1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 
60 #ifdef DEBUG
61 #define DBG(fmt...) udbg_printf(fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
65 
66 #ifdef DEBUG_LOW
67 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG_LOW(fmt...)
70 #endif
71 
72 #define KB (1024)
73 #define MB (1024*KB)
74 #define GB (1024L*MB)
75 
76 /*
77  * Note:  pte   --> Linux PTE
78  *        HPTE  --> PowerPC Hashed Page Table Entry
79  *
80  * Execution context:
81  *   htab_initialize is called with the MMU off (of course), but
82  *   the kernel has been copied down to zero so it can directly
83  *   reference global data.  At this point it is very difficult
84  *   to print debug info.
85  *
86  */
87 
88 #ifdef CONFIG_U3_DART
89 extern unsigned long dart_tablebase;
90 #endif /* CONFIG_U3_DART */
91 
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94 
95 struct hash_pte *htab_address;
96 unsigned long htab_size_bytes;
97 unsigned long htab_hash_mask;
98 EXPORT_SYMBOL_GPL(htab_hash_mask);
99 int mmu_linear_psize = MMU_PAGE_4K;
100 int mmu_virtual_psize = MMU_PAGE_4K;
101 int mmu_vmalloc_psize = MMU_PAGE_4K;
102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
103 int mmu_vmemmap_psize = MMU_PAGE_4K;
104 #endif
105 int mmu_io_psize = MMU_PAGE_4K;
106 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
107 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
108 u16 mmu_slb_size = 64;
109 EXPORT_SYMBOL_GPL(mmu_slb_size);
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
118 
119 /* There are definitions of page sizes arrays to be used when none
120  * is provided by the firmware.
121  */
122 
123 /* Pre-POWER4 CPUs (4k pages only)
124  */
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126 	[MMU_PAGE_4K] = {
127 		.shift	= 12,
128 		.sllp	= 0,
129 		.penc	= 0,
130 		.avpnm	= 0,
131 		.tlbiel = 0,
132 	},
133 };
134 
135 /* POWER4, GPUL, POWER5
136  *
137  * Support for 16Mb large pages
138  */
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140 	[MMU_PAGE_4K] = {
141 		.shift	= 12,
142 		.sllp	= 0,
143 		.penc	= 0,
144 		.avpnm	= 0,
145 		.tlbiel = 1,
146 	},
147 	[MMU_PAGE_16M] = {
148 		.shift	= 24,
149 		.sllp	= SLB_VSID_L,
150 		.penc	= 0,
151 		.avpnm	= 0x1UL,
152 		.tlbiel = 0,
153 	},
154 };
155 
htab_convert_pte_flags(unsigned long pteflags)156 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
157 {
158 	unsigned long rflags = pteflags & 0x1fa;
159 
160 	/* _PAGE_EXEC -> NOEXEC */
161 	if ((pteflags & _PAGE_EXEC) == 0)
162 		rflags |= HPTE_R_N;
163 
164 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
165 	 * need to add in 0x1 if it's a read-only user page
166 	 */
167 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
168 					 (pteflags & _PAGE_DIRTY)))
169 		rflags |= 1;
170 
171 	/* Always add C */
172 	return rflags | HPTE_R_C;
173 }
174 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)175 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
176 		      unsigned long pstart, unsigned long prot,
177 		      int psize, int ssize)
178 {
179 	unsigned long vaddr, paddr;
180 	unsigned int step, shift;
181 	int ret = 0;
182 
183 	shift = mmu_psize_defs[psize].shift;
184 	step = 1 << shift;
185 
186 	prot = htab_convert_pte_flags(prot);
187 
188 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
189 	    vstart, vend, pstart, prot, psize, ssize);
190 
191 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
192 	     vaddr += step, paddr += step) {
193 		unsigned long hash, hpteg;
194 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
195 		unsigned long va = hpt_va(vaddr, vsid, ssize);
196 		unsigned long tprot = prot;
197 
198 		/* Make kernel text executable */
199 		if (overlaps_kernel_text(vaddr, vaddr + step))
200 			tprot &= ~HPTE_R_N;
201 
202 		hash = hpt_hash(va, shift, ssize);
203 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
204 
205 		BUG_ON(!ppc_md.hpte_insert);
206 		ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
207 					 HPTE_V_BOLTED, psize, ssize);
208 
209 		if (ret < 0)
210 			break;
211 #ifdef CONFIG_DEBUG_PAGEALLOC
212 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
213 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
214 #endif /* CONFIG_DEBUG_PAGEALLOC */
215 	}
216 	return ret < 0 ? ret : 0;
217 }
218 
219 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)220 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
221 		      int psize, int ssize)
222 {
223 	unsigned long vaddr;
224 	unsigned int step, shift;
225 
226 	shift = mmu_psize_defs[psize].shift;
227 	step = 1 << shift;
228 
229 	if (!ppc_md.hpte_removebolted) {
230 		printk(KERN_WARNING "Platform doesn't implement "
231 				"hpte_removebolted\n");
232 		return -EINVAL;
233 	}
234 
235 	for (vaddr = vstart; vaddr < vend; vaddr += step)
236 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
237 
238 	return 0;
239 }
240 #endif /* CONFIG_MEMORY_HOTPLUG */
241 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)242 static int __init htab_dt_scan_seg_sizes(unsigned long node,
243 					 const char *uname, int depth,
244 					 void *data)
245 {
246 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
247 	u32 *prop;
248 	unsigned long size = 0;
249 
250 	/* We are scanning "cpu" nodes only */
251 	if (type == NULL || strcmp(type, "cpu") != 0)
252 		return 0;
253 
254 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
255 					  &size);
256 	if (prop == NULL)
257 		return 0;
258 	for (; size >= 4; size -= 4, ++prop) {
