211 	if (scr > 0)
212 		cdm = min(scr, 0xff);
213 
214 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
215 
216 	if (in_8(&hw->regs->cdm) != cdm)
217 		out_8(&hw->regs->cdm, cdm);
218 
219 	spin_lock(&hw->bitbang.lock);
220 	if (!hw->bitbang.busy) {
221 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
222 		/* Need to ndelay here? */
223 	}
224 	spin_unlock(&hw->bitbang.lock);
225 
226 	return 0;
227 }
228 
spi_ppc4xx_setup(struct spi_device * spi)229 static int spi_ppc4xx_setup(struct spi_device *spi)
230 {
231 	struct spi_ppc4xx_cs *cs = spi->controller_state;
232 
233 	if (spi->bits_per_word != 8) {
234 		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
235 			spi->bits_per_word);
236 		return -EINVAL;
237 	}
238 
239 	if (!spi->max_speed_hz) {
240 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
241 		return -EINVAL;
242 	}
243 
244 	if (cs == NULL) {
245 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
246 		if (!cs)
247 			return -ENOMEM;
248 		spi->controller_state = cs;
249 	}
250 
251 	/*
252 	 * We set all bits of the SPI0_MODE register, so,
253 	 * no need to read-modify-write
254 	 */
255 	cs->mode = SPI_PPC4XX_MODE_SPE;
256 
257 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
258 	case SPI_MODE_0:
259 		cs->mode |= SPI_CLK_MODE0;
260 		break;
261 	case SPI_MODE_1:
262 		cs->mode |= SPI_CLK_MODE1;
263 		break;
264 	case SPI_MODE_2:
265 		cs->mode |= SPI_CLK_MODE2;
266 		break;
267 	case SPI_MODE_3:
268 		cs->mode |= SPI_CLK_MODE3;
269 		break;
270 	}
271 
272 	if (spi->mode & SPI_LSB_FIRST)
273 		cs->mode |= SPI_PPC4XX_MODE_RD;
274 
275 	return 0;
276 }
277 
spi_ppc4xx_chipsel(struct spi_device * spi,int value)278 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
279 {
280 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
281 	unsigned int cs = spi->chip_select;
282 	unsigned int cspol;
283 
284 	/*
285 	 * If there are no chip selects at all, or if this is the special
286 	 * case of a non-existent (dummy) chip select, do nothing.
287 	 */
288 
289 	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
290 		return;
291 
292 	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
293 	if (value == BITBANG_CS_INACTIVE)
294 		cspol = !cspol;
295 
296 	gpio_set_value(hw->gpios[cs], cspol);
297 }
298 
spi_ppc4xx_int(int irq,void * dev_id)299 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
300 {
301 	struct ppc4xx_spi *hw;
302 	u8 status;
303 	u8 data;
304 	unsigned int count;
305 
306 	hw = (struct ppc4xx_spi *)dev_id;
307 
308 	status = in_8(&hw->regs->sr);
309 	if (!status)
310 		return IRQ_NONE;
311 
312 	/*
313 	 * BSY de-asserts one cycle after the transfer is complete.  The
314 	 * interrupt is asserted after the transfer is complete.  The exact
315 	 * relationship is not documented, hence this code.
316 	 */
317 
318 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
319 		u8 lstatus;
320 		int cnt = 0;
321 
322 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
323 		do {
324 			ndelay(10);
325 			lstatus = in_8(&hw->regs->sr);
326 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
327 
328 		if (cnt >= 100) {
329 			dev_err(hw->dev, "busywait: too many loops!\n");
330 			complete(&hw->done);
331 			return IRQ_HANDLED;
332 		} else {
333 			/* status is always 1 (RBR) here */
334 			status = in_8(&hw->regs->sr);
335 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
336 		}
337 	}
338 
339 	count = hw->count;
340 	hw->count++;
341 
342 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
343 	data = in_8(&hw->regs->rxd);
344 	if (hw->rx)
345 		hw->rx[count] = data;
346 
347 	count++;
348 
349 	if (count < hw->len) {
350 		data = hw->tx ? hw->tx[count] : 0;
351 		out_8(&hw->regs->txd, data);
352 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
353 	} else {
354 		complete(&hw->done);
355 	}
356 
357 	return IRQ_HANDLED;
358 }
359 
spi_ppc4xx_cleanup(struct spi_device * spi)360 static void spi_ppc4xx_cleanup(struct spi_device *spi)
361 {
362 	kfree(spi->controller_state);
363 }
364 
spi_ppc4xx_enable(struct ppc4xx_spi * hw)365 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
366 {
367 	/*
368 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
369 	 * the 2nd I2C bus. We need to enable the the SPI bus before
370 	 * using it.
