1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53
54 #include <asm/tlbflush.h>
55
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
isolate_movable_page(struct page * page,isolate_mode_t mode)60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 struct folio *folio = folio_get_nontail_page(page);
63 const struct movable_operations *mops;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (!folio)
75 goto out;
76
77 if (unlikely(folio_test_slab(folio)))
78 goto out_putfolio;
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 smp_rmb();
81 /*
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
85 */
86 if (unlikely(!__folio_test_movable(folio)))
87 goto out_putfolio;
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 smp_rmb();
90 if (unlikely(folio_test_slab(folio)))
91 goto out_putfolio;
92
93 /*
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
97 *
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
103 */
104 if (unlikely(!folio_trylock(folio)))
105 goto out_putfolio;
106
107 if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 goto out_no_isolated;
109
110 mops = folio_movable_ops(folio);
111 VM_BUG_ON_FOLIO(!mops, folio);
112
113 if (!mops->isolate_page(&folio->page, mode))
114 goto out_no_isolated;
115
116 /* Driver shouldn't use PG_isolated bit of page->flags */
117 WARN_ON_ONCE(folio_test_isolated(folio));
118 folio_set_isolated(folio);
119 folio_unlock(folio);
120
121 return true;
122
123 out_no_isolated:
124 folio_unlock(folio);
125 out_putfolio:
126 folio_put(folio);
127 out:
128 return false;
129 }
130
putback_movable_folio(struct folio * folio)131 static void putback_movable_folio(struct folio *folio)
132 {
133 const struct movable_operations *mops = folio_movable_ops(folio);
134
135 mops->putback_page(&folio->page);
136 folio_clear_isolated(folio);
137 }
138
139 /*
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
142 *
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
146 */
putback_movable_pages(struct list_head * l)147 void putback_movable_pages(struct list_head *l)
148 {
149 struct folio *folio;
150 struct folio *folio2;
151
152 list_for_each_entry_safe(folio, folio2, l, lru) {
153 if (unlikely(folio_test_hugetlb(folio))) {
154 folio_putback_active_hugetlb(folio);
155 continue;
156 }
157 list_del(&folio->lru);
158 /*
159 * We isolated non-lru movable folio so here we can use
160 * __PageMovable because LRU folio's mapping cannot have
161 * PAGE_MAPPING_MOVABLE.
162 */
163 if (unlikely(__folio_test_movable(folio))) {
164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 folio_lock(folio);
166 if (folio_test_movable(folio))
167 putback_movable_folio(folio);
168 else
169 folio_clear_isolated(folio);
170 folio_unlock(folio);
171 folio_put(folio);
172 } else {
173 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 folio_is_file_lru(folio), -folio_nr_pages(folio));
175 folio_putback_lru(folio);
176 }
177 }
178 }
179
180 /*
181 * Restore a potential migration pte to a working pte entry
182 */
remove_migration_pte(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,void * old)183 static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
190 pte_t old_pte;
191 pte_t pte;
192 swp_entry_t entry;
193 struct page *new;
194 unsigned long idx = 0;
195
196 /* pgoff is invalid for ksm pages, but they are never large */
197 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 new = folio_page(folio, idx);
200
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 /* PMD-mapped THP migration entry */
203 if (!pvmw.pte) {
204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 !folio_test_pmd_mappable(folio), folio);
206 remove_migration_pmd(&pvmw, new);
207 continue;
208 }
209 #endif
210
211 folio_get(folio);
212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 old_pte = ptep_get(pvmw.pte);
214 if (pte_swp_soft_dirty(old_pte))
215 pte = pte_mksoft_dirty(pte);
216
217 entry = pte_to_swp_entry(old_pte);
218 if (!is_migration_entry_young(entry))
219 pte = pte_mkold(pte);
220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 pte = pte_mkdirty(pte);
222 if (is_writable_migration_entry(entry))
223 pte = pte_mkwrite(pte, vma);
224 else if (pte_swp_uffd_wp(old_pte))
225 pte = pte_mkuffd_wp(pte);
226
227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 rmap_flags |= RMAP_EXCLUSIVE;
229
230 if (unlikely(is_device_private_page(new))) {
231 if (pte_write(pte))
232 entry = make_writable_device_private_entry(
233 page_to_pfn(new));
234 else
235 entry = make_readable_device_private_entry(
236 page_to_pfn(new));
237 pte = swp_entry_to_pte(entry);
238 if (pte_swp_soft_dirty(old_pte))
239 pte = pte_swp_mksoft_dirty(pte);
240 if (pte_swp_uffd_wp(old_pte))
241 pte = pte_swp_mkuffd_wp(pte);
242 }
243
244 #ifdef CONFIG_HUGETLB_PAGE
245 if (folio_test_hugetlb(folio)) {
246 struct hstate *h = hstate_vma(vma);
247 unsigned int shift = huge_page_shift(h);
248 unsigned long psize = huge_page_size(h);
249
250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 if (folio_test_anon(folio))
252 hugepage_add_anon_rmap(new, vma, pvmw.address,
253 rmap_flags);
254 else
255 page_dup_file_rmap(new, true);
256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
257 psize);
258 } else
259 #endif
260 {
261 if (folio_test_anon(folio))
262 page_add_anon_rmap(new, vma, pvmw.address,
263 rmap_flags);
264 else
265 page_add_file_rmap(new, vma, false);
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 }
268 if (vma->vm_flags & VM_LOCKED)
269 mlock_drain_local();
270
271 trace_remove_migration_pte(pvmw.address, pte_val(pte),
272 compound_order(new));
273
274 /* No need to invalidate - it was non-present before */
275 update_mmu_cache(vma, pvmw.address, pvmw.pte);
276 }
277
278 return true;
279 }
280
281 /*
282 * Get rid of all migration entries and replace them by
283 * references to the indicated page.
284 */
remove_migration_ptes(struct folio * src,struct folio * dst,bool locked)285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
286 {
287 struct rmap_walk_control rwc = {
288 .rmap_one = remove_migration_pte,
289 .arg = src,
290 };
291
292 if (locked)
293 rmap_walk_locked(dst, &rwc);
294 else
295 rmap_walk(dst, &rwc);
296 }
297
298 /*
299 * Something used the pte of a page under migration. We need to
300 * get to the page and wait until migration is finished.
301 * When we return from this function the fault will be retried.
302 */
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
304 unsigned long address)
305 {
306 spinlock_t *ptl;
307 pte_t *ptep;
308 pte_t pte;
309 swp_entry_t entry;
310
311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
312 if (!ptep)
313 return;
314
315 pte = ptep_get(ptep);
316 pte_unmap(ptep);
317
318 if (!is_swap_pte(pte))
319 goto out;
320
321 entry = pte_to_swp_entry(pte);
322 if (!is_migration_entry(entry))
323 goto out;
324
325 migration_entry_wait_on_locked(entry, ptl);
326 return;
327 out:
328 spin_unlock(ptl);
329 }
330
331 #ifdef CONFIG_HUGETLB_PAGE
332 /*
333 * The vma read lock must be held upon entry. Holding that lock prevents either
334 * the pte or the ptl from being freed.
335 *
336 * This function will release the vma lock before returning.
337 */
migration_entry_wait_huge(struct vm_area_struct * vma,pte_t * ptep)338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
339 {
340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
341 pte_t pte;
342
343 hugetlb_vma_assert_locked(vma);
344 spin_lock(ptl);
345 pte = huge_ptep_get(ptep);
346
347 if (unlikely(!is_hugetlb_entry_migration(pte))) {
348 spin_unlock(ptl);
349 hugetlb_vma_unlock_read(vma);
350 } else {
351 /*
352 * If migration entry existed, safe to release vma lock
353 * here because the pgtable page won't be freed without the
354 * pgtable lock released. See comment right above pgtable
355 * lock release in migration_entry_wait_on_locked().
356 */
357 hugetlb_vma_unlock_read(vma);
358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
359 }
360 }
361 #endif
362
363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 {
366 spinlock_t *ptl;
367
368 ptl = pmd_lock(mm, pmd);
369 if (!is_pmd_migration_entry(*pmd))
370 goto unlock;
371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
372 return;
373 unlock:
374 spin_unlock(ptl);
375 }
376 #endif
377
folio_expected_refs(struct address_space * mapping,struct folio * folio)378 static int folio_expected_refs(struct address_space *mapping,
379 struct folio *folio)
380 {
381 int refs = 1;
382 if (!mapping)
383 return refs;
384
385 refs += folio_nr_pages(folio);
386 if (folio_test_private(folio))
387 refs++;
388
389 return refs;
390 }
391
392 /*
393 * Replace the page in the mapping.
394 *
395 * The number of remaining references must be:
396 * 1 for anonymous pages without a mapping
397 * 2 for pages with a mapping
398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399 */
folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int extra_count)400 int folio_migrate_mapping(struct address_space *mapping,
401 struct folio *newfolio, struct folio *folio, int extra_count)
402 {
403 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
404 struct zone *oldzone, *newzone;
405 int dirty;
406 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
407 long nr = folio_nr_pages(folio);
408 long entries, i;
409
410 if (!mapping) {
411 /* Anonymous page without mapping */
412 if (folio_ref_count(folio) != expected_count)
413 return -EAGAIN;
414
415 /* No turning back from here */
416 newfolio->index = folio->index;
417 newfolio->mapping = folio->mapping;
418 if (folio_test_swapbacked(folio))
419 __folio_set_swapbacked(newfolio);
420
421 return MIGRATEPAGE_SUCCESS;
422 }
423
424 oldzone = folio_zone(folio);
425 newzone = folio_zone(newfolio);
426
427 xas_lock_irq(&xas);
428 if (!folio_ref_freeze(folio, expected_count)) {
429 xas_unlock_irq(&xas);
430 return -EAGAIN;
431 }
432
433 /*
434 * Now we know that no one else is looking at the folio:
435 * no turning back from here.
