1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16
17 #include <uapi/asm/kvm.h>
18
19 #include <linux/hardirq.h>
20 #include <linux/pkeys.h>
21 #include <linux/vmalloc.h>
22
23 #include "context.h"
24 #include "internal.h"
25 #include "legacy.h"
26 #include "xstate.h"
27
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/fpu.h>
30
31 #ifdef CONFIG_X86_64
32 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
33 DEFINE_PER_CPU(u64, xfd_state);
34 #endif
35
36 /* The FPU state configuration data for kernel and user space */
37 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
38 struct fpu_state_config fpu_user_cfg __ro_after_init;
39
40 /*
41 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
42 * depending on the FPU hardware format:
43 */
44 struct fpstate init_fpstate __ro_after_init;
45
46 /* Track in-kernel FPU usage */
47 static DEFINE_PER_CPU(bool, in_kernel_fpu);
48
49 /*
50 * Track which context is using the FPU on the CPU:
51 */
52 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
53
54 /*
55 * Can we use the FPU in kernel mode with the
56 * whole "kernel_fpu_begin/end()" sequence?
57 */
irq_fpu_usable(void)58 bool irq_fpu_usable(void)
59 {
60 if (WARN_ON_ONCE(in_nmi()))
61 return false;
62
63 /* In kernel FPU usage already active? */
64 if (this_cpu_read(in_kernel_fpu))
65 return false;
66
67 /*
68 * When not in NMI or hard interrupt context, FPU can be used in:
69 *
70 * - Task context except from within fpregs_lock()'ed critical
71 * regions.
72 *
73 * - Soft interrupt processing context which cannot happen
74 * while in a fpregs_lock()'ed critical region.
75 */
76 if (!in_hardirq())
77 return true;
78
79 /*
80 * In hard interrupt context it's safe when soft interrupts
81 * are enabled, which means the interrupt did not hit in
82 * a fpregs_lock()'ed critical region.
83 */
84 return !softirq_count();
85 }
86 EXPORT_SYMBOL(irq_fpu_usable);
87
88 /*
89 * Track AVX512 state use because it is known to slow the max clock
90 * speed of the core.
91 */
update_avx_timestamp(struct fpu * fpu)92 static void update_avx_timestamp(struct fpu *fpu)
93 {
94
95 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
96
97 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
98 fpu->avx512_timestamp = jiffies;
99 }
100
101 /*
102 * Save the FPU register state in fpu->fpstate->regs. The register state is
103 * preserved.
104 *
105 * Must be called with fpregs_lock() held.
106 *
107 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
108 * register state has to be reloaded. That might be a pointless exercise
109 * when the FPU is going to be used by another task right after that. But
110 * this only affects 20+ years old 32bit systems and avoids conditionals all
111 * over the place.
112 *
113 * FXSAVE and all XSAVE variants preserve the FPU register state.
114 */
save_fpregs_to_fpstate(struct fpu * fpu)115 void save_fpregs_to_fpstate(struct fpu *fpu)
116 {
117 if (likely(use_xsave())) {
118 os_xsave(fpu->fpstate);
119 update_avx_timestamp(fpu);
120 return;
121 }
122
123 if (likely(use_fxsr())) {
124 fxsave(&fpu->fpstate->regs.fxsave);
125 return;
126 }
127
128 /*
129 * Legacy FPU register saving, FNSAVE always clears FPU registers,
130 * so we have to reload them from the memory state.
131 */
132 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
133 frstor(&fpu->fpstate->regs.fsave);
134 }
135
restore_fpregs_from_fpstate(struct fpstate * fpstate,u64 mask)136 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
137 {
138 /*
139 * AMD K7/K8 and later CPUs up to Zen don't save/restore
140 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
141 * here by setting it to fixed values. "m" is a random variable
142 * that should be in L1.
143 */
144 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
145 asm volatile(
146 "fnclex\n\t"
147 "emms\n\t"
148 "fildl %P[addr]" /* set F?P to defined value */
149 : : [addr] "m" (fpstate));
150 }
151
152 if (use_xsave()) {
153 /*
154 * Dynamically enabled features are enabled in XCR0, but
155 * usage requires also that the corresponding bits in XFD
156 * are cleared. If the bits are set then using a related
157 * instruction will raise #NM. This allows to do the
158 * allocation of the larger FPU buffer lazy from #NM or if
159 * the task has no permission to kill it which would happen
160 * via #UD if the feature is disabled in XCR0.
