1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33 int write_inode_now(struct inode *, int sync);
34 int filemap_fdatawrite(struct address_space *);
35 int filemap_flush(struct address_space *);
36 int filemap_fdatawait_keep_errors(struct address_space *mapping);
37 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
38 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
39 loff_t start_byte, loff_t end_byte);
40
filemap_fdatawait(struct address_space * mapping)41 static inline int filemap_fdatawait(struct address_space *mapping)
42 {
43 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
44 }
45
46 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
47 int filemap_write_and_wait_range(struct address_space *mapping,
48 loff_t lstart, loff_t lend);
49 int __filemap_fdatawrite_range(struct address_space *mapping,
50 loff_t start, loff_t end, int sync_mode);
51 int filemap_fdatawrite_range(struct address_space *mapping,
52 loff_t start, loff_t end);
53 int filemap_check_errors(struct address_space *mapping);
54 void __filemap_set_wb_err(struct address_space *mapping, int err);
55 int filemap_fdatawrite_wbc(struct address_space *mapping,
56 struct writeback_control *wbc);
57
filemap_write_and_wait(struct address_space * mapping)58 static inline int filemap_write_and_wait(struct address_space *mapping)
59 {
60 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
61 }
62
63 /**
64 * filemap_set_wb_err - set a writeback error on an address_space
65 * @mapping: mapping in which to set writeback error
66 * @err: error to be set in mapping
67 *
68 * When writeback fails in some way, we must record that error so that
69 * userspace can be informed when fsync and the like are called. We endeavor
70 * to report errors on any file that was open at the time of the error. Some
71 * internal callers also need to know when writeback errors have occurred.
72 *
73 * When a writeback error occurs, most filesystems will want to call
74 * filemap_set_wb_err to record the error in the mapping so that it will be
75 * automatically reported whenever fsync is called on the file.
76 */
filemap_set_wb_err(struct address_space * mapping,int err)77 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
78 {
79 /* Fastpath for common case of no error */
80 if (unlikely(err))
81 __filemap_set_wb_err(mapping, err);
82 }
83
84 /**
85 * filemap_check_wb_err - has an error occurred since the mark was sampled?
86 * @mapping: mapping to check for writeback errors
87 * @since: previously-sampled errseq_t
88 *
89 * Grab the errseq_t value from the mapping, and see if it has changed "since"
90 * the given value was sampled.
91 *
92 * If it has then report the latest error set, otherwise return 0.
93 */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)94 static inline int filemap_check_wb_err(struct address_space *mapping,
95 errseq_t since)
96 {
97 return errseq_check(&mapping->wb_err, since);
98 }
99
100 /**
101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
102 * @mapping: mapping to be sampled
103 *
104 * Writeback errors are always reported relative to a particular sample point
105 * in the past. This function provides those sample points.
106 */
filemap_sample_wb_err(struct address_space * mapping)107 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
108 {
109 return errseq_sample(&mapping->wb_err);
110 }
111
112 /**
113 * file_sample_sb_err - sample the current errseq_t to test for later errors
114 * @file: file pointer to be sampled
115 *
116 * Grab the most current superblock-level errseq_t value for the given
117 * struct file.
118 */
file_sample_sb_err(struct file * file)119 static inline errseq_t file_sample_sb_err(struct file *file)
120 {
121 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
122 }
123
124 /*
125 * Flush file data before changing attributes. Caller must hold any locks
126 * required to prevent further writes to this file until we're done setting
127 * flags.
128 */
inode_drain_writes(struct inode * inode)129 static inline int inode_drain_writes(struct inode *inode)
130 {
131 inode_dio_wait(inode);
132 return filemap_write_and_wait(inode->i_mapping);
133 }
134
mapping_empty(struct address_space * mapping)135 static inline bool mapping_empty(struct address_space *mapping)
136 {
137 return xa_empty(&mapping->i_pages);
138 }
139
140 /*
141 * mapping_shrinkable - test if page cache state allows inode reclaim
142 * @mapping: the page cache mapping
143 *
144 * This checks the mapping's cache state for the pupose of inode
145 * reclaim and LRU management.
146 *
147 * The caller is expected to hold the i_lock, but is not required to
148 * hold the i_pages lock, which usually protects cache state. That's
149 * because the i_lock and the list_lru lock that protect the inode and
150 * its LRU state don't nest inside the irq-safe i_pages lock.
151 *
152 * Cache deletions are performed under the i_lock, which ensures that
153 * when an inode goes empty, it will reliably get queued on the LRU.
154 *
155 * Cache additions do not acquire the i_lock and may race with this
156 * check, in which case we'll report the inode as shrinkable when it
157 * has cache pages. This is okay: the shrinker also checks the
158 * refcount and the referenced bit, which will be elevated or set in
159 * the process of adding new cache pages to an inode.
160 */
mapping_shrinkable(struct address_space * mapping)161 static inline bool mapping_shrinkable(struct address_space *mapping)
162 {
163 void *head;
164
165 /*
166 * On highmem systems, there could be lowmem pressure from the
167 * inodes before there is highmem pressure from the page
168 * cache. Make inodes shrinkable regardless of cache state.
169 */
170 if (IS_ENABLED(CONFIG_HIGHMEM))
171 return true;
172
173 /* Cache completely empty? Shrink away. */
174 head = rcu_access_pointer(mapping->i_pages.xa_head);
175 if (!head)
176 return true;
177
178 /*
179 * The xarray stores single offset-0 entries directly in the
180 * head pointer, which allows non-resident page cache entries
181 * to escape the shadow shrinker's list of xarray nodes. The
182 * inode shrinker needs to pick them up under memory pressure.
183 */
184 if (!xa_is_node(head) && xa_is_value(head))
185 return true;
186
187 return false;
188 }
189
190 /*
191 * Bits in mapping->flags.