436 */
437 newfolio->index = folio->index;
438 newfolio->mapping = folio->mapping;
439 folio_ref_add(newfolio, nr); /* add cache reference */
440 if (folio_test_swapbacked(folio)) {
441 __folio_set_swapbacked(newfolio);
442 if (folio_test_swapcache(folio)) {
443 folio_set_swapcache(newfolio);
444 newfolio->private = folio_get_private(folio);
445 }
446 entries = nr;
447 } else {
448 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
449 entries = 1;
450 }
451
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = folio_test_dirty(folio);
454 if (dirty) {
455 folio_clear_dirty(folio);
456 folio_set_dirty(newfolio);
457 }
458
459 /* Swap cache still stores N entries instead of a high-order entry */
460 for (i = 0; i < entries; i++) {
461 xas_store(&xas, newfolio);
462 xas_next(&xas);
463 }
464
465 /*
466 * Drop cache reference from old page by unfreezing
467 * to one less reference.
468 * We know this isn't the last reference.
469 */
470 folio_ref_unfreeze(folio, expected_count - nr);
471
472 xas_unlock(&xas);
473 /* Leave irq disabled to prevent preemption while updating stats */
474
475 /*
476 * If moved to a different zone then also account
477 * the page for that zone. Other VM counters will be
478 * taken care of when we establish references to the
479 * new page and drop references to the old page.
480 *
481 * Note that anonymous pages are accounted for
482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
483 * are mapped to swap space.
484 */
485 if (newzone != oldzone) {
486 struct lruvec *old_lruvec, *new_lruvec;
487 struct mem_cgroup *memcg;
488
489 memcg = folio_memcg(folio);
490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
492
493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
498
499 if (folio_test_pmd_mappable(folio)) {
500 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
502 }
503 }
504 #ifdef CONFIG_SWAP
505 if (folio_test_swapcache(folio)) {
506 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
507 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
508 }
509 #endif
510 if (dirty && mapping_can_writeback(mapping)) {
511 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
512 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
513 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
514 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
515 }
516 }
517 local_irq_enable();
518
519 return MIGRATEPAGE_SUCCESS;
520 }
521 EXPORT_SYMBOL(folio_migrate_mapping);
522
523 /*
524 * The expected number of remaining references is the same as that
525 * of folio_migrate_mapping().
526 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct folio * dst,struct folio * src)527 int migrate_huge_page_move_mapping(struct address_space *mapping,
528 struct folio *dst, struct folio *src)
529 {
530 XA_STATE(xas, &mapping->i_pages, folio_index(src));
531 int expected_count;
532
533 xas_lock_irq(&xas);
534 expected_count = 2 + folio_has_private(src);
535 if (!folio_ref_freeze(src, expected_count)) {
536 xas_unlock_irq(&xas);
537 return -EAGAIN;
538 }
539
540 dst->index = src->index;
541 dst->mapping = src->mapping;
542
543 folio_get(dst);
544
545 xas_store(&xas, dst);
546
547 folio_ref_unfreeze(src, expected_count - 1);
548
549 xas_unlock_irq(&xas);
550
551 return MIGRATEPAGE_SUCCESS;
552 }
553
554 /*
555 * Copy the flags and some other ancillary information
556 */
folio_migrate_flags(struct folio * newfolio,struct folio * folio)557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
558 {
559 int cpupid;
560
561 if (folio_test_error(folio))
562 folio_set_error(newfolio);
563 if (folio_test_referenced(folio))
564 folio_set_referenced(newfolio);
565 if (folio_test_uptodate(folio))
566 folio_mark_uptodate(newfolio);
567 if (folio_test_clear_active(folio)) {
568 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
569 folio_set_active(newfolio);
570 } else if (folio_test_clear_unevictable(folio))
571 folio_set_unevictable(newfolio);
572 if (folio_test_workingset(folio))
573 folio_set_workingset(newfolio);
574 if (folio_test_checked(folio))
575 folio_set_checked(newfolio);
576 /*
577 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
578 * migration entries. We can still have PG_anon_exclusive set on an
579 * effectively unmapped and unreferenced first sub-pages of an
580 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
581 */
582 if (folio_test_mappedtodisk(folio))
583 folio_set_mappedtodisk(newfolio);
584
585 /* Move dirty on pages not done by folio_migrate_mapping() */
586 if (folio_test_dirty(folio))
587 folio_set_dirty(newfolio);
588
589 if (folio_test_young(folio))
590 folio_set_young(newfolio);
591 if (folio_test_idle(folio))
592 folio_set_idle(newfolio);
593
594 /*
595 * Copy NUMA information to the new page, to prevent over-eager
596 * future migrations of this same page.
597 */
598 cpupid = page_cpupid_xchg_last(&folio->page, -1);
599 /*
600 * For memory tiering mode, when migrate between slow and fast
601 * memory node, reset cpupid, because that is used to record
602 * page access time in slow memory node.
603 */
604 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
605 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
606 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
607
608 if (f_toptier != t_toptier)
609 cpupid = -1;
610 }
611 page_cpupid_xchg_last(&newfolio->page, cpupid);
612
613 folio_migrate_ksm(newfolio, folio);
614 /*
615 * Please do not reorder this without considering how mm/ksm.c's
616 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
617 */
618 if (folio_test_swapcache(folio))
619 folio_clear_swapcache(folio);
620 folio_clear_private(folio);
621
622 /* page->private contains hugetlb specific flags */
623 if (!folio_test_hugetlb(folio))
624 folio->private = NULL;
625
626 /*
627 * If any waiters have accumulated on the new page then
628 * wake them up.
629 */
630 if (folio_test_writeback(newfolio))
631 folio_end_writeback(newfolio);
632
633 /*
634 * PG_readahead shares the same bit with PG_reclaim. The above
635 * end_page_writeback() may clear PG_readahead mistakenly, so set the
636 * bit after that.
637 */
638 if (folio_test_readahead(folio))
639 folio_set_readahead(newfolio);
640
641 folio_copy_owner(newfolio, folio);
642
643 if (!folio_test_hugetlb(folio))
644 mem_cgroup_migrate(folio, newfolio);
645 }
646 EXPORT_SYMBOL(folio_migrate_flags);
647
folio_migrate_copy(struct folio * newfolio,struct folio * folio)648 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
649 {
650 folio_copy(newfolio, folio);
651 folio_migrate_flags(newfolio, folio);
652 }
653 EXPORT_SYMBOL(folio_migrate_copy);
654
655 /************************************************************
656 * Migration functions
657 ***********************************************************/
658
migrate_folio_extra(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,int extra_count)659 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
660 struct folio *src, enum migrate_mode mode, int extra_count)
661 {
662 int rc;
663
664 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
665
666 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
667
668 if (rc != MIGRATEPAGE_SUCCESS)
669 return rc;
670
671 if (mode != MIGRATE_SYNC_NO_COPY)
672 folio_migrate_copy(dst, src);
673 else
674 folio_migrate_flags(dst, src);
675 return MIGRATEPAGE_SUCCESS;
676 }
677
678 /**
679 * migrate_folio() - Simple folio migration.
680 * @mapping: The address_space containing the folio.
681 * @dst: The folio to migrate the data to.
682 * @src: The folio containing the current data.
683 * @mode: How to migrate the page.
684 *
685 * Common logic to directly migrate a single LRU folio suitable for
686 * folios that do not use PagePrivate/PagePrivate2.
687 *
688 * Folios are locked upon entry and exit.
689 */
migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)690 int migrate_folio(struct address_space *mapping, struct folio *dst,
691 struct folio *src, enum migrate_mode mode)
692 {
693 return migrate_folio_extra(mapping, dst, src, mode, 0);
694 }
695 EXPORT_SYMBOL(migrate_folio);
696
697 #ifdef CONFIG_BUFFER_HEAD
698 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 enum migrate_mode mode)
701 {
702 struct buffer_head *bh = head;
703 struct buffer_head *failed_bh;
704
705 do {
706 if (!trylock_buffer(bh)) {
707 if (mode == MIGRATE_ASYNC)
708 goto unlock;
709 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
710 goto unlock;
711 lock_buffer(bh);
712 }
713
714 bh = bh->b_this_page;
715 } while (bh != head);
716
717 return true;
718
719 unlock:
720 /* We failed to lock the buffer and cannot stall. */
721 failed_bh = bh;
722 bh = head;
723 while (bh != failed_bh) {
724 unlock_buffer(bh);
725 bh = bh->b_this_page;
726 }
727
728 return false;
729 }
730
__buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,bool check_refs)731 static int __buffer_migrate_folio(struct address_space *mapping,
732 struct folio *dst, struct folio *src, enum migrate_mode mode,
733 bool check_refs)
734 {
735 struct buffer_head *bh, *head;
736 int rc;
737 int expected_count;
738
739 head = folio_buffers(src);
740 if (!head)
741 return migrate_folio(mapping, dst, src, mode);
742
743 /* Check whether page does not have extra refs before we do more work */
744 expected_count = folio_expected_refs(mapping, src);
745 if (folio_ref_count(src) != expected_count)
746 return -EAGAIN;
747
748 if (!buffer_migrate_lock_buffers(head, mode))
749 return -EAGAIN;
750
751 if (check_refs) {
752 bool busy;
753 bool invalidated = false;
754
755 recheck_buffers:
756 busy = false;
757 spin_lock(&mapping->private_lock);
758 bh = head;
759 do {
760 if (atomic_read(&bh->b_count)) {
761 busy = true;
762 break;
763 }
764 bh = bh->b_this_page;
765 } while (bh != head);
766 if (busy) {
767 if (invalidated) {
768 rc = -EAGAIN;
769 goto unlock_buffers;
770 }
771 spin_unlock(&mapping->private_lock);
772 invalidate_bh_lrus();
773 invalidated = true;
774 goto recheck_buffers;
775 }
776 }
777
778 rc = folio_migrate_mapping(mapping, dst, src, 0);
779 if (rc != MIGRATEPAGE_SUCCESS)
780 goto unlock_buffers;
781
782 folio_attach_private(dst, folio_detach_private(src));
783
784 bh = head;
785 do {
786 folio_set_bh(bh, dst, bh_offset(bh));
787 bh = bh->b_this_page;
788 } while (bh != head);
789
790 if (mode != MIGRATE_SYNC_NO_COPY)
791 folio_migrate_copy(dst, src);
792 else
793 folio_migrate_flags(dst, src);
794
795 rc = MIGRATEPAGE_SUCCESS;
796 unlock_buffers:
797 if (check_refs)
798 spin_unlock(&mapping->private_lock);
799 bh = head;
800 do {
801 unlock_buffer(bh);
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return rc;
806 }
807
808 /**
809 * buffer_migrate_folio() - Migration function for folios with buffers.