259 		if (prop[0] == 40) {
260 			DBG("1T segment support detected\n");
261 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
262 			return 1;
263 		}
264 	}
265 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
266 	return 0;
267 }
268 
htab_init_seg_sizes(void)269 static void __init htab_init_seg_sizes(void)
270 {
271 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
272 }
273 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)274 static int __init htab_dt_scan_page_sizes(unsigned long node,
275 					  const char *uname, int depth,
276 					  void *data)
277 {
278 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
279 	u32 *prop;
280 	unsigned long size = 0;
281 
282 	/* We are scanning "cpu" nodes only */
283 	if (type == NULL || strcmp(type, "cpu") != 0)
284 		return 0;
285 
286 	prop = (u32 *)of_get_flat_dt_prop(node,
287 					  "ibm,segment-page-sizes", &size);
288 	if (prop != NULL) {
289 		DBG("Page sizes from device-tree:\n");
290 		size /= 4;
291 		cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
292 		while(size > 0) {
293 			unsigned int shift = prop[0];
294 			unsigned int slbenc = prop[1];
295 			unsigned int lpnum = prop[2];
296 			unsigned int lpenc = 0;
297 			struct mmu_psize_def *def;
298 			int idx = -1;
299 
300 			size -= 3; prop += 3;
301 			while(size > 0 && lpnum) {
302 				if (prop[0] == shift)
303 					lpenc = prop[1];
304 				prop += 2; size -= 2;
305 				lpnum--;
306 			}
307 			switch(shift) {
308 			case 0xc:
309 				idx = MMU_PAGE_4K;
310 				break;
311 			case 0x10:
312 				idx = MMU_PAGE_64K;
313 				break;
314 			case 0x14:
315 				idx = MMU_PAGE_1M;
316 				break;
317 			case 0x18:
318 				idx = MMU_PAGE_16M;
319 				cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
320 				break;
321 			case 0x22:
322 				idx = MMU_PAGE_16G;
323 				break;
324 			}
325 			if (idx < 0)
326 				continue;
327 			def = &mmu_psize_defs[idx];
328 			def->shift = shift;
329 			if (shift <= 23)
330 				def->avpnm = 0;
331 			else
332 				def->avpnm = (1 << (shift - 23)) - 1;
333 			def->sllp = slbenc;
334 			def->penc = lpenc;
335 			/* We don't know for sure what's up with tlbiel, so
336 			 * for now we only set it for 4K and 64K pages
337 			 */
338 			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
339 				def->tlbiel = 1;
340 			else
341 				def->tlbiel = 0;
342 
343 			DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
344 			    "tlbiel=%d, penc=%d\n",
345 			    idx, shift, def->sllp, def->avpnm, def->tlbiel,
346 			    def->penc);
347 		}
348 		return 1;
349 	}
350 	return 0;
351 }
352 
353 #ifdef CONFIG_HUGETLB_PAGE
354 /* Scan for 16G memory blocks that have been set aside for huge pages
355  * and reserve those blocks for 16G huge pages.
356  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)357 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
358 					const char *uname, int depth,
359 					void *data) {
360 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
361 	unsigned long *addr_prop;
362 	u32 *page_count_prop;
363 	unsigned int expected_pages;
364 	long unsigned int phys_addr;
365 	long unsigned int block_size;
366 
367 	/* We are scanning "memory" nodes only */
368 	if (type == NULL || strcmp(type, "memory") != 0)
369 		return 0;
370 
371 	/* This property is the log base 2 of the number of virtual pages that
372 	 * will represent this memory block. */
373 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
374 	if (page_count_prop == NULL)
375 		return 0;
376 	expected_pages = (1 << page_count_prop[0]);
377 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
378 	if (addr_prop == NULL)
379 		return 0;
380 	phys_addr = addr_prop[0];
381 	block_size = addr_prop[1];
382 	if (block_size != (16 * GB))
383 		return 0;
384 	printk(KERN_INFO "Huge page(16GB) memory: "
385 			"addr = 0x%lX size = 0x%lX pages = %d\n",
386 			phys_addr, block_size, expected_pages);
387 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
388 		memblock_reserve(phys_addr, block_size * expected_pages);
389 		add_gpage(phys_addr, block_size, expected_pages);
390 	}
391 	return 0;
392 }
393 #endif /* CONFIG_HUGETLB_PAGE */
394 
htab_init_page_sizes(void)395 static void __init htab_init_page_sizes(void)
396 {
397 	int rc;
398 
399 	/* Default to 4K pages only */
400 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
401 	       sizeof(mmu_psize_defaults_old));
402 
403 	/*
404 	 * Try to find the available page sizes in the device-tree
405 	 */
406 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
407 	if (rc != 0)  /* Found */
408 		goto found;
409 
410 	/*
411 	 * Not in the device-tree, let's fallback on known size
412 	 * list for 16M capable GP & GR
413 	 */
414 	if (mmu_has_feature(MMU_FTR_16M_PAGE))
415 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
416 		       sizeof(mmu_psize_defaults_gp));
417  found:
418 #ifndef CONFIG_DEBUG_PAGEALLOC
419 	/*
420 	 * Pick a size for the linear mapping. Currently, we only support
421 	 * 16M, 1M and 4K which is the default
422 	 */
423 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
424 		mmu_linear_psize = MMU_PAGE_16M;
425 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
426 		mmu_linear_psize = MMU_PAGE_1M;
427 #endif /* CONFIG_DEBUG_PAGEALLOC */
428 
429 #ifdef CONFIG_PPC_64K_PAGES
430 	/*
431 	 * Pick a size for the ordinary pages. Default is 4K, we support
432 	 * 64K for user mappings and vmalloc if supported by the processor.
