1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
pm_restore_gfp_mask(void)123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
pm_restrict_gfp_mask(void)132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
pm_suspended_storage(void)140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
set_pageblock_migratetype(struct page * page,int migratetype)221 static void set_pageblock_migratetype(struct page *page, int migratetype)
222 {
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229 }
230
231 bool oom_killer_disabled __read_mostly;
232
233 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
235 {
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
239
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
249 }
250
page_is_consistent(struct zone * zone,struct page * page)251 static int page_is_consistent(struct zone *zone, struct page *page)
252 {
253 if (!pfn_valid_within(page_to_pfn(page)))
254 return 0;
255 if (zone != page_zone(page))
256 return 0;
257
258 return 1;
259 }
260 /*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
bad_range(struct zone * zone,struct page * page)263 static int bad_range(struct zone *zone, struct page *page)
264 {
265 if (page_outside_zone_boundaries(zone, page))
266 return 1;
267 if (!page_is_consistent(zone, page))
268 return 1;
269
270 return 0;
271 }
272 #else
bad_range(struct zone * zone,struct page * page)273 static inline int bad_range(struct zone *zone, struct page *page)
274 {
275 return 0;
276 }
277 #endif
278
bad_page(struct page * page)279 static void bad_page(struct page *page)
280 {
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
287 reset_page_mapcount(page); /* remove PageBuddy */
288 return;
289 }
290
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
312 current->comm, page_to_pfn(page));
313 dump_page(page);
314
315 print_modules();
316 dump_stack();
317 out:
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 reset_page_mapcount(page); /* remove PageBuddy */
320 add_taint(TAINT_BAD_PAGE);
321 }
322
323 /*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
332 *
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
336 */
337
free_compound_page(struct page * page)338 static void free_compound_page(struct page *page)
339 {
340 __free_pages_ok(page, compound_order(page));
341 }
342
prep_compound_page(struct page * page,unsigned long order)343 void prep_compound_page(struct page *page, unsigned long order)
344 {
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
353 __SetPageTail(p);
354 set_page_count(p, 0);
355 p->first_page = page;
356 }
357 }
358
359 /* update __split_huge_page_refcount if you change this function */
destroy_compound_page(struct page * page,unsigned long order)360 static int destroy_compound_page(struct page *page, unsigned long order)
361 {
362 int i;
363 int nr_pages = 1 << order;
364 int bad = 0;
365
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
368 bad_page(page);
369 bad++;
370 }
371
372 __ClearPageHead(page);
373
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376
377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 bad_page(page);
379 bad++;
380 }
381 __ClearPageTail(p);
382 }
383
384 return bad;
385 }
386
prep_zero_page(struct page * page,int order,gfp_t gfp_flags)387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 {
389 int i;
390
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398 }
399
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder;
402
debug_guardpage_minorder_setup(char * buf)403 static int __init debug_guardpage_minorder_setup(char *buf)
404 {
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414 }
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
set_page_guard_flag(struct page * page)417 static inline void set_page_guard_flag(struct page *page)
418 {
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420 }
421
clear_page_guard_flag(struct page * page)422 static inline void clear_page_guard_flag(struct page *page)
423 {
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 #else
set_page_guard_flag(struct page * page)427 static inline void set_page_guard_flag(struct page *page) { }
clear_page_guard_flag(struct page * page)428 static inline void clear_page_guard_flag(struct page *page) { }
429 #endif
430
set_page_order(struct page * page,int order)431 static inline void set_page_order(struct page *page, int order)
432 {
433 set_page_private(page, order);
434 __SetPageBuddy(page);
435 }
436
rmv_page_order(struct page * page)437 static inline void rmv_page_order(struct page *page)
438 {
439 __ClearPageBuddy(page);
440 set_page_private(page, 0);
441 }
442
443 /*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
459 */
460 static inline unsigned long
__find_buddy_index(unsigned long page_idx,unsigned int order)461 __find_buddy_index(unsigned long page_idx, unsigned int order)
462 {
463 return page_idx ^ (1 << order);
464 }
465
466 /*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
469 * (a) the buddy is not in a hole &&
470 * (b) the buddy is in the buddy system &&
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
473 *
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
476 *
477 * For recording page's order, we use page_private(page).
478 */
page_is_buddy(struct page * page,struct page * buddy,int order)479 static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
481 {
482 if (!pfn_valid_within(page_to_pfn(buddy)))
483 return 0;
484
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
493 if (PageBuddy(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497 return 0;
498 }
499
500 /*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514 * order is recorded in page_private(page) field.
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
__free_one_page(struct page * page,struct zone * zone,unsigned int order,int migratetype)524 static inline void __free_one_page(struct page *page,
525 struct zone *zone, unsigned int order,
526 int migratetype)
527 {
528 unsigned long page_idx;
529 unsigned long combined_idx;
530 unsigned long uninitialized_var(buddy_idx);
531 struct page *buddy;
532
533 if (unlikely(PageCompound(page)))
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
536
537 VM_BUG_ON(migratetype == -1);
538
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
541 VM_BUG_ON(page_idx & ((1 << order) - 1));
542 VM_BUG_ON(bad_range(zone, page));
543
544 while (order < MAX_ORDER-1) {
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
547 if (!page_is_buddy(page, buddy, order))
548 break;
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
562 combined_idx = buddy_idx & page_idx;
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578 struct page *higher_page, *higher_buddy;
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = higher_page + (buddy_idx - combined_idx);
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591 out:
592 zone->free_area[order].nr_free++;
593 }
594
595 /*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
free_page_mlock(struct page * page)600 static inline void free_page_mlock(struct page *page)
601 {
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604 }
605
free_pages_check(struct page * page)606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
619 }
620
621 /*
622 * Frees a number of pages from the PCP lists
623 * Assumes all pages on list are in same zone, and of same order.
624 * count is the number of pages to free.
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)632 static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
634 {
635 int migratetype = 0;
636 int batch_free = 0;
637 int to_free = count;
638
639 spin_lock(&zone->lock);
640 zone->all_unreclaimable = 0;
641 zone->pages_scanned = 0;
642
643 while (to_free) {
644 struct page *page;
645 struct list_head *list;
646
647 /*
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
653 */
654 do {
655 batch_free++;
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
660
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
672 } while (--to_free && --batch_free && !list_empty(list));
673 }
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
676 }
677
free_one_page(struct zone * zone,struct page * page,int order,int migratetype)678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680 {
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687 spin_unlock(&zone->lock);
688 }
689
free_pages_prepare(struct page * page,unsigned int order)690 static bool free_pages_prepare(struct page *page, unsigned int order)
691 {
692 int i;
693 int bad = 0;
694
695 trace_mm_page_free(page, order);
696 kmemcheck_free_shadow(page, order);
697
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
702 if (bad)
703 return false;
704
705 if (!PageHighMem(page)) {
706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
710 arch_free_page(page, order);
711 kernel_map_pages(page, 1 << order, 0);
712
713 return true;
714 }
715
__free_pages_ok(struct page * page,unsigned int order)716 static void __free_pages_ok(struct page *page, unsigned int order)
717 {
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
724 local_irq_save(flags);
725 if (unlikely(wasMlocked))
726 free_page_mlock(page);
727 __count_vm_events(PGFREE, 1 << order);
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
730 local_irq_restore(flags);
731 }
732
__free_pages_bootmem(struct page * page,unsigned int order)733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
737
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
746 }
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
750 }
751
752
753 /*
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
764 *
765 * -- wli
766 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)767 static inline void expand(struct zone *zone, struct page *page,
768 int low, int high, struct free_area *area,
769 int migratetype)
770 {
771 unsigned long size = 1 << high;
772
773 while (high > low) {
774 area--;
775 high--;
776 size >>= 1;
777 VM_BUG_ON(bad_range(zone, &page[size]));
778
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 if (high < debug_guardpage_minorder()) {
781 /*
782 * Mark as guard pages (or page), that will allow to
783 * merge back to allocator when buddy will be freed.
784 * Corresponding page table entries will not be touched,
785 * pages will stay not present in virtual address space
786 */
787 INIT_LIST_HEAD(&page[size].lru);
788 set_page_guard_flag(&page[size]);
789 set_page_private(&page[size], high);
790 /* Guard pages are not available for any usage */
791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 continue;
793 }
794 #endif
795 list_add(&page[size].lru, &area->free_list[migratetype]);
796 area->nr_free++;
797 set_page_order(&page[size], high);
798 }
799 }
800
801 /*
802 * This page is about to be returned from the page allocator
803 */
check_new_page(struct page * page)804 static inline int check_new_page(struct page *page)
805 {
806 if (unlikely(page_mapcount(page) |
807 (page->mapping != NULL) |
808 (atomic_read(&page->_count) != 0) |
809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 (mem_cgroup_bad_page_check(page)))) {
811 bad_page(page);
812 return 1;
813 }
814 return 0;
815 }
816
prep_new_page(struct page * page,int order,gfp_t gfp_flags)817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818 {
819 int i;
820
821 for (i = 0; i < (1 << order); i++) {
822 struct page *p = page + i;
823 if (unlikely(check_new_page(p)))
824 return 1;
825 }
826
827 set_page_private(page, 0);
828 set_page_refcounted(page);
829
830 arch_alloc_page(page, order);
831 kernel_map_pages(page, 1 << order, 1);
832
833 if (gfp_flags & __GFP_ZERO)
834 prep_zero_page(page, order, gfp_flags);
835
836 if (order && (gfp_flags & __GFP_COMP))
837 prep_compound_page(page, order);
838
839 return 0;
840 }
841
842 /*
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
845 */
846 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848 int migratetype)
849 {
850 unsigned int current_order;
851 struct free_area * area;
852 struct page *page;
853
854 /* Find a page of the appropriate size in the preferred list */
855 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
859
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 list_del(&page->lru);
863 rmv_page_order(page);
864 area->nr_free--;
865 expand(zone, page, order, current_order, area, migratetype);
866 return page;
867 }
868
869 return NULL;
870 }
871
872
873 /*
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
876 */
877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
882 };
883
884 /*
885 * Move the free pages in a range to the free lists of the requested type.
886 * Note that start_page and end_pages are not aligned on a pageblock
887 * boundary. If alignment is required, use move_freepages_block()
888 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)889 static int move_freepages(struct zone *zone,
890 struct page *start_page, struct page *end_page,
891 int migratetype)
892 {
893 struct page *page;
894 unsigned long order;
895 int pages_moved = 0;
896
897 #ifndef CONFIG_HOLES_IN_ZONE
898 /*
899 * page_zone is not safe to call in this context when
900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 * anyway as we check zone boundaries in move_freepages_block().
902 * Remove at a later date when no bug reports exist related to
903 * grouping pages by mobility
904 */
905 BUG_ON(page_zone(start_page) != page_zone(end_page));
906 #endif
907
908 for (page = start_page; page <= end_page;) {
909 /* Make sure we are not inadvertently changing nodes */
910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911
912 if (!pfn_valid_within(page_to_pfn(page))) {
913 page++;
914 continue;
915 }
916
917 if (!PageBuddy(page)) {
918 page++;
919 continue;
920 }
921
922 order = page_order(page);
923 list_move(&page->lru,
924 &zone->free_area[order].free_list[migratetype]);
925 page += 1 << order;
926 pages_moved += 1 << order;
927 }
928
929 return pages_moved;
930 }
931
move_freepages_block(struct zone * zone,struct page * page,int migratetype)932 static int move_freepages_block(struct zone *zone, struct page *page,
933 int migratetype)
934 {
935 unsigned long start_pfn, end_pfn;
936 struct page *start_page, *end_page;
937
938 start_pfn = page_to_pfn(page);
939 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940 start_page = pfn_to_page(start_pfn);
941 end_page = start_page + pageblock_nr_pages - 1;
942 end_pfn = start_pfn + pageblock_nr_pages - 1;
943
944 /* Do not cross zone boundaries */
945 if (start_pfn < zone->zone_start_pfn)
946 start_page = page;
947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 return 0;
949
950 return move_freepages(zone, start_page, end_page, migratetype);
951 }
952
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)953 static void change_pageblock_range(struct page *pageblock_page,
954 int start_order, int migratetype)
955 {
956 int nr_pageblocks = 1 << (start_order - pageblock_order);
957
958 while (nr_pageblocks--) {
959 set_pageblock_migratetype(pageblock_page, migratetype);
960 pageblock_page += pageblock_nr_pages;
961 }
962 }
963
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype)966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
967 {
968 struct free_area * area;
969 int current_order;
970 struct page *page;
971 int migratetype, i;
972
973 /* Find the largest possible block of pages in the other list */
974 for (current_order = MAX_ORDER-1; current_order >= order;
975 --current_order) {
976 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 migratetype = fallbacks[start_migratetype][i];
978
979 /* MIGRATE_RESERVE handled later if necessary */
980 if (migratetype == MIGRATE_RESERVE)
981 continue;
982
983 area = &(zone->free_area[current_order]);
984 if (list_empty(&area->free_list[migratetype]))
985 continue;
986
987 page = list_entry(area->free_list[migratetype].next,
988 struct page, lru);
989 area->nr_free--;
990
991 /*
992 * If breaking a large block of pages, move all free
993 * pages to the preferred allocation list. If falling
994 * back for a reclaimable kernel allocation, be more
995 * aggressive about taking ownership of free pages
996 */
997 if (unlikely(current_order >= (pageblock_order >> 1)) ||
998 start_migratetype == MIGRATE_RECLAIMABLE ||
999 page_group_by_mobility_disabled) {
1000 unsigned long pages;
1001 pages = move_freepages_block(zone, page,
1002 start_migratetype);
1003
1004 /* Claim the whole block if over half of it is free */
1005 if (pages >= (1 << (pageblock_order-1)) ||
1006 page_group_by_mobility_disabled)
1007 set_pageblock_migratetype(page,
1008 start_migratetype);
1009
1010 migratetype = start_migratetype;
1011 }
1012
1013 /* Remove the page from the freelists */
1014 list_del(&page->lru);
1015 rmv_page_order(page);
1016
1017 /* Take ownership for orders >= pageblock_order */
1018 if (current_order >= pageblock_order)
1019 change_pageblock_range(page, current_order,
1020 start_migratetype);
1021
1022 expand(zone, page, order, current_order, area, migratetype);
1023
1024 trace_mm_page_alloc_extfrag(page, order, current_order,
1025 start_migratetype, migratetype);
1026
1027 return page;
1028 }
1029 }
1030
1031 return NULL;
1032 }
1033
1034 /*
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1037 */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)1038 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 int migratetype)
1040 {
1041 struct page *page;
1042
1043 retry_reserve:
1044 page = __rmqueue_smallest(zone, order, migratetype);
1045
1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047 page = __rmqueue_fallback(zone, order, migratetype);
1048
1049 /*
1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 * is used because __rmqueue_smallest is an inline function
1052 * and we want just one call site
1053 */
1054 if (!page) {
1055 migratetype = MIGRATE_RESERVE;
1056 goto retry_reserve;
1057 }
1058 }
1059
1060 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061 return page;
1062 }
1063
1064 /*
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency. Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1068 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,int cold)1069 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070 unsigned long count, struct list_head *list,
1071 int migratetype, int cold)
1072 {
1073 int i;
1074
1075 spin_lock(&zone->lock);
1076 for (i = 0; i < count; ++i) {
1077 struct page *page = __rmqueue(zone, order, migratetype);
1078 if (unlikely(page == NULL))
1079 break;
1080
1081 /*
1082 * Split buddy pages returned by expand() are received here
1083 * in physical page order. The page is added to the callers and
1084 * list and the list head then moves forward. From the callers
1085 * perspective, the linked list is ordered by page number in
1086 * some conditions. This is useful for IO devices that can
1087 * merge IO requests if the physical pages are ordered
1088 * properly.
1089 */
1090 if (likely(cold == 0))
1091 list_add(&page->lru, list);
1092 else
1093 list_add_tail(&page->lru, list);
1094 set_page_private(page, migratetype);
1095 list = &page->lru;
1096 }
1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098 spin_unlock(&zone->lock);
1099 return i;
1100 }
1101
1102 #ifdef CONFIG_NUMA
1103 /*
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1106 * expired.
1107 *
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
1110 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1112 {
1113 unsigned long flags;
1114 int to_drain;
1115
1116 local_irq_save(flags);
1117 if (pcp->count >= pcp->batch)
1118 to_drain = pcp->batch;
1119 else
1120 to_drain = pcp->count;
1121 free_pcppages_bulk(zone, to_drain, pcp);
1122 pcp->count -= to_drain;
1123 local_irq_restore(flags);
1124 }
1125 #endif
1126
1127 /*
1128 * Drain pages of the indicated processor.
1129 *
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1132 * is not online.
1133 */
drain_pages(unsigned int cpu)1134 static void drain_pages(unsigned int cpu)
1135 {
1136 unsigned long flags;
1137 struct zone *zone;
1138
1139 for_each_populated_zone(zone) {
1140 struct per_cpu_pageset *pset;
1141 struct per_cpu_pages *pcp;
1142
1143 local_irq_save(flags);
1144 pset = per_cpu_ptr(zone->pageset, cpu);
1145
1146 pcp = &pset->pcp;
1147 if (pcp->count) {
1148 free_pcppages_bulk(zone, pcp->count, pcp);
1149 pcp->count = 0;
1150 }
1151 local_irq_restore(flags);
1152 }
1153 }
1154
1155 /*
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157 */
drain_local_pages(void * arg)1158 void drain_local_pages(void *arg)
1159 {
1160 drain_pages(smp_processor_id());
1161 }
1162
1163 /*
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1165 *
1166 * Note that this code is protected against sending an IPI to an offline
1167 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1168 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1169 * nothing keeps CPUs from showing up after we populated the cpumask and
1170 * before the call to on_each_cpu_mask().
1171 */
drain_all_pages(void)1172 void drain_all_pages(void)
1173 {
1174 int cpu;
1175 struct per_cpu_pageset *pcp;
1176 struct zone *zone;
1177
1178 /*
1179 * Allocate in the BSS so we wont require allocation in
1180 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1181 */
1182 static cpumask_t cpus_with_pcps;
1183
1184 /*
1185 * We don't care about racing with CPU hotplug event
1186 * as offline notification will cause the notified
1187 * cpu to drain that CPU pcps and on_each_cpu_mask
1188 * disables preemption as part of its processing
1189 */
1190 for_each_online_cpu(cpu) {
1191 bool has_pcps = false;
1192 for_each_populated_zone(zone) {
1193 pcp = per_cpu_ptr(zone->pageset, cpu);
1194 if (pcp->pcp.count) {
1195 has_pcps = true;
1196 break;
1197 }
1198 }
1199 if (has_pcps)
1200 cpumask_set_cpu(cpu, &cpus_with_pcps);
1201 else
1202 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1203 }
1204 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1205 }
1206
1207 #ifdef CONFIG_HIBERNATION
1208
mark_free_pages(struct zone * zone)1209 void mark_free_pages(struct zone *zone)
1210 {
1211 unsigned long pfn, max_zone_pfn;
1212 unsigned long flags;
1213 int order, t;
1214 struct list_head *curr;
1215
1216 if (!zone->spanned_pages)
1217 return;
1218
1219 spin_lock_irqsave(&zone->lock, flags);
1220
1221 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1222 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1223 if (pfn_valid(pfn)) {
1224 struct page *page = pfn_to_page(pfn);
1225
1226 if (!swsusp_page_is_forbidden(page))
1227 swsusp_unset_page_free(page);
1228 }
1229
1230 for_each_migratetype_order(order, t) {
1231 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1232 unsigned long i;
1233
1234 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1235 for (i = 0; i < (1UL << order); i++)
1236 swsusp_set_page_free(pfn_to_page(pfn + i));
1237 }
1238 }
1239 spin_unlock_irqrestore(&zone->lock, flags);
1240 }
1241 #endif /* CONFIG_PM */
1242
1243 /*
1244 * Free a 0-order page
1245 * cold == 1 ? free a cold page : free a hot page
1246 */
free_hot_cold_page(struct page * page,int cold)1247 void free_hot_cold_page(struct page *page, int cold)
1248 {
1249 struct zone *zone = page_zone(page);
1250 struct per_cpu_pages *pcp;
1251 unsigned long flags;
1252 int migratetype;
1253 int wasMlocked = __TestClearPageMlocked(page);
1254
1255 if (!free_pages_prepare(page, 0))
1256 return;
1257
1258 migratetype = get_pageblock_migratetype(page);
1259 set_page_private(page, migratetype);
1260 local_irq_save(flags);
1261 if (unlikely(wasMlocked))
1262 free_page_mlock(page);
1263 __count_vm_event(PGFREE);
1264
1265 /*
1266 * We only track unmovable, reclaimable and movable on pcp lists.