810 * @mapping: The address space containing @src.
811 * @dst: The folio to migrate to.
812 * @src: The folio to migrate from.
813 * @mode: How to migrate the folio.
814 *
815 * This function can only be used if the underlying filesystem guarantees
816 * that no other references to @src exist. For example attached buffer
817 * heads are accessed only under the folio lock. If your filesystem cannot
818 * provide this guarantee, buffer_migrate_folio_norefs() may be more
819 * appropriate.
820 *
821 * Return: 0 on success or a negative errno on failure.
822 */
buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)823 int buffer_migrate_folio(struct address_space *mapping,
824 struct folio *dst, struct folio *src, enum migrate_mode mode)
825 {
826 return __buffer_migrate_folio(mapping, dst, src, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_folio);
829
830 /**
831 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
832 * @mapping: The address space containing @src.
833 * @dst: The folio to migrate to.
834 * @src: The folio to migrate from.
835 * @mode: How to migrate the folio.
836 *
837 * Like buffer_migrate_folio() except that this variant is more careful
838 * and checks that there are also no buffer head references. This function
839 * is the right one for mappings where buffer heads are directly looked
840 * up and referenced (such as block device mappings).
841 *
842 * Return: 0 on success or a negative errno on failure.
843 */
buffer_migrate_folio_norefs(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)844 int buffer_migrate_folio_norefs(struct address_space *mapping,
845 struct folio *dst, struct folio *src, enum migrate_mode mode)
846 {
847 return __buffer_migrate_folio(mapping, dst, src, mode, true);
848 }
849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
850 #endif /* CONFIG_BUFFER_HEAD */
851
filemap_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)852 int filemap_migrate_folio(struct address_space *mapping,
853 struct folio *dst, struct folio *src, enum migrate_mode mode)
854 {
855 int ret;
856
857 ret = folio_migrate_mapping(mapping, dst, src, 0);
858 if (ret != MIGRATEPAGE_SUCCESS)
859 return ret;
860
861 if (folio_get_private(src))
862 folio_attach_private(dst, folio_detach_private(src));
863
864 if (mode != MIGRATE_SYNC_NO_COPY)
865 folio_migrate_copy(dst, src);
866 else
867 folio_migrate_flags(dst, src);
868 return MIGRATEPAGE_SUCCESS;
869 }
870 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
871
872 /*
873 * Writeback a folio to clean the dirty state
874 */
writeout(struct address_space * mapping,struct folio * folio)875 static int writeout(struct address_space *mapping, struct folio *folio)
876 {
877 struct writeback_control wbc = {
878 .sync_mode = WB_SYNC_NONE,
879 .nr_to_write = 1,
880 .range_start = 0,
881 .range_end = LLONG_MAX,
882 .for_reclaim = 1
883 };
884 int rc;
885
886 if (!mapping->a_ops->writepage)
887 /* No write method for the address space */
888 return -EINVAL;
889
890 if (!folio_clear_dirty_for_io(folio))
891 /* Someone else already triggered a write */
892 return -EAGAIN;
893
894 /*
895 * A dirty folio may imply that the underlying filesystem has
896 * the folio on some queue. So the folio must be clean for
897 * migration. Writeout may mean we lose the lock and the
898 * folio state is no longer what we checked for earlier.
899 * At this point we know that the migration attempt cannot
900 * be successful.
901 */
902 remove_migration_ptes(folio, folio, false);
903
904 rc = mapping->a_ops->writepage(&folio->page, &wbc);
905
906 if (rc != AOP_WRITEPAGE_ACTIVATE)
907 /* unlocked. Relock */
908 folio_lock(folio);
909
910 return (rc < 0) ? -EIO : -EAGAIN;
911 }
912
913 /*
914 * Default handling if a filesystem does not provide a migration function.
915 */
fallback_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)916 static int fallback_migrate_folio(struct address_space *mapping,
917 struct folio *dst, struct folio *src, enum migrate_mode mode)
918 {
919 if (folio_test_dirty(src)) {
920 /* Only writeback folios in full synchronous migration */
921 switch (mode) {
922 case MIGRATE_SYNC:
923 case MIGRATE_SYNC_NO_COPY:
924 break;
925 default:
926 return -EBUSY;
927 }
928 return writeout(mapping, src);
929 }
930
931 /*
932 * Buffers may be managed in a filesystem specific way.
933 * We must have no buffers or drop them.
934 */
935 if (!filemap_release_folio(src, GFP_KERNEL))
936 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
937
938 return migrate_folio(mapping, dst, src, mode);
939 }
940
941 /*
942 * Move a page to a newly allocated page
943 * The page is locked and all ptes have been successfully removed.
944 *
945 * The new page will have replaced the old page if this function
946 * is successful.
947 *
948 * Return value:
949 * < 0 - error code
950 * MIGRATEPAGE_SUCCESS - success
951 */
move_to_new_folio(struct folio * dst,struct folio * src,enum migrate_mode mode)952 static int move_to_new_folio(struct folio *dst, struct folio *src,
953 enum migrate_mode mode)
954 {
955 int rc = -EAGAIN;
956 bool is_lru = !__PageMovable(&src->page);
957
958 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
959 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
960
961 if (likely(is_lru)) {
962 struct address_space *mapping = folio_mapping(src);
963
964 if (!mapping)
965 rc = migrate_folio(mapping, dst, src, mode);
966 else if (mapping->a_ops->migrate_folio)
967 /*
968 * Most folios have a mapping and most filesystems
969 * provide a migrate_folio callback. Anonymous folios
970 * are part of swap space which also has its own
971 * migrate_folio callback. This is the most common path
972 * for page migration.
973 */
974 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
975 mode);
976 else
977 rc = fallback_migrate_folio(mapping, dst, src, mode);
978 } else {
979 const struct movable_operations *mops;
980
981 /*
982 * In case of non-lru page, it could be released after
983 * isolation step. In that case, we shouldn't try migration.
984 */
985 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
986 if (!folio_test_movable(src)) {
987 rc = MIGRATEPAGE_SUCCESS;
988 folio_clear_isolated(src);
989 goto out;
990 }
991
992 mops = folio_movable_ops(src);
993 rc = mops->migrate_page(&dst->page, &src->page, mode);
994 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
995 !folio_test_isolated(src));
996 }
997
998 /*
999 * When successful, old pagecache src->mapping must be cleared before
1000 * src is freed; but stats require that PageAnon be left as PageAnon.
1001 */
1002 if (rc == MIGRATEPAGE_SUCCESS) {
1003 if (__PageMovable(&src->page)) {
1004 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1005
1006 /*
1007 * We clear PG_movable under page_lock so any compactor
1008 * cannot try to migrate this page.
1009 */
1010 folio_clear_isolated(src);
1011 }
1012
1013 /*
1014 * Anonymous and movable src->mapping will be cleared by
1015 * free_pages_prepare so don't reset it here for keeping
1016 * the type to work PageAnon, for example.
1017 */
1018 if (!folio_mapping_flags(src))
1019 src->mapping = NULL;
1020
1021 if (likely(!folio_is_zone_device(dst)))
1022 flush_dcache_folio(dst);
1023 }
1024 out:
1025 return rc;
1026 }
1027
1028 /*
1029 * To record some information during migration, we use unused private
1030 * field of struct folio of the newly allocated destination folio.
1031 * This is safe because nobody is using it except us.
