1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 #ifdef CONFIG_PCI
40 
ehci_read_frame_index(struct ehci_hcd * ehci)41 static unsigned ehci_read_frame_index(struct ehci_hcd *ehci)
42 {
43 	unsigned uf;
44 
45 	/*
46 	 * The MosChip MCS9990 controller updates its microframe counter
47 	 * a little before the frame counter, and occasionally we will read
48 	 * the invalid intermediate value.  Avoid problems by checking the
49 	 * microframe number (the low-order 3 bits); if they are 0 then
50 	 * re-read the register to get the correct value.
51 	 */
52 	uf = ehci_readl(ehci, &ehci->regs->frame_index);
53 	if (unlikely(ehci->frame_index_bug && ((uf & 7) == 0)))
54 		uf = ehci_readl(ehci, &ehci->regs->frame_index);
55 	return uf;
56 }
57 
58 #endif
59 
60 /*-------------------------------------------------------------------------*/
61 
62 /*
63  * periodic_next_shadow - return "next" pointer on shadow list
64  * @periodic: host pointer to qh/itd/sitd
65  * @tag: hardware tag for type of this record
66  */
67 static union ehci_shadow *
periodic_next_shadow(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)68 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
69 		__hc32 tag)
70 {
71 	switch (hc32_to_cpu(ehci, tag)) {
72 	case Q_TYPE_QH:
73 		return &periodic->qh->qh_next;
74 	case Q_TYPE_FSTN:
75 		return &periodic->fstn->fstn_next;
76 	case Q_TYPE_ITD:
77 		return &periodic->itd->itd_next;
78 	// case Q_TYPE_SITD:
79 	default:
80 		return &periodic->sitd->sitd_next;
81 	}
82 }
83 
84 static __hc32 *
shadow_next_periodic(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)85 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
86 		__hc32 tag)
87 {
88 	switch (hc32_to_cpu(ehci, tag)) {
89 	/* our ehci_shadow.qh is actually software part */
90 	case Q_TYPE_QH:
91 		return &periodic->qh->hw->hw_next;
92 	/* others are hw parts */
93 	default:
94 		return periodic->hw_next;
95 	}
96 }
97 
98 /* caller must hold ehci->lock */
periodic_unlink(struct ehci_hcd * ehci,unsigned frame,void * ptr)99 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
100 {
101 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
102 	__hc32			*hw_p = &ehci->periodic[frame];
103 	union ehci_shadow	here = *prev_p;
104 
105 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
106 	while (here.ptr && here.ptr != ptr) {
107 		prev_p = periodic_next_shadow(ehci, prev_p,
108 				Q_NEXT_TYPE(ehci, *hw_p));
109 		hw_p = shadow_next_periodic(ehci, &here,
110 				Q_NEXT_TYPE(ehci, *hw_p));
111 		here = *prev_p;
112 	}
113 	/* an interrupt entry (at list end) could have been shared */
114 	if (!here.ptr)
115 		return;
116 
117 	/* update shadow and hardware lists ... the old "next" pointers
118 	 * from ptr may still be in use, the caller updates them.
119 	 */
120 	*prev_p = *periodic_next_shadow(ehci, &here,
121 			Q_NEXT_TYPE(ehci, *hw_p));
122 
123 	if (!ehci->use_dummy_qh ||
124 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
125 			!= EHCI_LIST_END(ehci))
126 		*hw_p = *shadow_next_periodic(ehci, &here,
127 				Q_NEXT_TYPE(ehci, *hw_p));
128 	else
129 		*hw_p = ehci->dummy->qh_dma;
130 }
131 
132 /* how many of the uframe's 125 usecs are allocated? */
133 static unsigned short
periodic_usecs(struct ehci_hcd * ehci,unsigned frame,unsigned uframe)134 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
135 {
136 	__hc32			*hw_p = &ehci->periodic [frame];
137 	union ehci_shadow	*q = &ehci->pshadow [frame];
138 	unsigned		usecs = 0;
139 	struct ehci_qh_hw	*hw;
140 
141 	while (q->ptr) {
142 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
143 		case Q_TYPE_QH:
144 			hw = q->qh->hw;
145 			/* is it in the S-mask? */
146 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
147 				usecs += q->qh->usecs;
148 			/* ... or C-mask? */
149 			if (hw->hw_info2 & cpu_to_hc32(ehci,
150 					1 << (8 + uframe)))
151 				usecs += q->qh->c_usecs;
152 			hw_p = &hw->hw_next;
153 			q = &q->qh->qh_next;
154 			break;
155 		// case Q_TYPE_FSTN:
156 		default:
157 			/* for "save place" FSTNs, count the relevant INTR
158 			 * bandwidth from the previous frame
159 			 */
160 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
161 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
162 			}
163 			hw_p = &q->fstn->hw_next;
164 			q = &q->fstn->fstn_next;
165 			break;
166 		case Q_TYPE_ITD:
167 			if (q->itd->hw_transaction[uframe])
168 				usecs += q->itd->stream->usecs;
169 			hw_p = &q->itd->hw_next;
170 			q = &q->itd->itd_next;
171 			break;
172 		case Q_TYPE_SITD:
173 			/* is it in the S-mask?  (count SPLIT, DATA) */
174 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
175 					1 << uframe)) {
176 				if (q->sitd->hw_fullspeed_ep &
177 						cpu_to_hc32(ehci, 1<<31))
178 					usecs += q->sitd->stream->usecs;
179 				else	/* worst case for OUT start-split */
180 					usecs += HS_USECS_ISO (188);
181 			}
182 
183 			/* ... C-mask?  (count CSPLIT, DATA) */
184 			if (q->sitd->hw_uframe &
185 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
186 				/* worst case for IN complete-split */
187 				usecs += q->sitd->stream->c_usecs;
188 			}
189 
190 			hw_p = &q->sitd->hw_next;
191 			q = &q->sitd->sitd_next;
192 			break;
193 		}
194 	}
195 #ifdef	DEBUG
196 	if (usecs > ehci->uframe_periodic_max)
197 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
198 			frame * 8 + uframe, usecs);
199 #endif
200 	return usecs;
201 }
202 
203 /*-------------------------------------------------------------------------*/
204 
same_tt(struct usb_device * dev1,struct usb_device * dev2)205 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
206 {
207 	if (!dev1->tt || !dev2->tt)
208 		return 0;
209 	if (dev1->tt != dev2->tt)
210 		return 0;
211 	if (dev1->tt->multi)
212 		return dev1->ttport == dev2->ttport;
213 	else
214 		return 1;
215 }
216 
217 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
218 
219 /* Which uframe does the low/fullspeed transfer start in?
220  *
221  * The parameter is the mask of ssplits in "H-frame" terms
222  * and this returns the transfer start uframe in "B-frame" terms,
223  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
224  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
225  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
226  */
tt_start_uframe(struct ehci_hcd * ehci,__hc32 mask)227 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
228 {
229 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
230 	if (!smask) {
231 		ehci_err(ehci, "invalid empty smask!\n");
232 		/* uframe 7 can't have bw so this will indicate failure */
233 		return 7;
234 	}
235 	return ffs(smask) - 1;
236 }
237 
238 static const unsigned char
239 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
240 
241 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
carryover_tt_bandwidth(unsigned short tt_usecs[8])242 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
243 {
244 	int i;
245 	for (i=0; i<7; i++) {
246 		if (max_tt_usecs[i] < tt_usecs[i]) {
247 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
248 			tt_usecs[i] = max_tt_usecs[i];
249 		}
250 	}
251 }
252 
253 /* How many of the tt's periodic downstream 1000 usecs are allocated?
254  *
255  * While this measures the bandwidth in terms of usecs/uframe,
256  * the low/fullspeed bus has no notion of uframes, so any particular
257  * low/fullspeed transfer can "carry over" from one uframe to the next,
258  * since the TT just performs downstream transfers in sequence.
259  *
260  * For example two separate 100 usec transfers can start in the same uframe,
261  * and the second one would "carry over" 75 usecs into the next uframe.
262  */
263 static void
periodic_tt_usecs(struct ehci_hcd * ehci,struct usb_device * dev,unsigned frame,unsigned short tt_usecs[8])264 periodic_tt_usecs (
265 	struct ehci_hcd *ehci,
266 	struct usb_device *dev,
267 	unsigned frame,
268 	unsigned short tt_usecs[8]
269 )
270 {
271 	__hc32			*hw_p = &ehci->periodic [frame];
272 	union ehci_shadow	*q = &ehci->pshadow [frame];
273 	unsigned char		uf;
274 
275 	memset(tt_usecs, 0, 16);
276 
277 	while (q->ptr) {
278 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
279 		case Q_TYPE_ITD:
280 			hw_p = &q->itd->hw_next;
281 			q = &q->itd->itd_next;
282 			continue;
283 		case Q_TYPE_QH:
284 			if (same_tt(dev, q->qh->dev)) {
285 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
286 				tt_usecs[uf] += q->qh->tt_usecs;
287 			}
288 			hw_p = &q->qh->hw->hw_next;
289 			q = &q->qh->qh_next;
290 			continue;
291 		case Q_TYPE_SITD:
292 			if (same_tt(dev, q->sitd->urb->dev)) {
293 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
294 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
295 			}
296 			hw_p = &q->sitd->hw_next;
297 			q = &q->sitd->sitd_next;
298 			continue;
299 		// case Q_TYPE_FSTN:
300 		default:
301 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
302 					frame);
303 			hw_p = &q->fstn->hw_next;
304 			q = &q->fstn->fstn_next;
305 		}
306 	}
307 
308 	carryover_tt_bandwidth(tt_usecs);
309 
310 	if (max_tt_usecs[7] < tt_usecs[7])
311 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
312 			frame, tt_usecs[7] - max_tt_usecs[7]);
313 }
314 
315 /*
316  * Return true if the device's tt's downstream bus is available for a
317  * periodic transfer of the specified length (usecs), starting at the
318  * specified frame/uframe.  Note that (as summarized in section 11.19
319  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
320  * uframe.
321  *
322  * The uframe parameter is when the fullspeed/lowspeed transfer
323  * should be executed in "B-frame" terms, which is the same as the
324  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
325  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
326  * See the EHCI spec sec 4.5 and fig 4.7.
327  *
328  * This checks if the full/lowspeed bus, at the specified starting uframe,
329  * has the specified bandwidth available, according to rules listed
330  * in USB 2.0 spec section 11.18.1 fig 11-60.
331  *
332  * This does not check if the transfer would exceed the max ssplit
333  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
334  * since proper scheduling limits ssplits to less than 16 per uframe.