161 *
162 * XFD state is following the same life time rules as
163 * XSTATE and to restore state correctly XFD has to be
164 * updated before XRSTORS otherwise the component would
165 * stay in or go into init state even if the bits are set
166 * in fpstate::regs::xsave::xfeatures.
167 */
168 xfd_update_state(fpstate);
169
170 /*
171 * Restoring state always needs to modify all features
172 * which are in @mask even if the current task cannot use
173 * extended features.
174 *
175 * So fpstate->xfeatures cannot be used here, because then
176 * a feature for which the task has no permission but was
177 * used by the previous task would not go into init state.
178 */
179 mask = fpu_kernel_cfg.max_features & mask;
180
181 os_xrstor(fpstate, mask);
182 } else {
183 if (use_fxsr())
184 fxrstor(&fpstate->regs.fxsave);
185 else
186 frstor(&fpstate->regs.fsave);
187 }
188 }
189
fpu_reset_from_exception_fixup(void)190 void fpu_reset_from_exception_fixup(void)
191 {
192 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
193 }
194
195 #if IS_ENABLED(CONFIG_KVM)
196 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
197
fpu_init_guest_permissions(struct fpu_guest * gfpu)198 static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
199 {
200 struct fpu_state_perm *fpuperm;
201 u64 perm;
202
203 if (!IS_ENABLED(CONFIG_X86_64))
204 return;
205
206 spin_lock_irq(¤t->sighand->siglock);
207 fpuperm = ¤t->group_leader->thread.fpu.guest_perm;
208 perm = fpuperm->__state_perm;
209
210 /* First fpstate allocation locks down permissions. */
211 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
212
213 spin_unlock_irq(¤t->sighand->siglock);
214
215 gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
216 }
217
fpu_alloc_guest_fpstate(struct fpu_guest * gfpu)218 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
219 {
220 struct fpstate *fpstate;
221 unsigned int size;
222
223 size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
224 fpstate = vzalloc(size);
225 if (!fpstate)
226 return false;
227
228 /* Leave xfd to 0 (the reset value defined by spec) */
229 __fpstate_reset(fpstate, 0);
230 fpstate_init_user(fpstate);
231 fpstate->is_valloc = true;
232 fpstate->is_guest = true;
233
234 gfpu->fpstate = fpstate;
235 gfpu->xfeatures = fpu_user_cfg.default_features;
236 gfpu->perm = fpu_user_cfg.default_features;
237
238 /*
239 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
240 * to userspace, even when XSAVE is unsupported, so that restoring FPU
241 * state on a different CPU that does support XSAVE can cleanly load
242 * the incoming state using its natural XSAVE. In other words, KVM's
243 * uABI size may be larger than this host's default size. Conversely,
244 * the default size should never be larger than KVM's base uABI size;
245 * all features that can expand the uABI size must be opt-in.
246 */
247 gfpu->uabi_size = sizeof(struct kvm_xsave);
248 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
249 gfpu->uabi_size = fpu_user_cfg.default_size;
250
251 fpu_init_guest_permissions(gfpu);
252
253 return true;
254 }
255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256
fpu_free_guest_fpstate(struct fpu_guest * gfpu)257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258 {
259 struct fpstate *fps = gfpu->fpstate;
260
261 if (!fps)
262 return;
263
264 if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265 return;
266
267 gfpu->fpstate = NULL;
268 vfree(fps);
269 }
270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271
272 /*
273 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274 * @guest_fpu: Pointer to the guest FPU container
275 * @xfeatures: Features requested by guest CPUID
276 *
277 * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278 *
279 * Return: 0 on success, error code otherwise
280 */
fpu_enable_guest_xfd_features(struct fpu_guest * guest_fpu,u64 xfeatures)281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282 {
283 lockdep_assert_preemption_enabled();
284
285 /* Nothing to do if all requested features are already enabled. */
286 xfeatures &= ~guest_fpu->xfeatures;
287 if (!xfeatures)
288 return 0;
289
290 return __xfd_enable_feature(xfeatures, guest_fpu);
291 }
292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293
294 #ifdef CONFIG_X86_64
fpu_update_guest_xfd(struct fpu_guest * guest_fpu,u64 xfd)295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296 {
297 fpregs_lock();
298 guest_fpu->fpstate->xfd = xfd;
299 if (guest_fpu->fpstate->in_use)
300 xfd_update_state(guest_fpu->fpstate);
301 fpregs_unlock();
302 }
303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304
305 /**
306 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307 *
308 * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309 * XFD write emulation is disabled. This is required because the guest can
310 * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311 * same as the state on VMENTER. So software state has to be udpated before
312 * any operation which depends on it can take place.