1267 * Free ISOLATE pages back to the allocator because they are being
1268 * offlined but treat RESERVE as movable pages so we can get those
1269 * areas back if necessary. Otherwise, we may have to free
1270 * excessively into the page allocator
1271 */
1272 if (migratetype >= MIGRATE_PCPTYPES) {
1273 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1274 free_one_page(zone, page, 0, migratetype);
1275 goto out;
1276 }
1277 migratetype = MIGRATE_MOVABLE;
1278 }
1279
1280 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1281 if (cold)
1282 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1283 else
1284 list_add(&page->lru, &pcp->lists[migratetype]);
1285 pcp->count++;
1286 if (pcp->count >= pcp->high) {
1287 free_pcppages_bulk(zone, pcp->batch, pcp);
1288 pcp->count -= pcp->batch;
1289 }
1290
1291 out:
1292 local_irq_restore(flags);
1293 }
1294
1295 /*
1296 * Free a list of 0-order pages
1297 */
free_hot_cold_page_list(struct list_head * list,int cold)1298 void free_hot_cold_page_list(struct list_head *list, int cold)
1299 {
1300 struct page *page, *next;
1301
1302 list_for_each_entry_safe(page, next, list, lru) {
1303 trace_mm_page_free_batched(page, cold);
1304 free_hot_cold_page(page, cold);
1305 }
1306 }
1307
1308 /*
1309 * split_page takes a non-compound higher-order page, and splits it into
1310 * n (1<<order) sub-pages: page[0..n]
1311 * Each sub-page must be freed individually.
1312 *
1313 * Note: this is probably too low level an operation for use in drivers.
1314 * Please consult with lkml before using this in your driver.
1315 */
split_page(struct page * page,unsigned int order)1316 void split_page(struct page *page, unsigned int order)
1317 {
1318 int i;
1319
1320 VM_BUG_ON(PageCompound(page));
1321 VM_BUG_ON(!page_count(page));
1322
1323 #ifdef CONFIG_KMEMCHECK
1324 /*
1325 * Split shadow pages too, because free(page[0]) would
1326 * otherwise free the whole shadow.
1327 */
1328 if (kmemcheck_page_is_tracked(page))
1329 split_page(virt_to_page(page[0].shadow), order);
1330 #endif
1331
1332 for (i = 1; i < (1 << order); i++)
1333 set_page_refcounted(page + i);
1334 }
1335
1336 /*
1337 * Similar to split_page except the page is already free. As this is only
1338 * being used for migration, the migratetype of the block also changes.
1339 * As this is called with interrupts disabled, the caller is responsible
1340 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1341 * are enabled.
1342 *
1343 * Note: this is probably too low level an operation for use in drivers.
1344 * Please consult with lkml before using this in your driver.
1345 */
split_free_page(struct page * page)1346 int split_free_page(struct page *page)
1347 {
1348 unsigned int order;
1349 unsigned long watermark;
1350 struct zone *zone;
1351
1352 BUG_ON(!PageBuddy(page));
1353
1354 zone = page_zone(page);
1355 order = page_order(page);
1356
1357 /* Obey watermarks as if the page was being allocated */
1358 watermark = low_wmark_pages(zone) + (1 << order);
1359 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1360 return 0;
1361
1362 /* Remove page from free list */
1363 list_del(&page->lru);
1364 zone->free_area[order].nr_free--;
1365 rmv_page_order(page);
1366 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1367
1368 /* Split into individual pages */
1369 set_page_refcounted(page);
1370 split_page(page, order);
1371
1372 if (order >= pageblock_order - 1) {
1373 struct page *endpage = page + (1 << order) - 1;
1374 for (; page < endpage; page += pageblock_nr_pages)
1375 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1376 }
1377
1378 return 1 << order;
1379 }
1380
1381 /*
1382 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1383 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1384 * or two.
1385 */
1386 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,int order,gfp_t gfp_flags,int migratetype)1387 struct page *buffered_rmqueue(struct zone *preferred_zone,
1388 struct zone *zone, int order, gfp_t gfp_flags,
1389 int migratetype)
1390 {
1391 unsigned long flags;
1392 struct page *page;
1393 int cold = !!(gfp_flags & __GFP_COLD);
1394
1395 again:
1396 if (likely(order == 0)) {
1397 struct per_cpu_pages *pcp;
1398 struct list_head *list;
1399
1400 local_irq_save(flags);
1401 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1402 list = &pcp->lists[migratetype];
1403 if (list_empty(list)) {
1404 pcp->count += rmqueue_bulk(zone, 0,
1405 pcp->batch, list,
1406 migratetype, cold);
1407 if (unlikely(list_empty(list)))
1408 goto failed;
1409 }
1410
1411 if (cold)
1412 page = list_entry(list->prev, struct page, lru);
1413 else
1414 page = list_entry(list->next, struct page, lru);
1415
1416 list_del(&page->lru);
1417 pcp->count--;
1418 } else {
1419 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1420 /*
1421 * __GFP_NOFAIL is not to be used in new code.
1422 *
1423 * All __GFP_NOFAIL callers should be fixed so that they
1424 * properly detect and handle allocation failures.
1425 *
1426 * We most definitely don't want callers attempting to
1427 * allocate greater than order-1 page units with
1428 * __GFP_NOFAIL.
1429 */
1430 WARN_ON_ONCE(order > 1);
1431 }
1432 spin_lock_irqsave(&zone->lock, flags);
1433 page = __rmqueue(zone, order, migratetype);
1434 spin_unlock(&zone->lock);
1435 if (!page)
1436 goto failed;
1437 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1438 }
1439
1440 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1441 zone_statistics(preferred_zone, zone, gfp_flags);
1442 local_irq_restore(flags);
1443
1444 VM_BUG_ON(bad_range(zone, page));
1445 if (prep_new_page(page, order, gfp_flags))
1446 goto again;
1447 return page;
1448
1449 failed:
1450 local_irq_restore(flags);
1451 return NULL;
1452 }
1453
1454 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1455 #define ALLOC_WMARK_MIN WMARK_MIN
1456 #define ALLOC_WMARK_LOW WMARK_LOW
1457 #define ALLOC_WMARK_HIGH WMARK_HIGH
1458 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1459
1460 /* Mask to get the watermark bits */
1461 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1462
1463 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1464 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1465 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1466
1467 #ifdef CONFIG_FAIL_PAGE_ALLOC
1468
1469 static struct {
1470 struct fault_attr attr;
1471
1472 u32 ignore_gfp_highmem;
1473 u32 ignore_gfp_wait;
1474 u32 min_order;
1475 } fail_page_alloc = {
1476 .attr = FAULT_ATTR_INITIALIZER,
1477 .ignore_gfp_wait = 1,
1478 .ignore_gfp_highmem = 1,
1479 .min_order = 1,
1480 };
1481
setup_fail_page_alloc(char * str)1482 static int __init setup_fail_page_alloc(char *str)
1483 {
1484 return setup_fault_attr(&fail_page_alloc.attr, str);
1485 }
1486 __setup("fail_page_alloc=", setup_fail_page_alloc);
1487
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1488 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1489 {
1490 if (order < fail_page_alloc.min_order)
1491 return 0;
1492 if (gfp_mask & __GFP_NOFAIL)
1493 return 0;
1494 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1495 return 0;
1496 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1497 return 0;
1498
1499 return should_fail(&fail_page_alloc.attr, 1 << order);
1500 }
1501
1502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1503
fail_page_alloc_debugfs(void)1504 static int __init fail_page_alloc_debugfs(void)
1505 {
1506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1507 struct dentry *dir;
1508
1509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1510 &fail_page_alloc.attr);
1511 if (IS_ERR(dir))
1512 return PTR_ERR(dir);
1513
1514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1515 &fail_page_alloc.ignore_gfp_wait))
1516 goto fail;
1517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1518 &fail_page_alloc.ignore_gfp_highmem))
1519 goto fail;
1520 if (!debugfs_create_u32("min-order", mode, dir,
1521 &fail_page_alloc.min_order))
1522 goto fail;
1523
1524 return 0;
1525 fail:
1526 debugfs_remove_recursive(dir);
1527
1528 return -ENOMEM;
1529 }
1530
1531 late_initcall(fail_page_alloc_debugfs);
1532
1533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1534
1535 #else /* CONFIG_FAIL_PAGE_ALLOC */
1536
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1537 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1538 {
1539 return 0;
1540 }
1541
1542 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1543
1544 /*
1545 * Return true if free pages are above 'mark'. This takes into account the order
1546 * of the allocation.
1547 */
__zone_watermark_ok(struct zone * z,int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)1548 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1549 int classzone_idx, int alloc_flags, long free_pages)
1550 {
1551 /* free_pages my go negative - that's OK */
1552 long min = mark;
1553 int o;
1554
1555 free_pages -= (1 << order) - 1;
1556 if (alloc_flags & ALLOC_HIGH)
1557 min -= min / 2;
1558 if (alloc_flags & ALLOC_HARDER)
1559 min -= min / 4;
1560
1561 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1562 return false;
1563 for (o = 0; o < order; o++) {
1564 /* At the next order, this order's pages become unavailable */
1565 free_pages -= z->free_area[o].nr_free << o;
1566
1567 /* Require fewer higher order pages to be free */
1568 min >>= 1;
1569
1570 if (free_pages <= min)
1571 return false;
1572 }
1573 return true;
1574 }
1575
zone_watermark_ok(struct zone * z,int order,unsigned long mark,int classzone_idx,int alloc_flags)1576 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1577 int classzone_idx, int alloc_flags)
1578 {
1579 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1580 zone_page_state(z, NR_FREE_PAGES));
1581 }
1582
zone_watermark_ok_safe(struct zone * z,int order,unsigned long mark,int classzone_idx,int alloc_flags)1583 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1584 int classzone_idx, int alloc_flags)
1585 {
1586 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1587
1588 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1589 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1590
1591 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1592 free_pages);
1593 }
1594
1595 #ifdef CONFIG_NUMA
1596 /*
1597 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1598 * skip over zones that are not allowed by the cpuset, or that have
1599 * been recently (in last second) found to be nearly full. See further
1600 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1601 * that have to skip over a lot of full or unallowed zones.
1602 *
1603 * If the zonelist cache is present in the passed in zonelist, then
1604 * returns a pointer to the allowed node mask (either the current
1605 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1606 *
1607 * If the zonelist cache is not available for this zonelist, does
1608 * nothing and returns NULL.
1609 *
1610 * If the fullzones BITMAP in the zonelist cache is stale (more than
1611 * a second since last zap'd) then we zap it out (clear its bits.)
1612 *
1613 * We hold off even calling zlc_setup, until after we've checked the
1614 * first zone in the zonelist, on the theory that most allocations will
1615 * be satisfied from that first zone, so best to examine that zone as
1616 * quickly as we can.
1617 */
zlc_setup(struct zonelist * zonelist,int alloc_flags)1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619 {
1620 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1621 nodemask_t *allowednodes; /* zonelist_cache approximation */
1622
1623 zlc = zonelist->zlcache_ptr;
1624 if (!zlc)
1625 return NULL;
1626
1627 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1628 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1629 zlc->last_full_zap = jiffies;
1630 }
1631
1632 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1633 &cpuset_current_mems_allowed :
1634 &node_states[N_HIGH_MEMORY];
1635 return allowednodes;
1636 }
1637
1638 /*
1639 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1640 * if it is worth looking at further for free memory:
1641 * 1) Check that the zone isn't thought to be full (doesn't have its
1642 * bit set in the zonelist_cache fullzones BITMAP).
1643 * 2) Check that the zones node (obtained from the zonelist_cache
1644 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1645 * Return true (non-zero) if zone is worth looking at further, or
1646 * else return false (zero) if it is not.
1647 *
1648 * This check -ignores- the distinction between various watermarks,
1649 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1650 * found to be full for any variation of these watermarks, it will
1651 * be considered full for up to one second by all requests, unless
1652 * we are so low on memory on all allowed nodes that we are forced
1653 * into the second scan of the zonelist.
1654 *
1655 * In the second scan we ignore this zonelist cache and exactly
1656 * apply the watermarks to all zones, even it is slower to do so.
1657 * We are low on memory in the second scan, and should leave no stone
1658 * unturned looking for a free page.
1659 */
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1660 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1661 nodemask_t *allowednodes)
1662 {
1663 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1664 int i; /* index of *z in zonelist zones */
1665 int n; /* node that zone *z is on */
1666
1667 zlc = zonelist->zlcache_ptr;
1668 if (!zlc)
1669 return 1;
1670
1671 i = z - zonelist->_zonerefs;
1672 n = zlc->z_to_n[i];
1673
1674 /* This zone is worth trying if it is allowed but not full */
1675 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1676 }
1677
1678 /*
1679 * Given 'z' scanning a zonelist, set the corresponding bit in
1680 * zlc->fullzones, so that subsequent attempts to allocate a page
1681 * from that zone don't waste time re-examining it.
1682 */
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1683 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1684 {
1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1686 int i; /* index of *z in zonelist zones */
1687
1688 zlc = zonelist->zlcache_ptr;
1689 if (!zlc)
1690 return;
1691
1692 i = z - zonelist->_zonerefs;
1693
1694 set_bit(i, zlc->fullzones);
1695 }
1696
1697 /*
1698 * clear all zones full, called after direct reclaim makes progress so that
1699 * a zone that was recently full is not skipped over for up to a second
1700 */
zlc_clear_zones_full(struct zonelist * zonelist)1701 static void zlc_clear_zones_full(struct zonelist *zonelist)
1702 {
1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1704
1705 zlc = zonelist->zlcache_ptr;
1706 if (!zlc)
1707 return;
1708
1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1710 }
1711
1712 #else /* CONFIG_NUMA */
1713
zlc_setup(struct zonelist * zonelist,int alloc_flags)1714 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1715 {
1716 return NULL;
1717 }
1718
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1719 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1720 nodemask_t *allowednodes)
1721 {
1722 return 1;
1723 }
1724
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1725 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1726 {
1727 }
1728
zlc_clear_zones_full(struct zonelist * zonelist)1729 static void zlc_clear_zones_full(struct zonelist *zonelist)
1730 {
1731 }
1732 #endif /* CONFIG_NUMA */
1733
1734 /*
1735 * get_page_from_freelist goes through the zonelist trying to allocate
1736 * a page.
1737 */
1738 static struct page *
get_page_from_freelist(gfp_t gfp_mask,nodemask_t * nodemask,unsigned int order,struct zonelist * zonelist,int high_zoneidx,int alloc_flags,struct zone * preferred_zone,int migratetype)1739 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1740 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1741 struct zone *preferred_zone, int migratetype)
1742 {
1743 struct zoneref *z;
1744 struct page *page = NULL;
1745 int classzone_idx;
1746 struct zone *zone;
1747 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1748 int zlc_active = 0; /* set if using zonelist_cache */
1749 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1750
1751 classzone_idx = zone_idx(preferred_zone);
1752 zonelist_scan:
1753 /*
1754 * Scan zonelist, looking for a zone with enough free.
1755 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1756 */
1757 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1758 high_zoneidx, nodemask) {
1759 if (NUMA_BUILD && zlc_active &&
1760 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1761 continue;
1762 if ((alloc_flags & ALLOC_CPUSET) &&
1763 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1764 continue;
1765 /*
1766 * When allocating a page cache page for writing, we
1767 * want to get it from a zone that is within its dirty
1768 * limit, such that no single zone holds more than its
1769 * proportional share of globally allowed dirty pages.
1770 * The dirty limits take into account the zone's
1771 * lowmem reserves and high watermark so that kswapd
1772 * should be able to balance it without having to
1773 * write pages from its LRU list.
1774 *
1775 * This may look like it could increase pressure on
1776 * lower zones by failing allocations in higher zones
1777 * before they are full. But the pages that do spill
1778 * over are limited as the lower zones are protected
1779 * by this very same mechanism. It should not become
1780 * a practical burden to them.
1781 *
1782 * XXX: For now, allow allocations to potentially
1783 * exceed the per-zone dirty limit in the slowpath
1784 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1785 * which is important when on a NUMA setup the allowed
1786 * zones are together not big enough to reach the
1787 * global limit. The proper fix for these situations
1788 * will require awareness of zones in the
1789 * dirty-throttling and the flusher threads.
1790 */
1791 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1792 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1793 goto this_zone_full;
1794
1795 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1796 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1797 unsigned long mark;
1798 int ret;
1799
1800 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1801 if (zone_watermark_ok(zone, order, mark,
1802 classzone_idx, alloc_flags))
1803 goto try_this_zone;
1804
1805 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1806 /*
1807 * we do zlc_setup if there are multiple nodes
1808 * and before considering the first zone allowed
1809 * by the cpuset.
1810 */
1811 allowednodes = zlc_setup(zonelist, alloc_flags);
1812 zlc_active = 1;
1813 did_zlc_setup = 1;
1814 }
1815
1816 if (zone_reclaim_mode == 0)
1817 goto this_zone_full;
1818
1819 /*
1820 * As we may have just activated ZLC, check if the first
1821 * eligible zone has failed zone_reclaim recently.
1822 */
1823 if (NUMA_BUILD && zlc_active &&
1824 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1825 continue;
1826
1827 ret = zone_reclaim(zone, gfp_mask, order);
1828 switch (ret) {
1829 case ZONE_RECLAIM_NOSCAN:
1830 /* did not scan */
1831 continue;
1832 case ZONE_RECLAIM_FULL:
1833 /* scanned but unreclaimable */
1834 continue;
1835 default:
1836 /* did we reclaim enough */
1837 if (!zone_watermark_ok(zone, order, mark,
1838 classzone_idx, alloc_flags))
1839 goto this_zone_full;
1840 }
1841 }
1842
1843 try_this_zone:
1844 page = buffered_rmqueue(preferred_zone, zone, order,
1845 gfp_mask, migratetype);
1846 if (page)
1847 break;
1848 this_zone_full:
1849 if (NUMA_BUILD)
1850 zlc_mark_zone_full(zonelist, z);
1851 }
1852
1853 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1854 /* Disable zlc cache for second zonelist scan */
1855 zlc_active = 0;
1856 goto zonelist_scan;
1857 }
1858 return page;
1859 }
1860
1861 /*
1862 * Large machines with many possible nodes should not always dump per-node
1863 * meminfo in irq context.
1864 */
should_suppress_show_mem(void)1865 static inline bool should_suppress_show_mem(void)
1866 {
1867 bool ret = false;
1868
1869 #if NODES_SHIFT > 8
1870 ret = in_interrupt();
1871 #endif
1872 return ret;
1873 }
1874
1875 static DEFINE_RATELIMIT_STATE(nopage_rs,
1876 DEFAULT_RATELIMIT_INTERVAL,
1877 DEFAULT_RATELIMIT_BURST);
1878
warn_alloc_failed(gfp_t gfp_mask,int order,const char * fmt,...)1879 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1880 {
1881 unsigned int filter = SHOW_MEM_FILTER_NODES;
1882
1883 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1884 debug_guardpage_minorder() > 0)
1885 return;
1886
1887 /*
1888 * Walking all memory to count page types is very expensive and should
1889 * be inhibited in non-blockable contexts.
1890 */
1891 if (!(gfp_mask & __GFP_WAIT))
1892 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
1893
1894 /*
1895 * This documents exceptions given to allocations in certain
1896 * contexts that are allowed to allocate outside current's set
1897 * of allowed nodes.