335  */
tt_available(struct ehci_hcd * ehci,unsigned period,struct usb_device * dev,unsigned frame,unsigned uframe,u16 usecs)336 static int tt_available (
337 	struct ehci_hcd		*ehci,
338 	unsigned		period,
339 	struct usb_device	*dev,
340 	unsigned		frame,
341 	unsigned		uframe,
342 	u16			usecs
343 )
344 {
345 	if ((period == 0) || (uframe >= 7))	/* error */
346 		return 0;
347 
348 	for (; frame < ehci->periodic_size; frame += period) {
349 		unsigned short tt_usecs[8];
350 
351 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
352 
353 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
354 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
355 			frame, usecs, uframe,
356 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
357 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
358 
359 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
360 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
361 				frame, uframe);
362 			return 0;
363 		}
364 
365 		/* special case for isoc transfers larger than 125us:
366 		 * the first and each subsequent fully used uframe
367 		 * must be empty, so as to not illegally delay
368 		 * already scheduled transactions
369 		 */
370 		if (125 < usecs) {
371 			int ufs = (usecs / 125);
372 			int i;
373 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
374 				if (0 < tt_usecs[i]) {
375 					ehci_vdbg(ehci,
376 						"multi-uframe xfer can't fit "
377 						"in frame %d uframe %d\n",
378 						frame, i);
379 					return 0;
380 				}
381 		}
382 
383 		tt_usecs[uframe] += usecs;
384 
385 		carryover_tt_bandwidth(tt_usecs);
386 
387 		/* fail if the carryover pushed bw past the last uframe's limit */
388 		if (max_tt_usecs[7] < tt_usecs[7]) {
389 			ehci_vdbg(ehci,
390 				"tt unavailable usecs %d frame %d uframe %d\n",
391 				usecs, frame, uframe);
392 			return 0;
393 		}
394 	}
395 
396 	return 1;
397 }
398 
399 #else
400 
401 /* return true iff the device's transaction translator is available
402  * for a periodic transfer starting at the specified frame, using
403  * all the uframes in the mask.
404  */
tt_no_collision(struct ehci_hcd * ehci,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)405 static int tt_no_collision (
406 	struct ehci_hcd		*ehci,
407 	unsigned		period,
408 	struct usb_device	*dev,
409 	unsigned		frame,
410 	u32			uf_mask
411 )
412 {
413 	if (period == 0)	/* error */
414 		return 0;
415 
416 	/* note bandwidth wastage:  split never follows csplit
417 	 * (different dev or endpoint) until the next uframe.
418 	 * calling convention doesn't make that distinction.
419 	 */
420 	for (; frame < ehci->periodic_size; frame += period) {
421 		union ehci_shadow	here;
422 		__hc32			type;
423 		struct ehci_qh_hw	*hw;
424 
425 		here = ehci->pshadow [frame];
426 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
427 		while (here.ptr) {
428 			switch (hc32_to_cpu(ehci, type)) {
429 			case Q_TYPE_ITD:
430 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
431 				here = here.itd->itd_next;
432 				continue;
433 			case Q_TYPE_QH:
434 				hw = here.qh->hw;
435 				if (same_tt (dev, here.qh->dev)) {
436 					u32		mask;
437 
438 					mask = hc32_to_cpu(ehci,
439 							hw->hw_info2);
440 					/* "knows" no gap is needed */
441 					mask |= mask >> 8;
442 					if (mask & uf_mask)
443 						break;
444 				}
445 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
446 				here = here.qh->qh_next;
447 				continue;
448 			case Q_TYPE_SITD:
449 				if (same_tt (dev, here.sitd->urb->dev)) {
450 					u16		mask;
451 
452 					mask = hc32_to_cpu(ehci, here.sitd
453 								->hw_uframe);
454 					/* FIXME assumes no gap for IN! */
455 					mask |= mask >> 8;
456 					if (mask & uf_mask)
457 						break;
458 				}
459 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
460 				here = here.sitd->sitd_next;
461 				continue;
462 			// case Q_TYPE_FSTN:
463 			default:
464 				ehci_dbg (ehci,
465 					"periodic frame %d bogus type %d\n",
466 					frame, type);
467 			}
468 
469 			/* collision or error */
470 			return 0;
471 		}
472 	}
473 
474 	/* no collision */
475 	return 1;
476 }
477 
478 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
479 
480 /*-------------------------------------------------------------------------*/
481 
enable_periodic(struct ehci_hcd * ehci)482 static int enable_periodic (struct ehci_hcd *ehci)
483 {
484 	u32	cmd;
485 	int	status;
486 
487 	if (ehci->periodic_sched++)
488 		return 0;
489 
490 	/* did clearing PSE did take effect yet?
491 	 * takes effect only at frame boundaries...
492 	 */
493 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
494 					     STS_PSS, 0, 9 * 125);
495 	if (status) {
496 		usb_hc_died(ehci_to_hcd(ehci));
497 		return status;
498 	}
499 
500 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
501 	ehci_writel(ehci, cmd, &ehci->regs->command);
502 	/* posted write ... PSS happens later */
503 
504 	/* make sure ehci_work scans these */
505 	ehci->next_uframe = ehci_read_frame_index(ehci)
506 		% (ehci->periodic_size << 3);
507 	if (unlikely(ehci->broken_periodic))
508 		ehci->last_periodic_enable = ktime_get_real();
509 	return 0;
510 }
511 
disable_periodic(struct ehci_hcd * ehci)512 static int disable_periodic (struct ehci_hcd *ehci)
513 {
514 	u32	cmd;
515 	int	status;
516 
517 	if (--ehci->periodic_sched)
518 		return 0;
519 
520 	if (unlikely(ehci->broken_periodic)) {
521 		/* delay experimentally determined */
522 		ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
523 		ktime_t now = ktime_get_real();
524 		s64 delay = ktime_us_delta(safe, now);
525 
526 		if (unlikely(delay > 0))
527 			udelay(delay);
528 	}
529 
530 	/* did setting PSE not take effect yet?
531 	 * takes effect only at frame boundaries...
532 	 */
533 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
534 					     STS_PSS, STS_PSS, 9 * 125);
535 	if (status) {
536 		usb_hc_died(ehci_to_hcd(ehci));
537 		return status;
538 	}
539 
540 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
541 	ehci_writel(ehci, cmd, &ehci->regs->command);
542 	/* posted write ... */
543 
544 	free_cached_lists(ehci);
545 
546 	ehci->next_uframe = -1;
547 	return 0;
548 }
549 
550 /*-------------------------------------------------------------------------*/
551 
552 /* periodic schedule slots have iso tds (normal or split) first, then a
553  * sparse tree for active interrupt transfers.
554  *
555  * this just links in a qh; caller guarantees uframe masks are set right.
556  * no FSTN support (yet; ehci 0.96+)
557  */
qh_link_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)558 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
559 {
560 	unsigned	i;
561 	unsigned	period = qh->period;
562 
563 	dev_dbg (&qh->dev->dev,
564 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
565 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
566 			& (QH_CMASK | QH_SMASK),
567 		qh, qh->start, qh->usecs, qh->c_usecs);
568 
569 	/* high bandwidth, or otherwise every microframe */
570 	if (period == 0)
571 		period = 1;
572 
573 	for (i = qh->start; i < ehci->periodic_size; i += period) {
574 		union ehci_shadow	*prev = &ehci->pshadow[i];
575 		__hc32			*hw_p = &ehci->periodic[i];
576 		union ehci_shadow	here = *prev;
577 		__hc32			type = 0;
578 
579 		/* skip the iso nodes at list head */
580 		while (here.ptr) {
581 			type = Q_NEXT_TYPE(ehci, *hw_p);
582 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
583 				break;
584 			prev = periodic_next_shadow(ehci, prev, type);
585 			hw_p = shadow_next_periodic(ehci, &here, type);
586 			here = *prev;
587 		}
588 
589 		/* sorting each branch by period (slow-->fast)
590 		 * enables sharing interior tree nodes
591 		 */
592 		while (here.ptr && qh != here.qh) {
593 			if (qh->period > here.qh->period)
594 				break;
595 			prev = &here.qh->qh_next;
596 			hw_p = &here.qh->hw->hw_next;
597 			here = *prev;
598 		}
599 		/* link in this qh, unless some earlier pass did that */
600 		if (qh != here.qh) {
601 			qh->qh_next = here;
602 			if (here.qh)
603 				qh->hw->hw_next = *hw_p;
604 			wmb ();
605 			prev->qh = qh;
606 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
607 		}
608 	}
609 	qh->qh_state = QH_STATE_LINKED;
610 	qh->xacterrs = 0;
611 	qh_get (qh);
612 
613 	/* update per-qh bandwidth for usbfs */
614 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
615 		? ((qh->usecs + qh->c_usecs) / qh->period)
616 		: (qh->usecs * 8);
617 
618 	/* maybe enable periodic schedule processing */
619 	return enable_periodic(ehci);
620 }
621 
qh_unlink_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)622 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
623 {
624 	unsigned	i;
625 	unsigned	period;
626 
627 	// FIXME:
628 	// IF this isn't high speed
629 	//   and this qh is active in the current uframe
630 	//   (and overlay token SplitXstate is false?)
631 	// THEN
632 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
633 
634 	/* high bandwidth, or otherwise part of every microframe */
635 	if ((period = qh->period) == 0)
636 		period = 1;
637 
638 	for (i = qh->start; i < ehci->periodic_size; i += period)
639 		periodic_unlink (ehci, i, qh);
640 
641 	/* update per-qh bandwidth for usbfs */
642 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
643 		? ((qh->usecs + qh->c_usecs) / qh->period)
644 		: (qh->usecs * 8);
645 
646 	dev_dbg (&qh->dev->dev,
647 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
648 		qh->period,
649 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
650 		qh, qh->start, qh->usecs, qh->c_usecs);
651 
652 	/* qh->qh_next still "live" to HC */
653 	qh->qh_state = QH_STATE_UNLINK;
654 	qh->qh_next.ptr = NULL;
655 	qh_put (qh);
656 
657 	/* maybe turn off periodic schedule */
658 	return disable_periodic(ehci);
659 }
660 
intr_deschedule(struct ehci_hcd * ehci,struct ehci_qh * qh)661 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
662 {
663 	unsigned		wait;
664 	struct ehci_qh_hw	*hw = qh->hw;
665 	int			rc;
666 
667 	/* If the QH isn't linked then there's nothing we can do
668 	 * unless we were called during a giveback, in which case
669 	 * qh_completions() has to deal with it.
