1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78 
79 #include <trace/events/sched.h>
80 
81 /*
82  * Protected counters by write_lock_irq(&tasklist_lock)
83  */
84 unsigned long total_forks;	/* Handle normal Linux uptimes. */
85 int nr_threads; 		/* The idle threads do not count.. */
86 
87 int max_threads;		/* tunable limit on nr_threads */
88 
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90 
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
92 
93 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)94 int lockdep_tasklist_lock_is_held(void)
95 {
96 	return lockdep_is_held(&tasklist_lock);
97 }
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
100 
nr_processes(void)101 int nr_processes(void)
102 {
103 	int cpu;
104 	int total = 0;
105 
106 	for_each_possible_cpu(cpu)
107 		total += per_cpu(process_counts, cpu);
108 
109 	return total;
110 }
111 
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node)		\
114 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk)			\
116 		kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
119 
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
alloc_thread_info_node(struct task_struct * tsk,int node)121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 						  int node)
123 {
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127 	gfp_t mask = GFP_KERNEL;
128 #endif
129 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130 
131 	return page ? page_address(page) : NULL;
132 }
133 
free_thread_info(struct thread_info * ti)134 static inline void free_thread_info(struct thread_info *ti)
135 {
136 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 }
138 #endif
139 
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
142 
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
145 
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
148 
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
151 
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
154 
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
157 
account_kernel_stack(struct thread_info * ti,int account)158 static void account_kernel_stack(struct thread_info *ti, int account)
159 {
160 	struct zone *zone = page_zone(virt_to_page(ti));
161 
162 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 }
164 
free_task(struct task_struct * tsk)165 void free_task(struct task_struct *tsk)
166 {
167 	prop_local_destroy_single(&tsk->dirties);
168 	account_kernel_stack(tsk->stack, -1);
169 	free_thread_info(tsk->stack);
170 	rt_mutex_debug_task_free(tsk);
171 	ftrace_graph_exit_task(tsk);
172 	free_task_struct(tsk);
173 }
174 EXPORT_SYMBOL(free_task);
175 
free_signal_struct(struct signal_struct * sig)176 static inline void free_signal_struct(struct signal_struct *sig)
177 {
178 	taskstats_tgid_free(sig);
179 	sched_autogroup_exit(sig);
180 	kmem_cache_free(signal_cachep, sig);
181 }
182 
put_signal_struct(struct signal_struct * sig)183 static inline void put_signal_struct(struct signal_struct *sig)
184 {
185 	if (atomic_dec_and_test(&sig->sigcnt))
186 		free_signal_struct(sig);
187 }
188 
__put_task_struct(struct task_struct * tsk)189 void __put_task_struct(struct task_struct *tsk)
190 {
191 	WARN_ON(!tsk->exit_state);
192 	WARN_ON(atomic_read(&tsk->usage));
193 	WARN_ON(tsk == current);
194 
195 	exit_creds(tsk);
196 	delayacct_tsk_free(tsk);
197 	put_signal_struct(tsk->signal);
198 
199 	if (!profile_handoff_task(tsk))
200 		free_task(tsk);
201 }
202 EXPORT_SYMBOL_GPL(__put_task_struct);
203 
204 /*
205  * macro override instead of weak attribute alias, to workaround
206  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207  */
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
211 
fork_init(unsigned long mempages)212 void __init fork_init(unsigned long mempages)
213 {
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
217 #endif
218 	/* create a slab on which task_structs can be allocated */
219 	task_struct_cachep =
220 		kmem_cache_create("task_struct", sizeof(struct task_struct),
221 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
223 
224 	/* do the arch specific task caches init */
225 	arch_task_cache_init();
226 
227 	/*
228 	 * The default maximum number of threads is set to a safe
229 	 * value: the thread structures can take up at most half
230 	 * of memory.
231 	 */
232 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233 
234 	/*
235 	 * we need to allow at least 20 threads to boot a system
236 	 */
237 	if(max_threads < 20)
238 		max_threads = 20;
239 
240 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 		init_task.signal->rlim[RLIMIT_NPROC];
244 }
245 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 					       struct task_struct *src)
248 {
249 	*dst = *src;
250 	return 0;
251 }
252 
dup_task_struct(struct task_struct * orig)253 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 {
255 	struct task_struct *tsk;
256 	struct thread_info *ti;
257 	unsigned long *stackend;
258 	int node = tsk_fork_get_node(orig);
259 	int err;
260 
261 	prepare_to_copy(orig);
262 
263 	tsk = alloc_task_struct_node(node);
264 	if (!tsk)
265 		return NULL;
266 
267 	ti = alloc_thread_info_node(tsk, node);
268 	if (!ti) {
269 		free_task_struct(tsk);
270 		return NULL;
271 	}
272 
273  	err = arch_dup_task_struct(tsk, orig);
274 	if (err)
275 		goto out;
276 
277 	tsk->stack = ti;
278 
279 	err = prop_local_init_single(&tsk->dirties);
280 	if (err)
281 		goto out;
282 
283 	setup_thread_stack(tsk, orig);
284 	clear_user_return_notifier(tsk);
285 	clear_tsk_need_resched(tsk);
286 	stackend = end_of_stack(tsk);
287 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
288 
289 #ifdef CONFIG_CC_STACKPROTECTOR
290 	tsk->stack_canary = get_random_int();
291 #endif
292 
293 	/* One for us, one for whoever does the "release_task()" (usually parent) */
294 	atomic_set(&tsk->usage,2);
295 	atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 	tsk->btrace_seq = 0;
298 #endif
299 	tsk->splice_pipe = NULL;
300 
301 	account_kernel_stack(ti, 1);
302 
303 	return tsk;
304 
305 out:
306 	free_thread_info(ti);
307 	free_task_struct(tsk);
308 	return NULL;
309 }
310 