1898 */
1899 if (!(gfp_mask & __GFP_NOMEMALLOC))
1900 if (test_thread_flag(TIF_MEMDIE) ||
1901 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1902 filter &= ~SHOW_MEM_FILTER_NODES;
1903 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1904 filter &= ~SHOW_MEM_FILTER_NODES;
1905
1906 if (fmt) {
1907 struct va_format vaf;
1908 va_list args;
1909
1910 va_start(args, fmt);
1911
1912 vaf.fmt = fmt;
1913 vaf.va = &args;
1914
1915 pr_warn("%pV", &vaf);
1916
1917 va_end(args);
1918 }
1919
1920 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1921 current->comm, order, gfp_mask);
1922
1923 dump_stack();
1924 if (!should_suppress_show_mem())
1925 show_mem(filter);
1926 }
1927
1928 static inline int
should_alloc_retry(gfp_t gfp_mask,unsigned int order,unsigned long did_some_progress,unsigned long pages_reclaimed)1929 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1930 unsigned long did_some_progress,
1931 unsigned long pages_reclaimed)
1932 {
1933 /* Do not loop if specifically requested */
1934 if (gfp_mask & __GFP_NORETRY)
1935 return 0;
1936
1937 /* Always retry if specifically requested */
1938 if (gfp_mask & __GFP_NOFAIL)
1939 return 1;
1940
1941 /*
1942 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1943 * making forward progress without invoking OOM. Suspend also disables
1944 * storage devices so kswapd will not help. Bail if we are suspending.
1945 */
1946 if (!did_some_progress && pm_suspended_storage())
1947 return 0;
1948
1949 /*
1950 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1951 * means __GFP_NOFAIL, but that may not be true in other
1952 * implementations.
1953 */
1954 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1955 return 1;
1956
1957 /*
1958 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1959 * specified, then we retry until we no longer reclaim any pages
1960 * (above), or we've reclaimed an order of pages at least as
1961 * large as the allocation's order. In both cases, if the
1962 * allocation still fails, we stop retrying.
1963 */
1964 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1965 return 1;
1966
1967 return 0;
1968 }
1969
1970 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int migratetype)1971 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1972 struct zonelist *zonelist, enum zone_type high_zoneidx,
1973 nodemask_t *nodemask, struct zone *preferred_zone,
1974 int migratetype)
1975 {
1976 struct page *page;
1977
1978 /* Acquire the OOM killer lock for the zones in zonelist */
1979 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1980 schedule_timeout_uninterruptible(1);
1981 return NULL;
1982 }
1983
1984 /*
1985 * Go through the zonelist yet one more time, keep very high watermark
1986 * here, this is only to catch a parallel oom killing, we must fail if
1987 * we're still under heavy pressure.
1988 */
1989 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1990 order, zonelist, high_zoneidx,
1991 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1992 preferred_zone, migratetype);
1993 if (page)
1994 goto out;
1995
1996 if (!(gfp_mask & __GFP_NOFAIL)) {
1997 /* The OOM killer will not help higher order allocs */
1998 if (order > PAGE_ALLOC_COSTLY_ORDER)
1999 goto out;
2000 /* The OOM killer does not needlessly kill tasks for lowmem */
2001 if (high_zoneidx < ZONE_NORMAL)
2002 goto out;
2003 /*
2004 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2005 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2006 * The caller should handle page allocation failure by itself if
2007 * it specifies __GFP_THISNODE.
2008 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2009 */
2010 if (gfp_mask & __GFP_THISNODE)
2011 goto out;
2012 }
2013 /* Exhausted what can be done so it's blamo time */
2014 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2015
2016 out:
2017 clear_zonelist_oom(zonelist, gfp_mask);
2018 return page;
2019 }
2020
2021 #ifdef CONFIG_COMPACTION
2022 /* Try memory compaction for high-order allocations before reclaim */
2023 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int migratetype,bool sync_migration,bool * deferred_compaction,unsigned long * did_some_progress)2024 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2025 struct zonelist *zonelist, enum zone_type high_zoneidx,
2026 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2027 int migratetype, bool sync_migration,
2028 bool *deferred_compaction,
2029 unsigned long *did_some_progress)
2030 {
2031 struct page *page;
2032
2033 if (!order)
2034 return NULL;
2035
2036 if (compaction_deferred(preferred_zone, order)) {
2037 *deferred_compaction = true;
2038 return NULL;
2039 }
2040
2041 current->flags |= PF_MEMALLOC;
2042 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2043 nodemask, sync_migration);
2044 current->flags &= ~PF_MEMALLOC;
2045 if (*did_some_progress != COMPACT_SKIPPED) {
2046
2047 /* Page migration frees to the PCP lists but we want merging */
2048 drain_pages(get_cpu());
2049 put_cpu();
2050
2051 page = get_page_from_freelist(gfp_mask, nodemask,
2052 order, zonelist, high_zoneidx,
2053 alloc_flags, preferred_zone,
2054 migratetype);
2055 if (page) {
2056 preferred_zone->compact_considered = 0;
2057 preferred_zone->compact_defer_shift = 0;
2058 if (order >= preferred_zone->compact_order_failed)
2059 preferred_zone->compact_order_failed = order + 1;
2060 count_vm_event(COMPACTSUCCESS);
2061 return page;
2062 }
2063
2064 /*
2065 * It's bad if compaction run occurs and fails.
2066 * The most likely reason is that pages exist,
2067 * but not enough to satisfy watermarks.
2068 */
2069 count_vm_event(COMPACTFAIL);
2070
2071 /*
2072 * As async compaction considers a subset of pageblocks, only
2073 * defer if the failure was a sync compaction failure.
2074 */
2075 if (sync_migration)
2076 defer_compaction(preferred_zone, order);
2077
2078 cond_resched();
2079 }
2080
2081 return NULL;
2082 }
2083 #else
2084 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int migratetype,bool sync_migration,bool * deferred_compaction,unsigned long * did_some_progress)2085 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2086 struct zonelist *zonelist, enum zone_type high_zoneidx,
2087 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2088 int migratetype, bool sync_migration,
2089 bool *deferred_compaction,
2090 unsigned long *did_some_progress)
2091 {
2092 return NULL;
2093 }
2094 #endif /* CONFIG_COMPACTION */
2095
2096 /* The really slow allocator path where we enter direct reclaim */
2097 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int migratetype,unsigned long * did_some_progress)2098 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2099 struct zonelist *zonelist, enum zone_type high_zoneidx,
2100 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2101 int migratetype, unsigned long *did_some_progress)
2102 {
2103 struct page *page = NULL;
2104 struct reclaim_state reclaim_state;
2105 bool drained = false;
2106
2107 cond_resched();
2108
2109 /* We now go into synchronous reclaim */
2110 cpuset_memory_pressure_bump();
2111 current->flags |= PF_MEMALLOC;
2112 lockdep_set_current_reclaim_state(gfp_mask);
2113 reclaim_state.reclaimed_slab = 0;
2114 current->reclaim_state = &reclaim_state;
2115
2116 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2117
2118 current->reclaim_state = NULL;
2119 lockdep_clear_current_reclaim_state();
2120 current->flags &= ~PF_MEMALLOC;
2121
2122 cond_resched();
2123
2124 if (unlikely(!(*did_some_progress)))
2125 return NULL;
2126
2127 /* After successful reclaim, reconsider all zones for allocation */
2128 if (NUMA_BUILD)
2129 zlc_clear_zones_full(zonelist);
2130
2131 retry:
2132 page = get_page_from_freelist(gfp_mask, nodemask, order,
2133 zonelist, high_zoneidx,
2134 alloc_flags, preferred_zone,
2135 migratetype);
2136
2137 /*
2138 * If an allocation failed after direct reclaim, it could be because
2139 * pages are pinned on the per-cpu lists. Drain them and try again
2140 */
2141 if (!page && !drained) {
2142 drain_all_pages();
2143 drained = true;
2144 goto retry;
2145 }
2146
2147 return page;
2148 }
2149
2150 /*
2151 * This is called in the allocator slow-path if the allocation request is of
2152 * sufficient urgency to ignore watermarks and take other desperate measures
2153 */
2154 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int migratetype)2155 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2156 struct zonelist *zonelist, enum zone_type high_zoneidx,
2157 nodemask_t *nodemask, struct zone *preferred_zone,
2158 int migratetype)
2159 {
2160 struct page *page;
2161
2162 do {
2163 page = get_page_from_freelist(gfp_mask, nodemask, order,
2164 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2165 preferred_zone, migratetype);
2166
2167 if (!page && gfp_mask & __GFP_NOFAIL)
2168 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2169 } while (!page && (gfp_mask & __GFP_NOFAIL));
2170
2171 return page;
2172 }
2173
2174 static inline
wake_all_kswapd(unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,enum zone_type classzone_idx)2175 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2176 enum zone_type high_zoneidx,
2177 enum zone_type classzone_idx)
2178 {
2179 struct zoneref *z;
2180 struct zone *zone;
2181
2182 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2183 wakeup_kswapd(zone, order, classzone_idx);
2184 }
2185
2186 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2187 gfp_to_alloc_flags(gfp_t gfp_mask)
2188 {
2189 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2190 const gfp_t wait = gfp_mask & __GFP_WAIT;
2191
2192 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2193 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2194
2195 /*
2196 * The caller may dip into page reserves a bit more if the caller
2197 * cannot run direct reclaim, or if the caller has realtime scheduling
2198 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2199 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2200 */
2201 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2202
2203 if (!wait) {
2204 /*
2205 * Not worth trying to allocate harder for
2206 * __GFP_NOMEMALLOC even if it can't schedule.
2207 */
2208 if (!(gfp_mask & __GFP_NOMEMALLOC))
2209 alloc_flags |= ALLOC_HARDER;
2210 /*
2211 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2212 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2213 */
2214 alloc_flags &= ~ALLOC_CPUSET;
2215 } else if (unlikely(rt_task(current)) && !in_interrupt())
2216 alloc_flags |= ALLOC_HARDER;
2217
2218 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2219 if (!in_interrupt() &&
2220 ((current->flags & PF_MEMALLOC) ||
2221 unlikely(test_thread_flag(TIF_MEMDIE))))
2222 alloc_flags |= ALLOC_NO_WATERMARKS;
2223 }
2224
2225 return alloc_flags;
2226 }
2227
2228 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int migratetype)2229 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, struct zone *preferred_zone,
2232 int migratetype)
2233 {
2234 const gfp_t wait = gfp_mask & __GFP_WAIT;
2235 struct page *page = NULL;
2236 int alloc_flags;
2237 unsigned long pages_reclaimed = 0;
2238 unsigned long did_some_progress;
2239 bool sync_migration = false;
2240 bool deferred_compaction = false;
2241
2242 /*
2243 * In the slowpath, we sanity check order to avoid ever trying to
2244 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2245 * be using allocators in order of preference for an area that is
2246 * too large.
2247 */
2248 if (order >= MAX_ORDER) {
2249 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2250 return NULL;
2251 }
2252
2253 /*
2254 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2255 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2256 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2257 * using a larger set of nodes after it has established that the
2258 * allowed per node queues are empty and that nodes are
2259 * over allocated.
2260 */
2261 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2262 goto nopage;
2263
2264 restart:
2265 if (!(gfp_mask & __GFP_NO_KSWAPD))
2266 wake_all_kswapd(order, zonelist, high_zoneidx,
2267 zone_idx(preferred_zone));
2268
2269 /*
2270 * OK, we're below the kswapd watermark and have kicked background
2271 * reclaim. Now things get more complex, so set up alloc_flags according
2272 * to how we want to proceed.
2273 */
2274 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2275
2276 /*
2277 * Find the true preferred zone if the allocation is unconstrained by
2278 * cpusets.
2279 */
2280 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2281 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2282 &preferred_zone);
2283
2284 rebalance:
2285 /* This is the last chance, in general, before the goto nopage. */
2286 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2287 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2288 preferred_zone, migratetype);
2289 if (page)
2290 goto got_pg;
2291
2292 /* Allocate without watermarks if the context allows */
2293 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2294 page = __alloc_pages_high_priority(gfp_mask, order,
2295 zonelist, high_zoneidx, nodemask,
2296 preferred_zone, migratetype);
2297 if (page)
2298 goto got_pg;
2299 }
2300
2301 /* Atomic allocations - we can't balance anything */
2302 if (!wait)
2303 goto nopage;
2304
2305 /* Avoid recursion of direct reclaim */
2306 if (current->flags & PF_MEMALLOC)
2307 goto nopage;
2308
2309 /* Avoid allocations with no watermarks from looping endlessly */
2310 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2311 goto nopage;
2312
2313 /*
2314 * Try direct compaction. The first pass is asynchronous. Subsequent
2315 * attempts after direct reclaim are synchronous
2316 */
2317 page = __alloc_pages_direct_compact(gfp_mask, order,
2318 zonelist, high_zoneidx,
2319 nodemask,
2320 alloc_flags, preferred_zone,
2321 migratetype, sync_migration,
2322 &deferred_compaction,
2323 &did_some_progress);
2324 if (page)
2325 goto got_pg;
2326 sync_migration = true;
2327
2328 /*
2329 * If compaction is deferred for high-order allocations, it is because
2330 * sync compaction recently failed. In this is the case and the caller
2331 * has requested the system not be heavily disrupted, fail the
2332 * allocation now instead of entering direct reclaim
2333 */
2334 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2335 goto nopage;
2336
2337 /* Try direct reclaim and then allocating */
2338 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2339 zonelist, high_zoneidx,
2340 nodemask,
2341 alloc_flags, preferred_zone,
2342 migratetype, &did_some_progress);
2343 if (page)
2344 goto got_pg;
2345
2346 /*
2347 * If we failed to make any progress reclaiming, then we are
2348 * running out of options and have to consider going OOM
2349 */
2350 if (!did_some_progress) {
2351 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2352 if (oom_killer_disabled)
2353 goto nopage;
2354 /* Coredumps can quickly deplete all memory reserves */
2355 if ((current->flags & PF_DUMPCORE) &&
2356 !(gfp_mask & __GFP_NOFAIL))
2357 goto nopage;
2358 page = __alloc_pages_may_oom(gfp_mask, order,
2359 zonelist, high_zoneidx,
2360 nodemask, preferred_zone,
2361 migratetype);
2362 if (page)
2363 goto got_pg;
2364
2365 if (!(gfp_mask & __GFP_NOFAIL)) {
2366 /*
2367 * The oom killer is not called for high-order
2368 * allocations that may fail, so if no progress
2369 * is being made, there are no other options and
2370 * retrying is unlikely to help.
2371 */
2372 if (order > PAGE_ALLOC_COSTLY_ORDER)
2373 goto nopage;
2374 /*
2375 * The oom killer is not called for lowmem
2376 * allocations to prevent needlessly killing
2377 * innocent tasks.
2378 */
2379 if (high_zoneidx < ZONE_NORMAL)
2380 goto nopage;
2381 }
2382
2383 goto restart;
2384 }
2385 }
2386
2387 /* Check if we should retry the allocation */
2388 pages_reclaimed += did_some_progress;
2389 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2390 pages_reclaimed)) {
2391 /* Wait for some write requests to complete then retry */
2392 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2393 goto rebalance;
2394 } else {
2395 /*
2396 * High-order allocations do not necessarily loop after
2397 * direct reclaim and reclaim/compaction depends on compaction
2398 * being called after reclaim so call directly if necessary
2399 */
2400 page = __alloc_pages_direct_compact(gfp_mask, order,
2401 zonelist, high_zoneidx,
2402 nodemask,
2403 alloc_flags, preferred_zone,
2404 migratetype, sync_migration,
2405 &deferred_compaction,
2406 &did_some_progress);
2407 if (page)
2408 goto got_pg;
2409 }
2410
2411 nopage:
2412 warn_alloc_failed(gfp_mask, order, NULL);
2413 return page;
2414 got_pg:
2415 if (kmemcheck_enabled)
2416 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2417 return page;
2418
2419 }
2420
2421 /*
2422 * This is the 'heart' of the zoned buddy allocator.
2423 */
2424 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)2425 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2426 struct zonelist *zonelist, nodemask_t *nodemask)
2427 {
2428 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2429 struct zone *preferred_zone;
2430 struct page *page = NULL;
2431 int migratetype = allocflags_to_migratetype(gfp_mask);
2432 unsigned int cpuset_mems_cookie;
2433
2434 gfp_mask &= gfp_allowed_mask;
2435
2436 lockdep_trace_alloc(gfp_mask);
2437
2438 might_sleep_if(gfp_mask & __GFP_WAIT);
2439
2440 if (should_fail_alloc_page(gfp_mask, order))
2441 return NULL;
2442
2443 /*
2444 * Check the zones suitable for the gfp_mask contain at least one
2445 * valid zone. It's possible to have an empty zonelist as a result
2446 * of GFP_THISNODE and a memoryless node
2447 */
2448 if (unlikely(!zonelist->_zonerefs->zone))
2449 return NULL;
2450
2451 retry_cpuset:
2452 cpuset_mems_cookie = get_mems_allowed();
2453
2454 /* The preferred zone is used for statistics later */
2455 first_zones_zonelist(zonelist, high_zoneidx,
2456 nodemask ? : &cpuset_current_mems_allowed,
2457 &preferred_zone);
2458 if (!preferred_zone)
2459 goto out;
2460
2461 /* First allocation attempt */
2462 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2463 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2464 preferred_zone, migratetype);
2465 if (unlikely(!page))
2466 page = __alloc_pages_slowpath(gfp_mask, order,
2467 zonelist, high_zoneidx, nodemask,
2468 preferred_zone, migratetype);
2469
2470 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2471
2472 out:
2473 /*
2474 * When updating a task's mems_allowed, it is possible to race with
2475 * parallel threads in such a way that an allocation can fail while
2476 * the mask is being updated. If a page allocation is about to fail,
2477 * check if the cpuset changed during allocation and if so, retry.
2478 */
2479 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2480 goto retry_cpuset;
2481
2482 return page;
2483 }
2484 EXPORT_SYMBOL(__alloc_pages_nodemask);
2485
2486 /*
2487 * Common helper functions.
2488 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)2489 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2490 {
2491 struct page *page;
2492
2493 /*
2494 * __get_free_pages() returns a 32-bit address, which cannot represent
2495 * a highmem page
2496 */
2497 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2498
2499 page = alloc_pages(gfp_mask, order);
2500 if (!page)
2501 return 0;
2502 return (unsigned long) page_address(page);
2503 }
2504 EXPORT_SYMBOL(__get_free_pages);
2505
get_zeroed_page(gfp_t gfp_mask)2506 unsigned long get_zeroed_page(gfp_t gfp_mask)
2507 {
2508 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2509 }
2510 EXPORT_SYMBOL(get_zeroed_page);
2511
__free_pages(struct page * page,unsigned int order)2512 void __free_pages(struct page *page, unsigned int order)
2513 {
2514 if (put_page_testzero(page)) {
2515 if (order == 0)
2516 free_hot_cold_page(page, 0);
2517 else
2518 __free_pages_ok(page, order);
2519 }
2520 }
2521
2522 EXPORT_SYMBOL(__free_pages);
2523
free_pages(unsigned long addr,unsigned int order)2524 void free_pages(unsigned long addr, unsigned int order)
2525 {
2526 if (addr != 0) {
2527 VM_BUG_ON(!virt_addr_valid((void *)addr));
2528 __free_pages(virt_to_page((void *)addr), order);
2529 }
2530 }
2531
2532 EXPORT_SYMBOL(free_pages);
2533
make_alloc_exact(unsigned long addr,unsigned order,size_t size)2534 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2535 {
2536 if (addr) {
2537 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2538 unsigned long used = addr + PAGE_ALIGN(size);
2539
2540 split_page(virt_to_page((void *)addr), order);
2541 while (used < alloc_end) {
2542 free_page(used);
2543 used += PAGE_SIZE;
2544 }
2545 }
2546 return (void *)addr;
2547 }
2548
2549 /**
2550 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2551 * @size: the number of bytes to allocate
2552 * @gfp_mask: GFP flags for the allocation
2553 *
2554 * This function is similar to alloc_pages(), except that it allocates the
2555 * minimum number of pages to satisfy the request. alloc_pages() can only
2556 * allocate memory in power-of-two pages.
2557 *
2558 * This function is also limited by MAX_ORDER.
2559 *
2560 * Memory allocated by this function must be released by free_pages_exact().
2561 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)2562 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2563 {
2564 unsigned int order = get_order(size);
2565 unsigned long addr;
2566
2567 addr = __get_free_pages(gfp_mask, order);
2568 return make_alloc_exact(addr, order, size);
2569 }
2570 EXPORT_SYMBOL(alloc_pages_exact);
2571
2572 /**
2573 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2574 * pages on a node.
2575 * @nid: the preferred node ID where memory should be allocated
2576 * @size: the number of bytes to allocate
2577 * @gfp_mask: GFP flags for the allocation
2578 *
2579 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2580 * back.