670 	 */
671 	if (qh->qh_state != QH_STATE_LINKED) {
672 		if (qh->qh_state == QH_STATE_COMPLETING)
673 			qh->needs_rescan = 1;
674 		return;
675 	}
676 
677 	qh_unlink_periodic (ehci, qh);
678 
679 	/* simple/paranoid:  always delay, expecting the HC needs to read
680 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
681 	 * expect khubd to clean up after any CSPLITs we won't issue.
682 	 * active high speed queues may need bigger delays...
683 	 */
684 	if (list_empty (&qh->qtd_list)
685 			|| (cpu_to_hc32(ehci, QH_CMASK)
686 					& hw->hw_info2) != 0)
687 		wait = 2;
688 	else
689 		wait = 55;	/* worst case: 3 * 1024 */
690 
691 	udelay (wait);
692 	qh->qh_state = QH_STATE_IDLE;
693 	hw->hw_next = EHCI_LIST_END(ehci);
694 	wmb ();
695 
696 	qh_completions(ehci, qh);
697 
698 	/* reschedule QH iff another request is queued */
699 	if (!list_empty(&qh->qtd_list) &&
700 			ehci->rh_state == EHCI_RH_RUNNING) {
701 		rc = qh_schedule(ehci, qh);
702 
703 		/* An error here likely indicates handshake failure
704 		 * or no space left in the schedule.  Neither fault
705 		 * should happen often ...
706 		 *
707 		 * FIXME kill the now-dysfunctional queued urbs
708 		 */
709 		if (rc != 0)
710 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
711 					qh, rc);
712 	}
713 }
714 
715 /*-------------------------------------------------------------------------*/
716 
check_period(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)717 static int check_period (
718 	struct ehci_hcd *ehci,
719 	unsigned	frame,
720 	unsigned	uframe,
721 	unsigned	period,
722 	unsigned	usecs
723 ) {
724 	int		claimed;
725 
726 	/* complete split running into next frame?
727 	 * given FSTN support, we could sometimes check...
728 	 */
729 	if (uframe >= 8)
730 		return 0;
731 
732 	/* convert "usecs we need" to "max already claimed" */
733 	usecs = ehci->uframe_periodic_max - usecs;
734 
735 	/* we "know" 2 and 4 uframe intervals were rejected; so
736 	 * for period 0, check _every_ microframe in the schedule.
737 	 */
738 	if (unlikely (period == 0)) {
739 		do {
740 			for (uframe = 0; uframe < 7; uframe++) {
741 				claimed = periodic_usecs (ehci, frame, uframe);
742 				if (claimed > usecs)
743 					return 0;
744 			}
745 		} while ((frame += 1) < ehci->periodic_size);
746 
747 	/* just check the specified uframe, at that period */
748 	} else {
749 		do {
750 			claimed = periodic_usecs (ehci, frame, uframe);
751 			if (claimed > usecs)
752 				return 0;
753 		} while ((frame += period) < ehci->periodic_size);
754 	}
755 
756 	// success!
757 	return 1;
758 }
759 
check_intr_schedule(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__hc32 * c_maskp)760 static int check_intr_schedule (
761 	struct ehci_hcd		*ehci,
762 	unsigned		frame,
763 	unsigned		uframe,
764 	const struct ehci_qh	*qh,
765 	__hc32			*c_maskp
766 )
767 {
768 	int		retval = -ENOSPC;
769 	u8		mask = 0;
770 
771 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
772 		goto done;
773 
774 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
775 		goto done;
776 	if (!qh->c_usecs) {
777 		retval = 0;
778 		*c_maskp = 0;
779 		goto done;
780 	}
781 
782 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
783 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
784 				qh->tt_usecs)) {
785 		unsigned i;
786 
787 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
788 		for (i=uframe+1; i<8 && i<uframe+4; i++)
789 			if (!check_period (ehci, frame, i,
790 						qh->period, qh->c_usecs))
791 				goto done;
792 			else
793 				mask |= 1 << i;
794 
795 		retval = 0;
796 
797 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
798 	}
799 #else
800 	/* Make sure this tt's buffer is also available for CSPLITs.
801 	 * We pessimize a bit; probably the typical full speed case
802 	 * doesn't need the second CSPLIT.
803 	 *
804 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
805 	 * one smart pass...
806 	 */
807 	mask = 0x03 << (uframe + qh->gap_uf);
808 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
809 
810 	mask |= 1 << uframe;
811 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
812 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
813 					qh->period, qh->c_usecs))
814 			goto done;
815 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
816 					qh->period, qh->c_usecs))
817 			goto done;
818 		retval = 0;
819 	}
820 #endif
821 done:
822 	return retval;
823 }
824 
825 /* "first fit" scheduling policy used the first time through,
826  * or when the previous schedule slot can't be re-used.
827  */
qh_schedule(struct ehci_hcd * ehci,struct ehci_qh * qh)828 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
829 {
830 	int		status;
831 	unsigned	uframe;
832 	__hc32		c_mask;
833 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
834 	struct ehci_qh_hw	*hw = qh->hw;
835 
836 	qh_refresh(ehci, qh);
837 	hw->hw_next = EHCI_LIST_END(ehci);
838 	frame = qh->start;
839 
840 	/* reuse the previous schedule slots, if we can */
841 	if (frame < qh->period) {
842 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
843 		status = check_intr_schedule (ehci, frame, --uframe,
844 				qh, &c_mask);
845 	} else {
846 		uframe = 0;
847 		c_mask = 0;
848 		status = -ENOSPC;
849 	}
850 
851 	/* else scan the schedule to find a group of slots such that all
852 	 * uframes have enough periodic bandwidth available.
853 	 */
854 	if (status) {
855 		/* "normal" case, uframing flexible except with splits */
856 		if (qh->period) {
857 			int		i;
858 
859 			for (i = qh->period; status && i > 0; --i) {
860 				frame = ++ehci->random_frame % qh->period;
861 				for (uframe = 0; uframe < 8; uframe++) {
862 					status = check_intr_schedule (ehci,
863 							frame, uframe, qh,
864 							&c_mask);
865 					if (status == 0)
866 						break;
867 				}
868 			}
869 
870 		/* qh->period == 0 means every uframe */
871 		} else {
872 			frame = 0;
873 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
874 		}
875 		if (status)
876 			goto done;
877 		qh->start = frame;
878 
879 		/* reset S-frame and (maybe) C-frame masks */
880 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
881 		hw->hw_info2 |= qh->period
882 			? cpu_to_hc32(ehci, 1 << uframe)
883 			: cpu_to_hc32(ehci, QH_SMASK);
884 		hw->hw_info2 |= c_mask;
885 	} else
886 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
887 
888 	/* stuff into the periodic schedule */
889 	status = qh_link_periodic (ehci, qh);
890 done:
891 	return status;
892 }
893 
intr_submit(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)894 static int intr_submit (
895 	struct ehci_hcd		*ehci,
896 	struct urb		*urb,
897 	struct list_head	*qtd_list,
898 	gfp_t			mem_flags
899 ) {
900 	unsigned		epnum;
901 	unsigned long		flags;
902 	struct ehci_qh		*qh;
903 	int			status;
904 	struct list_head	empty;
905 
906 	/* get endpoint and transfer/schedule data */
907 	epnum = urb->ep->desc.bEndpointAddress;
908 
909 	spin_lock_irqsave (&ehci->lock, flags);
910 
911 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
912 		status = -ESHUTDOWN;
913 		goto done_not_linked;
914 	}
915 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
916 	if (unlikely(status))
917 		goto done_not_linked;
918 
919 	/* get qh and force any scheduling errors */
920 	INIT_LIST_HEAD (&empty);
921 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
922 	if (qh == NULL) {
923 		status = -ENOMEM;
924 		goto done;
925 	}
926 	if (qh->qh_state == QH_STATE_IDLE) {
927 		if ((status = qh_schedule (ehci, qh)) != 0)
928 			goto done;
929 	}
930 
931 	/* then queue the urb's tds to the qh */
932 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
933 	BUG_ON (qh == NULL);
934 
935 	/* ... update usbfs periodic stats */
936 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
937 
938 done:
939 	if (unlikely(status))
940 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
941 done_not_linked:
942 	spin_unlock_irqrestore (&ehci->lock, flags);
943 	if (status)
944 		qtd_list_free (ehci, urb, qtd_list);
945 
946 	return status;
947 }
948 
949 /*-------------------------------------------------------------------------*/
950 
951 /* ehci_iso_stream ops work with both ITD and SITD */
952 
953 static struct ehci_iso_stream *
iso_stream_alloc(gfp_t mem_flags)954 iso_stream_alloc (gfp_t mem_flags)
955 {
956 	struct ehci_iso_stream *stream;
957 
958 	stream = kzalloc(sizeof *stream, mem_flags);
959 	if (likely (stream != NULL)) {
960 		INIT_LIST_HEAD(&stream->td_list);
961 		INIT_LIST_HEAD(&stream->free_list);
962 		stream->next_uframe = -1;
963 		stream->refcount = 1;
964 	}
965 	return stream;
966 }
967 
968 static void
iso_stream_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)969 iso_stream_init (
970 	struct ehci_hcd		*ehci,
971 	struct ehci_iso_stream	*stream,
972 	struct usb_device	*dev,
973 	int			pipe,
974 	unsigned		interval
975 )
976 {
977 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
978 
979 	u32			buf1;
980 	unsigned		epnum, maxp;
981 	int			is_input;
982 	long			bandwidth;
983 
984 	/*
985 	 * this might be a "high bandwidth" highspeed endpoint,
986 	 * as encoded in the ep descriptor's wMaxPacket field
987 	 */
988 	epnum = usb_pipeendpoint (pipe);
989 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
990 	maxp = usb_maxpacket(dev, pipe, !is_input);
991 	if (is_input) {
992 		buf1 = (1 << 11);
993 	} else {
994 		buf1 = 0;
995 	}
996 
997 	/* knows about ITD vs SITD */
998 	if (dev->speed == USB_SPEED_HIGH) {
999 		unsigned multi = hb_mult(maxp);
1000 
1001 		stream->highspeed = 1;
1002 
1003 		maxp = max_packet(maxp);
1004 		buf1 |= maxp;
1005 		maxp *= multi;
1006 
1007 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1008 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1009 		stream->buf2 = cpu_to_hc32(ehci, multi);
1010 
1011 		/* usbfs wants to report the average usecs per frame tied up
1012 		 * when transfers on this endpoint are scheduled ...