313 *
314 * Note: It can be invoked unconditionally even when write emulation is
315 * enabled for the price of a then pointless MSR read.
316 */
fpu_sync_guest_vmexit_xfd_state(void)317 void fpu_sync_guest_vmexit_xfd_state(void)
318 {
319 struct fpstate *fps = current->thread.fpu.fpstate;
320
321 lockdep_assert_irqs_disabled();
322 if (fpu_state_size_dynamic()) {
323 rdmsrl(MSR_IA32_XFD, fps->xfd);
324 __this_cpu_write(xfd_state, fps->xfd);
325 }
326 }
327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328 #endif /* CONFIG_X86_64 */
329
fpu_swap_kvm_fpstate(struct fpu_guest * guest_fpu,bool enter_guest)330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331 {
332 struct fpstate *guest_fps = guest_fpu->fpstate;
333 struct fpu *fpu = ¤t->thread.fpu;
334 struct fpstate *cur_fps = fpu->fpstate;
335
336 fpregs_lock();
337 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338 save_fpregs_to_fpstate(fpu);
339
340 /* Swap fpstate */
341 if (enter_guest) {
342 fpu->__task_fpstate = cur_fps;
343 fpu->fpstate = guest_fps;
344 guest_fps->in_use = true;
345 } else {
346 guest_fps->in_use = false;
347 fpu->fpstate = fpu->__task_fpstate;
348 fpu->__task_fpstate = NULL;
349 }
350
351 cur_fps = fpu->fpstate;
352
353 if (!cur_fps->is_confidential) {
354 /* Includes XFD update */
355 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356 } else {
357 /*
358 * XSTATE is restored by firmware from encrypted
359 * memory. Make sure XFD state is correct while
360 * running with guest fpstate
361 */
362 xfd_update_state(cur_fps);
363 }
364
365 fpregs_mark_activate();
366 fpregs_unlock();
367 return 0;
368 }
369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370
fpu_copy_guest_fpstate_to_uabi(struct fpu_guest * gfpu,void * buf,unsigned int size,u64 xfeatures,u32 pkru)371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372 unsigned int size, u64 xfeatures, u32 pkru)
373 {
374 struct fpstate *kstate = gfpu->fpstate;
375 union fpregs_state *ustate = buf;
376 struct membuf mb = { .p = buf, .left = size };
377
378 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
380 XSTATE_COPY_XSAVE);
381 } else {
382 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
383 sizeof(ustate->fxsave));
384 /* Make it restorable on a XSAVE enabled host */
385 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
386 }
387 }
388 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
389
fpu_copy_uabi_to_guest_fpstate(struct fpu_guest * gfpu,const void * buf,u64 xcr0,u32 * vpkru)390 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
391 u64 xcr0, u32 *vpkru)
392 {
393 struct fpstate *kstate = gfpu->fpstate;
394 const union fpregs_state *ustate = buf;
395
396 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
397 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
398 return -EINVAL;
399 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
400 return -EINVAL;
401 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
402 return 0;
403 }
404
405 if (ustate->xsave.header.xfeatures & ~xcr0)
406 return -EINVAL;
407
408 /*
409 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set
410 * in the header. KVM's odd ABI is to leave PKRU untouched in this
411 * case (all other components are eventually re-initialized).