311 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 	struct rb_node **rb_link, *rb_parent;
316 	int retval;
317 	unsigned long charge;
318 	struct mempolicy *pol;
319 
320 	down_write(&oldmm->mmap_sem);
321 	flush_cache_dup_mm(oldmm);
322 	/*
323 	 * Not linked in yet - no deadlock potential:
324 	 */
325 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326 
327 	mm->locked_vm = 0;
328 	mm->mmap = NULL;
329 	mm->mmap_cache = NULL;
330 	mm->free_area_cache = oldmm->mmap_base;
331 	mm->cached_hole_size = ~0UL;
332 	mm->map_count = 0;
333 	cpumask_clear(mm_cpumask(mm));
334 	mm->mm_rb = RB_ROOT;
335 	rb_link = &mm->mm_rb.rb_node;
336 	rb_parent = NULL;
337 	pprev = &mm->mmap;
338 	retval = ksm_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 	retval = khugepaged_fork(mm, oldmm);
342 	if (retval)
343 		goto out;
344 
345 	prev = NULL;
346 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 		struct file *file;
348 
349 		if (mpnt->vm_flags & VM_DONTCOPY) {
350 			long pages = vma_pages(mpnt);
351 			mm->total_vm -= pages;
352 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 								-pages);
354 			continue;
355 		}
356 		charge = 0;
357 		if (mpnt->vm_flags & VM_ACCOUNT) {
358 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 			if (security_vm_enough_memory(len))
360 				goto fail_nomem;
361 			charge = len;
362 		}
363 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 		if (!tmp)
365 			goto fail_nomem;
366 		*tmp = *mpnt;
367 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 		pol = mpol_dup(vma_policy(mpnt));
369 		retval = PTR_ERR(pol);
370 		if (IS_ERR(pol))
371 			goto fail_nomem_policy;
372 		vma_set_policy(tmp, pol);
373 		tmp->vm_mm = mm;
374 		if (anon_vma_fork(tmp, mpnt))
375 			goto fail_nomem_anon_vma_fork;
376 		tmp->vm_flags &= ~VM_LOCKED;
377 		tmp->vm_next = tmp->vm_prev = NULL;
378 		file = tmp->vm_file;
379 		if (file) {
380 			struct inode *inode = file->f_path.dentry->d_inode;
381 			struct address_space *mapping = file->f_mapping;
382 
383 			get_file(file);
384 			if (tmp->vm_flags & VM_DENYWRITE)
385 				atomic_dec(&inode->i_writecount);
386 			spin_lock(&mapping->i_mmap_lock);
387 			if (tmp->vm_flags & VM_SHARED)
388 				mapping->i_mmap_writable++;
389 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
390 			flush_dcache_mmap_lock(mapping);
391 			/* insert tmp into the share list, just after mpnt */
392 			vma_prio_tree_add(tmp, mpnt);
393 			flush_dcache_mmap_unlock(mapping);
394 			spin_unlock(&mapping->i_mmap_lock);
395 		}
396 
397 		/*
398 		 * Clear hugetlb-related page reserves for children. This only
399 		 * affects MAP_PRIVATE mappings. Faults generated by the child
400 		 * are not guaranteed to succeed, even if read-only
401 		 */
402 		if (is_vm_hugetlb_page(tmp))
403 			reset_vma_resv_huge_pages(tmp);
404 
405 		/*
406 		 * Link in the new vma and copy the page table entries.
407 		 */
408 		*pprev = tmp;
409 		pprev = &tmp->vm_next;
410 		tmp->vm_prev = prev;
411 		prev = tmp;
412 
413 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
414 		rb_link = &tmp->vm_rb.rb_right;
415 		rb_parent = &tmp->vm_rb;
416 
417 		mm->map_count++;
418 		retval = copy_page_range(mm, oldmm, mpnt);
419 
420 		if (tmp->vm_ops && tmp->vm_ops->open)
421 			tmp->vm_ops->open(tmp);
422 
423 		if (retval)
424 			goto out;
425 	}
426 	/* a new mm has just been created */
427 	arch_dup_mmap(oldmm, mm);
428 	retval = 0;
429 out:
430 	up_write(&mm->mmap_sem);
431 	flush_tlb_mm(oldmm);
432 	up_write(&oldmm->mmap_sem);
433 	return retval;
434 fail_nomem_anon_vma_fork:
435 	mpol_put(pol);
436 fail_nomem_policy:
437 	kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 	retval = -ENOMEM;
440 	vm_unacct_memory(charge);
441 	goto out;
442 }
443 
mm_alloc_pgd(struct mm_struct * mm)444 static inline int mm_alloc_pgd(struct mm_struct * mm)
445 {
446 	mm->pgd = pgd_alloc(mm);
447 	if (unlikely(!mm->pgd))
448 		return -ENOMEM;
449 	return 0;
450 }
451 
mm_free_pgd(struct mm_struct * mm)452 static inline void mm_free_pgd(struct mm_struct * mm)
453 {
454 	pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm)	(0)
458 #define mm_alloc_pgd(mm)	(0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461 
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463 
464 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
466 
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468 
coredump_filter_setup(char * s)469 static int __init coredump_filter_setup(char *s)
470 {
471 	default_dump_filter =
472 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 		MMF_DUMP_FILTER_MASK;
474 	return 1;
475 }
476 
477 __setup("coredump_filter=", coredump_filter_setup);
478 
479 #include <linux/init_task.h>
480 
mm_init_aio(struct mm_struct * mm)481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484 	spin_lock_init(&mm->ioctx_lock);
485 	INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488 
mm_init(struct mm_struct * mm,struct task_struct * p)489 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
490 {
491 	atomic_set(&mm->mm_users, 1);
492 	atomic_set(&mm->mm_count, 1);
493 	init_rwsem(&mm->mmap_sem);
494 	INIT_LIST_HEAD(&mm->mmlist);
495 	mm->flags = (current->mm) ?
496 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 	mm->core_state = NULL;
498 	mm->nr_ptes = 0;
499 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 	spin_lock_init(&mm->page_table_lock);
501 	mm->free_area_cache = TASK_UNMAPPED_BASE;
502 	mm->cached_hole_size = ~0UL;
503 	mm_init_aio(mm);
504 	mm_init_owner(mm, p);
505 	atomic_set(&mm->oom_disable_count, 0);
506 
507 	if (likely(!mm_alloc_pgd(mm))) {
508 		mm->def_flags = 0;
509 		mmu_notifier_mm_init(mm);
510 		return mm;
511 	}
512 
513 	free_mm(mm);
514 	return NULL;
515 }
516 
517 /*
518  * Allocate and initialize an mm_struct.
519  */
mm_alloc(void)520 struct mm_struct * mm_alloc(void)
521 {
522 	struct mm_struct * mm;
523 
524 	mm = allocate_mm();
525 	if (mm) {
526 		memset(mm, 0, sizeof(*mm));
527 		mm = mm_init(mm, current);
528 	}
529 	return mm;
530 }
531 
532 /*
533  * Called when the last reference to the mm
534  * is dropped: either by a lazy thread or by
535  * mmput. Free the page directory and the mm.