192 */
193 enum mapping_flags {
194 AS_EIO = 0, /* IO error on async write */
195 AS_ENOSPC = 1, /* ENOSPC on async write */
196 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
197 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
198 AS_EXITING = 4, /* final truncate in progress */
199 /* writeback related tags are not used */
200 AS_NO_WRITEBACK_TAGS = 5,
201 AS_LARGE_FOLIO_SUPPORT = 6,
202 };
203
204 /**
205 * mapping_set_error - record a writeback error in the address_space
206 * @mapping: the mapping in which an error should be set
207 * @error: the error to set in the mapping
208 *
209 * When writeback fails in some way, we must record that error so that
210 * userspace can be informed when fsync and the like are called. We endeavor
211 * to report errors on any file that was open at the time of the error. Some
212 * internal callers also need to know when writeback errors have occurred.
213 *
214 * When a writeback error occurs, most filesystems will want to call
215 * mapping_set_error to record the error in the mapping so that it can be
216 * reported when the application calls fsync(2).
217 */
mapping_set_error(struct address_space * mapping,int error)218 static inline void mapping_set_error(struct address_space *mapping, int error)
219 {
220 if (likely(!error))
221 return;
222
223 /* Record in wb_err for checkers using errseq_t based tracking */
224 __filemap_set_wb_err(mapping, error);
225
226 /* Record it in superblock */
227 if (mapping->host)
228 errseq_set(&mapping->host->i_sb->s_wb_err, error);
229
230 /* Record it in flags for now, for legacy callers */
231 if (error == -ENOSPC)
232 set_bit(AS_ENOSPC, &mapping->flags);
233 else
234 set_bit(AS_EIO, &mapping->flags);
235 }
236
mapping_set_unevictable(struct address_space * mapping)237 static inline void mapping_set_unevictable(struct address_space *mapping)
238 {
239 set_bit(AS_UNEVICTABLE, &mapping->flags);
240 }
241
mapping_clear_unevictable(struct address_space * mapping)242 static inline void mapping_clear_unevictable(struct address_space *mapping)
243 {
244 clear_bit(AS_UNEVICTABLE, &mapping->flags);
245 }
246
mapping_unevictable(struct address_space * mapping)247 static inline bool mapping_unevictable(struct address_space *mapping)
248 {
249 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251
mapping_set_exiting(struct address_space * mapping)252 static inline void mapping_set_exiting(struct address_space *mapping)
253 {
254 set_bit(AS_EXITING, &mapping->flags);
255 }
256
mapping_exiting(struct address_space * mapping)257 static inline int mapping_exiting(struct address_space *mapping)
258 {
259 return test_bit(AS_EXITING, &mapping->flags);
260 }
261
mapping_set_no_writeback_tags(struct address_space * mapping)262 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
263 {
264 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
265 }
266
mapping_use_writeback_tags(struct address_space * mapping)267 static inline int mapping_use_writeback_tags(struct address_space *mapping)
268 {
269 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270 }
271
mapping_gfp_mask(struct address_space * mapping)272 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
273 {
274 return mapping->gfp_mask;
275 }
276
277 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)278 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
279 gfp_t gfp_mask)
280 {
281 return mapping_gfp_mask(mapping) & gfp_mask;
282 }
283
284 /*
285 * This is non-atomic. Only to be used before the mapping is activated.
286 * Probably needs a barrier...
287 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)288 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
289 {
290 m->gfp_mask = mask;
291 }
292
293 /**
294 * mapping_set_large_folios() - Indicate the file supports large folios.
295 * @mapping: The file.
296 *
297 * The filesystem should call this function in its inode constructor to
298 * indicate that the VFS can use large folios to cache the contents of
299 * the file.
300 *
301 * Context: This should not be called while the inode is active as it
302 * is non-atomic.
303 */
mapping_set_large_folios(struct address_space * mapping)304 static inline void mapping_set_large_folios(struct address_space *mapping)
305 {
306 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
307 }
308
309 /*
310 * Large folio support currently depends on THP. These dependencies are
311 * being worked on but are not yet fixed.
312 */
mapping_large_folio_support(struct address_space * mapping)313 static inline bool mapping_large_folio_support(struct address_space *mapping)
314 {
315 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
316 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
317 }
318
filemap_nr_thps(struct address_space * mapping)319 static inline int filemap_nr_thps(struct address_space *mapping)
320 {
321 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
322 return atomic_read(&mapping->nr_thps);
323 #else
324 return 0;
325 #endif
326 }
327
filemap_nr_thps_inc(struct address_space * mapping)328 static inline void filemap_nr_thps_inc(struct address_space *mapping)
329 {
330 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
331 if (!mapping_large_folio_support(mapping))
332 atomic_inc(&mapping->nr_thps);
333 #else
334 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
335 #endif
336 }
337
filemap_nr_thps_dec(struct address_space * mapping)338 static inline void filemap_nr_thps_dec(struct address_space *mapping)
339 {
340 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
341 if (!mapping_large_folio_support(mapping))
342 atomic_dec(&mapping->nr_thps);
343 #else
344 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
345 #endif
346 }
347
348 void release_pages(struct page **pages, int nr);
349
350 struct address_space *page_mapping(struct page *);
351 struct address_space *folio_mapping(struct folio *);
352 struct address_space *swapcache_mapping(struct folio *);
353
354 /**
355 * folio_file_mapping - Find the mapping this folio belongs to.
356 * @folio: The folio.
357 *
358 * For folios which are in the page cache, return the mapping that this
359 * page belongs to. Folios in the swap cache return the mapping of the
360 * swap file or swap device where the data is stored. This is different
361 * from the mapping returned by folio_mapping(). The only reason to
362 * use it is if, like NFS, you return 0 from ->activate_swapfile.
363 *
364 * Do not call this for folios which aren't in the page cache or swap cache.
365 */
folio_file_mapping(struct folio * folio)366 static inline struct address_space *folio_file_mapping(struct folio *folio)
367 {
368 if (unlikely(folio_test_swapcache(folio)))
369 return swapcache_mapping(folio);
370
371 return folio->mapping;
372 }
373
page_file_mapping(struct page * page)374 static inline struct address_space *page_file_mapping(struct page *page)
375 {
376 return folio_file_mapping(page_folio(page));
377 }
378
379 /*
380 * For file cache pages, return the address_space, otherwise return NULL
381 */
page_mapping_file(struct page * page)382 static inline struct address_space *page_mapping_file(struct page *page)
383 {
384 struct folio *folio = page_folio(page);
385
386 if (unlikely(folio_test_swapcache(folio)))
387 return NULL;
388 return folio_mapping(folio);
389 }
390
391 /**
392 * folio_inode - Get the host inode for this folio.