412 */
413 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
414 vpkru = NULL;
415
416 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
417 }
418 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
419 #endif /* CONFIG_KVM */
420
kernel_fpu_begin_mask(unsigned int kfpu_mask)421 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
422 {
423 preempt_disable();
424
425 WARN_ON_FPU(!irq_fpu_usable());
426 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
427
428 this_cpu_write(in_kernel_fpu, true);
429
430 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
431 !test_thread_flag(TIF_NEED_FPU_LOAD)) {
432 set_thread_flag(TIF_NEED_FPU_LOAD);
433 save_fpregs_to_fpstate(¤t->thread.fpu);
434 }
435 __cpu_invalidate_fpregs_state();
436
437 /* Put sane initial values into the control registers. */
438 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
439 ldmxcsr(MXCSR_DEFAULT);
440
441 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
442 asm volatile ("fninit");
443 }
444 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
445
kernel_fpu_end(void)446 void kernel_fpu_end(void)
447 {
448 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
449
450 this_cpu_write(in_kernel_fpu, false);
451 preempt_enable();
452 }
453 EXPORT_SYMBOL_GPL(kernel_fpu_end);
454
455 /*
456 * Sync the FPU register state to current's memory register state when the
457 * current task owns the FPU. The hardware register state is preserved.
458 */
fpu_sync_fpstate(struct fpu * fpu)459 void fpu_sync_fpstate(struct fpu *fpu)
460 {
461 WARN_ON_FPU(fpu != ¤t->thread.fpu);
462
463 fpregs_lock();
464 trace_x86_fpu_before_save(fpu);
465
466 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
467 save_fpregs_to_fpstate(fpu);
468
469 trace_x86_fpu_after_save(fpu);
470 fpregs_unlock();
471 }
472
init_fpstate_copy_size(void)473 static inline unsigned int init_fpstate_copy_size(void)
474 {
475 if (!use_xsave())
476 return fpu_kernel_cfg.default_size;
477
478 /* XSAVE(S) just needs the legacy and the xstate header part */
479 return sizeof(init_fpstate.regs.xsave);
480 }
481
fpstate_init_fxstate(struct fpstate * fpstate)482 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
483 {
484 fpstate->regs.fxsave.cwd = 0x37f;
485 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
486 }
487
488 /*
489 * Legacy x87 fpstate state init:
490 */
fpstate_init_fstate(struct fpstate * fpstate)491 static inline void fpstate_init_fstate(struct fpstate *fpstate)
492 {
493 fpstate->regs.fsave.cwd = 0xffff037fu;
494 fpstate->regs.fsave.swd = 0xffff0000u;
495 fpstate->regs.fsave.twd = 0xffffffffu;
496 fpstate->regs.fsave.fos = 0xffff0000u;
497 }
498
499 /*
500 * Used in two places:
501 * 1) Early boot to setup init_fpstate for non XSAVE systems
502 * 2) fpu_init_fpstate_user() which is invoked from KVM
503 */
fpstate_init_user(struct fpstate * fpstate)504 void fpstate_init_user(struct fpstate *fpstate)
505 {
506 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
507 fpstate_init_soft(&fpstate->regs.soft);
508 return;
509 }
510
511 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
512
513 if (cpu_feature_enabled(X86_FEATURE_FXSR))
514 fpstate_init_fxstate(fpstate);
515 else
516 fpstate_init_fstate(fpstate);
517 }
518
__fpstate_reset(struct fpstate * fpstate,u64 xfd)519 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
520 {
521 /* Initialize sizes and feature masks */
522 fpstate->size = fpu_kernel_cfg.default_size;
523 fpstate->user_size = fpu_user_cfg.default_size;
524 fpstate->xfeatures = fpu_kernel_cfg.default_features;
525 fpstate->user_xfeatures = fpu_user_cfg.default_features;
526 fpstate->xfd = xfd;
527 }
528
fpstate_reset(struct fpu * fpu)529 void fpstate_reset(struct fpu *fpu)
530 {
531 /* Set the fpstate pointer to the default fpstate */
532 fpu->fpstate = &fpu->__fpstate;
533 __fpstate_reset(fpu->fpstate, init_fpstate.xfd);
534
535 /* Initialize the permission related info in fpu */
536 fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
537 fpu->perm.__state_size = fpu_kernel_cfg.default_size;