536  */
__mmdrop(struct mm_struct * mm)537 void __mmdrop(struct mm_struct *mm)
538 {
539 	BUG_ON(mm == &init_mm);
540 	mm_free_pgd(mm);
541 	destroy_context(mm);
542 	mmu_notifier_mm_destroy(mm);
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	VM_BUG_ON(mm->pmd_huge_pte);
545 #endif
546 	free_mm(mm);
547 }
548 EXPORT_SYMBOL_GPL(__mmdrop);
549 
550 /*
551  * Decrement the use count and release all resources for an mm.
552  */
mmput(struct mm_struct * mm)553 void mmput(struct mm_struct *mm)
554 {
555 	might_sleep();
556 
557 	if (atomic_dec_and_test(&mm->mm_users)) {
558 		exit_aio(mm);
559 		ksm_exit(mm);
560 		khugepaged_exit(mm); /* must run before exit_mmap */
561 		exit_mmap(mm);
562 		set_mm_exe_file(mm, NULL);
563 		if (!list_empty(&mm->mmlist)) {
564 			spin_lock(&mmlist_lock);
565 			list_del(&mm->mmlist);
566 			spin_unlock(&mmlist_lock);
567 		}
568 		put_swap_token(mm);
569 		if (mm->binfmt)
570 			module_put(mm->binfmt->module);
571 		mmdrop(mm);
572 	}
573 }
574 EXPORT_SYMBOL_GPL(mmput);
575 
576 /**
577  * get_task_mm - acquire a reference to the task's mm
578  *
579  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
580  * this kernel workthread has transiently adopted a user mm with use_mm,
581  * to do its AIO) is not set and if so returns a reference to it, after
582  * bumping up the use count.  User must release the mm via mmput()
583  * after use.  Typically used by /proc and ptrace.
584  */
get_task_mm(struct task_struct * task)585 struct mm_struct *get_task_mm(struct task_struct *task)
586 {
587 	struct mm_struct *mm;
588 
589 	task_lock(task);
590 	mm = task->mm;
591 	if (mm) {
592 		if (task->flags & PF_KTHREAD)
593 			mm = NULL;
594 		else
595 			atomic_inc(&mm->mm_users);
596 	}
597 	task_unlock(task);
598 	return mm;
599 }
600 EXPORT_SYMBOL_GPL(get_task_mm);
601 
602 /* Please note the differences between mmput and mm_release.
603  * mmput is called whenever we stop holding onto a mm_struct,
604  * error success whatever.
605  *
606  * mm_release is called after a mm_struct has been removed
607  * from the current process.
608  *
609  * This difference is important for error handling, when we
610  * only half set up a mm_struct for a new process and need to restore
611  * the old one.  Because we mmput the new mm_struct before
612  * restoring the old one. . .
613  * Eric Biederman 10 January 1998
614  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)615 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
616 {
617 	struct completion *vfork_done = tsk->vfork_done;
618 
619 	/* Get rid of any futexes when releasing the mm */
620 #ifdef CONFIG_FUTEX
621 	if (unlikely(tsk->robust_list)) {
622 		exit_robust_list(tsk);
623 		tsk->robust_list = NULL;
624 	}
625 #ifdef CONFIG_COMPAT
626 	if (unlikely(tsk->compat_robust_list)) {
627 		compat_exit_robust_list(tsk);
628 		tsk->compat_robust_list = NULL;
629 	}
630 #endif
631 	if (unlikely(!list_empty(&tsk->pi_state_list)))
632 		exit_pi_state_list(tsk);
633 #endif
634 
635 	/* Get rid of any cached register state */
636 	deactivate_mm(tsk, mm);
637 
638 	/* notify parent sleeping on vfork() */
639 	if (vfork_done) {
640 		tsk->vfork_done = NULL;
641 		complete(vfork_done);
642 	}
643 
644 	/*
645 	 * If we're exiting normally, clear a user-space tid field if
646 	 * requested.  We leave this alone when dying by signal, to leave
647 	 * the value intact in a core dump, and to save the unnecessary
648 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
649 	 */
650 	if (tsk->clear_child_tid) {
651 		if (!(tsk->flags & PF_SIGNALED) &&
652 		    atomic_read(&mm->mm_users) > 1) {
653 			/*
654 			 * We don't check the error code - if userspace has
655 			 * not set up a proper pointer then tough luck.
656 			 */
657 			put_user(0, tsk->clear_child_tid);
658 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
659 					1, NULL, NULL, 0);
660 		}
661 		tsk->clear_child_tid = NULL;
662 	}
663 }
664 
665 /*
666  * Allocate a new mm structure and copy contents from the
667  * mm structure of the passed in task structure.
668  */
dup_mm(struct task_struct * tsk)669 struct mm_struct *dup_mm(struct task_struct *tsk)
670 {
671 	struct mm_struct *mm, *oldmm = current->mm;
672 	int err;
673 
674 	if (!oldmm)
675 		return NULL;
676 
677 	mm = allocate_mm();
678 	if (!mm)
679 		goto fail_nomem;
680 
681 	memcpy(mm, oldmm, sizeof(*mm));
682 
683 	/* Initializing for Swap token stuff */
684 	mm->token_priority = 0;
685 	mm->last_interval = 0;
686 
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 	mm->pmd_huge_pte = NULL;
689 #endif
690 
691 	if (!mm_init(mm, tsk))
692 		goto fail_nomem;
693 
694 	if (init_new_context(tsk, mm))
695 		goto fail_nocontext;
696 
697 	dup_mm_exe_file(oldmm, mm);
698 
699 	err = dup_mmap(mm, oldmm);
700 	if (err)
701 		goto free_pt;
702 
703 	mm->hiwater_rss = get_mm_rss(mm);
704 	mm->hiwater_vm = mm->total_vm;
705 
706 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
707 		goto free_pt;
708 
709 	return mm;
710 
711 free_pt:
712 	/* don't put binfmt in mmput, we haven't got module yet */
713 	mm->binfmt = NULL;
714 	mmput(mm);
715 
716 fail_nomem:
717 	return NULL;
718 
719 fail_nocontext:
720 	/*
721 	 * If init_new_context() failed, we cannot use mmput() to free the mm
722 	 * because it calls destroy_context()
723 	 */
724 	mm_free_pgd(mm);
725 	free_mm(mm);
726 	return NULL;
727 }
728 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)729 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
730 {
731 	struct mm_struct * mm, *oldmm;
732 	int retval;
733 
734 	tsk->min_flt = tsk->maj_flt = 0;
735 	tsk->nvcsw = tsk->nivcsw = 0;
736 #ifdef CONFIG_DETECT_HUNG_TASK
737 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
738 #endif
739 
740 	tsk->mm = NULL;
741 	tsk->active_mm = NULL;
742 
743 	/*
744 	 * Are we cloning a kernel thread?