393 * @folio: The folio.
394 *
395 * For folios which are in the page cache, return the inode that this folio
396 * belongs to.
397 *
398 * Do not call this for folios which aren't in the page cache.
399 */
folio_inode(struct folio * folio)400 static inline struct inode *folio_inode(struct folio *folio)
401 {
402 return folio->mapping->host;
403 }
404
405 /**
406 * folio_attach_private - Attach private data to a folio.
407 * @folio: Folio to attach data to.
408 * @data: Data to attach to folio.
409 *
410 * Attaching private data to a folio increments the page's reference count.
411 * The data must be detached before the folio will be freed.
412 */
folio_attach_private(struct folio * folio,void * data)413 static inline void folio_attach_private(struct folio *folio, void *data)
414 {
415 folio_get(folio);
416 folio->private = data;
417 folio_set_private(folio);
418 }
419
420 /**
421 * folio_change_private - Change private data on a folio.
422 * @folio: Folio to change the data on.
423 * @data: Data to set on the folio.
424 *
425 * Change the private data attached to a folio and return the old
426 * data. The page must previously have had data attached and the data
427 * must be detached before the folio will be freed.
428 *
429 * Return: Data that was previously attached to the folio.
430 */
folio_change_private(struct folio * folio,void * data)431 static inline void *folio_change_private(struct folio *folio, void *data)
432 {
433 void *old = folio_get_private(folio);
434
435 folio->private = data;
436 return old;
437 }
438
439 /**
440 * folio_detach_private - Detach private data from a folio.
441 * @folio: Folio to detach data from.
442 *
443 * Removes the data that was previously attached to the folio and decrements
444 * the refcount on the page.
445 *
446 * Return: Data that was attached to the folio.
447 */
folio_detach_private(struct folio * folio)448 static inline void *folio_detach_private(struct folio *folio)
449 {
450 void *data = folio_get_private(folio);
451
452 if (!folio_test_private(folio))
453 return NULL;
454 folio_clear_private(folio);
455 folio->private = NULL;
456 folio_put(folio);
457
458 return data;
459 }
460
attach_page_private(struct page * page,void * data)461 static inline void attach_page_private(struct page *page, void *data)
462 {
463 folio_attach_private(page_folio(page), data);
464 }
465
detach_page_private(struct page * page)466 static inline void *detach_page_private(struct page *page)
467 {
468 return folio_detach_private(page_folio(page));
469 }
470
471 #ifdef CONFIG_NUMA
472 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
473 #else
filemap_alloc_folio(gfp_t gfp,unsigned int order)474 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
475 {
476 return folio_alloc(gfp, order);
477 }
478 #endif
479
__page_cache_alloc(gfp_t gfp)480 static inline struct page *__page_cache_alloc(gfp_t gfp)
481 {
482 return &filemap_alloc_folio(gfp, 0)->page;
483 }
484
page_cache_alloc(struct address_space * x)485 static inline struct page *page_cache_alloc(struct address_space *x)
486 {
487 return __page_cache_alloc(mapping_gfp_mask(x));
488 }
489
readahead_gfp_mask(struct address_space * x)490 static inline gfp_t readahead_gfp_mask(struct address_space *x)
491 {
492 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
493 }
494
495 typedef int filler_t(struct file *, struct folio *);
496
497 pgoff_t page_cache_next_miss(struct address_space *mapping,
498 pgoff_t index, unsigned long max_scan);
499 pgoff_t page_cache_prev_miss(struct address_space *mapping,
500 pgoff_t index, unsigned long max_scan);
501
502 #define FGP_ACCESSED 0x00000001
503 #define FGP_LOCK 0x00000002
504 #define FGP_CREAT 0x00000004
505 #define FGP_WRITE 0x00000008
506 #define FGP_NOFS 0x00000010
507 #define FGP_NOWAIT 0x00000020
508 #define FGP_FOR_MMAP 0x00000040
509 #define FGP_HEAD 0x00000080
510 #define FGP_ENTRY 0x00000100
511 #define FGP_STABLE 0x00000200
512
513 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
514 int fgp_flags, gfp_t gfp);
515 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
516 int fgp_flags, gfp_t gfp);
517
518 /**
519 * filemap_get_folio - Find and get a folio.
520 * @mapping: The address_space to search.
521 * @index: The page index.
522 *
523 * Looks up the page cache entry at @mapping & @index. If a folio is
524 * present, it is returned with an increased refcount.
525 *
526 * Otherwise, %NULL is returned.
527 */
filemap_get_folio(struct address_space * mapping,pgoff_t index)528 static inline struct folio *filemap_get_folio(struct address_space *mapping,
529 pgoff_t index)
530 {
531 return __filemap_get_folio(mapping, index, 0, 0);
532 }
533
534 /**
535 * filemap_lock_folio - Find and lock a folio.
536 * @mapping: The address_space to search.
537 * @index: The page index.
538 *
539 * Looks up the page cache entry at @mapping & @index. If a folio is
540 * present, it is returned locked with an increased refcount.
541 *
542 * Context: May sleep.
543 * Return: A folio or %NULL if there is no folio in the cache for this
544 * index. Will not return a shadow, swap or DAX entry.
545 */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)546 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
547 pgoff_t index)
548 {
549 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
550 }
551
552 /**
553 * find_get_page - find and get a page reference
554 * @mapping: the address_space to search
555 * @offset: the page index
556 *
557 * Looks up the page cache slot at @mapping & @offset. If there is a
558 * page cache page, it is returned with an increased refcount.
559 *
560 * Otherwise, %NULL is returned.
561 */
find_get_page(struct address_space * mapping,pgoff_t offset)562 static inline struct page *find_get_page(struct address_space *mapping,
563 pgoff_t offset)
564 {
565 return pagecache_get_page(mapping, offset, 0, 0);
566 }
567
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)568 static inline struct page *find_get_page_flags(struct address_space *mapping,
569 pgoff_t offset, int fgp_flags)
570 {
571 return pagecache_get_page(mapping, offset, fgp_flags, 0);
572 }
573
574 /**
575 * find_lock_page - locate, pin and lock a pagecache page
576 * @mapping: the address_space to search
577 * @index: the page index
578 *
579 * Looks up the page cache entry at @mapping & @index. If there is a
580 * page cache page, it is returned locked and with an increased
581 * refcount.