433 	 * We only use 64k for ioremap if the processor
434 	 * (and firmware) support cache-inhibited large pages.
435 	 * If not, we use 4k and set mmu_ci_restrictions so that
436 	 * hash_page knows to switch processes that use cache-inhibited
437 	 * mappings to 4k pages.
438 	 */
439 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
440 		mmu_virtual_psize = MMU_PAGE_64K;
441 		mmu_vmalloc_psize = MMU_PAGE_64K;
442 		if (mmu_linear_psize == MMU_PAGE_4K)
443 			mmu_linear_psize = MMU_PAGE_64K;
444 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
445 			/*
446 			 * Don't use 64k pages for ioremap on pSeries, since
447 			 * that would stop us accessing the HEA ethernet.
448 			 */
449 			if (!machine_is(pseries))
450 				mmu_io_psize = MMU_PAGE_64K;
451 		} else
452 			mmu_ci_restrictions = 1;
453 	}
454 #endif /* CONFIG_PPC_64K_PAGES */
455 
456 #ifdef CONFIG_SPARSEMEM_VMEMMAP
457 	/* We try to use 16M pages for vmemmap if that is supported
458 	 * and we have at least 1G of RAM at boot
459 	 */
460 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
461 	    memblock_phys_mem_size() >= 0x40000000)
462 		mmu_vmemmap_psize = MMU_PAGE_16M;
463 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
464 		mmu_vmemmap_psize = MMU_PAGE_64K;
465 	else
466 		mmu_vmemmap_psize = MMU_PAGE_4K;
467 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
468 
469 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
470 	       "virtual = %d, io = %d"
471 #ifdef CONFIG_SPARSEMEM_VMEMMAP
472 	       ", vmemmap = %d"
473 #endif
474 	       "\n",
475 	       mmu_psize_defs[mmu_linear_psize].shift,
476 	       mmu_psize_defs[mmu_virtual_psize].shift,
477 	       mmu_psize_defs[mmu_io_psize].shift
478 #ifdef CONFIG_SPARSEMEM_VMEMMAP
479 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
480 #endif
481 	       );
482 
483 #ifdef CONFIG_HUGETLB_PAGE
484 	/* Reserve 16G huge page memory sections for huge pages */
485 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
486 #endif /* CONFIG_HUGETLB_PAGE */
487 }
488 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)489 static int __init htab_dt_scan_pftsize(unsigned long node,
490 				       const char *uname, int depth,
491 				       void *data)
492 {
493 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
494 	u32 *prop;
495 
496 	/* We are scanning "cpu" nodes only */
497 	if (type == NULL || strcmp(type, "cpu") != 0)
498 		return 0;
499 
500 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
501 	if (prop != NULL) {
502 		/* pft_size[0] is the NUMA CEC cookie */
503 		ppc64_pft_size = prop[1];
504 		return 1;
505 	}
506 	return 0;
507 }
508 
htab_get_table_size(void)509 static unsigned long __init htab_get_table_size(void)
510 {
511 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
512 
513 	/* If hash size isn't already provided by the platform, we try to
514 	 * retrieve it from the device-tree. If it's not there neither, we
515 	 * calculate it now based on the total RAM size
516 	 */
517 	if (ppc64_pft_size == 0)
518 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
519 	if (ppc64_pft_size)
520 		return 1UL << ppc64_pft_size;
521 
522 	/* round mem_size up to next power of 2 */
523 	mem_size = memblock_phys_mem_size();
524 	rnd_mem_size = 1UL << __ilog2(mem_size);
525 	if (rnd_mem_size < mem_size)
526 		rnd_mem_size <<= 1;
527 
528 	/* # pages / 2 */
529 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
530 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
531 
532 	return pteg_count << 7;
533 }
534 
535 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)536 int create_section_mapping(unsigned long start, unsigned long end)