2581 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2582 * but is not exact.
2583 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)2584 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2585 {
2586 unsigned order = get_order(size);
2587 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2588 if (!p)
2589 return NULL;
2590 return make_alloc_exact((unsigned long)page_address(p), order, size);
2591 }
2592 EXPORT_SYMBOL(alloc_pages_exact_nid);
2593
2594 /**
2595 * free_pages_exact - release memory allocated via alloc_pages_exact()
2596 * @virt: the value returned by alloc_pages_exact.
2597 * @size: size of allocation, same value as passed to alloc_pages_exact().
2598 *
2599 * Release the memory allocated by a previous call to alloc_pages_exact.
2600 */
free_pages_exact(void * virt,size_t size)2601 void free_pages_exact(void *virt, size_t size)
2602 {
2603 unsigned long addr = (unsigned long)virt;
2604 unsigned long end = addr + PAGE_ALIGN(size);
2605
2606 while (addr < end) {
2607 free_page(addr);
2608 addr += PAGE_SIZE;
2609 }
2610 }
2611 EXPORT_SYMBOL(free_pages_exact);
2612
nr_free_zone_pages(int offset)2613 static unsigned int nr_free_zone_pages(int offset)
2614 {
2615 struct zoneref *z;
2616 struct zone *zone;
2617
2618 /* Just pick one node, since fallback list is circular */
2619 unsigned int sum = 0;
2620
2621 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2622
2623 for_each_zone_zonelist(zone, z, zonelist, offset) {
2624 unsigned long size = zone->present_pages;
2625 unsigned long high = high_wmark_pages(zone);
2626 if (size > high)
2627 sum += size - high;
2628 }
2629
2630 return sum;
2631 }
2632
2633 /*
2634 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2635 */
nr_free_buffer_pages(void)2636 unsigned int nr_free_buffer_pages(void)
2637 {
2638 return nr_free_zone_pages(gfp_zone(GFP_USER));
2639 }
2640 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2641
2642 /*
2643 * Amount of free RAM allocatable within all zones
2644 */
nr_free_pagecache_pages(void)2645 unsigned int nr_free_pagecache_pages(void)
2646 {
2647 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2648 }
2649
show_node(struct zone * zone)2650 static inline void show_node(struct zone *zone)
2651 {
2652 if (NUMA_BUILD)
2653 printk("Node %d ", zone_to_nid(zone));
2654 }
2655
si_meminfo(struct sysinfo * val)2656 void si_meminfo(struct sysinfo *val)
2657 {
2658 val->totalram = totalram_pages;
2659 val->sharedram = 0;
2660 val->freeram = global_page_state(NR_FREE_PAGES);
2661 val->bufferram = nr_blockdev_pages();
2662 val->totalhigh = totalhigh_pages;
2663 val->freehigh = nr_free_highpages();
2664 val->mem_unit = PAGE_SIZE;
2665 }
2666
2667 EXPORT_SYMBOL(si_meminfo);
2668
2669 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)2670 void si_meminfo_node(struct sysinfo *val, int nid)
2671 {
2672 pg_data_t *pgdat = NODE_DATA(nid);
2673
2674 val->totalram = pgdat->node_present_pages;
2675 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2676 #ifdef CONFIG_HIGHMEM
2677 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2678 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2679 NR_FREE_PAGES);
2680 #else
2681 val->totalhigh = 0;
2682 val->freehigh = 0;
2683 #endif
2684 val->mem_unit = PAGE_SIZE;
2685 }
2686 #endif
2687
2688 /*
2689 * Determine whether the node should be displayed or not, depending on whether
2690 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2691 */
skip_free_areas_node(unsigned int flags,int nid)2692 bool skip_free_areas_node(unsigned int flags, int nid)
2693 {
2694 bool ret = false;
2695 unsigned int cpuset_mems_cookie;
2696
2697 if (!(flags & SHOW_MEM_FILTER_NODES))
2698 goto out;
2699
2700 do {
2701 cpuset_mems_cookie = get_mems_allowed();
2702 ret = !node_isset(nid, cpuset_current_mems_allowed);
2703 } while (!put_mems_allowed(cpuset_mems_cookie));
2704 out:
2705 return ret;
2706 }
2707
2708 #define K(x) ((x) << (PAGE_SHIFT-10))
2709
2710 /*
2711 * Show free area list (used inside shift_scroll-lock stuff)
2712 * We also calculate the percentage fragmentation. We do this by counting the
2713 * memory on each free list with the exception of the first item on the list.
2714 * Suppresses nodes that are not allowed by current's cpuset if
2715 * SHOW_MEM_FILTER_NODES is passed.
2716 */
show_free_areas(unsigned int filter)2717 void show_free_areas(unsigned int filter)
2718 {
2719 int cpu;
2720 struct zone *zone;
2721
2722 for_each_populated_zone(zone) {
2723 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2724 continue;
2725 show_node(zone);
2726 printk("%s per-cpu:\n", zone->name);
2727
2728 for_each_online_cpu(cpu) {
2729 struct per_cpu_pageset *pageset;
2730
2731 pageset = per_cpu_ptr(zone->pageset, cpu);
2732
2733 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2734 cpu, pageset->pcp.high,
2735 pageset->pcp.batch, pageset->pcp.count);
2736 }
2737 }
2738
2739 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2740 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2741 " unevictable:%lu"
2742 " dirty:%lu writeback:%lu unstable:%lu\n"
2743 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2744 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2745 global_page_state(NR_ACTIVE_ANON),
2746 global_page_state(NR_INACTIVE_ANON),
2747 global_page_state(NR_ISOLATED_ANON),
2748 global_page_state(NR_ACTIVE_FILE),
2749 global_page_state(NR_INACTIVE_FILE),
2750 global_page_state(NR_ISOLATED_FILE),
2751 global_page_state(NR_UNEVICTABLE),
2752 global_page_state(NR_FILE_DIRTY),
2753 global_page_state(NR_WRITEBACK),
2754 global_page_state(NR_UNSTABLE_NFS),
2755 global_page_state(NR_FREE_PAGES),
2756 global_page_state(NR_SLAB_RECLAIMABLE),
2757 global_page_state(NR_SLAB_UNRECLAIMABLE),
2758 global_page_state(NR_FILE_MAPPED),
2759 global_page_state(NR_SHMEM),
2760 global_page_state(NR_PAGETABLE),
2761 global_page_state(NR_BOUNCE));
2762
2763 for_each_populated_zone(zone) {
2764 int i;
2765
2766 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2767 continue;
2768 show_node(zone);
2769 printk("%s"
2770 " free:%lukB"
2771 " min:%lukB"
2772 " low:%lukB"
2773 " high:%lukB"
2774 " active_anon:%lukB"
2775 " inactive_anon:%lukB"
2776 " active_file:%lukB"
2777 " inactive_file:%lukB"
2778 " unevictable:%lukB"
2779 " isolated(anon):%lukB"
2780 " isolated(file):%lukB"
2781 " present:%lukB"
2782 " mlocked:%lukB"
2783 " dirty:%lukB"
2784 " writeback:%lukB"
2785 " mapped:%lukB"
2786 " shmem:%lukB"
2787 " slab_reclaimable:%lukB"
2788 " slab_unreclaimable:%lukB"
2789 " kernel_stack:%lukB"
2790 " pagetables:%lukB"
2791 " unstable:%lukB"
2792 " bounce:%lukB"
2793 " writeback_tmp:%lukB"
2794 " pages_scanned:%lu"
2795 " all_unreclaimable? %s"
2796 "\n",
2797 zone->name,
2798 K(zone_page_state(zone, NR_FREE_PAGES)),
2799 K(min_wmark_pages(zone)),
2800 K(low_wmark_pages(zone)),
2801 K(high_wmark_pages(zone)),
2802 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2803 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2804 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2805 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2806 K(zone_page_state(zone, NR_UNEVICTABLE)),
2807 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2808 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2809 K(zone->present_pages),
2810 K(zone_page_state(zone, NR_MLOCK)),
2811 K(zone_page_state(zone, NR_FILE_DIRTY)),
2812 K(zone_page_state(zone, NR_WRITEBACK)),
2813 K(zone_page_state(zone, NR_FILE_MAPPED)),
2814 K(zone_page_state(zone, NR_SHMEM)),
2815 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2816 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2817 zone_page_state(zone, NR_KERNEL_STACK) *
2818 THREAD_SIZE / 1024,
2819 K(zone_page_state(zone, NR_PAGETABLE)),
2820 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2821 K(zone_page_state(zone, NR_BOUNCE)),
2822 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2823 zone->pages_scanned,
2824 (zone->all_unreclaimable ? "yes" : "no")
2825 );
2826 printk("lowmem_reserve[]:");
2827 for (i = 0; i < MAX_NR_ZONES; i++)
2828 printk(" %lu", zone->lowmem_reserve[i]);
2829 printk("\n");
2830 }
2831
2832 for_each_populated_zone(zone) {
2833 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2834
2835 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2836 continue;
2837 show_node(zone);
2838 printk("%s: ", zone->name);
2839
2840 spin_lock_irqsave(&zone->lock, flags);
2841 for (order = 0; order < MAX_ORDER; order++) {
2842 nr[order] = zone->free_area[order].nr_free;
2843 total += nr[order] << order;
2844 }
2845 spin_unlock_irqrestore(&zone->lock, flags);
2846 for (order = 0; order < MAX_ORDER; order++)
2847 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2848 printk("= %lukB\n", K(total));
2849 }
2850
2851 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2852
2853 show_swap_cache_info();
2854 }
2855
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)2856 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2857 {
2858 zoneref->zone = zone;
2859 zoneref->zone_idx = zone_idx(zone);
2860 }
2861
2862 /*
2863 * Builds allocation fallback zone lists.
2864 *
2865 * Add all populated zones of a node to the zonelist.
2866 */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones,enum zone_type zone_type)2867 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2868 int nr_zones, enum zone_type zone_type)
2869 {
2870 struct zone *zone;
2871
2872 BUG_ON(zone_type >= MAX_NR_ZONES);
2873 zone_type++;
2874
2875 do {
2876 zone_type--;
2877 zone = pgdat->node_zones + zone_type;
2878 if (populated_zone(zone)) {
2879 zoneref_set_zone(zone,
2880 &zonelist->_zonerefs[nr_zones++]);
2881 check_highest_zone(zone_type);
2882 }
2883
2884 } while (zone_type);
2885 return nr_zones;
2886 }
2887
2888
2889 /*
2890 * zonelist_order:
2891 * 0 = automatic detection of better ordering.
2892 * 1 = order by ([node] distance, -zonetype)
2893 * 2 = order by (-zonetype, [node] distance)
2894 *
2895 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2896 * the same zonelist. So only NUMA can configure this param.
2897 */
2898 #define ZONELIST_ORDER_DEFAULT 0
2899 #define ZONELIST_ORDER_NODE 1
2900 #define ZONELIST_ORDER_ZONE 2
2901
2902 /* zonelist order in the kernel.
2903 * set_zonelist_order() will set this to NODE or ZONE.
2904 */
2905 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2906 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2907
2908
2909 #ifdef CONFIG_NUMA
2910 /* The value user specified ....changed by config */
2911 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2912 /* string for sysctl */
2913 #define NUMA_ZONELIST_ORDER_LEN 16
2914 char numa_zonelist_order[16] = "default";
2915
2916 /*
2917 * interface for configure zonelist ordering.
2918 * command line option "numa_zonelist_order"
2919 * = "[dD]efault - default, automatic configuration.
2920 * = "[nN]ode - order by node locality, then by zone within node
2921 * = "[zZ]one - order by zone, then by locality within zone
2922 */
2923
__parse_numa_zonelist_order(char * s)2924 static int __parse_numa_zonelist_order(char *s)
2925 {
2926 if (*s == 'd' || *s == 'D') {
2927 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2928 } else if (*s == 'n' || *s == 'N') {
2929 user_zonelist_order = ZONELIST_ORDER_NODE;
2930 } else if (*s == 'z' || *s == 'Z') {
2931 user_zonelist_order = ZONELIST_ORDER_ZONE;
2932 } else {
2933 printk(KERN_WARNING
2934 "Ignoring invalid numa_zonelist_order value: "
2935 "%s\n", s);
2936 return -EINVAL;
2937 }
2938 return 0;
2939 }
2940
setup_numa_zonelist_order(char * s)2941 static __init int setup_numa_zonelist_order(char *s)
2942 {
2943 int ret;
2944
2945 if (!s)
2946 return 0;
2947
2948 ret = __parse_numa_zonelist_order(s);
2949 if (ret == 0)
2950 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2951
2952 return ret;
2953 }
2954 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2955
2956 /*
2957 * sysctl handler for numa_zonelist_order
2958 */
numa_zonelist_order_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2959 int numa_zonelist_order_handler(ctl_table *table, int write,
2960 void __user *buffer, size_t *length,
2961 loff_t *ppos)
2962 {
2963 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2964 int ret;
2965 static DEFINE_MUTEX(zl_order_mutex);
2966
2967 mutex_lock(&zl_order_mutex);
2968 if (write)
2969 strcpy(saved_string, (char*)table->data);
2970 ret = proc_dostring(table, write, buffer, length, ppos);
2971 if (ret)
2972 goto out;
2973 if (write) {
2974 int oldval = user_zonelist_order;
2975 if (__parse_numa_zonelist_order((char*)table->data)) {
2976 /*
2977 * bogus value. restore saved string
2978 */
2979 strncpy((char*)table->data, saved_string,
2980 NUMA_ZONELIST_ORDER_LEN);
2981 user_zonelist_order = oldval;
2982 } else if (oldval != user_zonelist_order) {
2983 mutex_lock(&zonelists_mutex);
2984 build_all_zonelists(NULL);
2985 mutex_unlock(&zonelists_mutex);
2986 }
2987 }
2988 out:
2989 mutex_unlock(&zl_order_mutex);
2990 return ret;
2991 }
2992
2993
2994 #define MAX_NODE_LOAD (nr_online_nodes)
2995 static int node_load[MAX_NUMNODES];
2996
2997 /**
2998 * find_next_best_node - find the next node that should appear in a given node's fallback list
2999 * @node: node whose fallback list we're appending
3000 * @used_node_mask: nodemask_t of already used nodes
3001 *
3002 * We use a number of factors to determine which is the next node that should
3003 * appear on a given node's fallback list. The node should not have appeared
3004 * already in @node's fallback list, and it should be the next closest node
3005 * according to the distance array (which contains arbitrary distance values
3006 * from each node to each node in the system), and should also prefer nodes
3007 * with no CPUs, since presumably they'll have very little allocation pressure
3008 * on them otherwise.
3009 * It returns -1 if no node is found.
3010 */
find_next_best_node(int node,nodemask_t * used_node_mask)3011 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3012 {
3013 int n, val;
3014 int min_val = INT_MAX;
3015 int best_node = -1;
3016 const struct cpumask *tmp = cpumask_of_node(0);
3017
3018 /* Use the local node if we haven't already */
3019 if (!node_isset(node, *used_node_mask)) {
3020 node_set(node, *used_node_mask);
3021 return node;
3022 }
3023
3024 for_each_node_state(n, N_HIGH_MEMORY) {
3025
3026 /* Don't want a node to appear more than once */
3027 if (node_isset(n, *used_node_mask))
3028 continue;
3029
3030 /* Use the distance array to find the distance */
3031 val = node_distance(node, n);
3032
3033 /* Penalize nodes under us ("prefer the next node") */
3034 val += (n < node);
3035
3036 /* Give preference to headless and unused nodes */
3037 tmp = cpumask_of_node(n);
3038 if (!cpumask_empty(tmp))
3039 val += PENALTY_FOR_NODE_WITH_CPUS;
3040
3041 /* Slight preference for less loaded node */
3042 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3043 val += node_load[n];
3044
3045 if (val < min_val) {
3046 min_val = val;
3047 best_node = n;
3048 }
3049 }
3050
3051 if (best_node >= 0)
3052 node_set(best_node, *used_node_mask);
3053
3054 return best_node;
3055 }
3056
3057
3058 /*
3059 * Build zonelists ordered by node and zones within node.
3060 * This results in maximum locality--normal zone overflows into local
3061 * DMA zone, if any--but risks exhausting DMA zone.
3062 */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)3063 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3064 {
3065 int j;
3066 struct zonelist *zonelist;
3067
3068 zonelist = &pgdat->node_zonelists[0];
3069 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3070 ;
3071 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3072 MAX_NR_ZONES - 1);
3073 zonelist->_zonerefs[j].zone = NULL;
3074 zonelist->_zonerefs[j].zone_idx = 0;
3075 }
3076
3077 /*
3078 * Build gfp_thisnode zonelists
3079 */
build_thisnode_zonelists(pg_data_t * pgdat)3080 static void build_thisnode_zonelists(pg_data_t *pgdat)
3081 {
3082 int j;
3083 struct zonelist *zonelist;
3084
3085 zonelist = &pgdat->node_zonelists[1];
3086 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3087 zonelist->_zonerefs[j].zone = NULL;
3088 zonelist->_zonerefs[j].zone_idx = 0;
3089 }
3090
3091 /*
3092 * Build zonelists ordered by zone and nodes within zones.
3093 * This results in conserving DMA zone[s] until all Normal memory is
3094 * exhausted, but results in overflowing to remote node while memory
3095 * may still exist in local DMA zone.
3096 */
3097 static int node_order[MAX_NUMNODES];
3098
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)3099 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3100 {
3101 int pos, j, node;
3102 int zone_type; /* needs to be signed */
3103 struct zone *z;
3104 struct zonelist *zonelist;
3105
3106 zonelist = &pgdat->node_zonelists[0];
3107 pos = 0;
3108 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3109 for (j = 0; j < nr_nodes; j++) {
3110 node = node_order[j];
3111 z = &NODE_DATA(node)->node_zones[zone_type];
3112 if (populated_zone(z)) {
3113 zoneref_set_zone(z,
3114 &zonelist->_zonerefs[pos++]);
3115 check_highest_zone(zone_type);
3116 }
3117 }
3118 }
3119 zonelist->_zonerefs[pos].zone = NULL;
3120 zonelist->_zonerefs[pos].zone_idx = 0;
3121 }
3122
default_zonelist_order(void)3123 static int default_zonelist_order(void)
3124 {
3125 int nid, zone_type;
3126 unsigned long low_kmem_size,total_size;
3127 struct zone *z;
3128 int average_size;
3129 /*
3130 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3131 * If they are really small and used heavily, the system can fall
3132 * into OOM very easily.
3133 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3134 */
3135 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3136 low_kmem_size = 0;
3137 total_size = 0;
3138 for_each_online_node(nid) {
3139 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3140 z = &NODE_DATA(nid)->node_zones[zone_type];
3141 if (populated_zone(z)) {
3142 if (zone_type < ZONE_NORMAL)
3143 low_kmem_size += z->present_pages;
3144 total_size += z->present_pages;
3145 } else if (zone_type == ZONE_NORMAL) {
3146 /*
3147 * If any node has only lowmem, then node order
3148 * is preferred to allow kernel allocations
3149 * locally; otherwise, they can easily infringe
3150 * on other nodes when there is an abundance of
3151 * lowmem available to allocate from.
3152 */
3153 return ZONELIST_ORDER_NODE;
3154 }
3155 }
3156 }
3157 if (!low_kmem_size || /* there are no DMA area. */
3158 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3159 return ZONELIST_ORDER_NODE;
3160 /*
3161 * look into each node's config.
3162 * If there is a node whose DMA/DMA32 memory is very big area on
3163 * local memory, NODE_ORDER may be suitable.