582 *
583 * Context: May sleep.
584 * Return: A struct page or %NULL if there is no page in the cache for this
585 * index.
586 */
find_lock_page(struct address_space * mapping,pgoff_t index)587 static inline struct page *find_lock_page(struct address_space *mapping,
588 pgoff_t index)
589 {
590 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
591 }
592
593 /**
594 * find_or_create_page - locate or add a pagecache page
595 * @mapping: the page's address_space
596 * @index: the page's index into the mapping
597 * @gfp_mask: page allocation mode
598 *
599 * Looks up the page cache slot at @mapping & @offset. If there is a
600 * page cache page, it is returned locked and with an increased
601 * refcount.
602 *
603 * If the page is not present, a new page is allocated using @gfp_mask
604 * and added to the page cache and the VM's LRU list. The page is
605 * returned locked and with an increased refcount.
606 *
607 * On memory exhaustion, %NULL is returned.
608 *
609 * find_or_create_page() may sleep, even if @gfp_flags specifies an
610 * atomic allocation!
611 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)612 static inline struct page *find_or_create_page(struct address_space *mapping,
613 pgoff_t index, gfp_t gfp_mask)
614 {
615 return pagecache_get_page(mapping, index,
616 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
617 gfp_mask);
618 }
619
620 /**
621 * grab_cache_page_nowait - returns locked page at given index in given cache
622 * @mapping: target address_space
623 * @index: the page index
624 *
625 * Same as grab_cache_page(), but do not wait if the page is unavailable.
626 * This is intended for speculative data generators, where the data can
627 * be regenerated if the page couldn't be grabbed. This routine should
628 * be safe to call while holding the lock for another page.
629 *
630 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
631 * and deadlock against the caller's locked page.
632 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)633 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
634 pgoff_t index)
635 {
636 return pagecache_get_page(mapping, index,
637 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
638 mapping_gfp_mask(mapping));
639 }
640
641 #define swapcache_index(folio) __page_file_index(&(folio)->page)
642
643 /**
644 * folio_index - File index of a folio.
645 * @folio: The folio.
646 *
647 * For a folio which is either in the page cache or the swap cache,
648 * return its index within the address_space it belongs to. If you know
649 * the page is definitely in the page cache, you can look at the folio's
650 * index directly.
651 *
652 * Return: The index (offset in units of pages) of a folio in its file.
653 */
folio_index(struct folio * folio)654 static inline pgoff_t folio_index(struct folio *folio)
655 {
656 if (unlikely(folio_test_swapcache(folio)))
657 return swapcache_index(folio);
658 return folio->index;
659 }
660
661 /**
662 * folio_next_index - Get the index of the next folio.
663 * @folio: The current folio.
664 *
665 * Return: The index of the folio which follows this folio in the file.
666 */
folio_next_index(struct folio * folio)667 static inline pgoff_t folio_next_index(struct folio *folio)
668 {
669 return folio->index + folio_nr_pages(folio);
670 }
671
672 /**
673 * folio_file_page - The page for a particular index.
674 * @folio: The folio which contains this index.
675 * @index: The index we want to look up.
676 *
677 * Sometimes after looking up a folio in the page cache, we need to
678 * obtain the specific page for an index (eg a page fault).
679 *
680 * Return: The page containing the file data for this index.
681 */
folio_file_page(struct folio * folio,pgoff_t index)682 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
683 {
684 /* HugeTLBfs indexes the page cache in units of hpage_size */
685 if (folio_test_hugetlb(folio))
686 return &folio->page;
687 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
688 }
689
690 /**
691 * folio_contains - Does this folio contain this index?
692 * @folio: The folio.
693 * @index: The page index within the file.
694 *
695 * Context: The caller should have the page locked in order to prevent
696 * (eg) shmem from moving the page between the page cache and swap cache
697 * and changing its index in the middle of the operation.
698 * Return: true or false.
699 */
folio_contains(struct folio * folio,pgoff_t index)700 static inline bool folio_contains(struct folio *folio, pgoff_t index)
701 {
702 /* HugeTLBfs indexes the page cache in units of hpage_size */
703 if (folio_test_hugetlb(folio))
704 return folio->index == index;
705 return index - folio_index(folio) < folio_nr_pages(folio);
706 }
707
708 /*
709 * Given the page we found in the page cache, return the page corresponding
710 * to this index in the file
711 */
find_subpage(struct page * head,pgoff_t index)712 static inline struct page *find_subpage(struct page *head, pgoff_t index)
713 {
714 /* HugeTLBfs wants the head page regardless */
715 if (PageHuge(head))
716 return head;
717
718 return head + (index & (thp_nr_pages(head) - 1));
719 }
720
721 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
722 pgoff_t end, unsigned int nr_pages,
723 struct page **pages);
724 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
725 unsigned int nr_pages, struct page **pages);
726 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
727 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
728 struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)729 static inline unsigned find_get_pages_tag(struct address_space *mapping,
730 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
731 struct page **pages)
732 {
733 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
734 nr_pages, pages);
735 }
736
737 struct page *grab_cache_page_write_begin(struct address_space *mapping,
738 pgoff_t index);
739
740 /*
741 * Returns locked page at given index in given cache, creating it if needed.
742 */
grab_cache_page(struct address_space * mapping,pgoff_t index)743 static inline struct page *grab_cache_page(struct address_space *mapping,
744 pgoff_t index)
745 {
746 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
747 }
748
749 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
750 filler_t *filler, struct file *file);
751 struct page *read_cache_page(struct address_space *, pgoff_t index,
752 filler_t *filler, struct file *file);
753 extern struct page * read_cache_page_gfp(struct address_space *mapping,
754 pgoff_t index, gfp_t gfp_mask);
755
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)756 static inline struct page *read_mapping_page(struct address_space *mapping,
757 pgoff_t index, struct file *file)
758 {
759 return read_cache_page(mapping, index, NULL, file);
760 }
761
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)762 static inline struct folio *read_mapping_folio(struct address_space *mapping,
763 pgoff_t index, struct file *file)
764 {
765 return read_cache_folio(mapping, index, NULL, file);
766 }
767
768 /*
769 * Get index of the page within radix-tree (but not for hugetlb pages).