1032 */
1033 enum {
1034 PAGE_WAS_MAPPED = BIT(0),
1035 PAGE_WAS_MLOCKED = BIT(1),
1036 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1037 };
1038
__migrate_folio_record(struct folio * dst,int old_page_state,struct anon_vma * anon_vma)1039 static void __migrate_folio_record(struct folio *dst,
1040 int old_page_state,
1041 struct anon_vma *anon_vma)
1042 {
1043 dst->private = (void *)anon_vma + old_page_state;
1044 }
1045
__migrate_folio_extract(struct folio * dst,int * old_page_state,struct anon_vma ** anon_vmap)1046 static void __migrate_folio_extract(struct folio *dst,
1047 int *old_page_state,
1048 struct anon_vma **anon_vmap)
1049 {
1050 unsigned long private = (unsigned long)dst->private;
1051
1052 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1053 *old_page_state = private & PAGE_OLD_STATES;
1054 dst->private = NULL;
1055 }
1056
1057 /* Restore the source folio to the original state upon failure */
migrate_folio_undo_src(struct folio * src,int page_was_mapped,struct anon_vma * anon_vma,bool locked,struct list_head * ret)1058 static void migrate_folio_undo_src(struct folio *src,
1059 int page_was_mapped,
1060 struct anon_vma *anon_vma,
1061 bool locked,
1062 struct list_head *ret)
1063 {
1064 if (page_was_mapped)
1065 remove_migration_ptes(src, src, false);
1066 /* Drop an anon_vma reference if we took one */
1067 if (anon_vma)
1068 put_anon_vma(anon_vma);
1069 if (locked)
1070 folio_unlock(src);
1071 if (ret)
1072 list_move_tail(&src->lru, ret);
1073 }
1074
1075 /* Restore the destination folio to the original state upon failure */
migrate_folio_undo_dst(struct folio * dst,bool locked,free_folio_t put_new_folio,unsigned long private)1076 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1077 free_folio_t put_new_folio, unsigned long private)
1078 {
1079 if (locked)
1080 folio_unlock(dst);
1081 if (put_new_folio)
1082 put_new_folio(dst, private);
1083 else
1084 folio_put(dst);
1085 }
1086
1087 /* Cleanup src folio upon migration success */
migrate_folio_done(struct folio * src,enum migrate_reason reason)1088 static void migrate_folio_done(struct folio *src,
1089 enum migrate_reason reason)
1090 {
1091 /*
1092 * Compaction can migrate also non-LRU pages which are
1093 * not accounted to NR_ISOLATED_*. They can be recognized
1094 * as __PageMovable
1095 */
1096 if (likely(!__folio_test_movable(src)))
1097 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1098 folio_is_file_lru(src), -folio_nr_pages(src));
1099
1100 if (reason != MR_MEMORY_FAILURE)
1101 /* We release the page in page_handle_poison. */
1102 folio_put(src);
1103 }
1104
1105 /* Obtain the lock on page, remove all ptes. */
migrate_folio_unmap(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio ** dstp,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1106 static int migrate_folio_unmap(new_folio_t get_new_folio,
1107 free_folio_t put_new_folio, unsigned long private,
1108 struct folio *src, struct folio **dstp, enum migrate_mode mode,
1109 enum migrate_reason reason, struct list_head *ret)
1110 {
1111 struct folio *dst;
1112 int rc = -EAGAIN;
1113 int old_page_state = 0;
1114 struct anon_vma *anon_vma = NULL;
1115 bool is_lru = !__PageMovable(&src->page);
1116 bool locked = false;
1117 bool dst_locked = false;
1118
1119 if (folio_ref_count(src) == 1) {
1120 /* Folio was freed from under us. So we are done. */
1121 folio_clear_active(src);
1122 folio_clear_unevictable(src);
1123 /* free_pages_prepare() will clear PG_isolated. */
1124 list_del(&src->lru);
1125 migrate_folio_done(src, reason);
1126 return MIGRATEPAGE_SUCCESS;
1127 }
1128
1129 dst = get_new_folio(src, private);
1130 if (!dst)
1131 return -ENOMEM;
1132 *dstp = dst;
1133
1134 dst->private = NULL;
1135
1136 if (!folio_trylock(src)) {
1137 if (mode == MIGRATE_ASYNC)
1138 goto out;
1139
1140 /*
1141 * It's not safe for direct compaction to call lock_page.
1142 * For example, during page readahead pages are added locked
1143 * to the LRU. Later, when the IO completes the pages are
1144 * marked uptodate and unlocked. However, the queueing
1145 * could be merging multiple pages for one bio (e.g.
1146 * mpage_readahead). If an allocation happens for the
1147 * second or third page, the process can end up locking
1148 * the same page twice and deadlocking. Rather than
1149 * trying to be clever about what pages can be locked,
1150 * avoid the use of lock_page for direct compaction
1151 * altogether.
1152 */
1153 if (current->flags & PF_MEMALLOC)
1154 goto out;
1155
1156 /*
1157 * In "light" mode, we can wait for transient locks (eg
1158 * inserting a page into the page table), but it's not
1159 * worth waiting for I/O.
1160 */
1161 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1162 goto out;
1163
1164 folio_lock(src);
1165 }
1166 locked = true;
1167 if (folio_test_mlocked(src))
1168 old_page_state |= PAGE_WAS_MLOCKED;
1169
1170 if (folio_test_writeback(src)) {
1171 /*
1172 * Only in the case of a full synchronous migration is it
1173 * necessary to wait for PageWriteback. In the async case,
1174 * the retry loop is too short and in the sync-light case,
1175 * the overhead of stalling is too much
1176 */
1177 switch (mode) {
1178 case MIGRATE_SYNC:
1179 case MIGRATE_SYNC_NO_COPY:
1180 break;
1181 default:
1182 rc = -EBUSY;
1183 goto out;
1184 }
1185 folio_wait_writeback(src);
1186 }
1187
1188 /*
1189 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1190 * we cannot notice that anon_vma is freed while we migrate a page.
1191 * This get_anon_vma() delays freeing anon_vma pointer until the end
1192 * of migration. File cache pages are no problem because of page_lock()
1193 * File Caches may use write_page() or lock_page() in migration, then,
1194 * just care Anon page here.
1195 *
1196 * Only folio_get_anon_vma() understands the subtleties of
1197 * getting a hold on an anon_vma from outside one of its mms.
1198 * But if we cannot get anon_vma, then we won't need it anyway,
1199 * because that implies that the anon page is no longer mapped
1200 * (and cannot be remapped so long as we hold the page lock).
1201 */
1202 if (folio_test_anon(src) && !folio_test_ksm(src))
1203 anon_vma = folio_get_anon_vma(src);
1204
1205 /*
1206 * Block others from accessing the new page when we get around to
1207 * establishing additional references. We are usually the only one
1208 * holding a reference to dst at this point. We used to have a BUG
1209 * here if folio_trylock(dst) fails, but would like to allow for
1210 * cases where there might be a race with the previous use of dst.
1211 * This is much like races on refcount of oldpage: just don't BUG().
1212 */
1213 if (unlikely(!folio_trylock(dst)))
1214 goto out;
1215 dst_locked = true;
1216
1217 if (unlikely(!is_lru)) {
1218 __migrate_folio_record(dst, old_page_state, anon_vma);
1219 return MIGRATEPAGE_UNMAP;
1220 }
1221
1222 /*
1223 * Corner case handling:
1224 * 1. When a new swap-cache page is read into, it is added to the LRU
1225 * and treated as swapcache but it has no rmap yet.
1226 * Calling try_to_unmap() against a src->mapping==NULL page will
1227 * trigger a BUG. So handle it here.
1228 * 2. An orphaned page (see truncate_cleanup_page) might have
1229 * fs-private metadata. The page can be picked up due to memory
1230 * offlining. Everywhere else except page reclaim, the page is
1231 * invisible to the vm, so the page can not be migrated. So try to
1232 * free the metadata, so the page can be freed.
1233 */
1234 if (!src->mapping) {
1235 if (folio_test_private(src)) {
1236 try_to_free_buffers(src);
1237 goto out;
1238 }
1239 } else if (folio_mapped(src)) {
1240 /* Establish migration ptes */
1241 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1242 !folio_test_ksm(src) && !anon_vma, src);
1243 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1244 old_page_state |= PAGE_WAS_MAPPED;
1245 }
1246
1247 if (!folio_mapped(src)) {
1248 __migrate_folio_record(dst, old_page_state, anon_vma);
1249 return MIGRATEPAGE_UNMAP;
1250 }
1251
1252 out:
1253 /*
1254 * A folio that has not been unmapped will be restored to
1255 * right list unless we want to retry.
1256 */
1257 if (rc == -EAGAIN)
1258 ret = NULL;
1259
1260 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1261 anon_vma, locked, ret);
1262 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1263
1264 return rc;
1265 }
1266
1267 /* Migrate the folio to the newly allocated folio in dst. */
migrate_folio_move(free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio * dst,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1268 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1269 struct folio *src, struct folio *dst,
1270 enum migrate_mode mode, enum migrate_reason reason,
1271 struct list_head *ret)
1272 {
1273 int rc;
1274 int old_page_state = 0;
1275 struct anon_vma *anon_vma = NULL;
1276 bool is_lru = !__PageMovable(&src->page);
1277 struct list_head *prev;
1278
1279 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1280 prev = dst->lru.prev;
1281 list_del(&dst->lru);
1282
1283 rc = move_to_new_folio(dst, src, mode);
1284 if (rc)
1285 goto out;
1286
1287 if (unlikely(!is_lru))
1288 goto out_unlock_both;
1289
1290 /*
1291 * When successful, push dst to LRU immediately: so that if it
1292 * turns out to be an mlocked page, remove_migration_ptes() will
1293 * automatically build up the correct dst->mlock_count for it.
1294 *
1295 * We would like to do something similar for the old page, when
1296 * unsuccessful, and other cases when a page has been temporarily
1297 * isolated from the unevictable LRU: but this case is the easiest.
1298 */
1299 folio_add_lru(dst);
1300 if (old_page_state & PAGE_WAS_MLOCKED)
1301 lru_add_drain();
1302
1303 if (old_page_state & PAGE_WAS_MAPPED)
1304 remove_migration_ptes(src, dst, false);
1305
1306 out_unlock_both:
1307 folio_unlock(dst);
1308 set_page_owner_migrate_reason(&dst->page, reason);
1309 /*
1310 * If migration is successful, decrease refcount of dst,
1311 * which will not free the page because new page owner increased
1312 * refcounter.
1313 */
1314 folio_put(dst);
1315
1316 /*
1317 * A folio that has been migrated has all references removed
1318 * and will be freed.
1319 */
1320 list_del(&src->lru);
1321 /* Drop an anon_vma reference if we took one */
1322 if (anon_vma)
1323 put_anon_vma(anon_vma);
1324 folio_unlock(src);
1325 migrate_folio_done(src, reason);
1326
1327 return rc;
1328 out:
1329 /*
1330 * A folio that has not been migrated will be restored to
1331 * right list unless we want to retry.
1332 */
1333 if (rc == -EAGAIN) {
1334 list_add(&dst->lru, prev);
1335 __migrate_folio_record(dst, old_page_state, anon_vma);
1336 return rc;
1337 }
1338
1339 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1340 anon_vma, true, ret);
1341 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1342
1343 return rc;
1344 }
1345
1346 /*
1347 * Counterpart of unmap_and_move_page() for hugepage migration.