745 	 *
746 	 * We need to steal a active VM for that..
747 	 */
748 	oldmm = current->mm;
749 	if (!oldmm)
750 		return 0;
751 
752 	if (clone_flags & CLONE_VM) {
753 		atomic_inc(&oldmm->mm_users);
754 		mm = oldmm;
755 		goto good_mm;
756 	}
757 
758 	retval = -ENOMEM;
759 	mm = dup_mm(tsk);
760 	if (!mm)
761 		goto fail_nomem;
762 
763 good_mm:
764 	/* Initializing for Swap token stuff */
765 	mm->token_priority = 0;
766 	mm->last_interval = 0;
767 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
768 		atomic_inc(&mm->oom_disable_count);
769 
770 	tsk->mm = mm;
771 	tsk->active_mm = mm;
772 	return 0;
773 
774 fail_nomem:
775 	return retval;
776 }
777 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)778 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
779 {
780 	struct fs_struct *fs = current->fs;
781 	if (clone_flags & CLONE_FS) {
782 		/* tsk->fs is already what we want */
783 		spin_lock(&fs->lock);
784 		if (fs->in_exec) {
785 			spin_unlock(&fs->lock);
786 			return -EAGAIN;
787 		}
788 		fs->users++;
789 		spin_unlock(&fs->lock);
790 		return 0;
791 	}
792 	tsk->fs = copy_fs_struct(fs);
793 	if (!tsk->fs)
794 		return -ENOMEM;
795 	return 0;
796 }
797 
copy_files(unsigned long clone_flags,struct task_struct * tsk)798 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
799 {
800 	struct files_struct *oldf, *newf;
801 	int error = 0;
802 
803 	/*
804 	 * A background process may not have any files ...
805 	 */
806 	oldf = current->files;
807 	if (!oldf)
808 		goto out;
809 
810 	if (clone_flags & CLONE_FILES) {
811 		atomic_inc(&oldf->count);
812 		goto out;
813 	}
814 
815 	newf = dup_fd(oldf, &error);
816 	if (!newf)
817 		goto out;
818 
819 	tsk->files = newf;
820 	error = 0;
821 out:
822 	return error;
823 }
824 
copy_io(unsigned long clone_flags,struct task_struct * tsk)825 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
826 {
827 #ifdef CONFIG_BLOCK
828 	struct io_context *ioc = current->io_context;
829 
830 	if (!ioc)
831 		return 0;
832 	/*
833 	 * Share io context with parent, if CLONE_IO is set
834 	 */
835 	if (clone_flags & CLONE_IO) {
836 		tsk->io_context = ioc_task_link(ioc);
837 		if (unlikely(!tsk->io_context))
838 			return -ENOMEM;
839 	} else if (ioprio_valid(ioc->ioprio)) {
840 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
841 		if (unlikely(!tsk->io_context))
842 			return -ENOMEM;
843 
844 		tsk->io_context->ioprio = ioc->ioprio;
845 	}
846 #endif
847 	return 0;
848 }
849 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)850 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
851 {
852 	struct sighand_struct *sig;
853 
854 	if (clone_flags & CLONE_SIGHAND) {
855 		atomic_inc(&current->sighand->count);
856 		return 0;
857 	}
858 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
859 	rcu_assign_pointer(tsk->sighand, sig);
860 	if (!sig)
861 		return -ENOMEM;
862 	atomic_set(&sig->count, 1);
863 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
864 	return 0;
865 }
866 
__cleanup_sighand(struct sighand_struct * sighand)867 void __cleanup_sighand(struct sighand_struct *sighand)
868 {
869 	if (atomic_dec_and_test(&sighand->count))
870 		kmem_cache_free(sighand_cachep, sighand);
871 }
872 
873 
874 /*
875  * Initialize POSIX timer handling for a thread group.
876  */
posix_cpu_timers_init_group(struct signal_struct * sig)877 static void posix_cpu_timers_init_group(struct signal_struct *sig)
878 {
879 	unsigned long cpu_limit;
880 
881 	/* Thread group counters. */
882 	thread_group_cputime_init(sig);
883 
884 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
885 	if (cpu_limit != RLIM_INFINITY) {
886 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
887 		sig->cputimer.running = 1;
888 	}
889 
890 	/* The timer lists. */
891 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
892 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
893 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
894 }
895 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)896 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
897 {
898 	struct signal_struct *sig;
899 
900 	if (clone_flags & CLONE_THREAD)
901 		return 0;
902 
903 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
904 	tsk->signal = sig;
905 	if (!sig)
906 		return -ENOMEM;
907 
908 	sig->nr_threads = 1;
909 	atomic_set(&sig->live, 1);
910 	atomic_set(&sig->sigcnt, 1);
911 	init_waitqueue_head(&sig->wait_chldexit);
912 	if (clone_flags & CLONE_NEWPID)
913 		sig->flags |= SIGNAL_UNKILLABLE;
914 	sig->curr_target = tsk;
915 	init_sigpending(&sig->shared_pending);
916 	INIT_LIST_HEAD(&sig->posix_timers);
917 
918 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
919 	sig->real_timer.function = it_real_fn;
920 
921 	task_lock(current->group_leader);
922 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
923 	task_unlock(current->group_leader);
924 
925 	posix_cpu_timers_init_group(sig);
926 
927 	tty_audit_fork(sig);
928 	sched_autogroup_fork(sig);
929 
930 	sig->oom_adj = current->signal->oom_adj;
931 	sig->oom_score_adj = current->signal->oom_score_adj;
932 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
933 
934 	mutex_init(&sig->cred_guard_mutex);
935 
936 	return 0;
937 }
938 
copy_flags(unsigned long clone_flags,struct task_struct * p)939 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
940 {
941 	unsigned long new_flags = p->flags;
942 
943 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
944 	new_flags |= PF_FORKNOEXEC;
945 	new_flags |= PF_STARTING;
946 	p->flags = new_flags;
947 	clear_freeze_flag(p);
948 }
949 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)950 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
951 {
952 	current->clear_child_tid = tidptr;
953 
954 	return task_pid_vnr(current);
955 }
956 
rt_mutex_init_task(struct task_struct * p)957 static void rt_mutex_init_task(struct task_struct *p)
958 {
959 	raw_spin_lock_init(&p->pi_lock);
960 #ifdef CONFIG_RT_MUTEXES
961 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
962 	p->pi_blocked_on = NULL;
963 #endif
964 }
965 
966 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)967 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
968 {
969 	mm->owner = p;
970 }
971 #endif /* CONFIG_MM_OWNER */
972 
973 /*
974  * Initialize POSIX timer handling for a single task.