770 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
771 */
page_to_index(struct page * page)772 static inline pgoff_t page_to_index(struct page *page)
773 {
774 struct page *head;
775
776 if (likely(!PageTransTail(page)))
777 return page->index;
778
779 head = compound_head(page);
780 /*
781 * We don't initialize ->index for tail pages: calculate based on
782 * head page
783 */
784 return head->index + page - head;
785 }
786
787 extern pgoff_t hugetlb_basepage_index(struct page *page);
788
789 /*
790 * Get the offset in PAGE_SIZE (even for hugetlb pages).
791 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
792 */
page_to_pgoff(struct page * page)793 static inline pgoff_t page_to_pgoff(struct page *page)
794 {
795 if (unlikely(PageHuge(page)))
796 return hugetlb_basepage_index(page);
797 return page_to_index(page);
798 }
799
800 /*
801 * Return byte-offset into filesystem object for page.
802 */
page_offset(struct page * page)803 static inline loff_t page_offset(struct page *page)
804 {
805 return ((loff_t)page->index) << PAGE_SHIFT;
806 }
807
page_file_offset(struct page * page)808 static inline loff_t page_file_offset(struct page *page)
809 {
810 return ((loff_t)page_index(page)) << PAGE_SHIFT;
811 }
812
813 /**
814 * folio_pos - Returns the byte position of this folio in its file.
815 * @folio: The folio.
816 */
folio_pos(struct folio * folio)817 static inline loff_t folio_pos(struct folio *folio)
818 {
819 return page_offset(&folio->page);
820 }
821
822 /**
823 * folio_file_pos - Returns the byte position of this folio in its file.
824 * @folio: The folio.
825 *
826 * This differs from folio_pos() for folios which belong to a swap file.
827 * NFS is the only filesystem today which needs to use folio_file_pos().
828 */
folio_file_pos(struct folio * folio)829 static inline loff_t folio_file_pos(struct folio *folio)
830 {
831 return page_file_offset(&folio->page);
832 }
833
834 /*
835 * Get the offset in PAGE_SIZE (even for hugetlb folios).
836 * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
837 */
folio_pgoff(struct folio * folio)838 static inline pgoff_t folio_pgoff(struct folio *folio)
839 {
840 if (unlikely(folio_test_hugetlb(folio)))
841 return hugetlb_basepage_index(&folio->page);
842 return folio->index;
843 }
844
845 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
846 unsigned long address);
847
linear_page_index(struct vm_area_struct * vma,unsigned long address)848 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
849 unsigned long address)
850 {
851 pgoff_t pgoff;
852 if (unlikely(is_vm_hugetlb_page(vma)))
853 return linear_hugepage_index(vma, address);
854 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
855 pgoff += vma->vm_pgoff;
856 return pgoff;
857 }
858
859 struct wait_page_key {
860 struct folio *folio;
861 int bit_nr;
862 int page_match;
863 };
864
865 struct wait_page_queue {
866 struct folio *folio;
867 int bit_nr;
868 wait_queue_entry_t wait;
869 };
870
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)871 static inline bool wake_page_match(struct wait_page_queue *wait_page,
872 struct wait_page_key *key)
873 {
874 if (wait_page->folio != key->folio)
875 return false;
876 key->page_match = 1;
877
878 if (wait_page->bit_nr != key->bit_nr)
879 return false;
880
881 return true;
882 }
883
884 void __folio_lock(struct folio *folio);
885 int __folio_lock_killable(struct folio *folio);
886 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
887 unsigned int flags);
888 void unlock_page(struct page *page);
889 void folio_unlock(struct folio *folio);
890
891 /**
892 * folio_trylock() - Attempt to lock a folio.
893 * @folio: The folio to attempt to lock.
894 *
895 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
896 * when the locks are being taken in the wrong order, or if making
897 * progress through a batch of folios is more important than processing
898 * them in order). Usually folio_lock() is the correct function to call.
899 *
900 * Context: Any context.
901 * Return: Whether the lock was successfully acquired.
902 */
folio_trylock(struct folio * folio)903 static inline bool folio_trylock(struct folio *folio)
904 {
905 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
906 }
907
908 /*
909 * Return true if the page was successfully locked
910 */
trylock_page(struct page * page)911 static inline int trylock_page(struct page *page)
912 {
913 return folio_trylock(page_folio(page));
914 }
915
916 /**
917 * folio_lock() - Lock this folio.
918 * @folio: The folio to lock.
919 *
920 * The folio lock protects against many things, probably more than it
921 * should. It is primarily held while a folio is being brought uptodate,
922 * either from its backing file or from swap. It is also held while a
923 * folio is being truncated from its address_space, so holding the lock
924 * is sufficient to keep folio->mapping stable.
925 *
926 * The folio lock is also held while write() is modifying the page to
927 * provide POSIX atomicity guarantees (as long as the write does not
928 * cross a page boundary). Other modifications to the data in the folio
929 * do not hold the folio lock and can race with writes, eg DMA and stores
930 * to mapped pages.
931 *
932 * Context: May sleep. If you need to acquire the locks of two or
933 * more folios, they must be in order of ascending index, if they are
934 * in the same address_space. If they are in different address_spaces,
935 * acquire the lock of the folio which belongs to the address_space which
936 * has the lowest address in memory first.
937 */
folio_lock(struct folio * folio)938 static inline void folio_lock(struct folio *folio)
939 {
940 might_sleep();
941 if (!folio_trylock(folio))
942 __folio_lock(folio);
943 }
944
945 /**
946 * lock_page() - Lock the folio containing this page.
947 * @page: The page to lock.
948 *
949 * See folio_lock() for a description of what the lock protects.
950 * This is a legacy function and new code should probably use folio_lock()
951 * instead.
952 *
953 * Context: May sleep. Pages in the same folio share a lock, so do not
954 * attempt to lock two pages which share a folio.