1013 		 */
1014 		stream->usecs = HS_USECS_ISO (maxp);
1015 		bandwidth = stream->usecs * 8;
1016 		bandwidth /= interval;
1017 
1018 	} else {
1019 		u32		addr;
1020 		int		think_time;
1021 		int		hs_transfers;
1022 
1023 		addr = dev->ttport << 24;
1024 		if (!ehci_is_TDI(ehci)
1025 				|| (dev->tt->hub !=
1026 					ehci_to_hcd(ehci)->self.root_hub))
1027 			addr |= dev->tt->hub->devnum << 16;
1028 		addr |= epnum << 8;
1029 		addr |= dev->devnum;
1030 		stream->usecs = HS_USECS_ISO (maxp);
1031 		think_time = dev->tt ? dev->tt->think_time : 0;
1032 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1033 				dev->speed, is_input, 1, maxp));
1034 		hs_transfers = max (1u, (maxp + 187) / 188);
1035 		if (is_input) {
1036 			u32	tmp;
1037 
1038 			addr |= 1 << 31;
1039 			stream->c_usecs = stream->usecs;
1040 			stream->usecs = HS_USECS_ISO (1);
1041 			stream->raw_mask = 1;
1042 
1043 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1044 			tmp = (1 << (hs_transfers + 2)) - 1;
1045 			stream->raw_mask |= tmp << (8 + 2);
1046 		} else
1047 			stream->raw_mask = smask_out [hs_transfers - 1];
1048 		bandwidth = stream->usecs + stream->c_usecs;
1049 		bandwidth /= interval << 3;
1050 
1051 		/* stream->splits gets created from raw_mask later */
1052 		stream->address = cpu_to_hc32(ehci, addr);
1053 	}
1054 	stream->bandwidth = bandwidth;
1055 
1056 	stream->udev = dev;
1057 
1058 	stream->bEndpointAddress = is_input | epnum;
1059 	stream->interval = interval;
1060 	stream->maxp = maxp;
1061 }
1062 
1063 static void
iso_stream_put(struct ehci_hcd * ehci,struct ehci_iso_stream * stream)1064 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1065 {
1066 	stream->refcount--;
1067 
1068 	/* free whenever just a dev->ep reference remains.
1069 	 * not like a QH -- no persistent state (toggle, halt)
1070 	 */
1071 	if (stream->refcount == 1) {
1072 		// BUG_ON (!list_empty(&stream->td_list));
1073 
1074 		while (!list_empty (&stream->free_list)) {
1075 			struct list_head	*entry;
1076 
1077 			entry = stream->free_list.next;
1078 			list_del (entry);
1079 
1080 			/* knows about ITD vs SITD */
1081 			if (stream->highspeed) {
1082 				struct ehci_itd		*itd;
1083 
1084 				itd = list_entry (entry, struct ehci_itd,
1085 						itd_list);
1086 				dma_pool_free (ehci->itd_pool, itd,
1087 						itd->itd_dma);
1088 			} else {
1089 				struct ehci_sitd	*sitd;
1090 
1091 				sitd = list_entry (entry, struct ehci_sitd,
1092 						sitd_list);
1093 				dma_pool_free (ehci->sitd_pool, sitd,
1094 						sitd->sitd_dma);
1095 			}
1096 		}
1097 
1098 		stream->bEndpointAddress &= 0x0f;
1099 		if (stream->ep)
1100 			stream->ep->hcpriv = NULL;
1101 
1102 		kfree(stream);
1103 	}
1104 }
1105 
1106 static inline struct ehci_iso_stream *
iso_stream_get(struct ehci_iso_stream * stream)1107 iso_stream_get (struct ehci_iso_stream *stream)
1108 {
1109 	if (likely (stream != NULL))
1110 		stream->refcount++;
1111 	return stream;
1112 }
1113 
1114 static struct ehci_iso_stream *
iso_stream_find(struct ehci_hcd * ehci,struct urb * urb)1115 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1116 {
1117 	unsigned		epnum;
1118 	struct ehci_iso_stream	*stream;
1119 	struct usb_host_endpoint *ep;
1120 	unsigned long		flags;
1121 
1122 	epnum = usb_pipeendpoint (urb->pipe);
1123 	if (usb_pipein(urb->pipe))
1124 		ep = urb->dev->ep_in[epnum];
1125 	else
1126 		ep = urb->dev->ep_out[epnum];
1127 
1128 	spin_lock_irqsave (&ehci->lock, flags);
1129 	stream = ep->hcpriv;
1130 
1131 	if (unlikely (stream == NULL)) {
1132 		stream = iso_stream_alloc(GFP_ATOMIC);
1133 		if (likely (stream != NULL)) {
1134 			/* dev->ep owns the initial refcount */
1135 			ep->hcpriv = stream;
1136 			stream->ep = ep;
1137 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1138 					urb->interval);
1139 		}
1140 
1141 	/* if dev->ep [epnum] is a QH, hw is set */
1142 	} else if (unlikely (stream->hw != NULL)) {
1143 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1144 			urb->dev->devpath, epnum,
1145 			usb_pipein(urb->pipe) ? "in" : "out");
1146 		stream = NULL;
1147 	}
1148 
1149 	/* caller guarantees an eventual matching iso_stream_put */
1150 	stream = iso_stream_get (stream);
1151 
1152 	spin_unlock_irqrestore (&ehci->lock, flags);
1153 	return stream;
1154 }
1155 
1156 /*-------------------------------------------------------------------------*/
1157 
1158 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1159 
1160 static struct ehci_iso_sched *
iso_sched_alloc(unsigned packets,gfp_t mem_flags)1161 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1162 {
1163 	struct ehci_iso_sched	*iso_sched;
1164 	int			size = sizeof *iso_sched;
1165 
1166 	size += packets * sizeof (struct ehci_iso_packet);
1167 	iso_sched = kzalloc(size, mem_flags);
1168 	if (likely (iso_sched != NULL)) {
1169 		INIT_LIST_HEAD (&iso_sched->td_list);
1170 	}
1171 	return iso_sched;
1172 }
1173 
1174 static inline void
itd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)1175 itd_sched_init(
1176 	struct ehci_hcd		*ehci,
1177 	struct ehci_iso_sched	*iso_sched,
1178 	struct ehci_iso_stream	*stream,
1179 	struct urb		*urb
1180 )
1181 {
1182 	unsigned	i;
1183 	dma_addr_t	dma = urb->transfer_dma;
1184 
1185 	/* how many uframes are needed for these transfers */
1186 	iso_sched->span = urb->number_of_packets * stream->interval;
1187 
1188 	/* figure out per-uframe itd fields that we'll need later
1189 	 * when we fit new itds into the schedule.
1190 	 */
1191 	for (i = 0; i < urb->number_of_packets; i++) {
1192 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1193 		unsigned		length;
1194 		dma_addr_t		buf;
1195 		u32			trans;
1196 
1197 		length = urb->iso_frame_desc [i].length;
1198 		buf = dma + urb->iso_frame_desc [i].offset;
1199 
1200 		trans = EHCI_ISOC_ACTIVE;
1201 		trans |= buf & 0x0fff;
1202 		if (unlikely (((i + 1) == urb->number_of_packets))
1203 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1204 			trans |= EHCI_ITD_IOC;
1205 		trans |= length << 16;
1206 		uframe->transaction = cpu_to_hc32(ehci, trans);
1207 
1208 		/* might need to cross a buffer page within a uframe */
1209 		uframe->bufp = (buf & ~(u64)0x0fff);
1210 		buf += length;
1211 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1212 			uframe->cross = 1;
1213 	}
1214 }
1215 
1216 static void
iso_sched_free(struct ehci_iso_stream * stream,struct ehci_iso_sched * iso_sched)1217 iso_sched_free (
1218 	struct ehci_iso_stream	*stream,
1219 	struct ehci_iso_sched	*iso_sched
1220 )
1221 {
1222 	if (!iso_sched)
1223 		return;
1224 	// caller must hold ehci->lock!
1225 	list_splice (&iso_sched->td_list, &stream->free_list);
1226 	kfree (iso_sched);
1227 }
1228 
1229 static int
itd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1230 itd_urb_transaction (
1231 	struct ehci_iso_stream	*stream,
1232 	struct ehci_hcd		*ehci,
1233 	struct urb		*urb,
1234 	gfp_t			mem_flags
1235 )
1236 {
1237 	struct ehci_itd		*itd;
1238 	dma_addr_t		itd_dma;
1239 	int			i;
1240 	unsigned		num_itds;
1241 	struct ehci_iso_sched	*sched;
1242 	unsigned long		flags;
1243 
1244 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1245 	if (unlikely (sched == NULL))
1246 		return -ENOMEM;
1247 
1248 	itd_sched_init(ehci, sched, stream, urb);
1249 
1250 	if (urb->interval < 8)
1251 		num_itds = 1 + (sched->span + 7) / 8;
1252 	else
1253 		num_itds = urb->number_of_packets;
1254 
1255 	/* allocate/init ITDs */
1256 	spin_lock_irqsave (&ehci->lock, flags);
1257 	for (i = 0; i < num_itds; i++) {
1258 
1259 		/* free_list.next might be cache-hot ... but maybe
1260 		 * the HC caches it too. avoid that issue for now.
1261 		 */
1262 
1263 		/* prefer previously-allocated itds */
1264 		if (likely (!list_empty(&stream->free_list))) {
1265 			itd = list_entry (stream->free_list.prev,
1266 					struct ehci_itd, itd_list);
1267 			list_del (&itd->itd_list);
1268 			itd_dma = itd->itd_dma;
1269 		} else {
1270 			spin_unlock_irqrestore (&ehci->lock, flags);
1271 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1272 					&itd_dma);
1273 			spin_lock_irqsave (&ehci->lock, flags);
1274 			if (!itd) {
1275 				iso_sched_free(stream, sched);
1276 				spin_unlock_irqrestore(&ehci->lock, flags);
1277 				return -ENOMEM;
1278 			}
1279 		}
1280 
1281 		memset (itd, 0, sizeof *itd);
1282 		itd->itd_dma = itd_dma;
1283 		list_add (&itd->itd_list, &sched->td_list);
1284 	}
1285 	spin_unlock_irqrestore (&ehci->lock, flags);
1286 
1287 	/* temporarily store schedule info in hcpriv */
1288 	urb->hcpriv = sched;
1289 	urb->error_count = 0;
1290 	return 0;
1291 }
1292 
1293 /*-------------------------------------------------------------------------*/
1294 
1295 static inline int
itd_slot_ok(struct ehci_hcd * ehci,u32 mod,u32 uframe,u8 usecs,u32 period)1296 itd_slot_ok (
1297 	struct ehci_hcd		*ehci,
1298 	u32			mod,
1299 	u32			uframe,
1300 	u8			usecs,
1301 	u32			period
1302 )
1303 {
1304 	uframe %= period;
1305 	do {
1306 		/* can't commit more than uframe_periodic_max usec */
1307 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1308 				> (ehci->uframe_periodic_max - usecs))
1309 			return 0;
1310 
1311 		/* we know urb->interval is 2^N uframes */
1312 		uframe += period;
1313 	} while (uframe < mod);
1314 	return 1;
1315 }
1316 
1317 static inline int
sitd_slot_ok(struct ehci_hcd * ehci,u32 mod,struct ehci_iso_stream * stream,u32 uframe,struct ehci_iso_sched * sched,u32 period_uframes)1318 sitd_slot_ok (
1319 	struct ehci_hcd		*ehci,
1320 	u32			mod,
1321 	struct ehci_iso_stream	*stream,
1322 	u32			uframe,
1323 	struct ehci_iso_sched	*sched,
1324 	u32			period_uframes
1325 )
1326 {
1327 	u32			mask, tmp;
1328 	u32			frame, uf;
1329 
1330 	mask = stream->raw_mask << (uframe & 7);
1331 
1332 	/* for IN, don't wrap CSPLIT into the next frame */
1333 	if (mask & ~0xffff)
1334 		return 0;
1335 
1336 	/* this multi-pass logic is simple, but performance may
1337 	 * suffer when the schedule data isn't cached.