537 {
538 	return htab_bolt_mapping(start, end, __pa(start),
539 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
540 				 mmu_kernel_ssize);
541 }
542 
remove_section_mapping(unsigned long start,unsigned long end)543 int remove_section_mapping(unsigned long start, unsigned long end)
544 {
545 	return htab_remove_mapping(start, end, mmu_linear_psize,
546 			mmu_kernel_ssize);
547 }
548 #endif /* CONFIG_MEMORY_HOTPLUG */
549 
550 #define FUNCTION_TEXT(A)	((*(unsigned long *)(A)))
551 
htab_finish_init(void)552 static void __init htab_finish_init(void)
553 {
554 	extern unsigned int *htab_call_hpte_insert1;
555 	extern unsigned int *htab_call_hpte_insert2;
556 	extern unsigned int *htab_call_hpte_remove;
557 	extern unsigned int *htab_call_hpte_updatepp;
558 
559 #ifdef CONFIG_PPC_HAS_HASH_64K
560 	extern unsigned int *ht64_call_hpte_insert1;
561 	extern unsigned int *ht64_call_hpte_insert2;
562 	extern unsigned int *ht64_call_hpte_remove;
563 	extern unsigned int *ht64_call_hpte_updatepp;
564 
565 	patch_branch(ht64_call_hpte_insert1,
566 		FUNCTION_TEXT(ppc_md.hpte_insert),
567 		BRANCH_SET_LINK);
568 	patch_branch(ht64_call_hpte_insert2,
569 		FUNCTION_TEXT(ppc_md.hpte_insert),
570 		BRANCH_SET_LINK);
571 	patch_branch(ht64_call_hpte_remove,
572 		FUNCTION_TEXT(ppc_md.hpte_remove),
573 		BRANCH_SET_LINK);
574 	patch_branch(ht64_call_hpte_updatepp,
575 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
576 		BRANCH_SET_LINK);
577 
578 #endif /* CONFIG_PPC_HAS_HASH_64K */
579 
580 	patch_branch(htab_call_hpte_insert1,
581 		FUNCTION_TEXT(ppc_md.hpte_insert),
582 		BRANCH_SET_LINK);
583 	patch_branch(htab_call_hpte_insert2,
584 		FUNCTION_TEXT(ppc_md.hpte_insert),
585 		BRANCH_SET_LINK);
586 	patch_branch(htab_call_hpte_remove,
587 		FUNCTION_TEXT(ppc_md.hpte_remove),
588 		BRANCH_SET_LINK);
589 	patch_branch(htab_call_hpte_updatepp,
590 		FUNCTION_TEXT(ppc_md.hpte_updatepp),
591 		BRANCH_SET_LINK);
592 }
593 
htab_initialize(void)594 static void __init htab_initialize(void)
595 {
596 	unsigned long table;
597 	unsigned long pteg_count;
598 	unsigned long prot;
599 	unsigned long base = 0, size = 0, limit;
600 	struct memblock_region *reg;
601 
602 	DBG(" -> htab_initialize()\n");
603 
604 	/* Initialize segment sizes */
605 	htab_init_seg_sizes();
606 
607 	/* Initialize page sizes */
608 	htab_init_page_sizes();
609 
610 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
611 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
612 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
613 		printk(KERN_INFO "Using 1TB segments\n");
614 	}
615 
616 	/*
617 	 * Calculate the required size of the htab.  We want the number of
618 	 * PTEGs to equal one half the number of real pages.
619 	 */
620 	htab_size_bytes = htab_get_table_size();
621 	pteg_count = htab_size_bytes >> 7;
622 
623 	htab_hash_mask = pteg_count - 1;
624 
625 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
626 		/* Using a hypervisor which owns the htab */
627 		htab_address = NULL;
628 		_SDR1 = 0;
629 #ifdef CONFIG_FA_DUMP
630 		/*
631 		 * If firmware assisted dump is active firmware preserves
632 		 * the contents of htab along with entire partition memory.
633 		 * Clear the htab if firmware assisted dump is active so
634 		 * that we dont end up using old mappings.
635 		 */
636 		if (is_fadump_active() && ppc_md.hpte_clear_all)
637 			ppc_md.hpte_clear_all();
638 #endif
639 	} else {
640 		/* Find storage for the HPT.  Must be contiguous in
641 		 * the absolute address space. On cell we want it to be
642 		 * in the first 2 Gig so we can use it for IOMMU hacks.