955 */
lock_page(struct page * page)956 static inline void lock_page(struct page *page)
957 {
958 struct folio *folio;
959 might_sleep();
960
961 folio = page_folio(page);
962 if (!folio_trylock(folio))
963 __folio_lock(folio);
964 }
965
966 /**
967 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
968 * @folio: The folio to lock.
969 *
970 * Attempts to lock the folio, like folio_lock(), except that the sleep
971 * to acquire the lock is interruptible by a fatal signal.
972 *
973 * Context: May sleep; see folio_lock().
974 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
975 */
folio_lock_killable(struct folio * folio)976 static inline int folio_lock_killable(struct folio *folio)
977 {
978 might_sleep();
979 if (!folio_trylock(folio))
980 return __folio_lock_killable(folio);
981 return 0;
982 }
983
984 /*
985 * lock_page_killable is like lock_page but can be interrupted by fatal
986 * signals. It returns 0 if it locked the page and -EINTR if it was
987 * killed while waiting.
988 */
lock_page_killable(struct page * page)989 static inline int lock_page_killable(struct page *page)
990 {
991 return folio_lock_killable(page_folio(page));
992 }
993
994 /*
995 * lock_page_or_retry - Lock the page, unless this would block and the
996 * caller indicated that it can handle a retry.
997 *
998 * Return value and mmap_lock implications depend on flags; see
999 * __folio_lock_or_retry().
1000 */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1001 static inline bool lock_page_or_retry(struct page *page, struct mm_struct *mm,
1002 unsigned int flags)
1003 {
1004 struct folio *folio;
1005 might_sleep();
1006
1007 folio = page_folio(page);
1008 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
1009 }
1010
1011 /*
1012 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1013 * and should not be used directly.
1014 */
1015 void folio_wait_bit(struct folio *folio, int bit_nr);
1016 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1017
1018 /*
1019 * Wait for a folio to be unlocked.
1020 *
1021 * This must be called with the caller "holding" the folio,
1022 * ie with increased folio reference count so that the folio won't
1023 * go away during the wait.
1024 */
folio_wait_locked(struct folio * folio)1025 static inline void folio_wait_locked(struct folio *folio)
1026 {
1027 if (folio_test_locked(folio))
1028 folio_wait_bit(folio, PG_locked);
1029 }
1030
folio_wait_locked_killable(struct folio * folio)1031 static inline int folio_wait_locked_killable(struct folio *folio)
1032 {
1033 if (!folio_test_locked(folio))
1034 return 0;
1035 return folio_wait_bit_killable(folio, PG_locked);
1036 }
1037
wait_on_page_locked(struct page * page)1038 static inline void wait_on_page_locked(struct page *page)
1039 {
1040 folio_wait_locked(page_folio(page));
1041 }
1042
wait_on_page_locked_killable(struct page * page)1043 static inline int wait_on_page_locked_killable(struct page *page)
1044 {
1045 return folio_wait_locked_killable(page_folio(page));
1046 }
1047
1048 int folio_put_wait_locked(struct folio *folio, int state);
1049 void wait_on_page_writeback(struct page *page);
1050 void folio_wait_writeback(struct folio *folio);
1051 int folio_wait_writeback_killable(struct folio *folio);
1052 void end_page_writeback(struct page *page);
1053 void folio_end_writeback(struct folio *folio);
1054 void wait_for_stable_page(struct page *page);
1055 void folio_wait_stable(struct folio *folio);
1056 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)1057 static inline void __set_page_dirty(struct page *page,
1058 struct address_space *mapping, int warn)
1059 {
1060 __folio_mark_dirty(page_folio(page), mapping, warn);
1061 }
1062 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1063 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1064 static inline void folio_cancel_dirty(struct folio *folio)
1065 {
1066 /* Avoid atomic ops, locking, etc. when not actually needed. */
1067 if (folio_test_dirty(folio))
1068 __folio_cancel_dirty(folio);
1069 }
1070 bool folio_clear_dirty_for_io(struct folio *folio);
1071 bool clear_page_dirty_for_io(struct page *page);
1072 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1073 int __must_check folio_write_one(struct folio *folio);
write_one_page(struct page * page)1074 static inline int __must_check write_one_page(struct page *page)
1075 {
1076 return folio_write_one(page_folio(page));
1077 }
1078
1079 int __set_page_dirty_nobuffers(struct page *page);
1080 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1081
1082 void page_endio(struct page *page, bool is_write, int err);
1083
1084 void folio_end_private_2(struct folio *folio);
1085 void folio_wait_private_2(struct folio *folio);
1086 int folio_wait_private_2_killable(struct folio *folio);
1087
1088 /*
1089 * Add an arbitrary waiter to a page's wait queue
1090 */
1091 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1092
1093 /*
1094 * Fault in userspace address range.
1095 */
1096 size_t fault_in_writeable(char __user *uaddr, size_t size);
1097 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1098 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1099 size_t fault_in_readable(const char __user *uaddr, size_t size);
1100
1101 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
1102 pgoff_t index, gfp_t gfp);
1103 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1104 pgoff_t index, gfp_t gfp);
1105 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1106 pgoff_t index, gfp_t gfp);
1107 void filemap_remove_folio(struct folio *folio);
1108 void delete_from_page_cache(struct page *page);
1109 void __filemap_remove_folio(struct folio *folio, void *shadow);
__delete_from_page_cache(struct page * page,void * shadow)1110 static inline void __delete_from_page_cache(struct page *page, void *shadow)
1111 {
1112 __filemap_remove_folio(page_folio(page), shadow);
1113 }
1114 void replace_page_cache_page(struct page *old, struct page *new);
1115 void delete_from_page_cache_batch(struct address_space *mapping,
1116 struct folio_batch *fbatch);
1117 int try_to_release_page(struct page *page, gfp_t gfp);
1118 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1119 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1120 int whence);
1121
1122 /*
1123 * Like add_to_page_cache_locked, but used to add newly allocated pages:
1124 * the page is new, so we can just run __SetPageLocked() against it.