975  */
posix_cpu_timers_init(struct task_struct * tsk)976 static void posix_cpu_timers_init(struct task_struct *tsk)
977 {
978 	tsk->cputime_expires.prof_exp = cputime_zero;
979 	tsk->cputime_expires.virt_exp = cputime_zero;
980 	tsk->cputime_expires.sched_exp = 0;
981 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
982 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
983 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
984 }
985 
986 /*
987  * This creates a new process as a copy of the old one,
988  * but does not actually start it yet.
989  *
990  * It copies the registers, and all the appropriate
991  * parts of the process environment (as per the clone
992  * flags). The actual kick-off is left to the caller.
993  */
copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)994 static struct task_struct *copy_process(unsigned long clone_flags,
995 					unsigned long stack_start,
996 					struct pt_regs *regs,
997 					unsigned long stack_size,
998 					int __user *child_tidptr,
999 					struct pid *pid,
1000 					int trace)
1001 {
1002 	int retval;
1003 	struct task_struct *p;
1004 	int cgroup_callbacks_done = 0;
1005 
1006 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1007 		return ERR_PTR(-EINVAL);
1008 
1009 	/*
1010 	 * Thread groups must share signals as well, and detached threads
1011 	 * can only be started up within the thread group.
1012 	 */
1013 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1014 		return ERR_PTR(-EINVAL);
1015 
1016 	/*
1017 	 * Shared signal handlers imply shared VM. By way of the above,
1018 	 * thread groups also imply shared VM. Blocking this case allows
1019 	 * for various simplifications in other code.
1020 	 */
1021 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1022 		return ERR_PTR(-EINVAL);
1023 
1024 	/*
1025 	 * Siblings of global init remain as zombies on exit since they are
1026 	 * not reaped by their parent (swapper). To solve this and to avoid
1027 	 * multi-rooted process trees, prevent global and container-inits
1028 	 * from creating siblings.
1029 	 */
1030 	if ((clone_flags & CLONE_PARENT) &&
1031 				current->signal->flags & SIGNAL_UNKILLABLE)
1032 		return ERR_PTR(-EINVAL);
1033 
1034 	retval = security_task_create(clone_flags);
1035 	if (retval)
1036 		goto fork_out;
1037 
1038 	retval = -ENOMEM;
1039 	p = dup_task_struct(current);
1040 	if (!p)
1041 		goto fork_out;
1042 
1043 	ftrace_graph_init_task(p);
1044 
1045 	rt_mutex_init_task(p);
1046 
1047 #ifdef CONFIG_PROVE_LOCKING
1048 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1049 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1050 #endif
1051 	retval = -EAGAIN;
1052 	if (atomic_read(&p->real_cred->user->processes) >=
1053 			task_rlimit(p, RLIMIT_NPROC)) {
1054 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1055 		    p->real_cred->user != INIT_USER)
1056 			goto bad_fork_free;
1057 	}
1058 
1059 	retval = copy_creds(p, clone_flags);
1060 	if (retval < 0)
1061 		goto bad_fork_free;
1062 
1063 	/*
1064 	 * If multiple threads are within copy_process(), then this check
1065 	 * triggers too late. This doesn't hurt, the check is only there
1066 	 * to stop root fork bombs.
1067 	 */
1068 	retval = -EAGAIN;
1069 	if (nr_threads >= max_threads)
1070 		goto bad_fork_cleanup_count;
1071 
1072 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1073 		goto bad_fork_cleanup_count;
1074 
1075 	p->did_exec = 0;
1076 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1077 	copy_flags(clone_flags, p);
1078 	INIT_LIST_HEAD(&p->children);
1079 	INIT_LIST_HEAD(&p->sibling);
1080 	rcu_copy_process(p);
1081 	p->vfork_done = NULL;
1082 	spin_lock_init(&p->alloc_lock);
1083 
1084 	init_sigpending(&p->pending);
1085 
1086 	p->utime = cputime_zero;
1087 	p->stime = cputime_zero;
1088 	p->gtime = cputime_zero;
1089 	p->utimescaled = cputime_zero;
1090 	p->stimescaled = cputime_zero;
1091 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1092 	p->prev_utime = cputime_zero;
1093 	p->prev_stime = cputime_zero;
1094 #endif
1095 #if defined(SPLIT_RSS_COUNTING)
1096 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1097 #endif
1098 
1099 	p->default_timer_slack_ns = current->timer_slack_ns;
1100 
1101 	task_io_accounting_init(&p->ioac);
1102 	acct_clear_integrals(p);
1103 
1104 	posix_cpu_timers_init(p);
1105 
1106 	p->lock_depth = -1;		/* -1 = no lock */
1107 	do_posix_clock_monotonic_gettime(&p->start_time);
1108 	p->real_start_time = p->start_time;
1109 	monotonic_to_bootbased(&p->real_start_time);
1110 	p->io_context = NULL;
1111 	p->audit_context = NULL;
1112 	cgroup_fork(p);
1113 #ifdef CONFIG_NUMA
1114 	p->mempolicy = mpol_dup(p->mempolicy);
1115  	if (IS_ERR(p->mempolicy)) {
1116  		retval = PTR_ERR(p->mempolicy);
1117  		p->mempolicy = NULL;
1118  		goto bad_fork_cleanup_cgroup;
1119  	}
1120 	mpol_fix_fork_child_flag(p);
1121 #endif