643 		 */
644 		if (machine_is(cell))
645 			limit = 0x80000000;
646 		else
647 			limit = MEMBLOCK_ALLOC_ANYWHERE;
648 
649 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
650 
651 		DBG("Hash table allocated at %lx, size: %lx\n", table,
652 		    htab_size_bytes);
653 
654 		htab_address = abs_to_virt(table);
655 
656 		/* htab absolute addr + encoded htabsize */
657 		_SDR1 = table + __ilog2(pteg_count) - 11;
658 
659 		/* Initialize the HPT with no entries */
660 		memset((void *)table, 0, htab_size_bytes);
661 
662 		/* Set SDR1 */
663 		mtspr(SPRN_SDR1, _SDR1);
664 	}
665 
666 	prot = pgprot_val(PAGE_KERNEL);
667 
668 #ifdef CONFIG_DEBUG_PAGEALLOC
669 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
670 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
671 						    1, ppc64_rma_size));
672 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
673 #endif /* CONFIG_DEBUG_PAGEALLOC */
674 
675 	/* On U3 based machines, we need to reserve the DART area and
676 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
677 	 * cacheable later on
678 	 */
679 
680 	/* create bolted the linear mapping in the hash table */
681 	for_each_memblock(memory, reg) {
682 		base = (unsigned long)__va(reg->base);
683 		size = reg->size;
684 
685 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
686 		    base, size, prot);
687 
688 #ifdef CONFIG_U3_DART
689 		/* Do not map the DART space. Fortunately, it will be aligned
690 		 * in such a way that it will not cross two memblock regions and
691 		 * will fit within a single 16Mb page.
692 		 * The DART space is assumed to be a full 16Mb region even if
693 		 * we only use 2Mb of that space. We will use more of it later
694 		 * for AGP GART. We have to use a full 16Mb large page.
695 		 */
696 		DBG("DART base: %lx\n", dart_tablebase);
697 
698 		if (dart_tablebase != 0 && dart_tablebase >= base
699 		    && dart_tablebase < (base + size)) {
700 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
701 			if (base != dart_tablebase)
702 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
703 							__pa(base), prot,
704 							mmu_linear_psize,
705 							mmu_kernel_ssize));
706 			if ((base + size) > dart_table_end)
707 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
708 							base + size,
709 							__pa(dart_table_end),
710 							 prot,
711 							 mmu_linear_psize,
712 							 mmu_kernel_ssize));
713 			continue;
714 		}
715 #endif /* CONFIG_U3_DART */
716 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
717 				prot, mmu_linear_psize, mmu_kernel_ssize));
718 	}
719 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
720 
721 	/*
722 	 * If we have a memory_limit and we've allocated TCEs then we need to
723 	 * explicitly map the TCE area at the top of RAM. We also cope with the
724 	 * case that the TCEs start below memory_limit.
725 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
726 	 * for either 4K or 16MB pages.
727 	 */
728 	if (tce_alloc_start) {
729 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
730 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
731 
732 		if (base + size >= tce_alloc_start)
733 			tce_alloc_start = base + size + 1;
734 
735 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
736 					 __pa(tce_alloc_start), prot,
737 					 mmu_linear_psize, mmu_kernel_ssize));
738 	}
739 
740 	htab_finish_init();
741 
742 	DBG(" <- htab_initialize()\n");
743 }
744 #undef KB
745 #undef MB
746 
early_init_mmu(void)747 void __init early_init_mmu(void)
748 {
749 	/* Setup initial STAB address in the PACA */
750 	get_paca()->stab_real = __pa((u64)&initial_stab);
751 	get_paca()->stab_addr = (u64)&initial_stab;
752 
753 	/* Initialize the MMU Hash table and create the linear mapping
754 	 * of memory. Has to be done before stab/slb initialization as
755 	 * this is currently where the page size encoding is obtained
756 	 */
757 	htab_initialize();
758 
759 	/* Initialize stab / SLB management */
760 	if (mmu_has_feature(MMU_FTR_SLB))
761 		slb_initialize();
762 	else
763 		stab_initialize(get_paca()->stab_real);
764 }
765 
766 #ifdef CONFIG_SMP
early_init_mmu_secondary(void)767 void __cpuinit early_init_mmu_secondary(void)
768 {
769 	/* Initialize hash table for that CPU */
770 	if (!firmware_has_feature(FW_FEATURE_LPAR))
771 		mtspr(SPRN_SDR1, _SDR1);
772 
773 	/* Initialize STAB/SLB. We use a virtual address as it works
774 	 * in real mode on pSeries.
775 	 */
776 	if (mmu_has_feature(MMU_FTR_SLB))
777 		slb_initialize();
778 	else
779 		stab_initialize(get_paca()->stab_addr);
780 }
781 #endif /* CONFIG_SMP */
782 
783 /*
784  * Called by asm hashtable.S for doing lazy icache flush
785  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)786 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
787 {
788 	struct page *page;
789 
790 	if (!pfn_valid(pte_pfn(pte)))
791 		return pp;
792 
793 	page = pte_page(pte);
794 
795 	/* page is dirty */
796 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
797 		if (trap == 0x400) {
798 			flush_dcache_icache_page(page);
799 			set_bit(PG_arch_1, &page->flags);
800 		} else
801 			pp |= HPTE_R_N;
802 	}
803 	return pp;
804 }
805 
806 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)807 unsigned int get_paca_psize(unsigned long addr)
808 {
809 	unsigned long index, slices;
810 
811 	if (addr < SLICE_LOW_TOP) {
812 		slices = get_paca()->context.low_slices_psize;
813 		index = GET_LOW_SLICE_INDEX(addr);
814 	} else {
815 		slices = get_paca()->context.high_slices_psize;
816 		index = GET_HIGH_SLICE_INDEX(addr);
817 	}
818 	return (slices >> (index * 4)) & 0xF;
819 }
820 
821 #else
get_paca_psize(unsigned long addr)822 unsigned int get_paca_psize(unsigned long addr)
823 {
824 	return get_paca()->context.user_psize;
825 }
826 #endif
827 
828 /*
829  * Demote a segment to using 4k pages.