3164 */
3165 average_size = total_size /
3166 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3167 for_each_online_node(nid) {
3168 low_kmem_size = 0;
3169 total_size = 0;
3170 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3171 z = &NODE_DATA(nid)->node_zones[zone_type];
3172 if (populated_zone(z)) {
3173 if (zone_type < ZONE_NORMAL)
3174 low_kmem_size += z->present_pages;
3175 total_size += z->present_pages;
3176 }
3177 }
3178 if (low_kmem_size &&
3179 total_size > average_size && /* ignore small node */
3180 low_kmem_size > total_size * 70/100)
3181 return ZONELIST_ORDER_NODE;
3182 }
3183 return ZONELIST_ORDER_ZONE;
3184 }
3185
set_zonelist_order(void)3186 static void set_zonelist_order(void)
3187 {
3188 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3189 current_zonelist_order = default_zonelist_order();
3190 else
3191 current_zonelist_order = user_zonelist_order;
3192 }
3193
build_zonelists(pg_data_t * pgdat)3194 static void build_zonelists(pg_data_t *pgdat)
3195 {
3196 int j, node, load;
3197 enum zone_type i;
3198 nodemask_t used_mask;
3199 int local_node, prev_node;
3200 struct zonelist *zonelist;
3201 int order = current_zonelist_order;
3202
3203 /* initialize zonelists */
3204 for (i = 0; i < MAX_ZONELISTS; i++) {
3205 zonelist = pgdat->node_zonelists + i;
3206 zonelist->_zonerefs[0].zone = NULL;
3207 zonelist->_zonerefs[0].zone_idx = 0;
3208 }
3209
3210 /* NUMA-aware ordering of nodes */
3211 local_node = pgdat->node_id;
3212 load = nr_online_nodes;
3213 prev_node = local_node;
3214 nodes_clear(used_mask);
3215
3216 memset(node_order, 0, sizeof(node_order));
3217 j = 0;
3218
3219 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3220 int distance = node_distance(local_node, node);
3221
3222 /*
3223 * If another node is sufficiently far away then it is better
3224 * to reclaim pages in a zone before going off node.
3225 */
3226 if (distance > RECLAIM_DISTANCE)
3227 zone_reclaim_mode = 1;
3228
3229 /*
3230 * We don't want to pressure a particular node.
3231 * So adding penalty to the first node in same
3232 * distance group to make it round-robin.
3233 */
3234 if (distance != node_distance(local_node, prev_node))
3235 node_load[node] = load;
3236
3237 prev_node = node;
3238 load--;
3239 if (order == ZONELIST_ORDER_NODE)
3240 build_zonelists_in_node_order(pgdat, node);
3241 else
3242 node_order[j++] = node; /* remember order */
3243 }
3244
3245 if (order == ZONELIST_ORDER_ZONE) {
3246 /* calculate node order -- i.e., DMA last! */
3247 build_zonelists_in_zone_order(pgdat, j);
3248 }
3249
3250 build_thisnode_zonelists(pgdat);
3251 }
3252
3253 /* Construct the zonelist performance cache - see further mmzone.h */
build_zonelist_cache(pg_data_t * pgdat)3254 static void build_zonelist_cache(pg_data_t *pgdat)
3255 {
3256 struct zonelist *zonelist;
3257 struct zonelist_cache *zlc;
3258 struct zoneref *z;
3259
3260 zonelist = &pgdat->node_zonelists[0];
3261 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3262 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3263 for (z = zonelist->_zonerefs; z->zone; z++)
3264 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3265 }
3266
3267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3268 /*
3269 * Return node id of node used for "local" allocations.
3270 * I.e., first node id of first zone in arg node's generic zonelist.
3271 * Used for initializing percpu 'numa_mem', which is used primarily
3272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3273 */
local_memory_node(int node)3274 int local_memory_node(int node)
3275 {
3276 struct zone *zone;
3277
3278 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3279 gfp_zone(GFP_KERNEL),
3280 NULL,
3281 &zone);
3282 return zone->node;
3283 }
3284 #endif
3285
3286 #else /* CONFIG_NUMA */
3287
set_zonelist_order(void)3288 static void set_zonelist_order(void)
3289 {
3290 current_zonelist_order = ZONELIST_ORDER_ZONE;
3291 }
3292
build_zonelists(pg_data_t * pgdat)3293 static void build_zonelists(pg_data_t *pgdat)
3294 {
3295 int node, local_node;
3296 enum zone_type j;
3297 struct zonelist *zonelist;
3298
3299 local_node = pgdat->node_id;
3300
3301 zonelist = &pgdat->node_zonelists[0];
3302 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3303
3304 /*
3305 * Now we build the zonelist so that it contains the zones
3306 * of all the other nodes.
3307 * We don't want to pressure a particular node, so when
3308 * building the zones for node N, we make sure that the
3309 * zones coming right after the local ones are those from
3310 * node N+1 (modulo N)
3311 */
3312 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3313 if (!node_online(node))
3314 continue;
3315 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3316 MAX_NR_ZONES - 1);
3317 }
3318 for (node = 0; node < local_node; node++) {
3319 if (!node_online(node))
3320 continue;
3321 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3322 MAX_NR_ZONES - 1);
3323 }
3324
3325 zonelist->_zonerefs[j].zone = NULL;
3326 zonelist->_zonerefs[j].zone_idx = 0;
3327 }
3328
3329 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
build_zonelist_cache(pg_data_t * pgdat)3330 static void build_zonelist_cache(pg_data_t *pgdat)
3331 {
3332 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3333 }
3334
3335 #endif /* CONFIG_NUMA */
3336
3337 /*
3338 * Boot pageset table. One per cpu which is going to be used for all
3339 * zones and all nodes. The parameters will be set in such a way
3340 * that an item put on a list will immediately be handed over to
3341 * the buddy list. This is safe since pageset manipulation is done
3342 * with interrupts disabled.
3343 *
3344 * The boot_pagesets must be kept even after bootup is complete for
3345 * unused processors and/or zones. They do play a role for bootstrapping
3346 * hotplugged processors.
3347 *
3348 * zoneinfo_show() and maybe other functions do
3349 * not check if the processor is online before following the pageset pointer.
3350 * Other parts of the kernel may not check if the zone is available.
3351 */
3352 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3353 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3354 static void setup_zone_pageset(struct zone *zone);
3355
3356 /*
3357 * Global mutex to protect against size modification of zonelists
3358 * as well as to serialize pageset setup for the new populated zone.
3359 */
3360 DEFINE_MUTEX(zonelists_mutex);
3361
3362 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)3363 static __init_refok int __build_all_zonelists(void *data)
3364 {
3365 int nid;
3366 int cpu;
3367
3368 #ifdef CONFIG_NUMA
3369 memset(node_load, 0, sizeof(node_load));
3370 #endif
3371 for_each_online_node(nid) {
3372 pg_data_t *pgdat = NODE_DATA(nid);
3373
3374 build_zonelists(pgdat);
3375 build_zonelist_cache(pgdat);
3376 }
3377
3378 /*
3379 * Initialize the boot_pagesets that are going to be used
3380 * for bootstrapping processors. The real pagesets for
3381 * each zone will be allocated later when the per cpu
3382 * allocator is available.
3383 *
3384 * boot_pagesets are used also for bootstrapping offline
3385 * cpus if the system is already booted because the pagesets
3386 * are needed to initialize allocators on a specific cpu too.
3387 * F.e. the percpu allocator needs the page allocator which
3388 * needs the percpu allocator in order to allocate its pagesets
3389 * (a chicken-egg dilemma).
3390 */
3391 for_each_possible_cpu(cpu) {
3392 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3393
3394 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3395 /*
3396 * We now know the "local memory node" for each node--
3397 * i.e., the node of the first zone in the generic zonelist.
3398 * Set up numa_mem percpu variable for on-line cpus. During
3399 * boot, only the boot cpu should be on-line; we'll init the
3400 * secondary cpus' numa_mem as they come on-line. During
3401 * node/memory hotplug, we'll fixup all on-line cpus.
3402 */
3403 if (cpu_online(cpu))
3404 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3405 #endif
3406 }
3407
3408 return 0;
3409 }
3410
3411 /*
3412 * Called with zonelists_mutex held always
3413 * unless system_state == SYSTEM_BOOTING.
3414 */
build_all_zonelists(void * data)3415 void __ref build_all_zonelists(void *data)
3416 {
3417 set_zonelist_order();
3418
3419 if (system_state == SYSTEM_BOOTING) {
3420 __build_all_zonelists(NULL);
3421 mminit_verify_zonelist();
3422 cpuset_init_current_mems_allowed();
3423 } else {
3424 /* we have to stop all cpus to guarantee there is no user
3425 of zonelist */
3426 #ifdef CONFIG_MEMORY_HOTPLUG
3427 if (data)
3428 setup_zone_pageset((struct zone *)data);
3429 #endif
3430 stop_machine(__build_all_zonelists, NULL, NULL);
3431 /* cpuset refresh routine should be here */
3432 }
3433 vm_total_pages = nr_free_pagecache_pages();
3434 /*
3435 * Disable grouping by mobility if the number of pages in the
3436 * system is too low to allow the mechanism to work. It would be
3437 * more accurate, but expensive to check per-zone. This check is
3438 * made on memory-hotadd so a system can start with mobility
3439 * disabled and enable it later
3440 */
3441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3442 page_group_by_mobility_disabled = 1;
3443 else
3444 page_group_by_mobility_disabled = 0;
3445
3446 printk("Built %i zonelists in %s order, mobility grouping %s. "
3447 "Total pages: %ld\n",
3448 nr_online_nodes,
3449 zonelist_order_name[current_zonelist_order],
3450 page_group_by_mobility_disabled ? "off" : "on",
3451 vm_total_pages);
3452 #ifdef CONFIG_NUMA
3453 printk("Policy zone: %s\n", zone_names[policy_zone]);
3454 #endif
3455 }
3456
3457 /*
3458 * Helper functions to size the waitqueue hash table.
3459 * Essentially these want to choose hash table sizes sufficiently
3460 * large so that collisions trying to wait on pages are rare.
3461 * But in fact, the number of active page waitqueues on typical
3462 * systems is ridiculously low, less than 200. So this is even
3463 * conservative, even though it seems large.
3464 *
3465 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3466 * waitqueues, i.e. the size of the waitq table given the number of pages.
3467 */
3468 #define PAGES_PER_WAITQUEUE 256
3469
3470 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)3471 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3472 {
3473 unsigned long size = 1;
3474
3475 pages /= PAGES_PER_WAITQUEUE;
3476
3477 while (size < pages)
3478 size <<= 1;
3479
3480 /*
3481 * Once we have dozens or even hundreds of threads sleeping
3482 * on IO we've got bigger problems than wait queue collision.
3483 * Limit the size of the wait table to a reasonable size.
3484 */
3485 size = min(size, 4096UL);
3486
3487 return max(size, 4UL);
3488 }
3489 #else
3490 /*
3491 * A zone's size might be changed by hot-add, so it is not possible to determine
3492 * a suitable size for its wait_table. So we use the maximum size now.
3493 *
3494 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3495 *
3496 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3497 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3498 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3499 *
3500 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3501 * or more by the traditional way. (See above). It equals:
3502 *
3503 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3504 * ia64(16K page size) : = ( 8G + 4M)byte.
3505 * powerpc (64K page size) : = (32G +16M)byte.
3506 */
wait_table_hash_nr_entries(unsigned long pages)3507 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3508 {
3509 return 4096UL;
3510 }
3511 #endif
3512
3513 /*
3514 * This is an integer logarithm so that shifts can be used later
3515 * to extract the more random high bits from the multiplicative
3516 * hash function before the remainder is taken.
3517 */
wait_table_bits(unsigned long size)3518 static inline unsigned long wait_table_bits(unsigned long size)
3519 {
3520 return ffz(~size);
3521 }
3522
3523 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3524
3525 /*
3526 * Check if a pageblock contains reserved pages
3527 */
pageblock_is_reserved(unsigned long start_pfn,unsigned long end_pfn)3528 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3529 {
3530 unsigned long pfn;
3531
3532 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3533 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3534 return 1;
3535 }
3536 return 0;
3537 }
3538
3539 /*
3540 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3541 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3542 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3543 * higher will lead to a bigger reserve which will get freed as contiguous
3544 * blocks as reclaim kicks in
3545 */
setup_zone_migrate_reserve(struct zone * zone)3546 static void setup_zone_migrate_reserve(struct zone *zone)
3547 {
3548 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3549 struct page *page;
3550 unsigned long block_migratetype;
3551 int reserve;
3552
3553 /*
3554 * Get the start pfn, end pfn and the number of blocks to reserve
3555 * We have to be careful to be aligned to pageblock_nr_pages to
3556 * make sure that we always check pfn_valid for the first page in
3557 * the block.
3558 */
3559 start_pfn = zone->zone_start_pfn;
3560 end_pfn = start_pfn + zone->spanned_pages;
3561 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3562 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3563 pageblock_order;
3564
3565 /*
3566 * Reserve blocks are generally in place to help high-order atomic
3567 * allocations that are short-lived. A min_free_kbytes value that
3568 * would result in more than 2 reserve blocks for atomic allocations
3569 * is assumed to be in place to help anti-fragmentation for the
3570 * future allocation of hugepages at runtime.
3571 */
3572 reserve = min(2, reserve);
3573
3574 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3575 if (!pfn_valid(pfn))
3576 continue;
3577 page = pfn_to_page(pfn);
3578
3579 /* Watch out for overlapping nodes */
3580 if (page_to_nid(page) != zone_to_nid(zone))
3581 continue;
3582
3583 block_migratetype = get_pageblock_migratetype(page);
3584
3585 /* Only test what is necessary when the reserves are not met */
3586 if (reserve > 0) {
3587 /*
3588 * Blocks with reserved pages will never free, skip
3589 * them.
3590 */
3591 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3592 if (pageblock_is_reserved(pfn, block_end_pfn))
3593 continue;
3594
3595 /* If this block is reserved, account for it */
3596 if (block_migratetype == MIGRATE_RESERVE) {
3597 reserve--;
3598 continue;
3599 }
3600
3601 /* Suitable for reserving if this block is movable */
3602 if (block_migratetype == MIGRATE_MOVABLE) {
3603 set_pageblock_migratetype(page,
3604 MIGRATE_RESERVE);
3605 move_freepages_block(zone, page,
3606 MIGRATE_RESERVE);
3607 reserve--;
3608 continue;
3609 }
3610 }
3611
3612 /*
3613 * If the reserve is met and this is a previous reserved block,
3614 * take it back
3615 */
3616 if (block_migratetype == MIGRATE_RESERVE) {
3617 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3618 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3619 }
3620 }
3621 }
3622
3623 /*
3624 * Initially all pages are reserved - free ones are freed
3625 * up by free_all_bootmem() once the early boot process is
3626 * done. Non-atomic initialization, single-pass.
3627 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)3628 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3629 unsigned long start_pfn, enum memmap_context context)
3630 {
3631 struct page *page;
3632 unsigned long end_pfn = start_pfn + size;
3633 unsigned long pfn;
3634 struct zone *z;
3635
3636 if (highest_memmap_pfn < end_pfn - 1)
3637 highest_memmap_pfn = end_pfn - 1;
3638
3639 z = &NODE_DATA(nid)->node_zones[zone];
3640 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3641 /*
3642 * There can be holes in boot-time mem_map[]s
3643 * handed to this function. They do not
3644 * exist on hotplugged memory.
3645 */
3646 if (context == MEMMAP_EARLY) {
3647 if (!early_pfn_valid(pfn))
3648 continue;
3649 if (!early_pfn_in_nid(pfn, nid))
3650 continue;
3651 }
3652 page = pfn_to_page(pfn);
3653 set_page_links(page, zone, nid, pfn);
3654 mminit_verify_page_links(page, zone, nid, pfn);
3655 init_page_count(page);
3656 reset_page_mapcount(page);
3657 SetPageReserved(page);
3658 /*
3659 * Mark the block movable so that blocks are reserved for
3660 * movable at startup. This will force kernel allocations
3661 * to reserve their blocks rather than leaking throughout
3662 * the address space during boot when many long-lived
3663 * kernel allocations are made. Later some blocks near
3664 * the start are marked MIGRATE_RESERVE by
3665 * setup_zone_migrate_reserve()
3666 *
3667 * bitmap is created for zone's valid pfn range. but memmap
3668 * can be created for invalid pages (for alignment)
3669 * check here not to call set_pageblock_migratetype() against
3670 * pfn out of zone.
3671 */
3672 if ((z->zone_start_pfn <= pfn)
3673 && (pfn < z->zone_start_pfn + z->spanned_pages)
3674 && !(pfn & (pageblock_nr_pages - 1)))
3675 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3676
3677 INIT_LIST_HEAD(&page->lru);
3678 #ifdef WANT_PAGE_VIRTUAL
3679 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3680 if (!is_highmem_idx(zone))
3681 set_page_address(page, __va(pfn << PAGE_SHIFT));
3682 #endif
3683 }
3684 }
3685
zone_init_free_lists(struct zone * zone)3686 static void __meminit zone_init_free_lists(struct zone *zone)
3687 {
3688 int order, t;
3689 for_each_migratetype_order(order, t) {
3690 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3691 zone->free_area[order].nr_free = 0;
3692 }
3693 }
3694
3695 #ifndef __HAVE_ARCH_MEMMAP_INIT
3696 #define memmap_init(size, nid, zone, start_pfn) \
3697 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3698 #endif
3699
zone_batchsize(struct zone * zone)3700 static int zone_batchsize(struct zone *zone)
3701 {
3702 #ifdef CONFIG_MMU
3703 int batch;
3704
3705 /*
3706 * The per-cpu-pages pools are set to around 1000th of the
3707 * size of the zone. But no more than 1/2 of a meg.
3708 *
3709 * OK, so we don't know how big the cache is. So guess.
3710 */
3711 batch = zone->present_pages / 1024;
3712 if (batch * PAGE_SIZE > 512 * 1024)
3713 batch = (512 * 1024) / PAGE_SIZE;
3714 batch /= 4; /* We effectively *= 4 below */
3715 if (batch < 1)
3716 batch = 1;
3717
3718 /*
3719 * Clamp the batch to a 2^n - 1 value. Having a power
3720 * of 2 value was found to be more likely to have
3721 * suboptimal cache aliasing properties in some cases.
3722 *
3723 * For example if 2 tasks are alternately allocating
3724 * batches of pages, one task can end up with a lot
3725 * of pages of one half of the possible page colors
3726 * and the other with pages of the other colors.
3727 */
3728 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3729
3730 return batch;
3731
3732 #else
3733 /* The deferral and batching of frees should be suppressed under NOMMU
3734 * conditions.
3735 *
3736 * The problem is that NOMMU needs to be able to allocate large chunks
3737 * of contiguous memory as there's no hardware page translation to
3738 * assemble apparent contiguous memory from discontiguous pages.
3739 *
3740 * Queueing large contiguous runs of pages for batching, however,
3741 * causes the pages to actually be freed in smaller chunks. As there
3742 * can be a significant delay between the individual batches being
3743 * recycled, this leads to the once large chunks of space being
3744 * fragmented and becoming unavailable for high-order allocations.
3745 */
3746 return 0;
3747 #endif
3748 }
3749
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)3750 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3751 {
3752 struct per_cpu_pages *pcp;
3753 int migratetype;
3754
3755 memset(p, 0, sizeof(*p));
3756
3757 pcp = &p->pcp;
3758 pcp->count = 0;
3759 pcp->high = 6 * batch;
3760 pcp->batch = max(1UL, 1 * batch);
3761 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3762 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3763 }
3764
3765 /*
3766 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3767 * to the value high for the pageset p.
3768 */
3769
setup_pagelist_highmark(struct per_cpu_pageset * p,unsigned long high)3770 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3771 unsigned long high)
3772 {
3773 struct per_cpu_pages *pcp;
3774
3775 pcp = &p->pcp;
3776 pcp->high = high;
3777 pcp->batch = max(1UL, high/4);
3778 if ((high/4) > (PAGE_SHIFT * 8))
3779 pcp->batch = PAGE_SHIFT * 8;
3780 }
3781
setup_zone_pageset(struct zone * zone)3782 static void setup_zone_pageset(struct zone *zone)
3783 {
3784 int cpu;
3785
3786 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3787
3788 for_each_possible_cpu(cpu) {
3789 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3790
3791 setup_pageset(pcp, zone_batchsize(zone));
3792
3793 if (percpu_pagelist_fraction)
3794 setup_pagelist_highmark(pcp,
3795 (zone->present_pages /
3796 percpu_pagelist_fraction));
3797 }
3798 }
3799
3800 /*
3801 * Allocate per cpu pagesets and initialize them.
3802 * Before this call only boot pagesets were available.
3803 */
setup_per_cpu_pageset(void)3804 void __init setup_per_cpu_pageset(void)
3805 {
3806 struct zone *zone;
3807
3808 for_each_populated_zone(zone)
3809 setup_zone_pageset(zone);
3810 }
3811
3812 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)3813 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3814 {
3815 int i;
3816 struct pglist_data *pgdat = zone->zone_pgdat;
3817 size_t alloc_size;
3818
3819 /*
3820 * The per-page waitqueue mechanism uses hashed waitqueues
3821 * per zone.