538 fpu->perm.__user_state_size = fpu_user_cfg.default_size;
539 /* Same defaults for guests */
540 fpu->guest_perm = fpu->perm;
541 }
542
fpu_inherit_perms(struct fpu * dst_fpu)543 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
544 {
545 if (fpu_state_size_dynamic()) {
546 struct fpu *src_fpu = ¤t->group_leader->thread.fpu;
547
548 spin_lock_irq(¤t->sighand->siglock);
549 /* Fork also inherits the permissions of the parent */
550 dst_fpu->perm = src_fpu->perm;
551 dst_fpu->guest_perm = src_fpu->guest_perm;
552 spin_unlock_irq(¤t->sighand->siglock);
553 }
554 }
555
556 /* A passed ssp of zero will not cause any update */
update_fpu_shstk(struct task_struct * dst,unsigned long ssp)557 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
558 {
559 #ifdef CONFIG_X86_USER_SHADOW_STACK
560 struct cet_user_state *xstate;
561
562 /* If ssp update is not needed. */
563 if (!ssp)
564 return 0;
565
566 xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
567 XFEATURE_CET_USER);
568
569 /*
570 * If there is a non-zero ssp, then 'dst' must be configured with a shadow
571 * stack and the fpu state should be up to date since it was just copied
572 * from the parent in fpu_clone(). So there must be a valid non-init CET
573 * state location in the buffer.
574 */
575 if (WARN_ON_ONCE(!xstate))
576 return 1;
577
578 xstate->user_ssp = (u64)ssp;
579 #endif
580 return 0;
581 }
582
583 /* Clone current's FPU state on fork */
fpu_clone(struct task_struct * dst,unsigned long clone_flags,bool minimal,unsigned long ssp)584 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
585 unsigned long ssp)
586 {
587 struct fpu *src_fpu = ¤t->thread.fpu;
588 struct fpu *dst_fpu = &dst->thread.fpu;
589
590 /* The new task's FPU state cannot be valid in the hardware. */
591 dst_fpu->last_cpu = -1;
592
593 fpstate_reset(dst_fpu);
594
595 if (!cpu_feature_enabled(X86_FEATURE_FPU))
596 return 0;
597
598 /*
599 * Enforce reload for user space tasks and prevent kernel threads
600 * from trying to save the FPU registers on context switch.
601 */
602 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
603
604 /*
605 * No FPU state inheritance for kernel threads and IO
606 * worker threads.
607 */
608 if (minimal) {
609 /* Clear out the minimal state */
610 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
611 init_fpstate_copy_size());
612 return 0;
613 }
614
615 /*
616 * If a new feature is added, ensure all dynamic features are
617 * caller-saved from here!
618 */
619 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
620
621 /*
622 * Save the default portion of the current FPU state into the
623 * clone. Assume all dynamic features to be defined as caller-
624 * saved, which enables skipping both the expansion of fpstate
625 * and the copying of any dynamic state.
626 *
627 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
628 * copying is not valid when current uses non-default states.
629 */
630 fpregs_lock();
631 if (test_thread_flag(TIF_NEED_FPU_LOAD))
632 fpregs_restore_userregs();
633 save_fpregs_to_fpstate(dst_fpu);
634 fpregs_unlock();
635 if (!(clone_flags & CLONE_THREAD))
636 fpu_inherit_perms(dst_fpu);
637
638 /*
639 * Children never inherit PASID state.
640 * Force it to have its init value:
641 */
642 if (use_xsave())
643 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
644
645 /*
646 * Update shadow stack pointer, in case it changed during clone.
647 */
648 if (update_fpu_shstk(dst, ssp))
649 return 1;
650
651 trace_x86_fpu_copy_src(src_fpu);
652 trace_x86_fpu_copy_dst(dst_fpu);
653
654 return 0;
655 }
656
657 /*
658 * Whitelist the FPU register state embedded into task_struct for hardened
659 * usercopy.
660 */
fpu_thread_struct_whitelist(unsigned long * offset,unsigned long * size)661 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
662 {
663 *offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
664 *size = fpu_kernel_cfg.default_size;
665 }
666
667 /*
668 * Drops current FPU state: deactivates the fpregs and
669 * the fpstate. NOTE: it still leaves previous contents
670 * in the fpregs in the eager-FPU case.