1122 #ifdef CONFIG_TRACE_IRQFLAGS
1123 	p->irq_events = 0;
1124 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1125 	p->hardirqs_enabled = 1;
1126 #else
1127 	p->hardirqs_enabled = 0;
1128 #endif
1129 	p->hardirq_enable_ip = 0;
1130 	p->hardirq_enable_event = 0;
1131 	p->hardirq_disable_ip = _THIS_IP_;
1132 	p->hardirq_disable_event = 0;
1133 	p->softirqs_enabled = 1;
1134 	p->softirq_enable_ip = _THIS_IP_;
1135 	p->softirq_enable_event = 0;
1136 	p->softirq_disable_ip = 0;
1137 	p->softirq_disable_event = 0;
1138 	p->hardirq_context = 0;
1139 	p->softirq_context = 0;
1140 #endif
1141 #ifdef CONFIG_LOCKDEP
1142 	p->lockdep_depth = 0; /* no locks held yet */
1143 	p->curr_chain_key = 0;
1144 	p->lockdep_recursion = 0;
1145 #endif
1146 
1147 #ifdef CONFIG_DEBUG_MUTEXES
1148 	p->blocked_on = NULL; /* not blocked yet */
1149 #endif
1150 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1151 	p->memcg_batch.do_batch = 0;
1152 	p->memcg_batch.memcg = NULL;
1153 #endif
1154 
1155 	/* Perform scheduler related setup. Assign this task to a CPU. */
1156 	sched_fork(p, clone_flags);
1157 
1158 	retval = perf_event_init_task(p);
1159 	if (retval)
1160 		goto bad_fork_cleanup_policy;
1161 
1162 	if ((retval = audit_alloc(p)))
1163 		goto bad_fork_cleanup_policy;
1164 	/* copy all the process information */
1165 	if ((retval = copy_semundo(clone_flags, p)))
1166 		goto bad_fork_cleanup_audit;
1167 	if ((retval = copy_files(clone_flags, p)))
1168 		goto bad_fork_cleanup_semundo;
1169 	if ((retval = copy_fs(clone_flags, p)))
1170 		goto bad_fork_cleanup_files;
1171 	if ((retval = copy_sighand(clone_flags, p)))
1172 		goto bad_fork_cleanup_fs;
1173 	if ((retval = copy_signal(clone_flags, p)))
1174 		goto bad_fork_cleanup_sighand;
1175 	if ((retval = copy_mm(clone_flags, p)))
1176 		goto bad_fork_cleanup_signal;
1177 	if ((retval = copy_namespaces(clone_flags, p)))
1178 		goto bad_fork_cleanup_mm;
1179 	if ((retval = copy_io(clone_flags, p)))
1180 		goto bad_fork_cleanup_namespaces;
1181 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1182 	if (retval)
1183 		goto bad_fork_cleanup_io;
1184 
1185 	if (pid != &init_struct_pid) {
1186 		retval = -ENOMEM;
1187 		pid = alloc_pid(p->nsproxy->pid_ns);
1188 		if (!pid)
1189 			goto bad_fork_cleanup_io;
1190 	}
1191 
1192 	p->pid = pid_nr(pid);
1193 	p->tgid = p->pid;
1194 	if (clone_flags & CLONE_THREAD)
1195 		p->tgid = current->tgid;
1196 
1197 	if (current->nsproxy != p->nsproxy) {
1198 		retval = ns_cgroup_clone(p, pid);
1199 		if (retval)
1200 			goto bad_fork_free_pid;
1201 	}
1202 
1203 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1204 	/*
1205 	 * Clear TID on mm_release()?
1206 	 */
1207 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1208 #ifdef CONFIG_BLOCK
1209 	p->plug = NULL;
1210 #endif
1211 #ifdef CONFIG_FUTEX
1212 	p->robust_list = NULL;
1213 #ifdef CONFIG_COMPAT
1214 	p->compat_robust_list = NULL;
1215 #endif
1216 	INIT_LIST_HEAD(&p->pi_state_list);
1217 	p->pi_state_cache = NULL;
1218 #endif
1219 	/*
1220 	 * sigaltstack should be cleared when sharing the same VM
1221 	 */
1222 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1223 		p->sas_ss_sp = p->sas_ss_size = 0;
1224 
1225 	/*
1226 	 * Syscall tracing and stepping should be turned off in the
1227 	 * child regardless of CLONE_PTRACE.
1228 	 */
1229 	user_disable_single_step(p);
1230 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1231 #ifdef TIF_SYSCALL_EMU
1232 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1233 #endif
1234 	clear_all_latency_tracing(p);
1235 
1236 	/* ok, now we should be set up.. */
1237 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1238 	p->pdeath_signal = 0;
1239 	p->exit_state = 0;
1240 
1241 	/*
1242 	 * Ok, make it visible to the rest of the system.
1243 	 * We dont wake it up yet.
1244 	 */
1245 	p->group_leader = p;
1246 	INIT_LIST_HEAD(&p->thread_group);
1247 
1248 	/* Now that the task is set up, run cgroup callbacks if
1249 	 * necessary. We need to run them before the task is visible
1250 	 * on the tasklist. */
1251 	cgroup_fork_callbacks(p);
1252 	cgroup_callbacks_done = 1;
1253 
1254 	/* Need tasklist lock for parent etc handling! */
1255 	write_lock_irq(&tasklist_lock);
1256 
1257 	/* CLONE_PARENT re-uses the old parent */
1258 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1259 		p->real_parent = current->real_parent;
1260 		p->parent_exec_id = current->parent_exec_id;
1261 	} else {
1262 		p->real_parent = current;
1263 		p->parent_exec_id = current->self_exec_id;
1264 	}
1265 
1266 	spin_lock(&current->sighand->siglock);
1267 
1268 	/*
1269 	 * Process group and session signals need to be delivered to just the
1270 	 * parent before the fork or both the parent and the child after the
1271 	 * fork. Restart if a signal comes in before we add the new process to
1272 	 * it's process group.