1338 	 */
1339 
1340 	/* check bandwidth */
1341 	uframe %= period_uframes;
1342 	do {
1343 		u32		max_used;
1344 
1345 		frame = uframe >> 3;
1346 		uf = uframe & 7;
1347 
1348 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1349 		/* The tt's fullspeed bus bandwidth must be available.
1350 		 * tt_available scheduling guarantees 10+% for control/bulk.
1351 		 */
1352 		if (!tt_available (ehci, period_uframes << 3,
1353 				stream->udev, frame, uf, stream->tt_usecs))
1354 			return 0;
1355 #else
1356 		/* tt must be idle for start(s), any gap, and csplit.
1357 		 * assume scheduling slop leaves 10+% for control/bulk.
1358 		 */
1359 		if (!tt_no_collision (ehci, period_uframes << 3,
1360 				stream->udev, frame, mask))
1361 			return 0;
1362 #endif
1363 
1364 		/* check starts (OUT uses more than one) */
1365 		max_used = ehci->uframe_periodic_max - stream->usecs;
1366 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1367 			if (periodic_usecs (ehci, frame, uf) > max_used)
1368 				return 0;
1369 		}
1370 
1371 		/* for IN, check CSPLIT */
1372 		if (stream->c_usecs) {
1373 			uf = uframe & 7;
1374 			max_used = ehci->uframe_periodic_max - stream->c_usecs;
1375 			do {
1376 				tmp = 1 << uf;
1377 				tmp <<= 8;
1378 				if ((stream->raw_mask & tmp) == 0)
1379 					continue;
1380 				if (periodic_usecs (ehci, frame, uf)
1381 						> max_used)
1382 					return 0;
1383 			} while (++uf < 8);
1384 		}
1385 
1386 		/* we know urb->interval is 2^N uframes */
1387 		uframe += period_uframes;
1388 	} while (uframe < mod);
1389 
1390 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1391 	return 1;
1392 }
1393 
1394 /*
1395  * This scheduler plans almost as far into the future as it has actual
1396  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1397  * "as small as possible" to be cache-friendlier.)  That limits the size
1398  * transfers you can stream reliably; avoid more than 64 msec per urb.
1399  * Also avoid queue depths of less than ehci's worst irq latency (affected
1400  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1401  * and other factors); or more than about 230 msec total (for portability,
1402  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1403  */
1404 
1405 #define SCHEDULE_SLOP	80	/* microframes */
1406 
1407 static int
iso_stream_schedule(struct ehci_hcd * ehci,struct urb * urb,struct ehci_iso_stream * stream)1408 iso_stream_schedule (
1409 	struct ehci_hcd		*ehci,
1410 	struct urb		*urb,
1411 	struct ehci_iso_stream	*stream
1412 )
1413 {
1414 	u32			now, next, start, period, span;
1415 	int			status;
1416 	unsigned		mod = ehci->periodic_size << 3;
1417 	struct ehci_iso_sched	*sched = urb->hcpriv;
1418 
1419 	period = urb->interval;
1420 	span = sched->span;
1421 	if (!stream->highspeed) {
1422 		period <<= 3;
1423 		span <<= 3;
1424 	}
1425 
1426 	if (span > mod - SCHEDULE_SLOP) {
1427 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1428 		status = -EFBIG;
1429 		goto fail;
1430 	}
1431 
1432 	now = ehci_read_frame_index(ehci) & (mod - 1);
1433 
1434 	/* Typical case: reuse current schedule, stream is still active.
1435 	 * Hopefully there are no gaps from the host falling behind
1436 	 * (irq delays etc), but if there are we'll take the next
1437 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1438 	 */
1439 	if (likely (!list_empty (&stream->td_list))) {
1440 		u32	excess;
1441 
1442 		/* For high speed devices, allow scheduling within the
1443 		 * isochronous scheduling threshold.  For full speed devices
1444 		 * and Intel PCI-based controllers, don't (work around for
1445 		 * Intel ICH9 bug).
1446 		 */
1447 		if (!stream->highspeed && ehci->fs_i_thresh)
1448 			next = now + ehci->i_thresh;
1449 		else
1450 			next = now;
1451 
1452 		/* Fell behind (by up to twice the slop amount)?
1453 		 * We decide based on the time of the last currently-scheduled
1454 		 * slot, not the time of the next available slot.
1455 		 */
1456 		excess = (stream->next_uframe - period - next) & (mod - 1);
1457 		if (excess >= mod - 2 * SCHEDULE_SLOP)
1458 			start = next + excess - mod + period *
1459 					DIV_ROUND_UP(mod - excess, period);
1460 		else
1461 			start = next + excess + period;
1462 		if (start - now >= mod) {
1463 			ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1464 					urb, start - now - period, period,
1465 					mod);
1466 			status = -EFBIG;
1467 			goto fail;
1468 		}
1469 	}
1470 
1471 	/* need to schedule; when's the next (u)frame we could start?
1472 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1473 	 * isn't free, the slop should handle reasonably slow cpus.  it
1474 	 * can also help high bandwidth if the dma and irq loads don't
1475 	 * jump until after the queue is primed.
1476 	 */
1477 	else {
1478 		int done = 0;
1479 		start = SCHEDULE_SLOP + (now & ~0x07);
1480 
1481 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1482 
1483 		/* find a uframe slot with enough bandwidth.
1484 		 * Early uframes are more precious because full-speed
1485 		 * iso IN transfers can't use late uframes,
1486 		 * and therefore they should be allocated last.
1487 		 */
1488 		next = start;
1489 		start += period;
1490 		do {
1491 			start--;
1492 			/* check schedule: enough space? */
1493 			if (stream->highspeed) {
1494 				if (itd_slot_ok(ehci, mod, start,
1495 						stream->usecs, period))
1496 					done = 1;
1497 			} else {
1498 				if ((start % 8) >= 6)
1499 					continue;
1500 				if (sitd_slot_ok(ehci, mod, stream,
1501 						start, sched, period))
1502 					done = 1;
1503 			}
1504 		} while (start > next && !done);
1505 
1506 		/* no room in the schedule */
1507 		if (!done) {
1508 			ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1509 				urb, now, now + mod);
1510 			status = -ENOSPC;
1511 			goto fail;
1512 		}
1513 	}
1514 
1515 	/* Tried to schedule too far into the future? */
1516 	if (unlikely(start - now + span - period
1517 				>= mod - 2 * SCHEDULE_SLOP)) {
1518 		ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1519 				urb, start - now, span - period,
1520 				mod - 2 * SCHEDULE_SLOP);
1521 		status = -EFBIG;
1522 		goto fail;
1523 	}
1524 
1525 	stream->next_uframe = start & (mod - 1);
1526 
1527 	/* report high speed start in uframes; full speed, in frames */
1528 	urb->start_frame = stream->next_uframe;
1529 	if (!stream->highspeed)
1530 		urb->start_frame >>= 3;
1531 	return 0;
1532 
1533  fail:
1534 	iso_sched_free(stream, sched);
1535 	urb->hcpriv = NULL;
1536 	return status;
1537 }
1538 
1539 /*-------------------------------------------------------------------------*/
1540 
1541 static inline void
itd_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_itd * itd)1542 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1543 		struct ehci_itd *itd)
1544 {
1545 	int i;
1546 
1547 	/* it's been recently zeroed */
1548 	itd->hw_next = EHCI_LIST_END(ehci);
1549 	itd->hw_bufp [0] = stream->buf0;
1550 	itd->hw_bufp [1] = stream->buf1;
1551 	itd->hw_bufp [2] = stream->buf2;
1552 
1553 	for (i = 0; i < 8; i++)
1554 		itd->index[i] = -1;
1555 
1556 	/* All other fields are filled when scheduling */
1557 }
1558 
1559 static inline void
itd_patch(struct ehci_hcd * ehci,struct ehci_itd * itd,struct ehci_iso_sched * iso_sched,unsigned index,u16 uframe)1560 itd_patch(
1561 	struct ehci_hcd		*ehci,
1562 	struct ehci_itd		*itd,
1563 	struct ehci_iso_sched	*iso_sched,
1564 	unsigned		index,
1565 	u16			uframe
1566 )
1567 {
1568 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1569 	unsigned		pg = itd->pg;
1570 
1571 	// BUG_ON (pg == 6 && uf->cross);
1572 
1573 	uframe &= 0x07;
1574 	itd->index [uframe] = index;
1575 
1576 	itd->hw_transaction[uframe] = uf->transaction;
1577 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1578 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1579 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1580 
1581 	/* iso_frame_desc[].offset must be strictly increasing */
1582 	if (unlikely (uf->cross)) {
1583 		u64	bufp = uf->bufp + 4096;
1584 
1585 		itd->pg = ++pg;
1586 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1587 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1588 	}
1589 }
1590 
1591 static inline void
itd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_itd * itd)1592 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1593 {
1594 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1595 	__hc32			*hw_p = &ehci->periodic[frame];
1596 	union ehci_shadow	here = *prev;
1597 	__hc32			type = 0;
1598 
1599 	/* skip any iso nodes which might belong to previous microframes */
1600 	while (here.ptr) {
1601 		type = Q_NEXT_TYPE(ehci, *hw_p);
1602 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1603 			break;
1604 		prev = periodic_next_shadow(ehci, prev, type);
1605 		hw_p = shadow_next_periodic(ehci, &here, type);
1606 		here = *prev;
1607 	}
1608 
1609 	itd->itd_next = here;
1610 	itd->hw_next = *hw_p;
1611 	prev->itd = itd;
1612 	itd->frame = frame;
1613 	wmb ();
1614 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1615 }
1616 
1617 /* fit urb's itds into the selected schedule slot; activate as needed */
1618 static int
itd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)1619 itd_link_urb (
1620 	struct ehci_hcd		*ehci,
1621 	struct urb		*urb,
1622 	unsigned		mod,
1623 	struct ehci_iso_stream	*stream
1624 )
1625 {
1626 	int			packet;
1627 	unsigned		next_uframe, uframe, frame;
1628 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1629 	struct ehci_itd		*itd;
1630 
1631 	next_uframe = stream->next_uframe & (mod - 1);
1632 
1633 	if (unlikely (list_empty(&stream->td_list))) {
1634 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1635 				+= stream->bandwidth;
1636 		ehci_vdbg (ehci,
1637 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1638 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1639 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1640 			urb->interval,
1641 			next_uframe >> 3, next_uframe & 0x7);
1642 	}
1643 
1644 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1645 		if (ehci->amd_pll_fix == 1)
1646 			usb_amd_quirk_pll_disable();
1647 	}
1648 
1649 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1650 
1651 	/* fill iTDs uframe by uframe */
1652 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1653 		if (itd == NULL) {
1654 			/* ASSERT:  we have all necessary itds */
1655 			// BUG_ON (list_empty (&iso_sched->td_list));
1656 
1657 			/* ASSERT:  no itds for this endpoint in this uframe */
1658 
1659 			itd = list_entry (iso_sched->td_list.next,
1660 					struct ehci_itd, itd_list);
1661 			list_move_tail (&itd->itd_list, &stream->td_list);
1662 			itd->stream = iso_stream_get (stream);
1663 			itd->urb = urb;
1664 			itd_init (ehci, stream, itd);
1665 		}
1666 
1667 		uframe = next_uframe & 0x07;
1668 		frame = next_uframe >> 3;
1669 
1670 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1671 
1672 		next_uframe += stream->interval;
1673 		next_uframe &= mod - 1;
1674 		packet++;
1675 
1676 		/* link completed itds into the schedule */
1677 		if (((next_uframe >> 3) != frame)
1678 				|| packet == urb->number_of_packets) {
1679 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1680 			itd = NULL;
1681 		}
1682 	}
1683 	stream->next_uframe = next_uframe;
1684 
1685 	/* don't need that schedule data any more */
1686 	iso_sched_free (stream, iso_sched);
1687 	urb->hcpriv = stream;
1688 
1689 	timer_action (ehci, TIMER_IO_WATCHDOG);
1690 	return enable_periodic(ehci);
1691 }
1692 
1693 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1694 
1695 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1696  * and hence its completion callback probably added things to the hardware
1697  * schedule.