830  * For now this makes the whole process use 4k pages.
831  */
832 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)833 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
834 {
835 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
836 		return;
837 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
838 #ifdef CONFIG_SPU_BASE
839 	spu_flush_all_slbs(mm);
840 #endif
841 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
842 		get_paca()->context = mm->context;
843 		slb_flush_and_rebolt();
844 	}
845 }
846 #endif /* CONFIG_PPC_64K_PAGES */
847 
848 #ifdef CONFIG_PPC_SUBPAGE_PROT
849 /*
850  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
851  * Userspace sets the subpage permissions using the subpage_prot system call.
852  *
853  * Result is 0: full permissions, _PAGE_RW: read-only,
854  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
855  */
subpage_protection(struct mm_struct * mm,unsigned long ea)856 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
857 {
858 	struct subpage_prot_table *spt = &mm->context.spt;
859 	u32 spp = 0;
860 	u32 **sbpm, *sbpp;
861 
862 	if (ea >= spt->maxaddr)
863 		return 0;
864 	if (ea < 0x100000000) {
865 		/* addresses below 4GB use spt->low_prot */
866 		sbpm = spt->low_prot;
867 	} else {
868 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
869 		if (!sbpm)
870 			return 0;
871 	}
872 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
873 	if (!sbpp)
874 		return 0;
875 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
876 
877 	/* extract 2-bit bitfield for this 4k subpage */
878 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
879 
880 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
881 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
882 	return spp;
883 }
884 
885 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)886 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
887 {
888 	return 0;
889 }
890 #endif
891 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,unsigned long pte)892 void hash_failure_debug(unsigned long ea, unsigned long access,
893 			unsigned long vsid, unsigned long trap,
894 			int ssize, int psize, unsigned long pte)
895 {
896 	if (!printk_ratelimit())
897 		return;
898 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
899 		ea, access, current->comm);
900 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
901 		trap, vsid, ssize, psize, pte);
902 }
903 
904 /* Result code is:
905  *  0 - handled
906  *  1 - normal page fault
907  * -1 - critical hash insertion error
908  * -2 - access not permitted by subpage protection mechanism
909  */
hash_page(unsigned long ea,unsigned long access,unsigned long trap)910 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
911 {
912 	pgd_t *pgdir;
913 	unsigned long vsid;
914 	struct mm_struct *mm;
915 	pte_t *ptep;
916 	unsigned hugeshift;
917 	const struct cpumask *tmp;
918 	int rc, user_region = 0, local = 0;
919 	int psize, ssize;
920 
921 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
922 		ea, access, trap);
923 
924 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
925 		DBG_LOW(" out of pgtable range !\n");
926  		return 1;
927 	}
928 
929 	/* Get region & vsid */
930  	switch (REGION_ID(ea)) {
931 	case USER_REGION_ID:
932 		user_region = 1;
933 		mm = current->mm;
934 		if (! mm) {
935 			DBG_LOW(" user region with no mm !\n");
936 			return 1;
937 		}
938 		psize = get_slice_psize(mm, ea);
939 		ssize = user_segment_size(ea);
940 		vsid = get_vsid(mm->context.id, ea, ssize);
941 		break;
942 	case VMALLOC_REGION_ID:
943 		mm = &init_mm;
944 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
945 		if (ea < VMALLOC_END)
946 			psize = mmu_vmalloc_psize;
947 		else
948 			psize = mmu_io_psize;
949 		ssize = mmu_kernel_ssize;
950 		break;
951 	default:
952 		/* Not a valid range
953 		 * Send the problem up to do_page_fault
954 		 */
955 		return 1;
956 	}
957 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
958 
959 	/* Get pgdir */
960 	pgdir = mm->pgd;
961 	if (pgdir == NULL)
962 		return 1;
963 
964 	/* Check CPU locality */
965 	tmp = cpumask_of(smp_processor_id());
966 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
967 		local = 1;
968 
969 #ifndef CONFIG_PPC_64K_PAGES
970 	/* If we use 4K pages and our psize is not 4K, then we might
971 	 * be hitting a special driver mapping, and need to align the
972 	 * address before we fetch the PTE.
973 	 *
974 	 * It could also be a hugepage mapping, in which case this is
975 	 * not necessary, but it's not harmful, either.