3822 */
3823 zone->wait_table_hash_nr_entries =
3824 wait_table_hash_nr_entries(zone_size_pages);
3825 zone->wait_table_bits =
3826 wait_table_bits(zone->wait_table_hash_nr_entries);
3827 alloc_size = zone->wait_table_hash_nr_entries
3828 * sizeof(wait_queue_head_t);
3829
3830 if (!slab_is_available()) {
3831 zone->wait_table = (wait_queue_head_t *)
3832 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3833 } else {
3834 /*
3835 * This case means that a zone whose size was 0 gets new memory
3836 * via memory hot-add.
3837 * But it may be the case that a new node was hot-added. In
3838 * this case vmalloc() will not be able to use this new node's
3839 * memory - this wait_table must be initialized to use this new
3840 * node itself as well.
3841 * To use this new node's memory, further consideration will be
3842 * necessary.
3843 */
3844 zone->wait_table = vmalloc(alloc_size);
3845 }
3846 if (!zone->wait_table)
3847 return -ENOMEM;
3848
3849 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3850 init_waitqueue_head(zone->wait_table + i);
3851
3852 return 0;
3853 }
3854
__zone_pcp_update(void * data)3855 static int __zone_pcp_update(void *data)
3856 {
3857 struct zone *zone = data;
3858 int cpu;
3859 unsigned long batch = zone_batchsize(zone), flags;
3860
3861 for_each_possible_cpu(cpu) {
3862 struct per_cpu_pageset *pset;
3863 struct per_cpu_pages *pcp;
3864
3865 pset = per_cpu_ptr(zone->pageset, cpu);
3866 pcp = &pset->pcp;
3867
3868 local_irq_save(flags);
3869 free_pcppages_bulk(zone, pcp->count, pcp);
3870 setup_pageset(pset, batch);
3871 local_irq_restore(flags);
3872 }
3873 return 0;
3874 }
3875
zone_pcp_update(struct zone * zone)3876 void zone_pcp_update(struct zone *zone)
3877 {
3878 stop_machine(__zone_pcp_update, zone, NULL);
3879 }
3880
zone_pcp_init(struct zone * zone)3881 static __meminit void zone_pcp_init(struct zone *zone)
3882 {
3883 /*
3884 * per cpu subsystem is not up at this point. The following code
3885 * relies on the ability of the linker to provide the
3886 * offset of a (static) per cpu variable into the per cpu area.
3887 */
3888 zone->pageset = &boot_pageset;
3889
3890 if (zone->present_pages)
3891 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3892 zone->name, zone->present_pages,
3893 zone_batchsize(zone));
3894 }
3895
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size,enum memmap_context context)3896 __meminit int init_currently_empty_zone(struct zone *zone,
3897 unsigned long zone_start_pfn,
3898 unsigned long size,
3899 enum memmap_context context)
3900 {
3901 struct pglist_data *pgdat = zone->zone_pgdat;
3902 int ret;
3903 ret = zone_wait_table_init(zone, size);
3904 if (ret)
3905 return ret;
3906 pgdat->nr_zones = zone_idx(zone) + 1;
3907
3908 zone->zone_start_pfn = zone_start_pfn;
3909
3910 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3911 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3912 pgdat->node_id,
3913 (unsigned long)zone_idx(zone),
3914 zone_start_pfn, (zone_start_pfn + size));
3915
3916 zone_init_free_lists(zone);
3917
3918 return 0;
3919 }
3920
3921 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3922 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3923 /*
3924 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3925 * Architectures may implement their own version but if add_active_range()
3926 * was used and there are no special requirements, this is a convenient
3927 * alternative
3928 */
__early_pfn_to_nid(unsigned long pfn)3929 int __meminit __early_pfn_to_nid(unsigned long pfn)
3930 {
3931 unsigned long start_pfn, end_pfn;
3932 int i, nid;
3933
3934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3935 if (start_pfn <= pfn && pfn < end_pfn)
3936 return nid;
3937 /* This is a memory hole */
3938 return -1;
3939 }
3940 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3941
early_pfn_to_nid(unsigned long pfn)3942 int __meminit early_pfn_to_nid(unsigned long pfn)
3943 {
3944 int nid;
3945
3946 nid = __early_pfn_to_nid(pfn);
3947 if (nid >= 0)
3948 return nid;
3949 /* just returns 0 */
3950 return 0;
3951 }
3952
3953 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
early_pfn_in_nid(unsigned long pfn,int node)3954 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3955 {
3956 int nid;
3957
3958 nid = __early_pfn_to_nid(pfn);
3959 if (nid >= 0 && nid != node)
3960 return false;
3961 return true;
3962 }
3963 #endif
3964
3965 /**
3966 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3967 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3968 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3969 *
3970 * If an architecture guarantees that all ranges registered with
3971 * add_active_ranges() contain no holes and may be freed, this
3972 * this function may be used instead of calling free_bootmem() manually.
3973 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)3974 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3975 {
3976 unsigned long start_pfn, end_pfn;
3977 int i, this_nid;
3978
3979 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3980 start_pfn = min(start_pfn, max_low_pfn);
3981 end_pfn = min(end_pfn, max_low_pfn);
3982
3983 if (start_pfn < end_pfn)
3984 free_bootmem_node(NODE_DATA(this_nid),
3985 PFN_PHYS(start_pfn),
3986 (end_pfn - start_pfn) << PAGE_SHIFT);
3987 }
3988 }
3989
3990 /**
3991 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3992 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3993 *
3994 * If an architecture guarantees that all ranges registered with
3995 * add_active_ranges() contain no holes and may be freed, this
3996 * function may be used instead of calling memory_present() manually.
3997 */
sparse_memory_present_with_active_regions(int nid)3998 void __init sparse_memory_present_with_active_regions(int nid)
3999 {
4000 unsigned long start_pfn, end_pfn;
4001 int i, this_nid;
4002
4003 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4004 memory_present(this_nid, start_pfn, end_pfn);
4005 }
4006
4007 /**
4008 * get_pfn_range_for_nid - Return the start and end page frames for a node
4009 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4010 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4011 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4012 *
4013 * It returns the start and end page frame of a node based on information
4014 * provided by an arch calling add_active_range(). If called for a node
4015 * with no available memory, a warning is printed and the start and end
4016 * PFNs will be 0.
4017 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4018 void __meminit get_pfn_range_for_nid(unsigned int nid,
4019 unsigned long *start_pfn, unsigned long *end_pfn)
4020 {
4021 unsigned long this_start_pfn, this_end_pfn;
4022 int i;
4023
4024 *start_pfn = -1UL;
4025 *end_pfn = 0;
4026
4027 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4028 *start_pfn = min(*start_pfn, this_start_pfn);
4029 *end_pfn = max(*end_pfn, this_end_pfn);
4030 }
4031
4032 if (*start_pfn == -1UL)
4033 *start_pfn = 0;
4034 }
4035
4036 /*
4037 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4038 * assumption is made that zones within a node are ordered in monotonic
4039 * increasing memory addresses so that the "highest" populated zone is used
4040 */
find_usable_zone_for_movable(void)4041 static void __init find_usable_zone_for_movable(void)
4042 {
4043 int zone_index;
4044 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4045 if (zone_index == ZONE_MOVABLE)
4046 continue;
4047
4048 if (arch_zone_highest_possible_pfn[zone_index] >
4049 arch_zone_lowest_possible_pfn[zone_index])
4050 break;
4051 }
4052
4053 VM_BUG_ON(zone_index == -1);
4054 movable_zone = zone_index;
4055 }
4056
4057 /*
4058 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4059 * because it is sized independent of architecture. Unlike the other zones,
4060 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4061 * in each node depending on the size of each node and how evenly kernelcore
4062 * is distributed. This helper function adjusts the zone ranges
4063 * provided by the architecture for a given node by using the end of the
4064 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4065 * zones within a node are in order of monotonic increases memory addresses
4066 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)4067 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4068 unsigned long zone_type,
4069 unsigned long node_start_pfn,
4070 unsigned long node_end_pfn,
4071 unsigned long *zone_start_pfn,
4072 unsigned long *zone_end_pfn)
4073 {
4074 /* Only adjust if ZONE_MOVABLE is on this node */
4075 if (zone_movable_pfn[nid]) {
4076 /* Size ZONE_MOVABLE */
4077 if (zone_type == ZONE_MOVABLE) {
4078 *zone_start_pfn = zone_movable_pfn[nid];
4079 *zone_end_pfn = min(node_end_pfn,
4080 arch_zone_highest_possible_pfn[movable_zone]);
4081
4082 /* Adjust for ZONE_MOVABLE starting within this range */
4083 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4084 *zone_end_pfn > zone_movable_pfn[nid]) {
4085 *zone_end_pfn = zone_movable_pfn[nid];
4086
4087 /* Check if this whole range is within ZONE_MOVABLE */
4088 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4089 *zone_start_pfn = *zone_end_pfn;
4090 }
4091 }
4092
4093 /*
4094 * Return the number of pages a zone spans in a node, including holes
4095 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4096 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long * ignored)4097 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4098 unsigned long zone_type,
4099 unsigned long *ignored)
4100 {
4101 unsigned long node_start_pfn, node_end_pfn;
4102 unsigned long zone_start_pfn, zone_end_pfn;
4103
4104 /* Get the start and end of the node and zone */
4105 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4106 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4107 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4108 adjust_zone_range_for_zone_movable(nid, zone_type,
4109 node_start_pfn, node_end_pfn,
4110 &zone_start_pfn, &zone_end_pfn);
4111
4112 /* Check that this node has pages within the zone's required range */
4113 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4114 return 0;
4115
4116 /* Move the zone boundaries inside the node if necessary */
4117 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4118 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4119
4120 /* Return the spanned pages */
4121 return zone_end_pfn - zone_start_pfn;
4122 }
4123
4124 /*
4125 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4126 * then all holes in the requested range will be accounted for.
4127 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)4128 unsigned long __meminit __absent_pages_in_range(int nid,
4129 unsigned long range_start_pfn,
4130 unsigned long range_end_pfn)
4131 {
4132 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4133 unsigned long start_pfn, end_pfn;
4134 int i;
4135
4136 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4137 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4138 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4139 nr_absent -= end_pfn - start_pfn;
4140 }
4141 return nr_absent;
4142 }
4143
4144 /**
4145 * absent_pages_in_range - Return number of page frames in holes within a range
4146 * @start_pfn: The start PFN to start searching for holes
4147 * @end_pfn: The end PFN to stop searching for holes
4148 *
4149 * It returns the number of pages frames in memory holes within a range.
4150 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)4151 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4152 unsigned long end_pfn)
4153 {
4154 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4155 }
4156
4157 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long * ignored)4158 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4159 unsigned long zone_type,
4160 unsigned long *ignored)
4161 {
4162 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4163 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4164 unsigned long node_start_pfn, node_end_pfn;
4165 unsigned long zone_start_pfn, zone_end_pfn;
4166
4167 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4168 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4169 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4170
4171 adjust_zone_range_for_zone_movable(nid, zone_type,
4172 node_start_pfn, node_end_pfn,
4173 &zone_start_pfn, &zone_end_pfn);
4174 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4175 }
4176
4177 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long * zones_size)4178 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4179 unsigned long zone_type,
4180 unsigned long *zones_size)
4181 {
4182 return zones_size[zone_type];
4183 }
4184
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long * zholes_size)4185 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4186 unsigned long zone_type,
4187 unsigned long *zholes_size)
4188 {
4189 if (!zholes_size)
4190 return 0;
4191
4192 return zholes_size[zone_type];
4193 }
4194
4195 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4196
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long * zones_size,unsigned long * zholes_size)4197 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4198 unsigned long *zones_size, unsigned long *zholes_size)
4199 {
4200 unsigned long realtotalpages, totalpages = 0;
4201 enum zone_type i;
4202
4203 for (i = 0; i < MAX_NR_ZONES; i++)
4204 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4205 zones_size);
4206 pgdat->node_spanned_pages = totalpages;
4207
4208 realtotalpages = totalpages;
4209 for (i = 0; i < MAX_NR_ZONES; i++)
4210 realtotalpages -=
4211 zone_absent_pages_in_node(pgdat->node_id, i,
4212 zholes_size);
4213 pgdat->node_present_pages = realtotalpages;
4214 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4215 realtotalpages);
4216 }
4217
4218 #ifndef CONFIG_SPARSEMEM
4219 /*
4220 * Calculate the size of the zone->blockflags rounded to an unsigned long
4221 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4222 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4223 * round what is now in bits to nearest long in bits, then return it in
4224 * bytes.
4225 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)4226 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4227 {
4228 unsigned long usemapsize;
4229
4230 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4231 usemapsize = roundup(zonesize, pageblock_nr_pages);
4232 usemapsize = usemapsize >> pageblock_order;
4233 usemapsize *= NR_PAGEBLOCK_BITS;
4234 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4235
4236 return usemapsize / 8;
4237 }
4238
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4239 static void __init setup_usemap(struct pglist_data *pgdat,
4240 struct zone *zone,
4241 unsigned long zone_start_pfn,
4242 unsigned long zonesize)
4243 {
4244 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4245 zone->pageblock_flags = NULL;
4246 if (usemapsize)
4247 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4248 usemapsize);
4249 }
4250 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4251 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4252 unsigned long zone_start_pfn, unsigned long zonesize) {}
4253 #endif /* CONFIG_SPARSEMEM */
4254
4255 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4256
4257 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)4258 void __init set_pageblock_order(void)
4259 {
4260 unsigned int order;
4261
4262 /* Check that pageblock_nr_pages has not already been setup */
4263 if (pageblock_order)
4264 return;
4265
4266 if (HPAGE_SHIFT > PAGE_SHIFT)
4267 order = HUGETLB_PAGE_ORDER;
4268 else
4269 order = MAX_ORDER - 1;
4270
4271 /*
4272 * Assume the largest contiguous order of interest is a huge page.
4273 * This value may be variable depending on boot parameters on IA64 and
4274 * powerpc.
4275 */
4276 pageblock_order = order;
4277 }
4278 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4279
4280 /*
4281 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4282 * is unused as pageblock_order is set at compile-time. See
4283 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4284 * the kernel config
4285 */
set_pageblock_order(void)4286 void __init set_pageblock_order(void)
4287 {
4288 }
4289
4290 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4291
4292 /*
4293 * Set up the zone data structures:
4294 * - mark all pages reserved
4295 * - mark all memory queues empty
4296 * - clear the memory bitmaps
4297 */
free_area_init_core(struct pglist_data * pgdat,unsigned long * zones_size,unsigned long * zholes_size)4298 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4299 unsigned long *zones_size, unsigned long *zholes_size)
4300 {
4301 enum zone_type j;
4302 int nid = pgdat->node_id;
4303 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4304 int ret;
4305
4306 pgdat_resize_init(pgdat);
4307 pgdat->nr_zones = 0;
4308 init_waitqueue_head(&pgdat->kswapd_wait);
4309 pgdat->kswapd_max_order = 0;
4310 pgdat_page_cgroup_init(pgdat);
4311
4312 for (j = 0; j < MAX_NR_ZONES; j++) {
4313 struct zone *zone = pgdat->node_zones + j;
4314 unsigned long size, realsize, memmap_pages;
4315 enum lru_list lru;
4316
4317 size = zone_spanned_pages_in_node(nid, j, zones_size);
4318 realsize = size - zone_absent_pages_in_node(nid, j,
4319 zholes_size);
4320
4321 /*
4322 * Adjust realsize so that it accounts for how much memory
4323 * is used by this zone for memmap. This affects the watermark
4324 * and per-cpu initialisations
4325 */
4326 memmap_pages =
4327 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4328 if (realsize >= memmap_pages) {
4329 realsize -= memmap_pages;
4330 if (memmap_pages)
4331 printk(KERN_DEBUG
4332 " %s zone: %lu pages used for memmap\n",
4333 zone_names[j], memmap_pages);
4334 } else
4335 printk(KERN_WARNING
4336 " %s zone: %lu pages exceeds realsize %lu\n",
4337 zone_names[j], memmap_pages, realsize);
4338
4339 /* Account for reserved pages */
4340 if (j == 0 && realsize > dma_reserve) {
4341 realsize -= dma_reserve;
4342 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4343 zone_names[0], dma_reserve);
4344 }
4345
4346 if (!is_highmem_idx(j))
4347 nr_kernel_pages += realsize;
4348 nr_all_pages += realsize;
4349
4350 zone->spanned_pages = size;
4351 zone->present_pages = realsize;
4352 #ifdef CONFIG_NUMA
4353 zone->node = nid;
4354 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4355 / 100;
4356 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4357 #endif
4358 zone->name = zone_names[j];
4359 spin_lock_init(&zone->lock);
4360 spin_lock_init(&zone->lru_lock);
4361 zone_seqlock_init(zone);
4362 zone->zone_pgdat = pgdat;
4363
4364 zone_pcp_init(zone);
4365 for_each_lru(lru)
4366 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4367 zone->reclaim_stat.recent_rotated[0] = 0;
4368 zone->reclaim_stat.recent_rotated[1] = 0;
4369 zone->reclaim_stat.recent_scanned[0] = 0;
4370 zone->reclaim_stat.recent_scanned[1] = 0;
4371 zap_zone_vm_stats(zone);
4372 zone->flags = 0;
4373 if (!size)
4374 continue;
4375
4376 set_pageblock_order();
4377 setup_usemap(pgdat, zone, zone_start_pfn, size);
4378 ret = init_currently_empty_zone(zone, zone_start_pfn,
4379 size, MEMMAP_EARLY);
4380 BUG_ON(ret);
4381 memmap_init(size, nid, j, zone_start_pfn);
4382 zone_start_pfn += size;
4383 }
4384 }
4385
alloc_node_mem_map(struct pglist_data * pgdat)4386 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4387 {
4388 /* Skip empty nodes */
4389 if (!pgdat->node_spanned_pages)
4390 return;
4391
4392 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4393 /* ia64 gets its own node_mem_map, before this, without bootmem */
4394 if (!pgdat->node_mem_map) {
4395 unsigned long size, start, end;
4396 struct page *map;
4397
4398 /*
4399 * The zone's endpoints aren't required to be MAX_ORDER
4400 * aligned but the node_mem_map endpoints must be in order
4401 * for the buddy allocator to function correctly.
4402 */
4403 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4404 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4405 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4406 size = (end - start) * sizeof(struct page);
4407 map = alloc_remap(pgdat->node_id, size);
4408 if (!map)
4409 map = alloc_bootmem_node_nopanic(pgdat, size);
4410 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4411 }
4412 #ifndef CONFIG_NEED_MULTIPLE_NODES
4413 /*
4414 * With no DISCONTIG, the global mem_map is just set as node 0's
4415 */
4416 if (pgdat == NODE_DATA(0)) {
4417 mem_map = NODE_DATA(0)->node_mem_map;
4418 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4419 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4420 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4421 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4422 }
4423 #endif
4424 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4425 }
4426
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)4427 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4428 unsigned long node_start_pfn, unsigned long *zholes_size)
4429 {
4430 pg_data_t *pgdat = NODE_DATA(nid);
4431
4432 pgdat->node_id = nid;
4433 pgdat->node_start_pfn = node_start_pfn;
4434 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4435
4436 alloc_node_mem_map(pgdat);
4437 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4438 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4439 nid, (unsigned long)pgdat,
4440 (unsigned long)pgdat->node_mem_map);
4441 #endif
4442
4443 free_area_init_core(pgdat, zones_size, zholes_size);
4444 }
4445
4446 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4447
4448 #if MAX_NUMNODES > 1
4449 /*
4450 * Figure out the number of possible node ids.
4451 */
setup_nr_node_ids(void)4452 static void __init setup_nr_node_ids(void)
4453 {
4454 unsigned int node;
4455 unsigned int highest = 0;
4456
4457 for_each_node_mask(node, node_possible_map)
4458 highest = node;
4459 nr_node_ids = highest + 1;
4460 }
4461 #else
setup_nr_node_ids(void)4462 static inline void setup_nr_node_ids(void)
4463 {
4464 }
4465 #endif
4466
4467 /**
4468 * node_map_pfn_alignment - determine the maximum internode alignment
4469 *
4470 * This function should be called after node map is populated and sorted.