1698  *
1699  * Note that we carefully avoid recycling this descriptor until after any
1700  * completion callback runs, so that it won't be reused quickly.  That is,
1701  * assuming (a) no more than two urbs per frame on this endpoint, and also
1702  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1703  * corrupts things if you reuse completed descriptors very quickly...
1704  */
1705 static unsigned
itd_complete(struct ehci_hcd * ehci,struct ehci_itd * itd)1706 itd_complete (
1707 	struct ehci_hcd	*ehci,
1708 	struct ehci_itd	*itd
1709 ) {
1710 	struct urb				*urb = itd->urb;
1711 	struct usb_iso_packet_descriptor	*desc;
1712 	u32					t;
1713 	unsigned				uframe;
1714 	int					urb_index = -1;
1715 	struct ehci_iso_stream			*stream = itd->stream;
1716 	struct usb_device			*dev;
1717 	unsigned				retval = false;
1718 
1719 	/* for each uframe with a packet */
1720 	for (uframe = 0; uframe < 8; uframe++) {
1721 		if (likely (itd->index[uframe] == -1))
1722 			continue;
1723 		urb_index = itd->index[uframe];
1724 		desc = &urb->iso_frame_desc [urb_index];
1725 
1726 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1727 		itd->hw_transaction [uframe] = 0;
1728 
1729 		/* report transfer status */
1730 		if (unlikely (t & ISO_ERRS)) {
1731 			urb->error_count++;
1732 			if (t & EHCI_ISOC_BUF_ERR)
1733 				desc->status = usb_pipein (urb->pipe)
1734 					? -ENOSR  /* hc couldn't read */
1735 					: -ECOMM; /* hc couldn't write */
1736 			else if (t & EHCI_ISOC_BABBLE)
1737 				desc->status = -EOVERFLOW;
1738 			else /* (t & EHCI_ISOC_XACTERR) */
1739 				desc->status = -EPROTO;
1740 
1741 			/* HC need not update length with this error */
1742 			if (!(t & EHCI_ISOC_BABBLE)) {
1743 				desc->actual_length = EHCI_ITD_LENGTH(t);
1744 				urb->actual_length += desc->actual_length;
1745 			}
1746 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1747 			desc->status = 0;
1748 			desc->actual_length = EHCI_ITD_LENGTH(t);
1749 			urb->actual_length += desc->actual_length;
1750 		} else {
1751 			/* URB was too late */
1752 			desc->status = -EXDEV;
1753 		}
1754 	}
1755 
1756 	/* handle completion now? */
1757 	if (likely ((urb_index + 1) != urb->number_of_packets))
1758 		goto done;
1759 
1760 	/* ASSERT: it's really the last itd for this urb
1761 	list_for_each_entry (itd, &stream->td_list, itd_list)
1762 		BUG_ON (itd->urb == urb);
1763 	 */
1764 
1765 	/* give urb back to the driver; completion often (re)submits */
1766 	dev = urb->dev;
1767 	ehci_urb_done(ehci, urb, 0);
1768 	retval = true;
1769 	urb = NULL;
1770 	(void) disable_periodic(ehci);
1771 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1772 
1773 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1774 		if (ehci->amd_pll_fix == 1)
1775 			usb_amd_quirk_pll_enable();
1776 	}
1777 
1778 	if (unlikely(list_is_singular(&stream->td_list))) {
1779 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1780 				-= stream->bandwidth;
1781 		ehci_vdbg (ehci,
1782 			"deschedule devp %s ep%d%s-iso\n",
1783 			dev->devpath, stream->bEndpointAddress & 0x0f,
1784 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1785 	}
1786 	iso_stream_put (ehci, stream);
1787 
1788 done:
1789 	itd->urb = NULL;
1790 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1791 		/* OK to recycle this ITD now. */
1792 		itd->stream = NULL;
1793 		list_move(&itd->itd_list, &stream->free_list);
1794 		iso_stream_put(ehci, stream);
1795 	} else {
1796 		/* HW might remember this ITD, so we can't recycle it yet.
1797 		 * Move it to a safe place until a new frame starts.
1798 		 */
1799 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1800 		if (stream->refcount == 2) {
1801 			/* If iso_stream_put() were called here, stream
1802 			 * would be freed.  Instead, just prevent reuse.
1803 			 */
1804 			stream->ep->hcpriv = NULL;
1805 			stream->ep = NULL;
1806 		}
1807 	}
1808 	return retval;
1809 }
1810 
1811 /*-------------------------------------------------------------------------*/
1812 
itd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1813 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1814 	gfp_t mem_flags)
1815 {
1816 	int			status = -EINVAL;
1817 	unsigned long		flags;
1818 	struct ehci_iso_stream	*stream;
1819 
1820 	/* Get iso_stream head */
1821 	stream = iso_stream_find (ehci, urb);
1822 	if (unlikely (stream == NULL)) {
1823 		ehci_dbg (ehci, "can't get iso stream\n");
1824 		return -ENOMEM;
1825 	}
1826 	if (unlikely (urb->interval != stream->interval)) {
1827 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1828 			stream->interval, urb->interval);
1829 		goto done;
1830 	}
1831 
1832 #ifdef EHCI_URB_TRACE
1833 	ehci_dbg (ehci,
1834 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1835 		__func__, urb->dev->devpath, urb,
1836 		usb_pipeendpoint (urb->pipe),
1837 		usb_pipein (urb->pipe) ? "in" : "out",
1838 		urb->transfer_buffer_length,
1839 		urb->number_of_packets, urb->interval,
1840 		stream);
1841 #endif
1842 
1843 	/* allocate ITDs w/o locking anything */
1844 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1845 	if (unlikely (status < 0)) {
1846 		ehci_dbg (ehci, "can't init itds\n");
1847 		goto done;
1848 	}
1849 
1850 	/* schedule ... need to lock */
1851 	spin_lock_irqsave (&ehci->lock, flags);
1852 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1853 		status = -ESHUTDOWN;
1854 		goto done_not_linked;
1855 	}
1856 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1857 	if (unlikely(status))
1858 		goto done_not_linked;
1859 	status = iso_stream_schedule(ehci, urb, stream);
1860 	if (likely (status == 0))
1861 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1862 	else
1863 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1864 done_not_linked:
1865 	spin_unlock_irqrestore (&ehci->lock, flags);
1866 
1867 done:
1868 	if (unlikely (status < 0))
1869 		iso_stream_put (ehci, stream);
1870 	return status;
1871 }
1872 
1873 /*-------------------------------------------------------------------------*/
1874 
1875 /*
1876  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1877  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1878  */
1879 
1880 static inline void
sitd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)1881 sitd_sched_init(
1882 	struct ehci_hcd		*ehci,
1883 	struct ehci_iso_sched	*iso_sched,
1884 	struct ehci_iso_stream	*stream,
1885 	struct urb		*urb
1886 )
1887 {
1888 	unsigned	i;
1889 	dma_addr_t	dma = urb->transfer_dma;
1890 
1891 	/* how many frames are needed for these transfers */
1892 	iso_sched->span = urb->number_of_packets * stream->interval;
1893 
1894 	/* figure out per-frame sitd fields that we'll need later
1895 	 * when we fit new sitds into the schedule.