1273 	 * A fatal signal pending means that current will exit, so the new
1274 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1275  	 */
1276 	recalc_sigpending();
1277 	if (signal_pending(current)) {
1278 		spin_unlock(&current->sighand->siglock);
1279 		write_unlock_irq(&tasklist_lock);
1280 		retval = -ERESTARTNOINTR;
1281 		goto bad_fork_free_pid;
1282 	}
1283 
1284 	if (clone_flags & CLONE_THREAD) {
1285 		current->signal->nr_threads++;
1286 		atomic_inc(&current->signal->live);
1287 		atomic_inc(&current->signal->sigcnt);
1288 		p->group_leader = current->group_leader;
1289 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1290 	}
1291 
1292 	if (likely(p->pid)) {
1293 		tracehook_finish_clone(p, clone_flags, trace);
1294 
1295 		if (thread_group_leader(p)) {
1296 			if (is_child_reaper(pid))
1297 				p->nsproxy->pid_ns->child_reaper = p;
1298 
1299 			p->signal->leader_pid = pid;
1300 			p->signal->tty = tty_kref_get(current->signal->tty);
1301 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1302 			attach_pid(p, PIDTYPE_SID, task_session(current));
1303 			list_add_tail(&p->sibling, &p->real_parent->children);
1304 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1305 			__this_cpu_inc(process_counts);
1306 		}
1307 		attach_pid(p, PIDTYPE_PID, pid);
1308 		nr_threads++;
1309 	}
1310 
1311 	total_forks++;
1312 	spin_unlock(&current->sighand->siglock);
1313 	write_unlock_irq(&tasklist_lock);
1314 	proc_fork_connector(p);
1315 	cgroup_post_fork(p);
1316 	perf_event_fork(p);
1317 	return p;
1318 
1319 bad_fork_free_pid:
1320 	if (pid != &init_struct_pid)
1321 		free_pid(pid);
1322 bad_fork_cleanup_io:
1323 	if (p->io_context)
1324 		exit_io_context(p);
1325 bad_fork_cleanup_namespaces:
1326 	exit_task_namespaces(p);
1327 bad_fork_cleanup_mm:
1328 	if (p->mm) {
1329 		task_lock(p);
1330 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1331 			atomic_dec(&p->mm->oom_disable_count);
1332 		task_unlock(p);
1333 		mmput(p->mm);
1334 	}
1335 bad_fork_cleanup_signal:
1336 	if (!(clone_flags & CLONE_THREAD))
1337 		free_signal_struct(p->signal);
1338 bad_fork_cleanup_sighand:
1339 	__cleanup_sighand(p->sighand);
1340 bad_fork_cleanup_fs:
1341 	exit_fs(p); /* blocking */
1342 bad_fork_cleanup_files:
1343 	exit_files(p); /* blocking */
1344 bad_fork_cleanup_semundo:
1345 	exit_sem(p);
1346 bad_fork_cleanup_audit:
1347 	audit_free(p);
1348 bad_fork_cleanup_policy:
1349 	perf_event_free_task(p);
1350 #ifdef CONFIG_NUMA
1351 	mpol_put(p->mempolicy);
1352 bad_fork_cleanup_cgroup:
1353 #endif
1354 	cgroup_exit(p, cgroup_callbacks_done);
1355 	delayacct_tsk_free(p);
1356 	module_put(task_thread_info(p)->exec_domain->module);
1357 bad_fork_cleanup_count:
1358 	atomic_dec(&p->cred->user->processes);
1359 	exit_creds(p);
1360 bad_fork_free:
1361 	free_task(p);
1362 fork_out:
1363 	return ERR_PTR(retval);
1364 }
1365 
idle_regs(struct pt_regs * regs)1366 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1367 {
1368 	memset(regs, 0, sizeof(struct pt_regs));
1369 	return regs;
1370 }
1371 
init_idle_pids(struct pid_link * links)1372 static inline void init_idle_pids(struct pid_link *links)
1373 {
1374 	enum pid_type type;
1375 
1376 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1377 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1378 		links[type].pid = &init_struct_pid;
1379 	}
1380 }
1381 
fork_idle(int cpu)1382 struct task_struct * __cpuinit fork_idle(int cpu)
1383 {
1384 	struct task_struct *task;
1385 	struct pt_regs regs;
1386 
1387 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1388 			    &init_struct_pid, 0);
1389 	if (!IS_ERR(task)) {
1390 		init_idle_pids(task->pids);
1391 		init_idle(task, cpu);
1392 	}
1393 
1394 	return task;
1395 }
1396 
1397 /*
1398  *  Ok, this is the main fork-routine.
1399  *
1400  * It copies the process, and if successful kick-starts
1401  * it and waits for it to finish using the VM if required.
1402  */
do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1403 long do_fork(unsigned long clone_flags,
1404 	      unsigned long stack_start,
1405 	      struct pt_regs *regs,
1406 	      unsigned long stack_size,
1407 	      int __user *parent_tidptr,
1408 	      int __user *child_tidptr)
1409 {
1410 	struct task_struct *p;
1411 	int trace = 0;
1412 	long nr;
1413 
1414 	/*
1415 	 * Do some preliminary argument and permissions checking before we
1416 	 * actually start allocating stuff
1417 	 */
1418 	if (clone_flags & CLONE_NEWUSER) {
1419 		if (clone_flags & CLONE_THREAD)
1420 			return -EINVAL;
1421 		/* hopefully this check will go away when userns support is
1422 		 * complete
1423 		 */
1424 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1425 				!capable(CAP_SETGID))
1426 			return -EPERM;
1427 	}
1428 
1429 	/*
1430 	 * When called from kernel_thread, don't do user tracing stuff.
1431 	 */
1432 	if (likely(user_mode(regs)))
1433 		trace = tracehook_prepare_clone(clone_flags);
1434 
1435 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1436 			 child_tidptr, NULL, trace);
1437 	/*
1438 	 * Do this prior waking up the new thread - the thread pointer
1439 	 * might get invalid after that point, if the thread exits quickly.
1440 	 */
1441 	if (!IS_ERR(p)) {
1442 		struct completion vfork;
1443 
1444 		trace_sched_process_fork(current, p);
1445 
1446 		nr = task_pid_vnr(p);
1447 
1448 		if (clone_flags & CLONE_PARENT_SETTID)
1449 			put_user(nr, parent_tidptr);
1450 
1451 		if (clone_flags & CLONE_VFORK) {
1452 			p->vfork_done = &vfork;
1453 			init_completion(&vfork);
1454 		}
1455 
1456 		audit_finish_fork(p);
1457 		tracehook_report_clone(regs, clone_flags, nr, p);
1458 
1459 		/*
1460 		 * We set PF_STARTING at creation in case tracing wants to
1461 		 * use this to distinguish a fully live task from one that
1462 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1463 		 * clear it and set the child going.