4471 * It calculates the maximum power of two alignment which can distinguish
4472 * all the nodes.
4473 *
4474 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4475 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4476 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4477 * shifted, 1GiB is enough and this function will indicate so.
4478 *
4479 * This is used to test whether pfn -> nid mapping of the chosen memory
4480 * model has fine enough granularity to avoid incorrect mapping for the
4481 * populated node map.
4482 *
4483 * Returns the determined alignment in pfn's. 0 if there is no alignment
4484 * requirement (single node).
4485 */
node_map_pfn_alignment(void)4486 unsigned long __init node_map_pfn_alignment(void)
4487 {
4488 unsigned long accl_mask = 0, last_end = 0;
4489 unsigned long start, end, mask;
4490 int last_nid = -1;
4491 int i, nid;
4492
4493 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4494 if (!start || last_nid < 0 || last_nid == nid) {
4495 last_nid = nid;
4496 last_end = end;
4497 continue;
4498 }
4499
4500 /*
4501 * Start with a mask granular enough to pin-point to the
4502 * start pfn and tick off bits one-by-one until it becomes
4503 * too coarse to separate the current node from the last.
4504 */
4505 mask = ~((1 << __ffs(start)) - 1);
4506 while (mask && last_end <= (start & (mask << 1)))
4507 mask <<= 1;
4508
4509 /* accumulate all internode masks */
4510 accl_mask |= mask;
4511 }
4512
4513 /* convert mask to number of pages */
4514 return ~accl_mask + 1;
4515 }
4516
4517 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)4518 static unsigned long __init find_min_pfn_for_node(int nid)
4519 {
4520 unsigned long min_pfn = ULONG_MAX;
4521 unsigned long start_pfn;
4522 int i;
4523
4524 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4525 min_pfn = min(min_pfn, start_pfn);
4526
4527 if (min_pfn == ULONG_MAX) {
4528 printk(KERN_WARNING
4529 "Could not find start_pfn for node %d\n", nid);
4530 return 0;
4531 }
4532
4533 return min_pfn;
4534 }
4535
4536 /**
4537 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4538 *
4539 * It returns the minimum PFN based on information provided via
4540 * add_active_range().
4541 */
find_min_pfn_with_active_regions(void)4542 unsigned long __init find_min_pfn_with_active_regions(void)
4543 {
4544 return find_min_pfn_for_node(MAX_NUMNODES);
4545 }
4546
4547 /*
4548 * early_calculate_totalpages()
4549 * Sum pages in active regions for movable zone.
4550 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4551 */
early_calculate_totalpages(void)4552 static unsigned long __init early_calculate_totalpages(void)
4553 {
4554 unsigned long totalpages = 0;
4555 unsigned long start_pfn, end_pfn;
4556 int i, nid;
4557
4558 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4559 unsigned long pages = end_pfn - start_pfn;
4560
4561 totalpages += pages;
4562 if (pages)
4563 node_set_state(nid, N_HIGH_MEMORY);
4564 }
4565 return totalpages;
4566 }
4567
4568 /*
4569 * Find the PFN the Movable zone begins in each node. Kernel memory
4570 * is spread evenly between nodes as long as the nodes have enough
4571 * memory. When they don't, some nodes will have more kernelcore than
4572 * others
4573 */
find_zone_movable_pfns_for_nodes(void)4574 static void __init find_zone_movable_pfns_for_nodes(void)
4575 {
4576 int i, nid;
4577 unsigned long usable_startpfn;
4578 unsigned long kernelcore_node, kernelcore_remaining;
4579 /* save the state before borrow the nodemask */
4580 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4581 unsigned long totalpages = early_calculate_totalpages();
4582 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4583
4584 /*
4585 * If movablecore was specified, calculate what size of
4586 * kernelcore that corresponds so that memory usable for
4587 * any allocation type is evenly spread. If both kernelcore
4588 * and movablecore are specified, then the value of kernelcore
4589 * will be used for required_kernelcore if it's greater than
4590 * what movablecore would have allowed.
4591 */
4592 if (required_movablecore) {
4593 unsigned long corepages;
4594
4595 /*
4596 * Round-up so that ZONE_MOVABLE is at least as large as what
4597 * was requested by the user
4598 */
4599 required_movablecore =
4600 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4601 corepages = totalpages - required_movablecore;
4602
4603 required_kernelcore = max(required_kernelcore, corepages);
4604 }
4605
4606 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4607 if (!required_kernelcore)
4608 goto out;
4609
4610 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4611 find_usable_zone_for_movable();
4612 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4613
4614 restart:
4615 /* Spread kernelcore memory as evenly as possible throughout nodes */
4616 kernelcore_node = required_kernelcore / usable_nodes;
4617 for_each_node_state(nid, N_HIGH_MEMORY) {
4618 unsigned long start_pfn, end_pfn;
4619
4620 /*
4621 * Recalculate kernelcore_node if the division per node
4622 * now exceeds what is necessary to satisfy the requested
4623 * amount of memory for the kernel
4624 */
4625 if (required_kernelcore < kernelcore_node)
4626 kernelcore_node = required_kernelcore / usable_nodes;
4627
4628 /*
4629 * As the map is walked, we track how much memory is usable
4630 * by the kernel using kernelcore_remaining. When it is
4631 * 0, the rest of the node is usable by ZONE_MOVABLE
4632 */
4633 kernelcore_remaining = kernelcore_node;
4634
4635 /* Go through each range of PFNs within this node */
4636 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4637 unsigned long size_pages;
4638
4639 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4640 if (start_pfn >= end_pfn)
4641 continue;
4642
4643 /* Account for what is only usable for kernelcore */
4644 if (start_pfn < usable_startpfn) {
4645 unsigned long kernel_pages;
4646 kernel_pages = min(end_pfn, usable_startpfn)
4647 - start_pfn;
4648
4649 kernelcore_remaining -= min(kernel_pages,
4650 kernelcore_remaining);
4651 required_kernelcore -= min(kernel_pages,
4652 required_kernelcore);
4653
4654 /* Continue if range is now fully accounted */
4655 if (end_pfn <= usable_startpfn) {
4656
4657 /*
4658 * Push zone_movable_pfn to the end so
4659 * that if we have to rebalance
4660 * kernelcore across nodes, we will
4661 * not double account here
4662 */
4663 zone_movable_pfn[nid] = end_pfn;
4664 continue;
4665 }
4666 start_pfn = usable_startpfn;
4667 }
4668
4669 /*
4670 * The usable PFN range for ZONE_MOVABLE is from
4671 * start_pfn->end_pfn. Calculate size_pages as the
4672 * number of pages used as kernelcore
4673 */
4674 size_pages = end_pfn - start_pfn;
4675 if (size_pages > kernelcore_remaining)
4676 size_pages = kernelcore_remaining;
4677 zone_movable_pfn[nid] = start_pfn + size_pages;
4678
4679 /*
4680 * Some kernelcore has been met, update counts and
4681 * break if the kernelcore for this node has been
4682 * satisified
4683 */
4684 required_kernelcore -= min(required_kernelcore,
4685 size_pages);
4686 kernelcore_remaining -= size_pages;
4687 if (!kernelcore_remaining)
4688 break;
4689 }
4690 }
4691
4692 /*
4693 * If there is still required_kernelcore, we do another pass with one
4694 * less node in the count. This will push zone_movable_pfn[nid] further
4695 * along on the nodes that still have memory until kernelcore is
4696 * satisified
4697 */
4698 usable_nodes--;
4699 if (usable_nodes && required_kernelcore > usable_nodes)
4700 goto restart;
4701
4702 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4703 for (nid = 0; nid < MAX_NUMNODES; nid++)
4704 zone_movable_pfn[nid] =
4705 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4706
4707 out:
4708 /* restore the node_state */
4709 node_states[N_HIGH_MEMORY] = saved_node_state;
4710 }
4711
4712 /* Any regular memory on that node ? */
check_for_regular_memory(pg_data_t * pgdat)4713 static void check_for_regular_memory(pg_data_t *pgdat)
4714 {
4715 #ifdef CONFIG_HIGHMEM
4716 enum zone_type zone_type;
4717
4718 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4719 struct zone *zone = &pgdat->node_zones[zone_type];
4720 if (zone->present_pages) {
4721 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4722 break;
4723 }
4724 }
4725 #endif
4726 }
4727
4728 /**
4729 * free_area_init_nodes - Initialise all pg_data_t and zone data
4730 * @max_zone_pfn: an array of max PFNs for each zone
4731 *
4732 * This will call free_area_init_node() for each active node in the system.
4733 * Using the page ranges provided by add_active_range(), the size of each
4734 * zone in each node and their holes is calculated. If the maximum PFN
4735 * between two adjacent zones match, it is assumed that the zone is empty.
4736 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4737 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4738 * starts where the previous one ended. For example, ZONE_DMA32 starts
4739 * at arch_max_dma_pfn.
4740 */
free_area_init_nodes(unsigned long * max_zone_pfn)4741 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4742 {
4743 unsigned long start_pfn, end_pfn;
4744 int i, nid;
4745
4746 /* Record where the zone boundaries are */
4747 memset(arch_zone_lowest_possible_pfn, 0,
4748 sizeof(arch_zone_lowest_possible_pfn));
4749 memset(arch_zone_highest_possible_pfn, 0,
4750 sizeof(arch_zone_highest_possible_pfn));
4751 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4752 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4753 for (i = 1; i < MAX_NR_ZONES; i++) {
4754 if (i == ZONE_MOVABLE)
4755 continue;
4756 arch_zone_lowest_possible_pfn[i] =
4757 arch_zone_highest_possible_pfn[i-1];
4758 arch_zone_highest_possible_pfn[i] =
4759 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4760 }
4761 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4762 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4763
4764 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4765 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4766 find_zone_movable_pfns_for_nodes();
4767
4768 /* Print out the zone ranges */
4769 printk("Zone PFN ranges:\n");
4770 for (i = 0; i < MAX_NR_ZONES; i++) {
4771 if (i == ZONE_MOVABLE)
4772 continue;
4773 printk(" %-8s ", zone_names[i]);
4774 if (arch_zone_lowest_possible_pfn[i] ==
4775 arch_zone_highest_possible_pfn[i])
4776 printk("empty\n");
4777 else
4778 printk("%0#10lx -> %0#10lx\n",
4779 arch_zone_lowest_possible_pfn[i],
4780 arch_zone_highest_possible_pfn[i]);
4781 }
4782
4783 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4784 printk("Movable zone start PFN for each node\n");
4785 for (i = 0; i < MAX_NUMNODES; i++) {
4786 if (zone_movable_pfn[i])
4787 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4788 }
4789
4790 /* Print out the early_node_map[] */
4791 printk("Early memory PFN ranges\n");
4792 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4793 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4794
4795 /* Initialise every node */
4796 mminit_verify_pageflags_layout();
4797 setup_nr_node_ids();
4798 for_each_online_node(nid) {
4799 pg_data_t *pgdat = NODE_DATA(nid);
4800 free_area_init_node(nid, NULL,
4801 find_min_pfn_for_node(nid), NULL);
4802
4803 /* Any memory on that node */
4804 if (pgdat->node_present_pages)
4805 node_set_state(nid, N_HIGH_MEMORY);
4806 check_for_regular_memory(pgdat);
4807 }
4808 }
4809
cmdline_parse_core(char * p,unsigned long * core)4810 static int __init cmdline_parse_core(char *p, unsigned long *core)
4811 {
4812 unsigned long long coremem;
4813 if (!p)
4814 return -EINVAL;
4815
4816 coremem = memparse(p, &p);
4817 *core = coremem >> PAGE_SHIFT;
4818
4819 /* Paranoid check that UL is enough for the coremem value */
4820 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4821
4822 return 0;
4823 }
4824
4825 /*
4826 * kernelcore=size sets the amount of memory for use for allocations that
4827 * cannot be reclaimed or migrated.
4828 */
cmdline_parse_kernelcore(char * p)4829 static int __init cmdline_parse_kernelcore(char *p)
4830 {
4831 return cmdline_parse_core(p, &required_kernelcore);
4832 }
4833
4834 /*
4835 * movablecore=size sets the amount of memory for use for allocations that
4836 * can be reclaimed or migrated.
4837 */
cmdline_parse_movablecore(char * p)4838 static int __init cmdline_parse_movablecore(char *p)
4839 {
4840 return cmdline_parse_core(p, &required_movablecore);
4841 }
4842
4843 early_param("kernelcore", cmdline_parse_kernelcore);
4844 early_param("movablecore", cmdline_parse_movablecore);
4845
4846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4847
4848 /**
4849 * set_dma_reserve - set the specified number of pages reserved in the first zone
4850 * @new_dma_reserve: The number of pages to mark reserved
4851 *
4852 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4853 * In the DMA zone, a significant percentage may be consumed by kernel image
4854 * and other unfreeable allocations which can skew the watermarks badly. This
4855 * function may optionally be used to account for unfreeable pages in the
4856 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4857 * smaller per-cpu batchsize.
4858 */
set_dma_reserve(unsigned long new_dma_reserve)4859 void __init set_dma_reserve(unsigned long new_dma_reserve)
4860 {
4861 dma_reserve = new_dma_reserve;
4862 }
4863
free_area_init(unsigned long * zones_size)4864 void __init free_area_init(unsigned long *zones_size)
4865 {
4866 free_area_init_node(0, zones_size,
4867 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4868 }
4869
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4870 static int page_alloc_cpu_notify(struct notifier_block *self,
4871 unsigned long action, void *hcpu)
4872 {
4873 int cpu = (unsigned long)hcpu;
4874
4875 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4876 lru_add_drain_cpu(cpu);
4877 drain_pages(cpu);
4878
4879 /*
4880 * Spill the event counters of the dead processor
4881 * into the current processors event counters.
4882 * This artificially elevates the count of the current
4883 * processor.
4884 */
4885 vm_events_fold_cpu(cpu);
4886
4887 /*
4888 * Zero the differential counters of the dead processor
4889 * so that the vm statistics are consistent.
4890 *
4891 * This is only okay since the processor is dead and cannot
4892 * race with what we are doing.
4893 */
4894 refresh_cpu_vm_stats(cpu);
4895 }
4896 return NOTIFY_OK;
4897 }
4898
page_alloc_init(void)4899 void __init page_alloc_init(void)
4900 {
4901 hotcpu_notifier(page_alloc_cpu_notify, 0);
4902 }
4903
4904 /*
4905 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4906 * or min_free_kbytes changes.
4907 */
calculate_totalreserve_pages(void)4908 static void calculate_totalreserve_pages(void)
4909 {
4910 struct pglist_data *pgdat;
4911 unsigned long reserve_pages = 0;
4912 enum zone_type i, j;
4913
4914 for_each_online_pgdat(pgdat) {
4915 for (i = 0; i < MAX_NR_ZONES; i++) {
4916 struct zone *zone = pgdat->node_zones + i;
4917 unsigned long max = 0;
4918
4919 /* Find valid and maximum lowmem_reserve in the zone */
4920 for (j = i; j < MAX_NR_ZONES; j++) {
4921 if (zone->lowmem_reserve[j] > max)
4922 max = zone->lowmem_reserve[j];
4923 }
4924
4925 /* we treat the high watermark as reserved pages. */
4926 max += high_wmark_pages(zone);
4927
4928 if (max > zone->present_pages)
4929 max = zone->present_pages;
4930 reserve_pages += max;
4931 /*
4932 * Lowmem reserves are not available to
4933 * GFP_HIGHUSER page cache allocations and
4934 * kswapd tries to balance zones to their high
4935 * watermark. As a result, neither should be
4936 * regarded as dirtyable memory, to prevent a
4937 * situation where reclaim has to clean pages
4938 * in order to balance the zones.
4939 */
4940 zone->dirty_balance_reserve = max;
4941 }
4942 }
4943 dirty_balance_reserve = reserve_pages;
4944 totalreserve_pages = reserve_pages;
4945 }
4946
4947 /*
4948 * setup_per_zone_lowmem_reserve - called whenever
4949 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4950 * has a correct pages reserved value, so an adequate number of
4951 * pages are left in the zone after a successful __alloc_pages().
4952 */
setup_per_zone_lowmem_reserve(void)4953 static void setup_per_zone_lowmem_reserve(void)
4954 {
4955 struct pglist_data *pgdat;
4956 enum zone_type j, idx;
4957
4958 for_each_online_pgdat(pgdat) {
4959 for (j = 0; j < MAX_NR_ZONES; j++) {
4960 struct zone *zone = pgdat->node_zones + j;
4961 unsigned long present_pages = zone->present_pages;
4962
4963 zone->lowmem_reserve[j] = 0;
4964
4965 idx = j;
4966 while (idx) {
4967 struct zone *lower_zone;
4968
4969 idx--;
4970
4971 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4972 sysctl_lowmem_reserve_ratio[idx] = 1;
4973
4974 lower_zone = pgdat->node_zones + idx;
4975 lower_zone->lowmem_reserve[j] = present_pages /
4976 sysctl_lowmem_reserve_ratio[idx];
4977 present_pages += lower_zone->present_pages;
4978 }
4979 }
4980 }
4981
4982 /* update totalreserve_pages */
4983 calculate_totalreserve_pages();
4984 }
4985
4986 /**
4987 * setup_per_zone_wmarks - called when min_free_kbytes changes
4988 * or when memory is hot-{added|removed}
4989 *
4990 * Ensures that the watermark[min,low,high] values for each zone are set
4991 * correctly with respect to min_free_kbytes.
4992 */
setup_per_zone_wmarks(void)4993 void setup_per_zone_wmarks(void)
4994 {
4995 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4996 unsigned long lowmem_pages = 0;
4997 struct zone *zone;
4998 unsigned long flags;
4999
5000 /* Calculate total number of !ZONE_HIGHMEM pages */
5001 for_each_zone(zone) {
5002 if (!is_highmem(zone))
5003 lowmem_pages += zone->present_pages;
5004 }
5005
5006 for_each_zone(zone) {
5007 u64 tmp;
5008
5009 spin_lock_irqsave(&zone->lock, flags);
5010 tmp = (u64)pages_min * zone->present_pages;
5011 do_div(tmp, lowmem_pages);
5012 if (is_highmem(zone)) {
5013 /*
5014 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5015 * need highmem pages, so cap pages_min to a small
5016 * value here.
5017 *
5018 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5019 * deltas controls asynch page reclaim, and so should
5020 * not be capped for highmem.
5021 */
5022 int min_pages;
5023
5024 min_pages = zone->present_pages / 1024;
5025 if (min_pages < SWAP_CLUSTER_MAX)
5026 min_pages = SWAP_CLUSTER_MAX;
5027 if (min_pages > 128)
5028 min_pages = 128;
5029 zone->watermark[WMARK_MIN] = min_pages;
5030 } else {
5031 /*
5032 * If it's a lowmem zone, reserve a number of pages
5033 * proportionate to the zone's size.
5034 */
5035 zone->watermark[WMARK_MIN] = tmp;
5036 }
5037
5038 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5039 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5040 setup_zone_migrate_reserve(zone);
5041 spin_unlock_irqrestore(&zone->lock, flags);
5042 }
5043
5044 /* update totalreserve_pages */
5045 calculate_totalreserve_pages();
5046 }
5047
5048 /*
5049 * The inactive anon list should be small enough that the VM never has to
5050 * do too much work, but large enough that each inactive page has a chance
5051 * to be referenced again before it is swapped out.
5052 *
5053 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5054 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5055 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5056 * the anonymous pages are kept on the inactive list.
5057 *
5058 * total target max
5059 * memory ratio inactive anon
5060 * -------------------------------------
5061 * 10MB 1 5MB
5062 * 100MB 1 50MB
5063 * 1GB 3 250MB
5064 * 10GB 10 0.9GB
5065 * 100GB 31 3GB
5066 * 1TB 101 10GB
5067 * 10TB 320 32GB
5068 */
calculate_zone_inactive_ratio(struct zone * zone)5069 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5070 {
5071 unsigned int gb, ratio;
5072
5073 /* Zone size in gigabytes */
5074 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5075 if (gb)
5076 ratio = int_sqrt(10 * gb);
5077 else
5078 ratio = 1;
5079
5080 zone->inactive_ratio = ratio;
5081 }
5082
setup_per_zone_inactive_ratio(void)5083 static void __meminit setup_per_zone_inactive_ratio(void)
5084 {
5085 struct zone *zone;
5086
5087 for_each_zone(zone)
5088 calculate_zone_inactive_ratio(zone);
5089 }
5090
5091 /*
5092 * Initialise min_free_kbytes.