671 *
672 * This function can be used in cases where we know that
673 * a state-restore is coming: either an explicit one,
674 * or a reschedule.
675 */
fpu__drop(struct fpu * fpu)676 void fpu__drop(struct fpu *fpu)
677 {
678 preempt_disable();
679
680 if (fpu == ¤t->thread.fpu) {
681 /* Ignore delayed exceptions from user space */
682 asm volatile("1: fwait\n"
683 "2:\n"
684 _ASM_EXTABLE(1b, 2b));
685 fpregs_deactivate(fpu);
686 }
687
688 trace_x86_fpu_dropped(fpu);
689
690 preempt_enable();
691 }
692
693 /*
694 * Clear FPU registers by setting them up from the init fpstate.
695 * Caller must do fpregs_[un]lock() around it.
696 */
restore_fpregs_from_init_fpstate(u64 features_mask)697 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
698 {
699 if (use_xsave())
700 os_xrstor(&init_fpstate, features_mask);
701 else if (use_fxsr())
702 fxrstor(&init_fpstate.regs.fxsave);
703 else
704 frstor(&init_fpstate.regs.fsave);
705
706 pkru_write_default();
707 }
708
709 /*
710 * Reset current->fpu memory state to the init values.
711 */
fpu_reset_fpregs(void)712 static void fpu_reset_fpregs(void)
713 {
714 struct fpu *fpu = ¤t->thread.fpu;
715
716 fpregs_lock();
717 __fpu_invalidate_fpregs_state(fpu);
718 /*
719 * This does not change the actual hardware registers. It just
720 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
721 * subsequent return to usermode will reload the registers from the
722 * task's memory image.
723 *
724 * Do not use fpstate_init() here. Just copy init_fpstate which has
725 * the correct content already except for PKRU.
726 *
727 * PKRU handling does not rely on the xstate when restoring for
728 * user space as PKRU is eagerly written in switch_to() and
729 * flush_thread().
730 */
731 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
732 set_thread_flag(TIF_NEED_FPU_LOAD);
733 fpregs_unlock();
734 }
735
736 /*
737 * Reset current's user FPU states to the init states. current's
738 * supervisor states, if any, are not modified by this function. The
739 * caller guarantees that the XSTATE header in memory is intact.
740 */
fpu__clear_user_states(struct fpu * fpu)741 void fpu__clear_user_states(struct fpu *fpu)
742 {
743 WARN_ON_FPU(fpu != ¤t->thread.fpu);
744
745 fpregs_lock();
746 if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
747 fpu_reset_fpregs();
748 fpregs_unlock();
749 return;
750 }
751
752 /*
753 * Ensure that current's supervisor states are loaded into their
754 * corresponding registers.
755 */
756 if (xfeatures_mask_supervisor() &&
757 !fpregs_state_valid(fpu, smp_processor_id()))
758 os_xrstor_supervisor(fpu->fpstate);
759
760 /* Reset user states in registers. */
761 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
762
763 /*
764 * Now all FPU registers have their desired values. Inform the FPU
765 * state machine that current's FPU registers are in the hardware
766 * registers. The memory image does not need to be updated because
767 * any operation relying on it has to save the registers first when
768 * current's FPU is marked active.
769 */
770 fpregs_mark_activate();
771 fpregs_unlock();
772 }
773
fpu_flush_thread(void)774 void fpu_flush_thread(void)
775 {
776 fpstate_reset(¤t->thread.fpu);
777 fpu_reset_fpregs();
778 }
779 /*
780 * Load FPU context before returning to userspace.
781 */
switch_fpu_return(void)782 void switch_fpu_return(void)
783 {
784 if (!static_cpu_has(X86_FEATURE_FPU))
785 return;
786
787 fpregs_restore_userregs();
788 }
789 EXPORT_SYMBOL_GPL(switch_fpu_return);
790
fpregs_lock_and_load(void)791 void fpregs_lock_and_load(void)
792 {
793 /*
794 * fpregs_lock() only disables preemption (mostly). So modifying state
795 * in an interrupt could screw up some in progress fpregs operation.