371 	 */
372 
373 	/* need to clear bit 14 to enable SPC */
374 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
375 }
376 
free_gpios(struct ppc4xx_spi * hw)377 static void free_gpios(struct ppc4xx_spi *hw)
378 {
379 	if (hw->master->num_chipselect) {
380 		int i;
381 		for (i = 0; i < hw->master->num_chipselect; i++)
382 			if (gpio_is_valid(hw->gpios[i]))
383 				gpio_free(hw->gpios[i]);
384 
385 		kfree(hw->gpios);
386 		hw->gpios = NULL;
387 	}
388 }
389 
390 /*
391  * platform_device layer stuff...
392  */
spi_ppc4xx_of_probe(struct platform_device * op)393 static int __init spi_ppc4xx_of_probe(struct platform_device *op)
394 {
395 	struct ppc4xx_spi *hw;
396 	struct spi_master *master;
397 	struct spi_bitbang *bbp;
398 	struct resource resource;
399 	struct device_node *np = op->dev.of_node;
400 	struct device *dev = &op->dev;
401 	struct device_node *opbnp;
402 	int ret;
403 	int num_gpios;
404 	const unsigned int *clk;
405 
406 	master = spi_alloc_master(dev, sizeof *hw);
407 	if (master == NULL)
408 		return -ENOMEM;
409 	master->dev.of_node = np;
410 	dev_set_drvdata(dev, master);
411 	hw = spi_master_get_devdata(master);
412 	hw->master = spi_master_get(master);
413 	hw->dev = dev;
414 
415 	init_completion(&hw->done);
416 
417 	/*
418 	 * A count of zero implies a single SPI device without any chip-select.
419 	 * Note that of_gpio_count counts all gpios assigned to this spi master.
420 	 * This includes both "null" gpio's and real ones.
421 	 */
422 	num_gpios = of_gpio_count(np);
423 	if (num_gpios) {
424 		int i;
425 
426 		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
427 		if (!hw->gpios) {
428 			ret = -ENOMEM;
429 			goto free_master;
430 		}
431 
432 		for (i = 0; i < num_gpios; i++) {
433 			int gpio;
434 			enum of_gpio_flags flags;
435 
436 			gpio = of_get_gpio_flags(np, i, &flags);
437 			hw->gpios[i] = gpio;
438 
439 			if (gpio_is_valid(gpio)) {
440 				/* Real CS - set the initial state. */
441 				ret = gpio_request(gpio, np->name);
442 				if (ret < 0) {
443 					dev_err(dev, "can't request gpio "
444 							"#%d: %d\n", i, ret);
445 					goto free_gpios;
446 				}
447 
448 				gpio_direction_output(gpio,
449 						!!(flags & OF_GPIO_ACTIVE_LOW));
450 			} else if (gpio == -EEXIST) {
451 				; /* No CS, but that's OK. */
452 			} else {
453 				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
454 				ret = -EINVAL;
455 				goto free_gpios;
456 			}
457 		}
458 	}
459 
460 	/* Setup the state for the bitbang driver */
461 	bbp = &hw->bitbang;
462 	bbp->master = hw->master;
463 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
464 	bbp->chipselect = spi_ppc4xx_chipsel;
465 	bbp->txrx_bufs = spi_ppc4xx_txrx;
466 	bbp->use_dma = 0;
467 	bbp->master->setup = spi_ppc4xx_setup;
468 	bbp->master->cleanup = spi_ppc4xx_cleanup;
469 
470 	/* Allocate bus num dynamically. */
471 	bbp->master->bus_num = -1;
472 
473 	/* the spi->mode bits understood by this driver: */
474 	bbp->master->mode_bits =
475 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
476 
477 	/* this many pins in all GPIO controllers */
478 	bbp->master->num_chipselect = num_gpios;
479 
480 	/* Get the clock for the OPB */
481 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
482 	if (opbnp == NULL) {
483 		dev_err(dev, "OPB: cannot find node\n");
484 		ret = -ENODEV;
485 		goto free_gpios;
486 	}
487 	/* Get the clock (Hz) for the OPB */
488 	clk = of_get_property(opbnp, "clock-frequency", NULL);