1348 *
1349 * This function doesn't wait the completion of hugepage I/O
1350 * because there is no race between I/O and migration for hugepage.
1351 * Note that currently hugepage I/O occurs only in direct I/O
1352 * where no lock is held and PG_writeback is irrelevant,
1353 * and writeback status of all subpages are counted in the reference
1354 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1355 * under direct I/O, the reference of the head page is 512 and a bit more.)
1356 * This means that when we try to migrate hugepage whose subpages are
1357 * doing direct I/O, some references remain after try_to_unmap() and
1358 * hugepage migration fails without data corruption.
1359 *
1360 * There is also no race when direct I/O is issued on the page under migration,
1361 * because then pte is replaced with migration swap entry and direct I/O code
1362 * will wait in the page fault for migration to complete.
1363 */
unmap_and_move_huge_page(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,int force,enum migrate_mode mode,int reason,struct list_head * ret)1364 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1365 free_folio_t put_new_folio, unsigned long private,
1366 struct folio *src, int force, enum migrate_mode mode,
1367 int reason, struct list_head *ret)
1368 {
1369 struct folio *dst;
1370 int rc = -EAGAIN;
1371 int page_was_mapped = 0;
1372 struct anon_vma *anon_vma = NULL;
1373 struct address_space *mapping = NULL;
1374
1375 if (folio_ref_count(src) == 1) {
1376 /* page was freed from under us. So we are done. */
1377 folio_putback_active_hugetlb(src);
1378 return MIGRATEPAGE_SUCCESS;
1379 }
1380
1381 dst = get_new_folio(src, private);
1382 if (!dst)
1383 return -ENOMEM;
1384
1385 if (!folio_trylock(src)) {
1386 if (!force)
1387 goto out;
1388 switch (mode) {
1389 case MIGRATE_SYNC:
1390 case MIGRATE_SYNC_NO_COPY:
1391 break;
1392 default:
1393 goto out;
1394 }
1395 folio_lock(src);
1396 }
1397
1398 /*
1399 * Check for pages which are in the process of being freed. Without
1400 * folio_mapping() set, hugetlbfs specific move page routine will not
1401 * be called and we could leak usage counts for subpools.
1402 */
1403 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1404 rc = -EBUSY;
1405 goto out_unlock;
1406 }
1407
1408 if (folio_test_anon(src))
1409 anon_vma = folio_get_anon_vma(src);
1410
1411 if (unlikely(!folio_trylock(dst)))
1412 goto put_anon;
1413
1414 if (folio_mapped(src)) {
1415 enum ttu_flags ttu = 0;
1416
1417 if (!folio_test_anon(src)) {
1418 /*
1419 * In shared mappings, try_to_unmap could potentially
1420 * call huge_pmd_unshare. Because of this, take
1421 * semaphore in write mode here and set TTU_RMAP_LOCKED
1422 * to let lower levels know we have taken the lock.
1423 */
1424 mapping = hugetlb_page_mapping_lock_write(&src->page);
1425 if (unlikely(!mapping))
1426 goto unlock_put_anon;
1427
1428 ttu = TTU_RMAP_LOCKED;
1429 }
1430
1431 try_to_migrate(src, ttu);
1432 page_was_mapped = 1;
1433
1434 if (ttu & TTU_RMAP_LOCKED)
1435 i_mmap_unlock_write(mapping);
1436 }
1437
1438 if (!folio_mapped(src))
1439 rc = move_to_new_folio(dst, src, mode);
1440
1441 if (page_was_mapped)
1442 remove_migration_ptes(src,
1443 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1444
1445 unlock_put_anon:
1446 folio_unlock(dst);
1447
1448 put_anon:
1449 if (anon_vma)
1450 put_anon_vma(anon_vma);
1451
1452 if (rc == MIGRATEPAGE_SUCCESS) {
1453 move_hugetlb_state(src, dst, reason);
1454 put_new_folio = NULL;
1455 }
1456
1457 out_unlock:
1458 folio_unlock(src);
1459 out:
1460 if (rc == MIGRATEPAGE_SUCCESS)
1461 folio_putback_active_hugetlb(src);
1462 else if (rc != -EAGAIN)
1463 list_move_tail(&src->lru, ret);
1464
1465 /*
1466 * If migration was not successful and there's a freeing callback, use
1467 * it. Otherwise, put_page() will drop the reference grabbed during
1468 * isolation.
1469 */
1470 if (put_new_folio)
1471 put_new_folio(dst, private);
1472 else
1473 folio_putback_active_hugetlb(dst);
1474
1475 return rc;
1476 }
1477
try_split_folio(struct folio * folio,struct list_head * split_folios)1478 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1479 {
1480 int rc;
1481
1482 folio_lock(folio);
1483 rc = split_folio_to_list(folio, split_folios);
1484 folio_unlock(folio);
1485 if (!rc)
1486 list_move_tail(&folio->lru, split_folios);
1487
1488 return rc;
1489 }
1490
1491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1492 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1493 #else
1494 #define NR_MAX_BATCHED_MIGRATION 512
1495 #endif
1496 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1497 #define NR_MAX_MIGRATE_ASYNC_RETRY 3
1498 #define NR_MAX_MIGRATE_SYNC_RETRY \
1499 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1500
1501 struct migrate_pages_stats {
1502 int nr_succeeded; /* Normal and large folios migrated successfully, in
1503 units of base pages */
1504 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1505 units of base pages. Untried folios aren't counted */
1506 int nr_thp_succeeded; /* THP migrated successfully */
1507 int nr_thp_failed; /* THP failed to be migrated */
1508 int nr_thp_split; /* THP split before migrating */
1509 };
1510
1511 /*
1512 * Returns the number of hugetlb folios that were not migrated, or an error code
1513 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1514 * any more because the list has become empty or no retryable hugetlb folios
1515 * exist any more. It is caller's responsibility to call putback_movable_pages()
1516 * only if ret != 0.
1517 */
migrate_hugetlbs(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct migrate_pages_stats * stats,struct list_head * ret_folios)1518 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1519 free_folio_t put_new_folio, unsigned long private,
1520 enum migrate_mode mode, int reason,
1521 struct migrate_pages_stats *stats,
1522 struct list_head *ret_folios)
1523 {
1524 int retry = 1;
1525 int nr_failed = 0;
1526 int nr_retry_pages = 0;
1527 int pass = 0;
1528 struct folio *folio, *folio2;
1529 int rc, nr_pages;
1530
1531 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1532 retry = 0;
1533 nr_retry_pages = 0;
1534
1535 list_for_each_entry_safe(folio, folio2, from, lru) {
1536 if (!folio_test_hugetlb(folio))
1537 continue;
1538
1539 nr_pages = folio_nr_pages(folio);
1540
1541 cond_resched();
1542
1543 /*
1544 * Migratability of hugepages depends on architectures and
1545 * their size. This check is necessary because some callers
1546 * of hugepage migration like soft offline and memory
1547 * hotremove don't walk through page tables or check whether
1548 * the hugepage is pmd-based or not before kicking migration.
1549 */
1550 if (!hugepage_migration_supported(folio_hstate(folio))) {
1551 nr_failed++;
1552 stats->nr_failed_pages += nr_pages;
1553 list_move_tail(&folio->lru, ret_folios);
1554 continue;
1555 }
1556
1557 rc = unmap_and_move_huge_page(get_new_folio,
1558 put_new_folio, private,
1559 folio, pass > 2, mode,
1560 reason, ret_folios);
1561 /*
1562 * The rules are:
1563 * Success: hugetlb folio will be put back
1564 * -EAGAIN: stay on the from list
1565 * -ENOMEM: stay on the from list
1566 * Other errno: put on ret_folios list
1567 */
1568 switch(rc) {
1569 case -ENOMEM:
1570 /*
1571 * When memory is low, don't bother to try to migrate
1572 * other folios, just exit.
1573 */
1574 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1575 return -ENOMEM;
1576 case -EAGAIN:
1577 retry++;
1578 nr_retry_pages += nr_pages;
1579 break;
1580 case MIGRATEPAGE_SUCCESS:
1581 stats->nr_succeeded += nr_pages;
1582 break;
1583 default:
1584 /*
1585 * Permanent failure (-EBUSY, etc.):
1586 * unlike -EAGAIN case, the failed folio is
1587 * removed from migration folio list and not
1588 * retried in the next outer loop.
1589 */
1590 nr_failed++;
1591 stats->nr_failed_pages += nr_pages;
1592 break;
1593 }
1594 }
1595 }
1596 /*
1597 * nr_failed is number of hugetlb folios failed to be migrated. After
1598 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1599 * folios as failed.
1600 */
1601 nr_failed += retry;
1602 stats->nr_failed_pages += nr_retry_pages;
1603
1604 return nr_failed;
1605 }
1606
1607 /*
1608 * migrate_pages_batch() first unmaps folios in the from list as many as
1609 * possible, then move the unmapped folios.
1610 *
1611 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1612 * lock or bit when we have locked more than one folio. Which may cause
1613 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
1614 * length of the from list must be <= 1.
1615 */
migrate_pages_batch(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats,int nr_pass)1616 static int migrate_pages_batch(struct list_head *from,
1617 new_folio_t get_new_folio, free_folio_t put_new_folio,
1618 unsigned long private, enum migrate_mode mode, int reason,
1619 struct list_head *ret_folios, struct list_head *split_folios,
1620 struct migrate_pages_stats *stats, int nr_pass)
1621 {
1622 int retry = 1;
1623 int thp_retry = 1;
1624 int nr_failed = 0;
1625 int nr_retry_pages = 0;
1626 int pass = 0;
1627 bool is_thp = false;
1628 struct folio *folio, *folio2, *dst = NULL, *dst2;
1629 int rc, rc_saved = 0, nr_pages;
1630 LIST_HEAD(unmap_folios);
1631 LIST_HEAD(dst_folios);
1632 bool nosplit = (reason == MR_NUMA_MISPLACED);
1633
1634 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1635 !list_empty(from) && !list_is_singular(from));
1636
1637 for (pass = 0; pass < nr_pass && retry; pass++) {
1638 retry = 0;
1639 thp_retry = 0;
1640 nr_retry_pages = 0;
1641
1642 list_for_each_entry_safe(folio, folio2, from, lru) {
1643 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1644 nr_pages = folio_nr_pages(folio);
1645
1646 cond_resched();
1647
1648 /*
1649 * Large folio migration might be unsupported or
1650 * the allocation might be failed so we should retry
1651 * on the same folio with the large folio split
1652 * to normal folios.