976 	 */
977 	if (psize != MMU_PAGE_4K)
978 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
979 #endif /* CONFIG_PPC_64K_PAGES */
980 
981 	/* Get PTE and page size from page tables */
982 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
983 	if (ptep == NULL || !pte_present(*ptep)) {
984 		DBG_LOW(" no PTE !\n");
985 		return 1;
986 	}
987 
988 	/* Add _PAGE_PRESENT to the required access perm */
989 	access |= _PAGE_PRESENT;
990 
991 	/* Pre-check access permissions (will be re-checked atomically
992 	 * in __hash_page_XX but this pre-check is a fast path
993 	 */
994 	if (access & ~pte_val(*ptep)) {
995 		DBG_LOW(" no access !\n");
996 		return 1;
997 	}
998 
999 #ifdef CONFIG_HUGETLB_PAGE
1000 	if (hugeshift)
1001 		return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1002 					ssize, hugeshift, psize);
1003 #endif /* CONFIG_HUGETLB_PAGE */
1004 
1005 #ifndef CONFIG_PPC_64K_PAGES
1006 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1007 #else
1008 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1009 		pte_val(*(ptep + PTRS_PER_PTE)));
1010 #endif
1011 	/* Do actual hashing */
1012 #ifdef CONFIG_PPC_64K_PAGES
1013 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1014 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1015 		demote_segment_4k(mm, ea);
1016 		psize = MMU_PAGE_4K;
1017 	}
1018 
1019 	/* If this PTE is non-cacheable and we have restrictions on
1020 	 * using non cacheable large pages, then we switch to 4k
1021 	 */
1022 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1023 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1024 		if (user_region) {
1025 			demote_segment_4k(mm, ea);
1026 			psize = MMU_PAGE_4K;
1027 		} else if (ea < VMALLOC_END) {
1028 			/*
1029 			 * some driver did a non-cacheable mapping
1030 			 * in vmalloc space, so switch vmalloc
1031 			 * to 4k pages
1032 			 */
1033 			printk(KERN_ALERT "Reducing vmalloc segment "
1034 			       "to 4kB pages because of "
1035 			       "non-cacheable mapping\n");
1036 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1037 #ifdef CONFIG_SPU_BASE
1038 			spu_flush_all_slbs(mm);
1039 #endif
1040 		}
1041 	}
1042 	if (user_region) {
1043 		if (psize != get_paca_psize(ea)) {
1044 			get_paca()->context = mm->context;
1045 			slb_flush_and_rebolt();
1046 		}
1047 	} else if (get_paca()->vmalloc_sllp !=
1048 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1049 		get_paca()->vmalloc_sllp =
1050 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1051 		slb_vmalloc_update();
1052 	}
1053 #endif /* CONFIG_PPC_64K_PAGES */
1054 
1055 #ifdef CONFIG_PPC_HAS_HASH_64K
1056 	if (psize == MMU_PAGE_64K)
1057 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1058 	else
1059 #endif /* CONFIG_PPC_HAS_HASH_64K */
1060 	{
1061 		int spp = subpage_protection(mm, ea);
1062 		if (access & spp)
1063 			rc = -2;
1064 		else
1065 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1066 					    local, ssize, spp);
1067 	}
1068 
1069 	/* Dump some info in case of hash insertion failure, they should
1070 	 * never happen so it is really useful to know if/when they do
1071 	 */
1072 	if (rc == -1)
1073 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1074 				   pte_val(*ptep));
1075 #ifndef CONFIG_PPC_64K_PAGES
1076 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1077 #else
1078 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1079 		pte_val(*(ptep + PTRS_PER_PTE)));
1080 #endif
1081 	DBG_LOW(" -> rc=%d\n", rc);
1082 	return rc;
1083 }
1084 EXPORT_SYMBOL_GPL(hash_page);
1085 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1086 void hash_preload(struct mm_struct *mm, unsigned long ea,
1087 		  unsigned long access, unsigned long trap)
1088 {
1089 	unsigned long vsid;
1090 	pgd_t *pgdir;
1091 	pte_t *ptep;
1092 	unsigned long flags;
1093 	int rc, ssize, local = 0;
1094 
1095 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1096 
1097 #ifdef CONFIG_PPC_MM_SLICES
1098 	/* We only prefault standard pages for now */
1099 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1100 		return;
1101 #endif
1102 
1103 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1104 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1105 
1106 	/* Get Linux PTE if available */
1107 	pgdir = mm->pgd;
1108 	if (pgdir == NULL)
1109 		return;
1110 	ptep = find_linux_pte(pgdir, ea);
1111 	if (!ptep)
1112 		return;
1113 
1114 #ifdef CONFIG_PPC_64K_PAGES
1115 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1116 	 * a 64K kernel), then we don't preload, hash_page() will take
1117 	 * care of it once we actually try to access the page.