489 	if (clk == NULL) {
490 		dev_err(dev, "OPB: no clock-frequency property set\n");
491 		of_node_put(opbnp);
492 		ret = -ENODEV;
493 		goto free_gpios;
494 	}
495 	hw->opb_freq = *clk;
496 	hw->opb_freq >>= 2;
497 	of_node_put(opbnp);
498 
499 	ret = of_address_to_resource(np, 0, &resource);
500 	if (ret) {
501 		dev_err(dev, "error while parsing device node resource\n");
502 		goto free_gpios;
503 	}
504 	hw->mapbase = resource.start;
505 	hw->mapsize = resource.end - resource.start + 1;
506 
507 	/* Sanity check */
508 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
509 		dev_err(dev, "too small to map registers\n");
510 		ret = -EINVAL;
511 		goto free_gpios;
512 	}
513 
514 	/* Request IRQ */
515 	hw->irqnum = irq_of_parse_and_map(np, 0);
516 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
517 			  IRQF_DISABLED, "spi_ppc4xx_of", (void *)hw);
518 	if (ret) {
519 		dev_err(dev, "unable to allocate interrupt\n");
520 		goto free_gpios;
521 	}
522 
523 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
524 		dev_err(dev, "resource unavailable\n");
525 		ret = -EBUSY;
526 		goto request_mem_error;
527 	}
528 
529 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
530 
531 	if (!hw->regs) {
532 		dev_err(dev, "unable to memory map registers\n");
533 		ret = -ENXIO;
534 		goto map_io_error;
535 	}
536 
537 	spi_ppc4xx_enable(hw);
538 
539 	/* Finally register our spi controller */
540 	dev->dma_mask = 0;
541 	ret = spi_bitbang_start(bbp);
542 	if (ret) {
543 		dev_err(dev, "failed to register SPI master\n");
544 		goto unmap_regs;
545 	}
546 
547 	dev_info(dev, "driver initialized\n");
548 
549 	return 0;
550 
551 unmap_regs:
552 	iounmap(hw->regs);
553 map_io_error:
554 	release_mem_region(hw->mapbase, hw->mapsize);
555 request_mem_error:
556 	free_irq(hw->irqnum, hw);
557 free_gpios:
558 	free_gpios(hw);
559 free_master:
560 	dev_set_drvdata(dev, NULL);
561 	spi_master_put(master);
562 
563 	dev_err(dev, "initialization failed\n");
564 	return ret;
565 }
566 
spi_ppc4xx_of_remove(struct platform_device * op)567 static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
568 {
569 	struct spi_master *master = dev_get_drvdata(&op->dev);
570 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
571 
572 	spi_bitbang_stop(&hw->bitbang);
573 	dev_set_drvdata(&op->dev, NULL);
574 	release_mem_region(hw->mapbase, hw->mapsize);
575 	free_irq(hw->irqnum, hw);
576 	iounmap(hw->regs);
577 	free_gpios(hw);
578 	return 0;
579 }
580 
581 static const struct of_device_id spi_ppc4xx_of_match[] = {
582 	{ .compatible = "ibm,ppc4xx-spi", },
583 	{},
584 };
585 
586 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
587 
588 static struct platform_driver spi_ppc4xx_of_driver = {
589 	.probe = spi_ppc4xx_of_probe,
590 	.remove = __exit_p(spi_ppc4xx_of_remove),
591 	.driver = {
592 		.name = DRIVER_NAME,
593 		.owner = THIS_MODULE,
594 		.of_match_table = spi_ppc4xx_of_match,
595 	},
596 };
597 
spi_ppc4xx_init(void)598 static int __init spi_ppc4xx_init(void)
599 {
600 	return platform_driver_register(&spi_ppc4xx_of_driver);
601 }
602 module_init(spi_ppc4xx_init);
603 
spi_ppc4xx_exit(void)604 static void __exit spi_ppc4xx_exit(void)
605 {
606 	platform_driver_unregister(&spi_ppc4xx_of_driver);
607 }
608 module_exit(spi_ppc4xx_exit);
609 
610 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
611 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
612 MODULE_LICENSE("GPL");
613