1653 *
1654 * Split folios are put in split_folios, and
1655 * we will migrate them after the rest of the
1656 * list is processed.
1657 */
1658 if (!thp_migration_supported() && is_thp) {
1659 nr_failed++;
1660 stats->nr_thp_failed++;
1661 if (!try_split_folio(folio, split_folios)) {
1662 stats->nr_thp_split++;
1663 continue;
1664 }
1665 stats->nr_failed_pages += nr_pages;
1666 list_move_tail(&folio->lru, ret_folios);
1667 continue;
1668 }
1669
1670 rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1671 private, folio, &dst, mode, reason,
1672 ret_folios);
1673 /*
1674 * The rules are:
1675 * Success: folio will be freed
1676 * Unmap: folio will be put on unmap_folios list,
1677 * dst folio put on dst_folios list
1678 * -EAGAIN: stay on the from list
1679 * -ENOMEM: stay on the from list
1680 * Other errno: put on ret_folios list
1681 */
1682 switch(rc) {
1683 case -ENOMEM:
1684 /*
1685 * When memory is low, don't bother to try to migrate
1686 * other folios, move unmapped folios, then exit.
1687 */
1688 nr_failed++;
1689 stats->nr_thp_failed += is_thp;
1690 /* Large folio NUMA faulting doesn't split to retry. */
1691 if (folio_test_large(folio) && !nosplit) {
1692 int ret = try_split_folio(folio, split_folios);
1693
1694 if (!ret) {
1695 stats->nr_thp_split += is_thp;
1696 break;
1697 } else if (reason == MR_LONGTERM_PIN &&
1698 ret == -EAGAIN) {
1699 /*
1700 * Try again to split large folio to
1701 * mitigate the failure of longterm pinning.
1702 */
1703 retry++;
1704 thp_retry += is_thp;
1705 nr_retry_pages += nr_pages;
1706 /* Undo duplicated failure counting. */
1707 nr_failed--;
1708 stats->nr_thp_failed -= is_thp;
1709 break;
1710 }
1711 }
1712
1713 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1714 /* nr_failed isn't updated for not used */
1715 stats->nr_thp_failed += thp_retry;
1716 rc_saved = rc;
1717 if (list_empty(&unmap_folios))
1718 goto out;
1719 else
1720 goto move;
1721 case -EAGAIN:
1722 retry++;
1723 thp_retry += is_thp;
1724 nr_retry_pages += nr_pages;
1725 break;
1726 case MIGRATEPAGE_SUCCESS:
1727 stats->nr_succeeded += nr_pages;
1728 stats->nr_thp_succeeded += is_thp;
1729 break;
1730 case MIGRATEPAGE_UNMAP:
1731 list_move_tail(&folio->lru, &unmap_folios);
1732 list_add_tail(&dst->lru, &dst_folios);
1733 break;
1734 default:
1735 /*
1736 * Permanent failure (-EBUSY, etc.):
1737 * unlike -EAGAIN case, the failed folio is
1738 * removed from migration folio list and not
1739 * retried in the next outer loop.
1740 */
1741 nr_failed++;
1742 stats->nr_thp_failed += is_thp;
1743 stats->nr_failed_pages += nr_pages;
1744 break;
1745 }
1746 }
1747 }
1748 nr_failed += retry;
1749 stats->nr_thp_failed += thp_retry;
1750 stats->nr_failed_pages += nr_retry_pages;
1751 move:
1752 /* Flush TLBs for all unmapped folios */
1753 try_to_unmap_flush();
1754
1755 retry = 1;
1756 for (pass = 0; pass < nr_pass && retry; pass++) {
1757 retry = 0;
1758 thp_retry = 0;
1759 nr_retry_pages = 0;
1760
1761 dst = list_first_entry(&dst_folios, struct folio, lru);
1762 dst2 = list_next_entry(dst, lru);
1763 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1764 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1765 nr_pages = folio_nr_pages(folio);
1766
1767 cond_resched();
1768
1769 rc = migrate_folio_move(put_new_folio, private,
1770 folio, dst, mode,
1771 reason, ret_folios);
1772 /*
1773 * The rules are:
1774 * Success: folio will be freed
1775 * -EAGAIN: stay on the unmap_folios list
1776 * Other errno: put on ret_folios list
1777 */
1778 switch(rc) {
1779 case -EAGAIN:
1780 retry++;
1781 thp_retry += is_thp;
1782 nr_retry_pages += nr_pages;
1783 break;
1784 case MIGRATEPAGE_SUCCESS:
1785 stats->nr_succeeded += nr_pages;
1786 stats->nr_thp_succeeded += is_thp;
1787 break;
1788 default:
1789 nr_failed++;
1790 stats->nr_thp_failed += is_thp;
1791 stats->nr_failed_pages += nr_pages;
1792 break;
1793 }
1794 dst = dst2;
1795 dst2 = list_next_entry(dst, lru);
1796 }
1797 }
1798 nr_failed += retry;
1799 stats->nr_thp_failed += thp_retry;
1800 stats->nr_failed_pages += nr_retry_pages;
1801
1802 rc = rc_saved ? : nr_failed;
1803 out:
1804 /* Cleanup remaining folios */
1805 dst = list_first_entry(&dst_folios, struct folio, lru);
1806 dst2 = list_next_entry(dst, lru);
1807 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1808 int old_page_state = 0;
1809 struct anon_vma *anon_vma = NULL;
1810
1811 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1812 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1813 anon_vma, true, ret_folios);
1814 list_del(&dst->lru);
1815 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1816 dst = dst2;
1817 dst2 = list_next_entry(dst, lru);
1818 }
1819
1820 return rc;
1821 }
1822
migrate_pages_sync(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats)1823 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1824 free_folio_t put_new_folio, unsigned long private,
1825 enum migrate_mode mode, int reason,
1826 struct list_head *ret_folios, struct list_head *split_folios,
1827 struct migrate_pages_stats *stats)
1828 {
1829 int rc, nr_failed = 0;
1830 LIST_HEAD(folios);
1831 struct migrate_pages_stats astats;
1832
1833 memset(&astats, 0, sizeof(astats));
1834 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1835 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1836 reason, &folios, split_folios, &astats,
1837 NR_MAX_MIGRATE_ASYNC_RETRY);
1838 stats->nr_succeeded += astats.nr_succeeded;
1839 stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1840 stats->nr_thp_split += astats.nr_thp_split;
1841 if (rc < 0) {
1842 stats->nr_failed_pages += astats.nr_failed_pages;
1843 stats->nr_thp_failed += astats.nr_thp_failed;
1844 list_splice_tail(&folios, ret_folios);
1845 return rc;
1846 }
1847 stats->nr_thp_failed += astats.nr_thp_split;
1848 nr_failed += astats.nr_thp_split;
1849 /*
1850 * Fall back to migrate all failed folios one by one synchronously. All
1851 * failed folios except split THPs will be retried, so their failure
1852 * isn't counted
1853 */
1854 list_splice_tail_init(&folios, from);
1855 while (!list_empty(from)) {
1856 list_move(from->next, &folios);
1857 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1858 private, mode, reason, ret_folios,
1859 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1860 list_splice_tail_init(&folios, ret_folios);
1861 if (rc < 0)
1862 return rc;
1863 nr_failed += rc;
1864 }
1865
1866 return nr_failed;
1867 }
1868
1869 /*
1870 * migrate_pages - migrate the folios specified in a list, to the free folios
1871 * supplied as the target for the page migration
1872 *
1873 * @from: The list of folios to be migrated.
1874 * @get_new_folio: The function used to allocate free folios to be used
1875 * as the target of the folio migration.
1876 * @put_new_folio: The function used to free target folios if migration
1877 * fails, or NULL if no special handling is necessary.
1878 * @private: Private data to be passed on to get_new_folio()
1879 * @mode: The migration mode that specifies the constraints for
1880 * folio migration, if any.
1881 * @reason: The reason for folio migration.
1882 * @ret_succeeded: Set to the number of folios migrated successfully if
1883 * the caller passes a non-NULL pointer.
1884 *
1885 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1886 * are movable any more because the list has become empty or no retryable folios
1887 * exist any more. It is caller's responsibility to call putback_movable_pages()
1888 * only if ret != 0.
1889 *
1890 * Returns the number of {normal folio, large folio, hugetlb} that were not
1891 * migrated, or an error code. The number of large folio splits will be
1892 * considered as the number of non-migrated large folio, no matter how many
1893 * split folios of the large folio are migrated successfully.