1125 */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)1126 static inline int add_to_page_cache(struct page *page,
1127 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
1128 {
1129 int error;
1130
1131 __SetPageLocked(page);
1132 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
1133 if (unlikely(error))
1134 __ClearPageLocked(page);
1135 return error;
1136 }
1137
1138 /* Must be non-static for BPF error injection */
1139 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1140 pgoff_t index, gfp_t gfp, void **shadowp);
1141
1142 bool filemap_range_has_writeback(struct address_space *mapping,
1143 loff_t start_byte, loff_t end_byte);
1144
1145 /**
1146 * filemap_range_needs_writeback - check if range potentially needs writeback
1147 * @mapping: address space within which to check
1148 * @start_byte: offset in bytes where the range starts
1149 * @end_byte: offset in bytes where the range ends (inclusive)
1150 *
1151 * Find at least one page in the range supplied, usually used to check if
1152 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1153 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1154 * filemap_write_and_wait_range() before proceeding.
1155 *
1156 * Return: %true if the caller should do filemap_write_and_wait_range() before
1157 * doing O_DIRECT to a page in this range, %false otherwise.
1158 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1159 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1160 loff_t start_byte,
1161 loff_t end_byte)
1162 {
1163 if (!mapping->nrpages)
1164 return false;
1165 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1166 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1167 return false;
1168 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1169 }
1170
1171 /**
1172 * struct readahead_control - Describes a readahead request.
1173 *
1174 * A readahead request is for consecutive pages. Filesystems which
1175 * implement the ->readahead method should call readahead_page() or
1176 * readahead_page_batch() in a loop and attempt to start I/O against
1177 * each page in the request.
1178 *
1179 * Most of the fields in this struct are private and should be accessed
1180 * by the functions below.
1181 *
1182 * @file: The file, used primarily by network filesystems for authentication.
1183 * May be NULL if invoked internally by the filesystem.
1184 * @mapping: Readahead this filesystem object.
1185 * @ra: File readahead state. May be NULL.
1186 */
1187 struct readahead_control {
1188 struct file *file;
1189 struct address_space *mapping;
1190 struct file_ra_state *ra;
1191 /* private: use the readahead_* accessors instead */
1192 pgoff_t _index;
1193 unsigned int _nr_pages;
1194 unsigned int _batch_count;
1195 };
1196
1197 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
1198 struct readahead_control ractl = { \
1199 .file = f, \
1200 .mapping = m, \
1201 .ra = r, \
1202 ._index = i, \
1203 }
1204
1205 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1206
1207 void page_cache_ra_unbounded(struct readahead_control *,
1208 unsigned long nr_to_read, unsigned long lookahead_count);
1209 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1210 void page_cache_async_ra(struct readahead_control *, struct folio *,
1211 unsigned long req_count);
1212 void readahead_expand(struct readahead_control *ractl,
1213 loff_t new_start, size_t new_len);
1214
1215 /**
1216 * page_cache_sync_readahead - generic file readahead
1217 * @mapping: address_space which holds the pagecache and I/O vectors
1218 * @ra: file_ra_state which holds the readahead state
1219 * @file: Used by the filesystem for authentication.
1220 * @index: Index of first page to be read.
1221 * @req_count: Total number of pages being read by the caller.
1222 *
1223 * page_cache_sync_readahead() should be called when a cache miss happened:
1224 * it will submit the read. The readahead logic may decide to piggyback more
1225 * pages onto the read request if access patterns suggest it will improve
1226 * performance.
1227 */
1228 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1229 void page_cache_sync_readahead(struct address_space *mapping,
1230 struct file_ra_state *ra, struct file *file, pgoff_t index,
1231 unsigned long req_count)
1232 {
1233 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1234 page_cache_sync_ra(&ractl, req_count);
1235 }
1236
1237 /**
1238 * page_cache_async_readahead - file readahead for marked pages
1239 * @mapping: address_space which holds the pagecache and I/O vectors
1240 * @ra: file_ra_state which holds the readahead state
1241 * @file: Used by the filesystem for authentication.
1242 * @folio: The folio at @index which triggered the readahead call.
1243 * @index: Index of first page to be read.
1244 * @req_count: Total number of pages being read by the caller.
1245 *
1246 * page_cache_async_readahead() should be called when a page is used which
1247 * is marked as PageReadahead; this is a marker to suggest that the application
1248 * has used up enough of the readahead window that we should start pulling in
1249 * more pages.
1250 */
1251 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,pgoff_t index,unsigned long req_count)1252 void page_cache_async_readahead(struct address_space *mapping,
1253 struct file_ra_state *ra, struct file *file,
1254 struct folio *folio, pgoff_t index, unsigned long req_count)
1255 {
1256 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1257 page_cache_async_ra(&ractl, folio, req_count);
1258 }
1259
__readahead_folio(struct readahead_control * ractl)1260 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1261 {
1262 struct folio *folio;
1263
1264 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1265 ractl->_nr_pages -= ractl->_batch_count;
1266 ractl->_index += ractl->_batch_count;
1267
1268 if (!ractl->_nr_pages) {
1269 ractl->_batch_count = 0;
1270 return NULL;
1271 }
1272
1273 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1274 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1275 ractl->_batch_count = folio_nr_pages(folio);
1276
1277 return folio;
1278 }
1279
1280 /**
1281 * readahead_page - Get the next page to read.
1282 * @ractl: The current readahead request.
1283 *
1284 * Context: The page is locked and has an elevated refcount. The caller
1285 * should decreases the refcount once the page has been submitted for I/O
1286 * and unlock the page once all I/O to that page has completed.
1287 * Return: A pointer to the next page, or %NULL if we are done.
1288 */
readahead_page(struct readahead_control * ractl)1289 static inline struct page *readahead_page(struct readahead_control *ractl)
1290 {
1291 struct folio *folio = __readahead_folio(ractl);
1292
1293 return &folio->page;
1294 }
1295
1296 /**
1297 * readahead_folio - Get the next folio to read.
1298 * @ractl: The current readahead request.
1299 *
1300 * Context: The folio is locked. The caller should unlock the folio once
1301 * all I/O to that folio has completed.
1302 * Return: A pointer to the next folio, or %NULL if we are done.