1118 	 * That way we don't have to duplicate all of the logic for segment
1119 	 * page size demotion here
1120 	 */
1121 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1122 		return;
1123 #endif /* CONFIG_PPC_64K_PAGES */
1124 
1125 	/* Get VSID */
1126 	ssize = user_segment_size(ea);
1127 	vsid = get_vsid(mm->context.id, ea, ssize);
1128 
1129 	/* Hash doesn't like irqs */
1130 	local_irq_save(flags);
1131 
1132 	/* Is that local to this CPU ? */
1133 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1134 		local = 1;
1135 
1136 	/* Hash it in */
1137 #ifdef CONFIG_PPC_HAS_HASH_64K
1138 	if (mm->context.user_psize == MMU_PAGE_64K)
1139 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1140 	else
1141 #endif /* CONFIG_PPC_HAS_HASH_64K */
1142 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1143 				    subpage_protection(mm, ea));
1144 
1145 	/* Dump some info in case of hash insertion failure, they should
1146 	 * never happen so it is really useful to know if/when they do
1147 	 */
1148 	if (rc == -1)
1149 		hash_failure_debug(ea, access, vsid, trap, ssize,
1150 				   mm->context.user_psize, pte_val(*ptep));
1151 
1152 	local_irq_restore(flags);
1153 }
1154 
1155 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1156  *          do not forget to update the assembly call site !
1157  */
flush_hash_page(unsigned long va,real_pte_t pte,int psize,int ssize,int local)1158 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1159 		     int local)
1160 {
1161 	unsigned long hash, index, shift, hidx, slot;
1162 
1163 	DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1164 	pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1165 		hash = hpt_hash(va, shift, ssize);
1166 		hidx = __rpte_to_hidx(pte, index);
1167 		if (hidx & _PTEIDX_SECONDARY)
1168 			hash = ~hash;
1169 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1170 		slot += hidx & _PTEIDX_GROUP_IX;
1171 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1172 		ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1173 	} pte_iterate_hashed_end();
1174 }
1175 
flush_hash_range(unsigned long number,int local)1176 void flush_hash_range(unsigned long number, int local)
1177 {
1178 	if (ppc_md.flush_hash_range)
1179 		ppc_md.flush_hash_range(number, local);
1180 	else {
1181 		int i;
1182 		struct ppc64_tlb_batch *batch =
1183 			&__get_cpu_var(ppc64_tlb_batch);
1184 
1185 		for (i = 0; i < number; i++)
1186 			flush_hash_page(batch->vaddr[i], batch->pte[i],
1187 					batch->psize, batch->ssize, local);
1188 	}
1189 }
1190 
1191 /*
1192  * low_hash_fault is called when we the low level hash code failed
1193  * to instert a PTE due to an hypervisor error
1194  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1195 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1196 {
1197 	if (user_mode(regs)) {
1198 #ifdef CONFIG_PPC_SUBPAGE_PROT
1199 		if (rc == -2)
1200 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1201 		else
1202 #endif
1203 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1204 	} else
1205 		bad_page_fault(regs, address, SIGBUS);
1206 }
1207 
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1209 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1210 {
1211 	unsigned long hash, hpteg;
1212 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1213 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1214 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1215 	int ret;
1216 
1217 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1218 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1219 
1220 	ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1221 				 mode, HPTE_V_BOLTED,
1222 				 mmu_linear_psize, mmu_kernel_ssize);
1223 	BUG_ON (ret < 0);
1224 	spin_lock(&linear_map_hash_lock);
1225 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1226 	linear_map_hash_slots[lmi] = ret | 0x80;
1227 	spin_unlock(&linear_map_hash_lock);
1228 }
1229 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1230 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1231 {
1232 	unsigned long hash, hidx, slot;
1233 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1234 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1235 
1236 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1237 	spin_lock(&linear_map_hash_lock);
1238 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1239 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1240 	linear_map_hash_slots[lmi] = 0;
1241 	spin_unlock(&linear_map_hash_lock);
1242 	if (hidx & _PTEIDX_SECONDARY)
1243 		hash = ~hash;
1244 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1245 	slot += hidx & _PTEIDX_GROUP_IX;
1246 	ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1247 }
1248 
kernel_map_pages(struct page * page,int numpages,int enable)1249 void kernel_map_pages(struct page *page, int numpages, int enable)
1250 {
1251 	unsigned long flags, vaddr, lmi;
1252 	int i;
1253 
1254 	local_irq_save(flags);
1255 	for (i = 0; i < numpages; i++, page++) {
1256 		vaddr = (unsigned long)page_address(page);
1257 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1258 		if (lmi >= linear_map_hash_count)
1259 			continue;
1260 		if (enable)
1261 			kernel_map_linear_page(vaddr, lmi);
1262 		else
1263 			kernel_unmap_linear_page(vaddr, lmi);
1264 	}
1265 	local_irq_restore(flags);
1266 }
1267 #endif /* CONFIG_DEBUG_PAGEALLOC */
1268 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1269 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1270 				phys_addr_t first_memblock_size)
1271 {
1272 	/* We don't currently support the first MEMBLOCK not mapping 0
1273 	 * physical on those processors
1274 	 */
1275 	BUG_ON(first_memblock_base != 0);
1276 
1277 	/* On LPAR systems, the first entry is our RMA region,
1278 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1279 	 * on real mode access, but using the first entry works well
1280 	 * enough. We also clamp it to 1G to avoid some funky things
1281 	 * such as RTAS bugs etc...
1282 	 */
1283 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1284 
1285 	/* Finally limit subsequent allocations */
1286 	memblock_set_current_limit(ppc64_rma_size);
1287 }
1288