5093 *
5094 * For small machines we want it small (128k min). For large machines
5095 * we want it large (64MB max). But it is not linear, because network
5096 * bandwidth does not increase linearly with machine size. We use
5097 *
5098 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5099 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5100 *
5101 * which yields
5102 *
5103 * 16MB: 512k
5104 * 32MB: 724k
5105 * 64MB: 1024k
5106 * 128MB: 1448k
5107 * 256MB: 2048k
5108 * 512MB: 2896k
5109 * 1024MB: 4096k
5110 * 2048MB: 5792k
5111 * 4096MB: 8192k
5112 * 8192MB: 11584k
5113 * 16384MB: 16384k
5114 */
init_per_zone_wmark_min(void)5115 int __meminit init_per_zone_wmark_min(void)
5116 {
5117 unsigned long lowmem_kbytes;
5118
5119 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5120
5121 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5122 if (min_free_kbytes < 128)
5123 min_free_kbytes = 128;
5124 if (min_free_kbytes > 65536)
5125 min_free_kbytes = 65536;
5126 setup_per_zone_wmarks();
5127 refresh_zone_stat_thresholds();
5128 setup_per_zone_lowmem_reserve();
5129 setup_per_zone_inactive_ratio();
5130 return 0;
5131 }
module_init(init_per_zone_wmark_min)5132 module_init(init_per_zone_wmark_min)
5133
5134 /*
5135 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5136 * that we can call two helper functions whenever min_free_kbytes
5137 * changes.
5138 */
5139 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5140 void __user *buffer, size_t *length, loff_t *ppos)
5141 {
5142 proc_dointvec(table, write, buffer, length, ppos);
5143 if (write)
5144 setup_per_zone_wmarks();
5145 return 0;
5146 }
5147
5148 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5149 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5150 void __user *buffer, size_t *length, loff_t *ppos)
5151 {
5152 struct zone *zone;
5153 int rc;
5154
5155 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5156 if (rc)
5157 return rc;
5158
5159 for_each_zone(zone)
5160 zone->min_unmapped_pages = (zone->present_pages *
5161 sysctl_min_unmapped_ratio) / 100;
5162 return 0;
5163 }
5164
sysctl_min_slab_ratio_sysctl_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5165 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5166 void __user *buffer, size_t *length, loff_t *ppos)
5167 {
5168 struct zone *zone;
5169 int rc;
5170
5171 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5172 if (rc)
5173 return rc;
5174
5175 for_each_zone(zone)
5176 zone->min_slab_pages = (zone->present_pages *
5177 sysctl_min_slab_ratio) / 100;
5178 return 0;
5179 }
5180 #endif
5181
5182 /*
5183 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5184 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5185 * whenever sysctl_lowmem_reserve_ratio changes.
5186 *
5187 * The reserve ratio obviously has absolutely no relation with the
5188 * minimum watermarks. The lowmem reserve ratio can only make sense
5189 * if in function of the boot time zone sizes.
5190 */
lowmem_reserve_ratio_sysctl_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5191 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5192 void __user *buffer, size_t *length, loff_t *ppos)
5193 {
5194 proc_dointvec_minmax(table, write, buffer, length, ppos);
5195 setup_per_zone_lowmem_reserve();
5196 return 0;
5197 }
5198
5199 /*
5200 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5201 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5202 * can have before it gets flushed back to buddy allocator.
5203 */
5204
percpu_pagelist_fraction_sysctl_handler(ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5205 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5206 void __user *buffer, size_t *length, loff_t *ppos)
5207 {
5208 struct zone *zone;
5209 unsigned int cpu;
5210 int ret;
5211
5212 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5213 if (!write || (ret < 0))
5214 return ret;
5215 for_each_populated_zone(zone) {
5216 for_each_possible_cpu(cpu) {
5217 unsigned long high;
5218 high = zone->present_pages / percpu_pagelist_fraction;
5219 setup_pagelist_highmark(
5220 per_cpu_ptr(zone->pageset, cpu), high);
5221 }
5222 }
5223 return 0;
5224 }
5225
5226 int hashdist = HASHDIST_DEFAULT;
5227
5228 #ifdef CONFIG_NUMA
set_hashdist(char * str)5229 static int __init set_hashdist(char *str)
5230 {
5231 if (!str)
5232 return 0;
5233 hashdist = simple_strtoul(str, &str, 0);
5234 return 1;
5235 }
5236 __setup("hashdist=", set_hashdist);
5237 #endif
5238
5239 /*
5240 * allocate a large system hash table from bootmem
5241 * - it is assumed that the hash table must contain an exact power-of-2
5242 * quantity of entries
5243 * - limit is the number of hash buckets, not the total allocation size
5244 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long limit)5245 void *__init alloc_large_system_hash(const char *tablename,
5246 unsigned long bucketsize,
5247 unsigned long numentries,
5248 int scale,
5249 int flags,
5250 unsigned int *_hash_shift,
5251 unsigned int *_hash_mask,
5252 unsigned long limit)
5253 {
5254 unsigned long long max = limit;
5255 unsigned long log2qty, size;
5256 void *table = NULL;
5257
5258 /* allow the kernel cmdline to have a say */
5259 if (!numentries) {
5260 /* round applicable memory size up to nearest megabyte */
5261 numentries = nr_kernel_pages;
5262 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5263 numentries >>= 20 - PAGE_SHIFT;
5264 numentries <<= 20 - PAGE_SHIFT;
5265
5266 /* limit to 1 bucket per 2^scale bytes of low memory */
5267 if (scale > PAGE_SHIFT)
5268 numentries >>= (scale - PAGE_SHIFT);
5269 else
5270 numentries <<= (PAGE_SHIFT - scale);
5271
5272 /* Make sure we've got at least a 0-order allocation.. */
5273 if (unlikely(flags & HASH_SMALL)) {
5274 /* Makes no sense without HASH_EARLY */
5275 WARN_ON(!(flags & HASH_EARLY));
5276 if (!(numentries >> *_hash_shift)) {
5277 numentries = 1UL << *_hash_shift;
5278 BUG_ON(!numentries);
5279 }
5280 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5281 numentries = PAGE_SIZE / bucketsize;
5282 }
5283 numentries = roundup_pow_of_two(numentries);
5284
5285 /* limit allocation size to 1/16 total memory by default */
5286 if (max == 0) {
5287 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5288 do_div(max, bucketsize);
5289 }
5290 max = min(max, 0x80000000ULL);
5291
5292 if (numentries > max)
5293 numentries = max;
5294
5295 log2qty = ilog2(numentries);
5296
5297 do {
5298 size = bucketsize << log2qty;
5299 if (flags & HASH_EARLY)
5300 table = alloc_bootmem_nopanic(size);
5301 else if (hashdist)
5302 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5303 else {
5304 /*
5305 * If bucketsize is not a power-of-two, we may free
5306 * some pages at the end of hash table which
5307 * alloc_pages_exact() automatically does
5308 */
5309 if (get_order(size) < MAX_ORDER) {
5310 table = alloc_pages_exact(size, GFP_ATOMIC);
5311 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5312 }
5313 }
5314 } while (!table && size > PAGE_SIZE && --log2qty);
5315
5316 if (!table)
5317 panic("Failed to allocate %s hash table\n", tablename);
5318
5319 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5320 tablename,
5321 (1UL << log2qty),
5322 ilog2(size) - PAGE_SHIFT,
5323 size);
5324
5325 if (_hash_shift)
5326 *_hash_shift = log2qty;
5327 if (_hash_mask)
5328 *_hash_mask = (1 << log2qty) - 1;
5329
5330 return table;
5331 }
5332
5333 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)5334 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5335 unsigned long pfn)
5336 {
5337 #ifdef CONFIG_SPARSEMEM
5338 return __pfn_to_section(pfn)->pageblock_flags;
5339 #else
5340 return zone->pageblock_flags;
5341 #endif /* CONFIG_SPARSEMEM */
5342 }
5343
pfn_to_bitidx(struct zone * zone,unsigned long pfn)5344 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5345 {
5346 #ifdef CONFIG_SPARSEMEM
5347 pfn &= (PAGES_PER_SECTION-1);
5348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5349 #else
5350 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5351 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5352 #endif /* CONFIG_SPARSEMEM */
5353 }
5354
5355 /**
5356 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5357 * @page: The page within the block of interest
5358 * @start_bitidx: The first bit of interest to retrieve
5359 * @end_bitidx: The last bit of interest
5360 * returns pageblock_bits flags
5361 */
get_pageblock_flags_group(struct page * page,int start_bitidx,int end_bitidx)5362 unsigned long get_pageblock_flags_group(struct page *page,
5363 int start_bitidx, int end_bitidx)
5364 {
5365 struct zone *zone;
5366 unsigned long *bitmap;
5367 unsigned long pfn, bitidx;
5368 unsigned long flags = 0;
5369 unsigned long value = 1;
5370
5371 zone = page_zone(page);
5372 pfn = page_to_pfn(page);
5373 bitmap = get_pageblock_bitmap(zone, pfn);
5374 bitidx = pfn_to_bitidx(zone, pfn);
5375
5376 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5377 if (test_bit(bitidx + start_bitidx, bitmap))
5378 flags |= value;
5379
5380 return flags;
5381 }
5382
5383 /**
5384 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5385 * @page: The page within the block of interest
5386 * @start_bitidx: The first bit of interest
5387 * @end_bitidx: The last bit of interest
5388 * @flags: The flags to set
5389 */
set_pageblock_flags_group(struct page * page,unsigned long flags,int start_bitidx,int end_bitidx)5390 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5391 int start_bitidx, int end_bitidx)
5392 {
5393 struct zone *zone;
5394 unsigned long *bitmap;
5395 unsigned long pfn, bitidx;
5396 unsigned long value = 1;
5397
5398 zone = page_zone(page);
5399 pfn = page_to_pfn(page);
5400 bitmap = get_pageblock_bitmap(zone, pfn);
5401 bitidx = pfn_to_bitidx(zone, pfn);
5402 VM_BUG_ON(pfn < zone->zone_start_pfn);
5403 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5404
5405 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5406 if (flags & value)
5407 __set_bit(bitidx + start_bitidx, bitmap);
5408 else
5409 __clear_bit(bitidx + start_bitidx, bitmap);
5410 }
5411
5412 /*
5413 * This is designed as sub function...plz see page_isolation.c also.
5414 * set/clear page block's type to be ISOLATE.
5415 * page allocater never alloc memory from ISOLATE block.
5416 */
5417
5418 static int
__count_immobile_pages(struct zone * zone,struct page * page,int count)5419 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5420 {
5421 unsigned long pfn, iter, found;
5422 /*
5423 * For avoiding noise data, lru_add_drain_all() should be called
5424 * If ZONE_MOVABLE, the zone never contains immobile pages
5425 */
5426 if (zone_idx(zone) == ZONE_MOVABLE)
5427 return true;
5428
5429 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5430 return true;
5431
5432 pfn = page_to_pfn(page);
5433 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5434 unsigned long check = pfn + iter;
5435
5436 if (!pfn_valid_within(check))
5437 continue;
5438
5439 page = pfn_to_page(check);
5440 if (!page_count(page)) {
5441 if (PageBuddy(page))
5442 iter += (1 << page_order(page)) - 1;
5443 continue;
5444 }
5445 if (!PageLRU(page))
5446 found++;
5447 /*
5448 * If there are RECLAIMABLE pages, we need to check it.
5449 * But now, memory offline itself doesn't call shrink_slab()
5450 * and it still to be fixed.
5451 */
5452 /*
5453 * If the page is not RAM, page_count()should be 0.
5454 * we don't need more check. This is an _used_ not-movable page.
5455 *
5456 * The problematic thing here is PG_reserved pages. PG_reserved
5457 * is set to both of a memory hole page and a _used_ kernel
5458 * page at boot.
5459 */
5460 if (found > count)
5461 return false;
5462 }
5463 return true;
5464 }
5465
is_pageblock_removable_nolock(struct page * page)5466 bool is_pageblock_removable_nolock(struct page *page)
5467 {
5468 struct zone *zone;
5469 unsigned long pfn;
5470
5471 /*
5472 * We have to be careful here because we are iterating over memory
5473 * sections which are not zone aware so we might end up outside of
5474 * the zone but still within the section.
5475 * We have to take care about the node as well. If the node is offline
5476 * its NODE_DATA will be NULL - see page_zone.
5477 */
5478 if (!node_online(page_to_nid(page)))
5479 return false;
5480
5481 zone = page_zone(page);
5482 pfn = page_to_pfn(page);
5483 if (zone->zone_start_pfn > pfn ||
5484 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5485 return false;
5486
5487 return __count_immobile_pages(zone, page, 0);
5488 }
5489
set_migratetype_isolate(struct page * page)5490 int set_migratetype_isolate(struct page *page)
5491 {
5492 struct zone *zone;
5493 unsigned long flags, pfn;
5494 struct memory_isolate_notify arg;
5495 int notifier_ret;
5496 int ret = -EBUSY;
5497
5498 zone = page_zone(page);
5499
5500 spin_lock_irqsave(&zone->lock, flags);
5501
5502 pfn = page_to_pfn(page);
5503 arg.start_pfn = pfn;
5504 arg.nr_pages = pageblock_nr_pages;
5505 arg.pages_found = 0;
5506
5507 /*
5508 * It may be possible to isolate a pageblock even if the
5509 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5510 * notifier chain is used by balloon drivers to return the
5511 * number of pages in a range that are held by the balloon
5512 * driver to shrink memory. If all the pages are accounted for
5513 * by balloons, are free, or on the LRU, isolation can continue.
5514 * Later, for example, when memory hotplug notifier runs, these
5515 * pages reported as "can be isolated" should be isolated(freed)
5516 * by the balloon driver through the memory notifier chain.
5517 */
5518 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5519 notifier_ret = notifier_to_errno(notifier_ret);
5520 if (notifier_ret)
5521 goto out;
5522 /*
5523 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5524 * We just check MOVABLE pages.
5525 */
5526 if (__count_immobile_pages(zone, page, arg.pages_found))
5527 ret = 0;
5528
5529 /*
5530 * immobile means "not-on-lru" paes. If immobile is larger than
5531 * removable-by-driver pages reported by notifier, we'll fail.
5532 */
5533
5534 out:
5535 if (!ret) {
5536 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5537 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5538 }
5539
5540 spin_unlock_irqrestore(&zone->lock, flags);
5541 if (!ret)
5542 drain_all_pages();
5543 return ret;
5544 }
5545
unset_migratetype_isolate(struct page * page)5546 void unset_migratetype_isolate(struct page *page)
5547 {
5548 struct zone *zone;
5549 unsigned long flags;
5550 zone = page_zone(page);
5551 spin_lock_irqsave(&zone->lock, flags);
5552 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5553 goto out;
5554 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5555 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5556 out:
5557 spin_unlock_irqrestore(&zone->lock, flags);
5558 }
5559
5560 #ifdef CONFIG_MEMORY_HOTREMOVE
5561 /*
5562 * All pages in the range must be isolated before calling this.
5563 */
5564 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)5565 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5566 {
5567 struct page *page;
5568 struct zone *zone;
5569 int order, i;
5570 unsigned long pfn;
5571 unsigned long flags;
5572 /* find the first valid pfn */
5573 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5574 if (pfn_valid(pfn))
5575 break;
5576 if (pfn == end_pfn)
5577 return;
5578 zone = page_zone(pfn_to_page(pfn));
5579 spin_lock_irqsave(&zone->lock, flags);
5580 pfn = start_pfn;
5581 while (pfn < end_pfn) {
5582 if (!pfn_valid(pfn)) {
5583 pfn++;
5584 continue;
5585 }
5586 page = pfn_to_page(pfn);
5587 BUG_ON(page_count(page));
5588 BUG_ON(!PageBuddy(page));
5589 order = page_order(page);
5590 #ifdef CONFIG_DEBUG_VM
5591 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5592 pfn, 1 << order, end_pfn);
5593 #endif
5594 list_del(&page->lru);
5595 rmv_page_order(page);
5596 zone->free_area[order].nr_free--;
5597 __mod_zone_page_state(zone, NR_FREE_PAGES,
5598 - (1UL << order));
5599 #ifdef CONFIG_HIGHMEM
5600 if (PageHighMem(page))
5601 totalhigh_pages -= 1 << order;
5602 #endif
5603 for (i = 0; i < (1 << order); i++)
5604 SetPageReserved((page+i));
5605 pfn += (1 << order);
5606 }
5607 spin_unlock_irqrestore(&zone->lock, flags);
5608 }
5609 #endif
5610
5611 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)5612 bool is_free_buddy_page(struct page *page)
5613 {
5614 struct zone *zone = page_zone(page);
5615 unsigned long pfn = page_to_pfn(page);
5616 unsigned long flags;
5617 int order;
5618
5619 spin_lock_irqsave(&zone->lock, flags);
5620 for (order = 0; order < MAX_ORDER; order++) {
5621 struct page *page_head = page - (pfn & ((1 << order) - 1));
5622
5623 if (PageBuddy(page_head) && page_order(page_head) >= order)
5624 break;
5625 }
5626 spin_unlock_irqrestore(&zone->lock, flags);
5627
5628 return order < MAX_ORDER;
5629 }
5630 #endif
5631
5632 static struct trace_print_flags pageflag_names[] = {
5633 {1UL << PG_locked, "locked" },
5634 {1UL << PG_error, "error" },
5635 {1UL << PG_referenced, "referenced" },
5636 {1UL << PG_uptodate, "uptodate" },
5637 {1UL << PG_dirty, "dirty" },
5638 {1UL << PG_lru, "lru" },
5639 {1UL << PG_active, "active" },
5640 {1UL << PG_slab, "slab" },
5641 {1UL << PG_owner_priv_1, "owner_priv_1" },
5642 {1UL << PG_arch_1, "arch_1" },
5643 {1UL << PG_reserved, "reserved" },
5644 {1UL << PG_private, "private" },
5645 {1UL << PG_private_2, "private_2" },
5646 {1UL << PG_writeback, "writeback" },
5647 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5648 {1UL << PG_head, "head" },
5649 {1UL << PG_tail, "tail" },
5650 #else
5651 {1UL << PG_compound, "compound" },
5652 #endif
5653 {1UL << PG_swapcache, "swapcache" },
5654 {1UL << PG_mappedtodisk, "mappedtodisk" },
5655 {1UL << PG_reclaim, "reclaim" },
5656 {1UL << PG_swapbacked, "swapbacked" },
5657 {1UL << PG_unevictable, "unevictable" },
5658 #ifdef CONFIG_MMU
5659 {1UL << PG_mlocked, "mlocked" },
5660 #endif
5661 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5662 {1UL << PG_uncached, "uncached" },
5663 #endif
5664 #ifdef CONFIG_MEMORY_FAILURE
5665 {1UL << PG_hwpoison, "hwpoison" },
5666 #endif
5667 {-1UL, NULL },
5668 };
5669
dump_page_flags(unsigned long flags)5670 static void dump_page_flags(unsigned long flags)
5671 {
5672 const char *delim = "";
5673 unsigned long mask;
5674 int i;
5675
5676 printk(KERN_ALERT "page flags: %#lx(", flags);
5677
5678 /* remove zone id */
5679 flags &= (1UL << NR_PAGEFLAGS) - 1;
5680
5681 for (i = 0; pageflag_names[i].name && flags; i++) {
5682
5683 mask = pageflag_names[i].mask;
5684 if ((flags & mask) != mask)
5685 continue;
5686
5687 flags &= ~mask;
5688 printk("%s%s", delim, pageflag_names[i].name);
5689 delim = "|";
5690 }
5691
5692 /* check for left over flags */
5693 if (flags)
5694 printk("%s%#lx", delim, flags);
5695
5696 printk(")\n");
5697 }
5698
dump_page(struct page * page)5699 void dump_page(struct page *page)
5700 {
5701 printk(KERN_ALERT
5702 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5703 page, atomic_read(&page->_count), page_mapcount(page),
5704 page->mapping, page->index);
5705 dump_page_flags(page->flags);
5706 mem_cgroup_print_bad_page(page);
5707 }
5708