1894 */
migrate_pages(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)1895 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1896 free_folio_t put_new_folio, unsigned long private,
1897 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1898 {
1899 int rc, rc_gather;
1900 int nr_pages;
1901 struct folio *folio, *folio2;
1902 LIST_HEAD(folios);
1903 LIST_HEAD(ret_folios);
1904 LIST_HEAD(split_folios);
1905 struct migrate_pages_stats stats;
1906
1907 trace_mm_migrate_pages_start(mode, reason);
1908
1909 memset(&stats, 0, sizeof(stats));
1910
1911 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1912 mode, reason, &stats, &ret_folios);
1913 if (rc_gather < 0)
1914 goto out;
1915
1916 again:
1917 nr_pages = 0;
1918 list_for_each_entry_safe(folio, folio2, from, lru) {
1919 /* Retried hugetlb folios will be kept in list */
1920 if (folio_test_hugetlb(folio)) {
1921 list_move_tail(&folio->lru, &ret_folios);
1922 continue;
1923 }
1924
1925 nr_pages += folio_nr_pages(folio);
1926 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1927 break;
1928 }
1929 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1930 list_cut_before(&folios, from, &folio2->lru);
1931 else
1932 list_splice_init(from, &folios);
1933 if (mode == MIGRATE_ASYNC)
1934 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1935 private, mode, reason, &ret_folios,
1936 &split_folios, &stats,
1937 NR_MAX_MIGRATE_PAGES_RETRY);
1938 else
1939 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1940 private, mode, reason, &ret_folios,
1941 &split_folios, &stats);
1942 list_splice_tail_init(&folios, &ret_folios);
1943 if (rc < 0) {
1944 rc_gather = rc;
1945 list_splice_tail(&split_folios, &ret_folios);
1946 goto out;
1947 }
1948 if (!list_empty(&split_folios)) {
1949 /*
1950 * Failure isn't counted since all split folios of a large folio
1951 * is counted as 1 failure already. And, we only try to migrate
1952 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1953 */
1954 migrate_pages_batch(&split_folios, get_new_folio,
1955 put_new_folio, private, MIGRATE_ASYNC, reason,
1956 &ret_folios, NULL, &stats, 1);
1957 list_splice_tail_init(&split_folios, &ret_folios);
1958 }
1959 rc_gather += rc;
1960 if (!list_empty(from))
1961 goto again;
1962 out:
1963 /*
1964 * Put the permanent failure folio back to migration list, they
1965 * will be put back to the right list by the caller.
1966 */
1967 list_splice(&ret_folios, from);
1968
1969 /*
1970 * Return 0 in case all split folios of fail-to-migrate large folios
1971 * are migrated successfully.
1972 */
1973 if (list_empty(from))
1974 rc_gather = 0;
1975
1976 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1977 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1978 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1979 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1980 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1981 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1982 stats.nr_thp_succeeded, stats.nr_thp_failed,
1983 stats.nr_thp_split, mode, reason);
1984
1985 if (ret_succeeded)
1986 *ret_succeeded = stats.nr_succeeded;
1987
1988 return rc_gather;
1989 }
1990
alloc_migration_target(struct folio * src,unsigned long private)1991 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
1992 {
1993 struct migration_target_control *mtc;
1994 gfp_t gfp_mask;
1995 unsigned int order = 0;
1996 int nid;
1997 int zidx;
1998
1999 mtc = (struct migration_target_control *)private;
2000 gfp_mask = mtc->gfp_mask;
2001 nid = mtc->nid;
2002 if (nid == NUMA_NO_NODE)
2003 nid = folio_nid(src);
2004
2005 if (folio_test_hugetlb(src)) {
2006 struct hstate *h = folio_hstate(src);
2007
2008 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2009 return alloc_hugetlb_folio_nodemask(h, nid,
2010 mtc->nmask, gfp_mask);
2011 }
2012
2013 if (folio_test_large(src)) {
2014 /*
2015 * clear __GFP_RECLAIM to make the migration callback
2016 * consistent with regular THP allocations.
2017 */
2018 gfp_mask &= ~__GFP_RECLAIM;
2019 gfp_mask |= GFP_TRANSHUGE;
2020 order = folio_order(src);
2021 }
2022 zidx = zone_idx(folio_zone(src));
2023 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2024 gfp_mask |= __GFP_HIGHMEM;
2025
2026 return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2027 }
2028
2029 #ifdef CONFIG_NUMA
2030
store_status(int __user * status,int start,int value,int nr)2031 static int store_status(int __user *status, int start, int value, int nr)
2032 {
2033 while (nr-- > 0) {
2034 if (put_user(value, status + start))
2035 return -EFAULT;
2036 start++;
2037 }
2038
2039 return 0;
2040 }
2041
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)2042 static int do_move_pages_to_node(struct mm_struct *mm,
2043 struct list_head *pagelist, int node)
2044 {
2045 int err;
2046 struct migration_target_control mtc = {
2047 .nid = node,
2048 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2049 };
2050
2051 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2052 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2053 if (err)
2054 putback_movable_pages(pagelist);
2055 return err;
2056 }
2057
2058 /*
2059 * Resolves the given address to a struct page, isolates it from the LRU and
2060 * puts it to the given pagelist.
2061 * Returns:
2062 * errno - if the page cannot be found/isolated
2063 * 0 - when it doesn't have to be migrated because it is already on the
2064 * target node
2065 * 1 - when it has been queued
2066 */
add_page_for_migration(struct mm_struct * mm,const void __user * p,int node,struct list_head * pagelist,bool migrate_all)2067 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2068 int node, struct list_head *pagelist, bool migrate_all)
2069 {
2070 struct vm_area_struct *vma;
2071 unsigned long addr;
2072 struct page *page;
2073 int err;
2074 bool isolated;
2075
2076 mmap_read_lock(mm);
2077 addr = (unsigned long)untagged_addr_remote(mm, p);
2078
2079 err = -EFAULT;
2080 vma = vma_lookup(mm, addr);
2081 if (!vma || !vma_migratable(vma))
2082 goto out;
2083
2084 /* FOLL_DUMP to ignore special (like zero) pages */
2085 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2086
2087 err = PTR_ERR(page);
2088 if (IS_ERR(page))
2089 goto out;
2090
2091 err = -ENOENT;
2092 if (!page)
2093 goto out;
2094
2095 if (is_zone_device_page(page))
2096 goto out_putpage;
2097
2098 err = 0;
2099 if (page_to_nid(page) == node)
2100 goto out_putpage;
2101
2102 err = -EACCES;
2103 if (page_mapcount(page) > 1 && !migrate_all)
2104 goto out_putpage;
2105
2106 if (PageHuge(page)) {
2107 if (PageHead(page)) {
2108 isolated = isolate_hugetlb(page_folio(page), pagelist);
2109 err = isolated ? 1 : -EBUSY;
2110 }
2111 } else {
2112 struct page *head;
2113
2114 head = compound_head(page);
2115 isolated = isolate_lru_page(head);
2116 if (!isolated) {
2117 err = -EBUSY;
2118 goto out_putpage;
2119 }
2120
2121 err = 1;
2122 list_add_tail(&head->lru, pagelist);
2123 mod_node_page_state(page_pgdat(head),
2124 NR_ISOLATED_ANON + page_is_file_lru(head),
2125 thp_nr_pages(head));
2126 }
2127 out_putpage:
2128 /*
2129 * Either remove the duplicate refcount from
2130 * isolate_lru_page() or drop the page ref if it was
2131 * not isolated.
2132 */
2133 put_page(page);
2134 out:
2135 mmap_read_unlock(mm);
2136 return err;
2137 }
2138
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)2139 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2140 struct list_head *pagelist, int __user *status,
2141 int start, int i, unsigned long nr_pages)
2142 {
2143 int err;
2144
2145 if (list_empty(pagelist))
2146 return 0;
2147
2148 err = do_move_pages_to_node(mm, pagelist, node);
2149 if (err) {
2150 /*
2151 * Positive err means the number of failed
2152 * pages to migrate. Since we are going to
2153 * abort and return the number of non-migrated
2154 * pages, so need to include the rest of the
2155 * nr_pages that have not been attempted as
2156 * well.
2157 */
2158 if (err > 0)
2159 err += nr_pages - i;
2160 return err;
2161 }
2162 return store_status(status, start, node, i - start);
2163 }
2164
2165 /*
2166 * Migrate an array of page address onto an array of nodes and fill
2167 * the corresponding array of status.
2168 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2169 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2170 unsigned long nr_pages,
2171 const void __user * __user *pages,
2172 const int __user *nodes,
2173 int __user *status, int flags)
2174 {
2175 compat_uptr_t __user *compat_pages = (void __user *)pages;
2176 int current_node = NUMA_NO_NODE;
2177 LIST_HEAD(pagelist);
2178 int start, i;
2179 int err = 0, err1;
2180
2181 lru_cache_disable();
2182
2183 for (i = start = 0; i < nr_pages; i++) {
2184 const void __user *p;
2185 int node;
2186
2187 err = -EFAULT;
2188 if (in_compat_syscall()) {
2189 compat_uptr_t cp;
2190
2191 if (get_user(cp, compat_pages + i))
2192 goto out_flush;
2193
2194 p = compat_ptr(cp);
2195 } else {
2196 if (get_user(p, pages + i))
2197 goto out_flush;
2198 }
2199 if (get_user(node, nodes + i))
2200 goto out_flush;
2201
2202 err = -ENODEV;
2203 if (node < 0 || node >= MAX_NUMNODES)
2204 goto out_flush;
2205 if (!node_state(node, N_MEMORY))
2206 goto out_flush;
2207
2208 err = -EACCES;
2209 if (!node_isset(node, task_nodes))
2210 goto out_flush;
2211
2212 if (current_node == NUMA_NO_NODE) {
2213 current_node = node;
2214 start = i;
2215 } else if (node != current_node) {
2216 err = move_pages_and_store_status(mm, current_node,
2217 &pagelist, status, start, i, nr_pages);
2218 if (err)
2219 goto out;
2220 start = i;
2221 current_node = node;
2222 }
2223
2224 /*
2225 * Errors in the page lookup or isolation are not fatal and we simply
2226 * report them via status
2227 */
2228 err = add_page_for_migration(mm, p, current_node, &pagelist,
2229 flags & MPOL_MF_MOVE_ALL);
2230
2231 if (err > 0) {
2232 /* The page is successfully queued for migration */
2233 continue;
2234 }
2235
2236 /*
2237 * The move_pages() man page does not have an -EEXIST choice, so
2238 * use -EFAULT instead.