1896 	 */
1897 	for (i = 0; i < urb->number_of_packets; i++) {
1898 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1899 		unsigned		length;
1900 		dma_addr_t		buf;
1901 		u32			trans;
1902 
1903 		length = urb->iso_frame_desc [i].length & 0x03ff;
1904 		buf = dma + urb->iso_frame_desc [i].offset;
1905 
1906 		trans = SITD_STS_ACTIVE;
1907 		if (((i + 1) == urb->number_of_packets)
1908 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1909 			trans |= SITD_IOC;
1910 		trans |= length << 16;
1911 		packet->transaction = cpu_to_hc32(ehci, trans);
1912 
1913 		/* might need to cross a buffer page within a td */
1914 		packet->bufp = buf;
1915 		packet->buf1 = (buf + length) & ~0x0fff;
1916 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1917 			packet->cross = 1;
1918 
1919 		/* OUT uses multiple start-splits */
1920 		if (stream->bEndpointAddress & USB_DIR_IN)
1921 			continue;
1922 		length = (length + 187) / 188;
1923 		if (length > 1) /* BEGIN vs ALL */
1924 			length |= 1 << 3;
1925 		packet->buf1 |= length;
1926 	}
1927 }
1928 
1929 static int
sitd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1930 sitd_urb_transaction (
1931 	struct ehci_iso_stream	*stream,
1932 	struct ehci_hcd		*ehci,
1933 	struct urb		*urb,
1934 	gfp_t			mem_flags
1935 )
1936 {
1937 	struct ehci_sitd	*sitd;
1938 	dma_addr_t		sitd_dma;
1939 	int			i;
1940 	struct ehci_iso_sched	*iso_sched;
1941 	unsigned long		flags;
1942 
1943 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1944 	if (iso_sched == NULL)
1945 		return -ENOMEM;
1946 
1947 	sitd_sched_init(ehci, iso_sched, stream, urb);
1948 
1949 	/* allocate/init sITDs */
1950 	spin_lock_irqsave (&ehci->lock, flags);
1951 	for (i = 0; i < urb->number_of_packets; i++) {
1952 
1953 		/* NOTE:  for now, we don't try to handle wraparound cases
1954 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1955 		 * means we never need two sitds for full speed packets.
1956 		 */
1957 
1958 		/* free_list.next might be cache-hot ... but maybe
1959 		 * the HC caches it too. avoid that issue for now.
1960 		 */
1961 
1962 		/* prefer previously-allocated sitds */
1963 		if (!list_empty(&stream->free_list)) {
1964 			sitd = list_entry (stream->free_list.prev,
1965 					 struct ehci_sitd, sitd_list);
1966 			list_del (&sitd->sitd_list);
1967 			sitd_dma = sitd->sitd_dma;
1968 		} else {
1969 			spin_unlock_irqrestore (&ehci->lock, flags);
1970 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1971 					&sitd_dma);
1972 			spin_lock_irqsave (&ehci->lock, flags);
1973 			if (!sitd) {
1974 				iso_sched_free(stream, iso_sched);
1975 				spin_unlock_irqrestore(&ehci->lock, flags);
1976 				return -ENOMEM;
1977 			}
1978 		}
1979 
1980 		memset (sitd, 0, sizeof *sitd);
1981 		sitd->sitd_dma = sitd_dma;
1982 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1983 	}
1984 
1985 	/* temporarily store schedule info in hcpriv */
1986 	urb->hcpriv = iso_sched;
1987 	urb->error_count = 0;
1988 
1989 	spin_unlock_irqrestore (&ehci->lock, flags);
1990 	return 0;
1991 }
1992 
1993 /*-------------------------------------------------------------------------*/
1994 
1995 static inline void
sitd_patch(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_sitd * sitd,struct ehci_iso_sched * iso_sched,unsigned index)1996 sitd_patch(
1997 	struct ehci_hcd		*ehci,
1998 	struct ehci_iso_stream	*stream,
1999 	struct ehci_sitd	*sitd,
2000 	struct ehci_iso_sched	*iso_sched,
2001 	unsigned		index
2002 )
2003 {
2004 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
2005 	u64			bufp = uf->bufp;
2006 
2007 	sitd->hw_next = EHCI_LIST_END(ehci);
2008 	sitd->hw_fullspeed_ep = stream->address;
2009 	sitd->hw_uframe = stream->splits;
2010 	sitd->hw_results = uf->transaction;
2011 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2012 
2013 	bufp = uf->bufp;
2014 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2015 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2016 
2017 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2018 	if (uf->cross)
2019 		bufp += 4096;
2020 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2021 	sitd->index = index;
2022 }
2023 
2024 static inline void
sitd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_sitd * sitd)2025 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2026 {
2027 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2028 	sitd->sitd_next = ehci->pshadow [frame];
2029 	sitd->hw_next = ehci->periodic [frame];
2030 	ehci->pshadow [frame].sitd = sitd;
2031 	sitd->frame = frame;
2032 	wmb ();
2033 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2034 }
2035 
2036 /* fit urb's sitds into the selected schedule slot; activate as needed */
2037 static int
sitd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)2038 sitd_link_urb (
2039 	struct ehci_hcd		*ehci,
2040 	struct urb		*urb,
2041 	unsigned		mod,
2042 	struct ehci_iso_stream	*stream
2043 )
2044 {
2045 	int			packet;
2046 	unsigned		next_uframe;
2047 	struct ehci_iso_sched	*sched = urb->hcpriv;
2048 	struct ehci_sitd	*sitd;
2049 
2050 	next_uframe = stream->next_uframe;
2051 
2052 	if (list_empty(&stream->td_list)) {
2053 		/* usbfs ignores TT bandwidth */
2054 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2055 				+= stream->bandwidth;
2056 		ehci_vdbg (ehci,
2057 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2058 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2059 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2060 			(next_uframe >> 3) & (ehci->periodic_size - 1),
2061 			stream->interval, hc32_to_cpu(ehci, stream->splits));
2062 	}
2063 
2064 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2065 		if (ehci->amd_pll_fix == 1)
2066 			usb_amd_quirk_pll_disable();
2067 	}
2068 
2069 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2070 
2071 	/* fill sITDs frame by frame */
2072 	for (packet = 0, sitd = NULL;
2073 			packet < urb->number_of_packets;
2074 			packet++) {
2075 
2076 		/* ASSERT:  we have all necessary sitds */
2077 		BUG_ON (list_empty (&sched->td_list));
2078 
2079 		/* ASSERT:  no itds for this endpoint in this frame */
2080 
2081 		sitd = list_entry (sched->td_list.next,
2082 				struct ehci_sitd, sitd_list);
2083 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2084 		sitd->stream = iso_stream_get (stream);
2085 		sitd->urb = urb;
2086 
2087 		sitd_patch(ehci, stream, sitd, sched, packet);
2088 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2089 				sitd);
2090 
2091 		next_uframe += stream->interval << 3;
2092 	}
2093 	stream->next_uframe = next_uframe & (mod - 1);
2094 
2095 	/* don't need that schedule data any more */
2096 	iso_sched_free (stream, sched);
2097 	urb->hcpriv = stream;
2098 
2099 	timer_action (ehci, TIMER_IO_WATCHDOG);
2100 	return enable_periodic(ehci);
2101 }
2102 
2103 /*-------------------------------------------------------------------------*/
2104 
2105 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2106 				| SITD_STS_XACT | SITD_STS_MMF)
2107 
2108 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2109  * and hence its completion callback probably added things to the hardware
2110  * schedule.
2111  *
2112  * Note that we carefully avoid recycling this descriptor until after any
2113  * completion callback runs, so that it won't be reused quickly.  That is,
2114  * assuming (a) no more than two urbs per frame on this endpoint, and also
2115  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2116  * corrupts things if you reuse completed descriptors very quickly...
2117  */
2118 static unsigned
sitd_complete(struct ehci_hcd * ehci,struct ehci_sitd * sitd)2119 sitd_complete (
2120 	struct ehci_hcd		*ehci,
2121 	struct ehci_sitd	*sitd
2122 ) {
2123 	struct urb				*urb = sitd->urb;
2124 	struct usb_iso_packet_descriptor	*desc;
2125 	u32					t;
2126 	int					urb_index = -1;
2127 	struct ehci_iso_stream			*stream = sitd->stream;
2128 	struct usb_device			*dev;
2129 	unsigned				retval = false;
2130 
2131 	urb_index = sitd->index;
2132 	desc = &urb->iso_frame_desc [urb_index];
2133 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2134 
2135 	/* report transfer status */
2136 	if (t & SITD_ERRS) {
2137 		urb->error_count++;
2138 		if (t & SITD_STS_DBE)
2139 			desc->status = usb_pipein (urb->pipe)
2140 				? -ENOSR  /* hc couldn't read */
2141 				: -ECOMM; /* hc couldn't write */
2142 		else if (t & SITD_STS_BABBLE)
2143 			desc->status = -EOVERFLOW;
2144 		else /* XACT, MMF, etc */
2145 			desc->status = -EPROTO;
2146 	} else {
2147 		desc->status = 0;
2148 		desc->actual_length = desc->length - SITD_LENGTH(t);
2149 		urb->actual_length += desc->actual_length;
2150 	}
2151 
2152 	/* handle completion now? */
2153 	if ((urb_index + 1) != urb->number_of_packets)
2154 		goto done;
2155 
2156 	/* ASSERT: it's really the last sitd for this urb
2157 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2158 		BUG_ON (sitd->urb == urb);
2159 	 */
2160 
2161 	/* give urb back to the driver; completion often (re)submits */
2162 	dev = urb->dev;
2163 	ehci_urb_done(ehci, urb, 0);
2164 	retval = true;
2165 	urb = NULL;
2166 	(void) disable_periodic(ehci);
2167 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2168 
2169 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2170 		if (ehci->amd_pll_fix == 1)
2171 			usb_amd_quirk_pll_enable();
2172 	}
2173 
2174 	if (list_is_singular(&stream->td_list)) {
2175 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2176 				-= stream->bandwidth;
2177 		ehci_vdbg (ehci,
2178 			"deschedule devp %s ep%d%s-iso\n",
2179 			dev->devpath, stream->bEndpointAddress & 0x0f,
2180 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2181 	}
2182 	iso_stream_put (ehci, stream);
2183 
2184 done:
2185 	sitd->urb = NULL;
2186 	if (ehci->clock_frame != sitd->frame) {
2187 		/* OK to recycle this SITD now. */
2188 		sitd->stream = NULL;
2189 		list_move(&sitd->sitd_list, &stream->free_list);
2190 		iso_stream_put(ehci, stream);
2191 	} else {
2192 		/* HW might remember this SITD, so we can't recycle it yet.
2193 		 * Move it to a safe place until a new frame starts.
2194 		 */
2195 		list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2196 		if (stream->refcount == 2) {
2197 			/* If iso_stream_put() were called here, stream
2198 			 * would be freed.  Instead, just prevent reuse.