1464 		 */
1465 		p->flags &= ~PF_STARTING;
1466 
1467 		wake_up_new_task(p, clone_flags);
1468 
1469 		tracehook_report_clone_complete(trace, regs,
1470 						clone_flags, nr, p);
1471 
1472 		if (clone_flags & CLONE_VFORK) {
1473 			freezer_do_not_count();
1474 			wait_for_completion(&vfork);
1475 			freezer_count();
1476 			tracehook_report_vfork_done(p, nr);
1477 		}
1478 	} else {
1479 		nr = PTR_ERR(p);
1480 	}
1481 	return nr;
1482 }
1483 
1484 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1485 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1486 #endif
1487 
sighand_ctor(void * data)1488 static void sighand_ctor(void *data)
1489 {
1490 	struct sighand_struct *sighand = data;
1491 
1492 	spin_lock_init(&sighand->siglock);
1493 	init_waitqueue_head(&sighand->signalfd_wqh);
1494 }
1495 
proc_caches_init(void)1496 void __init proc_caches_init(void)
1497 {
1498 	sighand_cachep = kmem_cache_create("sighand_cache",
1499 			sizeof(struct sighand_struct), 0,
1500 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1501 			SLAB_NOTRACK, sighand_ctor);
1502 	signal_cachep = kmem_cache_create("signal_cache",
1503 			sizeof(struct signal_struct), 0,
1504 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 	files_cachep = kmem_cache_create("files_cache",
1506 			sizeof(struct files_struct), 0,
1507 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 	fs_cachep = kmem_cache_create("fs_cache",
1509 			sizeof(struct fs_struct), 0,
1510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 	mm_cachep = kmem_cache_create("mm_struct",
1512 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1513 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1515 	mmap_init();
1516 }
1517 
1518 /*
1519  * Check constraints on flags passed to the unshare system call.
1520  */
check_unshare_flags(unsigned long unshare_flags)1521 static int check_unshare_flags(unsigned long unshare_flags)
1522 {
1523 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1524 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1525 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1526 		return -EINVAL;
1527 	/*
1528 	 * Not implemented, but pretend it works if there is nothing to
1529 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1530 	 * needs to unshare vm.
1531 	 */
1532 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1533 		/* FIXME: get_task_mm() increments ->mm_users */
1534 		if (atomic_read(&current->mm->mm_users) > 1)
1535 			return -EINVAL;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Unshare the filesystem structure if it is being shared
1543  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1544 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1545 {
1546 	struct fs_struct *fs = current->fs;
1547 
1548 	if (!(unshare_flags & CLONE_FS) || !fs)
1549 		return 0;
1550 
1551 	/* don't need lock here; in the worst case we'll do useless copy */
1552 	if (fs->users == 1)
1553 		return 0;
1554 
1555 	*new_fsp = copy_fs_struct(fs);
1556 	if (!*new_fsp)
1557 		return -ENOMEM;
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Unshare file descriptor table if it is being shared
1564  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1566 {
1567 	struct files_struct *fd = current->files;
1568 	int error = 0;
1569 
1570 	if ((unshare_flags & CLONE_FILES) &&
1571 	    (fd && atomic_read(&fd->count) > 1)) {
1572 		*new_fdp = dup_fd(fd, &error);
1573 		if (!*new_fdp)
1574 			return error;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 /*
1581  * unshare allows a process to 'unshare' part of the process
1582  * context which was originally shared using clone.  copy_*
1583  * functions used by do_fork() cannot be used here directly
1584  * because they modify an inactive task_struct that is being
1585  * constructed. Here we are modifying the current, active,
1586  * task_struct.
1587  */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1588 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1589 {
1590 	struct fs_struct *fs, *new_fs = NULL;
1591 	struct files_struct *fd, *new_fd = NULL;
1592 	struct nsproxy *new_nsproxy = NULL;
1593 	int do_sysvsem = 0;
1594 	int err;
1595 
1596 	err = check_unshare_flags(unshare_flags);
1597 	if (err)
1598 		goto bad_unshare_out;
1599 
1600 	/*
1601 	 * If unsharing namespace, must also unshare filesystem information.
1602 	 */
1603 	if (unshare_flags & CLONE_NEWNS)
1604 		unshare_flags |= CLONE_FS;
1605 	/*
1606 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1607 	 * to a new ipc namespace, the semaphore arrays from the old
1608 	 * namespace are unreachable.
1609 	 */
1610 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1611 		do_sysvsem = 1;
1612 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1613 		goto bad_unshare_out;
1614 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1615 		goto bad_unshare_cleanup_fs;
1616 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1617 			new_fs)))
1618 		goto bad_unshare_cleanup_fd;
1619 
1620 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1621 		if (do_sysvsem) {
1622 			/*
1623 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1624 			 */
1625 			exit_sem(current);
1626 		}
1627 
1628 		if (new_nsproxy) {
1629 			switch_task_namespaces(current, new_nsproxy);
1630 			new_nsproxy = NULL;
1631 		}
1632 
1633 		task_lock(current);
1634 
1635 		if (new_fs) {
1636 			fs = current->fs;
1637 			spin_lock(&fs->lock);
1638 			current->fs = new_fs;
1639 			if (--fs->users)
1640 				new_fs = NULL;
1641 			else
1642 				new_fs = fs;
1643 			spin_unlock(&fs->lock);
1644 		}
1645 
1646 		if (new_fd) {
1647 			fd = current->files;
1648 			current->files = new_fd;
1649 			new_fd = fd;
1650 		}
1651 
1652 		task_unlock(current);
1653 	}
1654 
1655 	if (new_nsproxy)
1656 		put_nsproxy(new_nsproxy);
1657 
1658 bad_unshare_cleanup_fd:
1659 	if (new_fd)
1660 		put_files_struct(new_fd);
1661 
1662 bad_unshare_cleanup_fs:
1663 	if (new_fs)
1664 		free_fs_struct(new_fs);
1665 
1666 bad_unshare_out:
1667 	return err;
1668 }
1669 
1670 /*
1671  *	Helper to unshare the files of the current task.
1672  *	We don't want to expose copy_files internals to
1673  *	the exec layer of the kernel.
1674  */
1675 
unshare_files(struct files_struct ** displaced)1676 int unshare_files(struct files_struct **displaced)
1677 {
1678 	struct task_struct *task = current;
1679 	struct files_struct *copy = NULL;
1680 	int error;
1681 
1682 	error = unshare_fd(CLONE_FILES, &copy);
1683 	if (error || !copy) {
1684 		*displaced = NULL;
1685 		return error;
1686 	}
1687 	*displaced = task->files;
1688 	task_lock(task);
1689 	task->files = copy;
1690 	task_unlock(task);
1691 	return 0;
1692 }
1693