2239 */
2240 if (err == -EEXIST)
2241 err = -EFAULT;
2242
2243 /*
2244 * If the page is already on the target node (!err), store the
2245 * node, otherwise, store the err.
2246 */
2247 err = store_status(status, i, err ? : current_node, 1);
2248 if (err)
2249 goto out_flush;
2250
2251 err = move_pages_and_store_status(mm, current_node, &pagelist,
2252 status, start, i, nr_pages);
2253 if (err) {
2254 /* We have accounted for page i */
2255 if (err > 0)
2256 err--;
2257 goto out;
2258 }
2259 current_node = NUMA_NO_NODE;
2260 }
2261 out_flush:
2262 /* Make sure we do not overwrite the existing error */
2263 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2264 status, start, i, nr_pages);
2265 if (err >= 0)
2266 err = err1;
2267 out:
2268 lru_cache_enable();
2269 return err;
2270 }
2271
2272 /*
2273 * Determine the nodes of an array of pages and store it in an array of status.
2274 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)2275 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2276 const void __user **pages, int *status)
2277 {
2278 unsigned long i;
2279
2280 mmap_read_lock(mm);
2281
2282 for (i = 0; i < nr_pages; i++) {
2283 unsigned long addr = (unsigned long)(*pages);
2284 struct vm_area_struct *vma;
2285 struct page *page;
2286 int err = -EFAULT;
2287
2288 vma = vma_lookup(mm, addr);
2289 if (!vma)
2290 goto set_status;
2291
2292 /* FOLL_DUMP to ignore special (like zero) pages */
2293 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2294
2295 err = PTR_ERR(page);
2296 if (IS_ERR(page))
2297 goto set_status;
2298
2299 err = -ENOENT;
2300 if (!page)
2301 goto set_status;
2302
2303 if (!is_zone_device_page(page))
2304 err = page_to_nid(page);
2305
2306 put_page(page);
2307 set_status:
2308 *status = err;
2309
2310 pages++;
2311 status++;
2312 }
2313
2314 mmap_read_unlock(mm);
2315 }
2316
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_nr)2317 static int get_compat_pages_array(const void __user *chunk_pages[],
2318 const void __user * __user *pages,
2319 unsigned long chunk_nr)
2320 {
2321 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2322 compat_uptr_t p;
2323 int i;
2324
2325 for (i = 0; i < chunk_nr; i++) {
2326 if (get_user(p, pages32 + i))
2327 return -EFAULT;
2328 chunk_pages[i] = compat_ptr(p);
2329 }
2330
2331 return 0;
2332 }
2333
2334 /*
2335 * Determine the nodes of a user array of pages and store it in
2336 * a user array of status.
2337 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)2338 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2339 const void __user * __user *pages,
2340 int __user *status)
2341 {
2342 #define DO_PAGES_STAT_CHUNK_NR 16UL
2343 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2344 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2345
2346 while (nr_pages) {
2347 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2348
2349 if (in_compat_syscall()) {
2350 if (get_compat_pages_array(chunk_pages, pages,
2351 chunk_nr))
2352 break;
2353 } else {
2354 if (copy_from_user(chunk_pages, pages,
2355 chunk_nr * sizeof(*chunk_pages)))
2356 break;
2357 }
2358
2359 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2360
2361 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2362 break;
2363
2364 pages += chunk_nr;
2365 status += chunk_nr;
2366 nr_pages -= chunk_nr;
2367 }
2368 return nr_pages ? -EFAULT : 0;
2369 }
2370
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)2371 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2372 {
2373 struct task_struct *task;
2374 struct mm_struct *mm;
2375
2376 /*
2377 * There is no need to check if current process has the right to modify
2378 * the specified process when they are same.
2379 */
2380 if (!pid) {
2381 mmget(current->mm);
2382 *mem_nodes = cpuset_mems_allowed(current);
2383 return current->mm;
2384 }
2385
2386 /* Find the mm_struct */
2387 rcu_read_lock();
2388 task = find_task_by_vpid(pid);
2389 if (!task) {
2390 rcu_read_unlock();
2391 return ERR_PTR(-ESRCH);
2392 }
2393 get_task_struct(task);
2394
2395 /*
2396 * Check if this process has the right to modify the specified
2397 * process. Use the regular "ptrace_may_access()" checks.
2398 */
2399 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2400 rcu_read_unlock();
2401 mm = ERR_PTR(-EPERM);
2402 goto out;
2403 }
2404 rcu_read_unlock();
2405
2406 mm = ERR_PTR(security_task_movememory(task));
2407 if (IS_ERR(mm))
2408 goto out;
2409 *mem_nodes = cpuset_mems_allowed(task);
2410 mm = get_task_mm(task);
2411 out:
2412 put_task_struct(task);
2413 if (!mm)
2414 mm = ERR_PTR(-EINVAL);
2415 return mm;
2416 }
2417
2418 /*
2419 * Move a list of pages in the address space of the currently executing
2420 * process.
2421 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2422 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2423 const void __user * __user *pages,
2424 const int __user *nodes,
2425 int __user *status, int flags)
2426 {
2427 struct mm_struct *mm;
2428 int err;
2429 nodemask_t task_nodes;
2430
2431 /* Check flags */
2432 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2433 return -EINVAL;
2434
2435 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2436 return -EPERM;
2437
2438 mm = find_mm_struct(pid, &task_nodes);
2439 if (IS_ERR(mm))
2440 return PTR_ERR(mm);
2441
2442 if (nodes)
2443 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2444 nodes, status, flags);
2445 else
2446 err = do_pages_stat(mm, nr_pages, pages, status);
2447
2448 mmput(mm);
2449 return err;
2450 }
2451
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2452 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2453 const void __user * __user *, pages,
2454 const int __user *, nodes,
2455 int __user *, status, int, flags)
2456 {
2457 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2458 }
2459
2460 #ifdef CONFIG_NUMA_BALANCING
2461 /*
2462 * Returns true if this is a safe migration target node for misplaced NUMA
2463 * pages. Currently it only checks the watermarks which is crude.
2464 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2465 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2466 unsigned long nr_migrate_pages)
2467 {
2468 int z;
2469
2470 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2471 struct zone *zone = pgdat->node_zones + z;
2472
2473 if (!managed_zone(zone))
2474 continue;
2475
2476 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2477 if (!zone_watermark_ok(zone, 0,
2478 high_wmark_pages(zone) +
2479 nr_migrate_pages,
2480 ZONE_MOVABLE, 0))
2481 continue;
2482 return true;
2483 }
2484 return false;
2485 }
2486
alloc_misplaced_dst_folio(struct folio * src,unsigned long data)2487 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2488 unsigned long data)
2489 {
2490 int nid = (int) data;
2491 int order = folio_order(src);
2492 gfp_t gfp = __GFP_THISNODE;
2493
2494 if (order > 0)
2495 gfp |= GFP_TRANSHUGE_LIGHT;
2496 else {
2497 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2498 __GFP_NOWARN;
2499 gfp &= ~__GFP_RECLAIM;
2500 }
2501 return __folio_alloc_node(gfp, order, nid);
2502 }
2503
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2504 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2505 {
2506 int nr_pages = thp_nr_pages(page);
2507 int order = compound_order(page);
2508
2509 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2510
2511 /* Do not migrate THP mapped by multiple processes */
2512 if (PageTransHuge(page) && total_mapcount(page) > 1)
2513 return 0;
2514
2515 /* Avoid migrating to a node that is nearly full */
2516 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2517 int z;
2518
2519 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2520 return 0;
2521 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2522 if (managed_zone(pgdat->node_zones + z))
2523 break;
2524 }
2525 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2526 return 0;
2527 }
2528
2529 if (!isolate_lru_page(page))
2530 return 0;
2531
2532 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2533 nr_pages);
2534
2535 /*
2536 * Isolating the page has taken another reference, so the
2537 * caller's reference can be safely dropped without the page
2538 * disappearing underneath us during migration.
2539 */
2540 put_page(page);
2541 return 1;
2542 }
2543
2544 /*
2545 * Attempt to migrate a misplaced page to the specified destination
2546 * node. Caller is expected to have an elevated reference count on
2547 * the page that will be dropped by this function before returning.
2548 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2549 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2550 int node)
2551 {
2552 pg_data_t *pgdat = NODE_DATA(node);
2553 int isolated;
2554 int nr_remaining;
2555 unsigned int nr_succeeded;
2556 LIST_HEAD(migratepages);
2557 int nr_pages = thp_nr_pages(page);
2558
2559 /*
2560 * Don't migrate file pages that are mapped in multiple processes
2561 * with execute permissions as they are probably shared libraries.
2562 */
2563 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2564 (vma->vm_flags & VM_EXEC))
2565 goto out;
2566
2567 /*
2568 * Also do not migrate dirty pages as not all filesystems can move
2569 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2570 */
2571 if (page_is_file_lru(page) && PageDirty(page))
2572 goto out;
2573
2574 isolated = numamigrate_isolate_page(pgdat, page);
2575 if (!isolated)
2576 goto out;
2577
2578 list_add(&page->lru, &migratepages);
2579 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2580 NULL, node, MIGRATE_ASYNC,
2581 MR_NUMA_MISPLACED, &nr_succeeded);
2582 if (nr_remaining) {
2583 if (!list_empty(&migratepages)) {
2584 list_del(&page->lru);
2585 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2586 page_is_file_lru(page), -nr_pages);
2587 putback_lru_page(page);
2588 }
2589 isolated = 0;
2590 }
2591 if (nr_succeeded) {
2592 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2593 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2594 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2595 nr_succeeded);
2596 }
2597 BUG_ON(!list_empty(&migratepages));
2598 return isolated;
2599
2600 out:
2601 put_page(page);
2602 return 0;
2603 }
2604 #endif /* CONFIG_NUMA_BALANCING */
2605 #endif /* CONFIG_NUMA */
2606