2199 			 */
2200 			stream->ep->hcpriv = NULL;
2201 			stream->ep = NULL;
2202 		}
2203 	}
2204 	return retval;
2205 }
2206 
2207 
sitd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)2208 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2209 	gfp_t mem_flags)
2210 {
2211 	int			status = -EINVAL;
2212 	unsigned long		flags;
2213 	struct ehci_iso_stream	*stream;
2214 
2215 	/* Get iso_stream head */
2216 	stream = iso_stream_find (ehci, urb);
2217 	if (stream == NULL) {
2218 		ehci_dbg (ehci, "can't get iso stream\n");
2219 		return -ENOMEM;
2220 	}
2221 	if (urb->interval != stream->interval) {
2222 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2223 			stream->interval, urb->interval);
2224 		goto done;
2225 	}
2226 
2227 #ifdef EHCI_URB_TRACE
2228 	ehci_dbg (ehci,
2229 		"submit %p dev%s ep%d%s-iso len %d\n",
2230 		urb, urb->dev->devpath,
2231 		usb_pipeendpoint (urb->pipe),
2232 		usb_pipein (urb->pipe) ? "in" : "out",
2233 		urb->transfer_buffer_length);
2234 #endif
2235 
2236 	/* allocate SITDs */
2237 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2238 	if (status < 0) {
2239 		ehci_dbg (ehci, "can't init sitds\n");
2240 		goto done;
2241 	}
2242 
2243 	/* schedule ... need to lock */
2244 	spin_lock_irqsave (&ehci->lock, flags);
2245 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2246 		status = -ESHUTDOWN;
2247 		goto done_not_linked;
2248 	}
2249 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2250 	if (unlikely(status))
2251 		goto done_not_linked;
2252 	status = iso_stream_schedule(ehci, urb, stream);
2253 	if (status == 0)
2254 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2255 	else
2256 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2257 done_not_linked:
2258 	spin_unlock_irqrestore (&ehci->lock, flags);
2259 
2260 done:
2261 	if (status < 0)
2262 		iso_stream_put (ehci, stream);
2263 	return status;
2264 }
2265 
2266 /*-------------------------------------------------------------------------*/
2267 
free_cached_lists(struct ehci_hcd * ehci)2268 static void free_cached_lists(struct ehci_hcd *ehci)
2269 {
2270 	struct ehci_itd *itd, *n;
2271 	struct ehci_sitd *sitd, *sn;
2272 
2273 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2274 		struct ehci_iso_stream	*stream = itd->stream;
2275 		itd->stream = NULL;
2276 		list_move(&itd->itd_list, &stream->free_list);
2277 		iso_stream_put(ehci, stream);
2278 	}
2279 
2280 	list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2281 		struct ehci_iso_stream	*stream = sitd->stream;
2282 		sitd->stream = NULL;
2283 		list_move(&sitd->sitd_list, &stream->free_list);
2284 		iso_stream_put(ehci, stream);
2285 	}
2286 }
2287 
2288 /*-------------------------------------------------------------------------*/
2289 
2290 static void
scan_periodic(struct ehci_hcd * ehci)2291 scan_periodic (struct ehci_hcd *ehci)
2292 {
2293 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2294 	unsigned	modified;
2295 
2296 	mod = ehci->periodic_size << 3;
2297 
2298 	/*
2299 	 * When running, scan from last scan point up to "now"
2300 	 * else clean up by scanning everything that's left.
2301 	 * Touches as few pages as possible:  cache-friendly.
2302 	 */
2303 	now_uframe = ehci->next_uframe;
2304 	if (ehci->rh_state == EHCI_RH_RUNNING) {
2305 		clock = ehci_read_frame_index(ehci);
2306 		clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2307 	} else  {
2308 		clock = now_uframe + mod - 1;
2309 		clock_frame = -1;
2310 	}
2311 	if (ehci->clock_frame != clock_frame) {
2312 		free_cached_lists(ehci);
2313 		ehci->clock_frame = clock_frame;
2314 	}
2315 	clock &= mod - 1;
2316 	clock_frame = clock >> 3;
2317 	++ehci->periodic_stamp;
2318 
2319 	for (;;) {
2320 		union ehci_shadow	q, *q_p;
2321 		__hc32			type, *hw_p;
2322 		unsigned		incomplete = false;
2323 
2324 		frame = now_uframe >> 3;
2325 
2326 restart:
2327 		/* scan each element in frame's queue for completions */
2328 		q_p = &ehci->pshadow [frame];
2329 		hw_p = &ehci->periodic [frame];
2330 		q.ptr = q_p->ptr;
2331 		type = Q_NEXT_TYPE(ehci, *hw_p);
2332 		modified = 0;
2333 
2334 		while (q.ptr != NULL) {
2335 			unsigned		uf;
2336 			union ehci_shadow	temp;
2337 			int			live;
2338 
2339 			live = (ehci->rh_state == EHCI_RH_RUNNING);
2340 			switch (hc32_to_cpu(ehci, type)) {
2341 			case Q_TYPE_QH:
2342 				/* handle any completions */
2343 				temp.qh = qh_get (q.qh);
2344 				type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2345 				q = q.qh->qh_next;
2346 				if (temp.qh->stamp != ehci->periodic_stamp) {
2347 					modified = qh_completions(ehci, temp.qh);
2348 					if (!modified)
2349 						temp.qh->stamp = ehci->periodic_stamp;
2350 					if (unlikely(list_empty(&temp.qh->qtd_list) ||
2351 							temp.qh->needs_rescan))
2352 						intr_deschedule(ehci, temp.qh);
2353 				}
2354 				qh_put (temp.qh);
2355 				break;
2356 			case Q_TYPE_FSTN:
2357 				/* for "save place" FSTNs, look at QH entries
2358 				 * in the previous frame for completions.
2359 				 */
2360 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2361 					dbg ("ignoring completions from FSTNs");
2362 				}
2363 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2364 				q = q.fstn->fstn_next;
2365 				break;
2366 			case Q_TYPE_ITD:
2367 				/* If this ITD is still active, leave it for
2368 				 * later processing ... check the next entry.
2369 				 * No need to check for activity unless the
2370 				 * frame is current.
2371 				 */
2372 				if (frame == clock_frame && live) {
2373 					rmb();
2374 					for (uf = 0; uf < 8; uf++) {
2375 						if (q.itd->hw_transaction[uf] &
2376 							    ITD_ACTIVE(ehci))
2377 							break;
2378 					}
2379 					if (uf < 8) {
2380 						incomplete = true;
2381 						q_p = &q.itd->itd_next;
2382 						hw_p = &q.itd->hw_next;
2383 						type = Q_NEXT_TYPE(ehci,
2384 							q.itd->hw_next);
2385 						q = *q_p;
2386 						break;
2387 					}
2388 				}
2389 
2390 				/* Take finished ITDs out of the schedule
2391 				 * and process them:  recycle, maybe report
2392 				 * URB completion.  HC won't cache the
2393 				 * pointer for much longer, if at all.
2394 				 */
2395 				*q_p = q.itd->itd_next;
2396 				if (!ehci->use_dummy_qh ||
2397 				    q.itd->hw_next != EHCI_LIST_END(ehci))
2398 					*hw_p = q.itd->hw_next;
2399 				else
2400 					*hw_p = ehci->dummy->qh_dma;
2401 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2402 				wmb();
2403 				modified = itd_complete (ehci, q.itd);
2404 				q = *q_p;
2405 				break;
2406 			case Q_TYPE_SITD:
2407 				/* If this SITD is still active, leave it for
2408 				 * later processing ... check the next entry.
2409 				 * No need to check for activity unless the
2410 				 * frame is current.
2411 				 */
2412 				if (((frame == clock_frame) ||
2413 				     (((frame + 1) & (ehci->periodic_size - 1))
2414 				      == clock_frame))
2415 				    && live
2416 				    && (q.sitd->hw_results &
2417 					SITD_ACTIVE(ehci))) {
2418 
2419 					incomplete = true;
2420 					q_p = &q.sitd->sitd_next;
2421 					hw_p = &q.sitd->hw_next;
2422 					type = Q_NEXT_TYPE(ehci,
2423 							q.sitd->hw_next);
2424 					q = *q_p;
2425 					break;
2426 				}
2427 
2428 				/* Take finished SITDs out of the schedule
2429 				 * and process them:  recycle, maybe report
2430 				 * URB completion.
2431 				 */
2432 				*q_p = q.sitd->sitd_next;
2433 				if (!ehci->use_dummy_qh ||
2434 				    q.sitd->hw_next != EHCI_LIST_END(ehci))
2435 					*hw_p = q.sitd->hw_next;
2436 				else
2437 					*hw_p = ehci->dummy->qh_dma;
2438 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2439 				wmb();
2440 				modified = sitd_complete (ehci, q.sitd);
2441 				q = *q_p;
2442 				break;
2443 			default:
2444 				dbg ("corrupt type %d frame %d shadow %p",
2445 					type, frame, q.ptr);
2446 				// BUG ();
2447 				q.ptr = NULL;
2448 			}
2449 
2450 			/* assume completion callbacks modify the queue */
2451 			if (unlikely (modified)) {
2452 				if (likely(ehci->periodic_sched > 0))
2453 					goto restart;
2454 				/* short-circuit this scan */
2455 				now_uframe = clock;
2456 				break;
2457 			}
2458 		}
2459 
2460 		/* If we can tell we caught up to the hardware, stop now.
2461 		 * We can't advance our scan without collecting the ISO
2462 		 * transfers that are still pending in this frame.
2463 		 */
2464 		if (incomplete && ehci->rh_state == EHCI_RH_RUNNING) {
2465 			ehci->next_uframe = now_uframe;
2466 			break;
2467 		}
2468 
2469 		// FIXME:  this assumes we won't get lapped when
2470 		// latencies climb; that should be rare, but...
2471 		// detect it, and just go all the way around.
2472 		// FLR might help detect this case, so long as latencies
2473 		// don't exceed periodic_size msec (default 1.024 sec).
2474 
2475 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2476 
2477 		if (now_uframe == clock) {
2478 			unsigned	now;
2479 
2480 			if (ehci->rh_state != EHCI_RH_RUNNING
2481 					|| ehci->periodic_sched == 0)
2482 				break;
2483 			ehci->next_uframe = now_uframe;
2484 			now = ehci_read_frame_index(ehci) & (mod - 1);
2485 			if (now_uframe == now)
2486 				break;
2487 
2488 			/* rescan the rest of this frame, then ... */
2489 			clock = now;
2490 			clock_frame = clock >> 3;
2491 			if (ehci->clock_frame != clock_frame) {
2492 				free_cached_lists(ehci);
2493 				ehci->clock_frame = clock_frame;
2494 				++ehci->periodic_stamp;
2495 			}
2496 		} else {
2497 			now_uframe++;
2498 			now_uframe &= mod - 1;
2499 		}
2500 	}
2501 }
2502