796 * Warn about it.
797 */
798 WARN_ON_ONCE(!irq_fpu_usable());
799 WARN_ON_ONCE(current->flags & PF_KTHREAD);
800
801 fpregs_lock();
802
803 fpregs_assert_state_consistent();
804
805 if (test_thread_flag(TIF_NEED_FPU_LOAD))
806 fpregs_restore_userregs();
807 }
808
809 #ifdef CONFIG_X86_DEBUG_FPU
810 /*
811 * If current FPU state according to its tracking (loaded FPU context on this
812 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
813 * loaded on return to userland.
814 */
fpregs_assert_state_consistent(void)815 void fpregs_assert_state_consistent(void)
816 {
817 struct fpu *fpu = ¤t->thread.fpu;
818
819 if (test_thread_flag(TIF_NEED_FPU_LOAD))
820 return;
821
822 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
823 }
824 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
825 #endif
826
fpregs_mark_activate(void)827 void fpregs_mark_activate(void)
828 {
829 struct fpu *fpu = ¤t->thread.fpu;
830
831 fpregs_activate(fpu);
832 fpu->last_cpu = smp_processor_id();
833 clear_thread_flag(TIF_NEED_FPU_LOAD);
834 }
835
836 /*
837 * x87 math exception handling:
838 */
839
fpu__exception_code(struct fpu * fpu,int trap_nr)840 int fpu__exception_code(struct fpu *fpu, int trap_nr)
841 {
842 int err;
843
844 if (trap_nr == X86_TRAP_MF) {
845 unsigned short cwd, swd;
846 /*
847 * (~cwd & swd) will mask out exceptions that are not set to unmasked
848 * status. 0x3f is the exception bits in these regs, 0x200 is the
849 * C1 reg you need in case of a stack fault, 0x040 is the stack
850 * fault bit. We should only be taking one exception at a time,
851 * so if this combination doesn't produce any single exception,
852 * then we have a bad program that isn't synchronizing its FPU usage
853 * and it will suffer the consequences since we won't be able to
854 * fully reproduce the context of the exception.
855 */
856 if (boot_cpu_has(X86_FEATURE_FXSR)) {
857 cwd = fpu->fpstate->regs.fxsave.cwd;
858 swd = fpu->fpstate->regs.fxsave.swd;
859 } else {
860 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
861 swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
862 }
863
864 err = swd & ~cwd;
865 } else {
866 /*
867 * The SIMD FPU exceptions are handled a little differently, as there
868 * is only a single status/control register. Thus, to determine which
869 * unmasked exception was caught we must mask the exception mask bits
870 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
871 */
872 unsigned short mxcsr = MXCSR_DEFAULT;
873
874 if (boot_cpu_has(X86_FEATURE_XMM))
875 mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
876
877 err = ~(mxcsr >> 7) & mxcsr;
878 }
879
880 if (err & 0x001) { /* Invalid op */
881 /*
882 * swd & 0x240 == 0x040: Stack Underflow
883 * swd & 0x240 == 0x240: Stack Overflow
884 * User must clear the SF bit (0x40) if set
885 */
886 return FPE_FLTINV;
887 } else if (err & 0x004) { /* Divide by Zero */
888 return FPE_FLTDIV;
889 } else if (err & 0x008) { /* Overflow */
890 return FPE_FLTOVF;
891 } else if (err & 0x012) { /* Denormal, Underflow */
892 return FPE_FLTUND;
893 } else if (err & 0x020) { /* Precision */
894 return FPE_FLTRES;
895 }
896
897 /*
898 * If we're using IRQ 13, or supposedly even some trap
899 * X86_TRAP_MF implementations, it's possible
900 * we get a spurious trap, which is not an error.
901 */
902 return 0;
903 }
904
905 /*
906 * Initialize register state that may prevent from entering low-power idle.
907 * This function will be invoked from the cpuidle driver only when needed.
908 */
fpu_idle_fpregs(void)909 noinstr void fpu_idle_fpregs(void)
910 {
911 /* Note: AMX_TILE being enabled implies XGETBV1 support */
912 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
913 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
914 tile_release();
915 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
916 }
917 }
918