1303 */
readahead_folio(struct readahead_control * ractl)1304 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1305 {
1306 struct folio *folio = __readahead_folio(ractl);
1307
1308 if (folio)
1309 folio_put(folio);
1310 return folio;
1311 }
1312
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1313 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1314 struct page **array, unsigned int array_sz)
1315 {
1316 unsigned int i = 0;
1317 XA_STATE(xas, &rac->mapping->i_pages, 0);
1318 struct page *page;
1319
1320 BUG_ON(rac->_batch_count > rac->_nr_pages);
1321 rac->_nr_pages -= rac->_batch_count;
1322 rac->_index += rac->_batch_count;
1323 rac->_batch_count = 0;
1324
1325 xas_set(&xas, rac->_index);
1326 rcu_read_lock();
1327 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1328 if (xas_retry(&xas, page))
1329 continue;
1330 VM_BUG_ON_PAGE(!PageLocked(page), page);
1331 VM_BUG_ON_PAGE(PageTail(page), page);
1332 array[i++] = page;
1333 rac->_batch_count += thp_nr_pages(page);
1334 if (i == array_sz)
1335 break;
1336 }
1337 rcu_read_unlock();
1338
1339 return i;
1340 }
1341
1342 /**
1343 * readahead_page_batch - Get a batch of pages to read.
1344 * @rac: The current readahead request.
1345 * @array: An array of pointers to struct page.
1346 *
1347 * Context: The pages are locked and have an elevated refcount. The caller
1348 * should decreases the refcount once the page has been submitted for I/O
1349 * and unlock the page once all I/O to that page has completed.
1350 * Return: The number of pages placed in the array. 0 indicates the request
1351 * is complete.
1352 */
1353 #define readahead_page_batch(rac, array) \
1354 __readahead_batch(rac, array, ARRAY_SIZE(array))
1355
1356 /**
1357 * readahead_pos - The byte offset into the file of this readahead request.
1358 * @rac: The readahead request.
1359 */
readahead_pos(struct readahead_control * rac)1360 static inline loff_t readahead_pos(struct readahead_control *rac)
1361 {
1362 return (loff_t)rac->_index * PAGE_SIZE;
1363 }
1364
1365 /**
1366 * readahead_length - The number of bytes in this readahead request.
1367 * @rac: The readahead request.
1368 */
readahead_length(struct readahead_control * rac)1369 static inline size_t readahead_length(struct readahead_control *rac)
1370 {
1371 return rac->_nr_pages * PAGE_SIZE;
1372 }
1373
1374 /**
1375 * readahead_index - The index of the first page in this readahead request.
1376 * @rac: The readahead request.
1377 */
readahead_index(struct readahead_control * rac)1378 static inline pgoff_t readahead_index(struct readahead_control *rac)
1379 {
1380 return rac->_index;
1381 }
1382
1383 /**
1384 * readahead_count - The number of pages in this readahead request.
1385 * @rac: The readahead request.
1386 */
readahead_count(struct readahead_control * rac)1387 static inline unsigned int readahead_count(struct readahead_control *rac)
1388 {
1389 return rac->_nr_pages;
1390 }
1391
1392 /**
1393 * readahead_batch_length - The number of bytes in the current batch.
1394 * @rac: The readahead request.
1395 */
readahead_batch_length(struct readahead_control * rac)1396 static inline size_t readahead_batch_length(struct readahead_control *rac)
1397 {
1398 return rac->_batch_count * PAGE_SIZE;
1399 }
1400
dir_pages(struct inode * inode)1401 static inline unsigned long dir_pages(struct inode *inode)
1402 {
1403 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1404 PAGE_SHIFT;
1405 }
1406
1407 /**
1408 * folio_mkwrite_check_truncate - check if folio was truncated
1409 * @folio: the folio to check
1410 * @inode: the inode to check the folio against
1411 *
1412 * Return: the number of bytes in the folio up to EOF,
1413 * or -EFAULT if the folio was truncated.
1414 */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1415 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1416 struct inode *inode)
1417 {
1418 loff_t size = i_size_read(inode);
1419 pgoff_t index = size >> PAGE_SHIFT;
1420 size_t offset = offset_in_folio(folio, size);
1421
1422 if (!folio->mapping)
1423 return -EFAULT;
1424
1425 /* folio is wholly inside EOF */
1426 if (folio_next_index(folio) - 1 < index)
1427 return folio_size(folio);
1428 /* folio is wholly past EOF */
1429 if (folio->index > index || !offset)
1430 return -EFAULT;
1431 /* folio is partially inside EOF */
1432 return offset;
1433 }
1434
1435 /**
1436 * page_mkwrite_check_truncate - check if page was truncated
1437 * @page: the page to check
1438 * @inode: the inode to check the page against
1439 *
1440 * Returns the number of bytes in the page up to EOF,
1441 * or -EFAULT if the page was truncated.
1442 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1443 static inline int page_mkwrite_check_truncate(struct page *page,
1444 struct inode *inode)
1445 {
1446 loff_t size = i_size_read(inode);
1447 pgoff_t index = size >> PAGE_SHIFT;
1448 int offset = offset_in_page(size);
1449
1450 if (page->mapping != inode->i_mapping)
1451 return -EFAULT;
1452
1453 /* page is wholly inside EOF */
1454 if (page->index < index)
1455 return PAGE_SIZE;
1456 /* page is wholly past EOF */
1457 if (page->index > index || !offset)
1458 return -EFAULT;
1459 /* page is partially inside EOF */
1460 return offset;
1461 }
1462
1463 /**
1464 * i_blocks_per_folio - How many blocks fit in this folio.
1465 * @inode: The inode which contains the blocks.
1466 * @folio: The folio.
1467 *
1468 * If the block size is larger than the size of this folio, return zero.
1469 *
1470 * Context: The caller should hold a refcount on the folio to prevent it
1471 * from being split.
1472 * Return: The number of filesystem blocks covered by this folio.
1473 */
1474 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1475 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1476 {
1477 return folio_size(folio) >> inode->i_blkbits;
1478 }
1479
1480 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1481 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1482 {
1483 return i_blocks_per_folio(inode, page_folio(page));
1484 }
1485 #endif /* _LINUX_PAGEMAP_H */
1486