1
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6
7 #include "cpupri.h"
8
9 extern __read_mostly int scheduler_running;
10
11 /*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20 /*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29 /*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34 #define NICE_0_LOAD SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37 /*
38 * These are the 'tuning knobs' of the scheduler:
39 */
40
41 /*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44 #define RUNTIME_INF ((u64)~0ULL)
45
rt_policy(int policy)46 static inline int rt_policy(int policy)
47 {
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51 }
52
task_has_rt_policy(struct task_struct * p)53 static inline int task_has_rt_policy(struct task_struct *p)
54 {
55 return rt_policy(p->policy);
56 }
57
58 /*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61 struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64 };
65
66 struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72 };
73
74 extern struct mutex sched_domains_mutex;
75
76 #ifdef CONFIG_CGROUP_SCHED
77
78 #include <linux/cgroup.h>
79
80 struct cfs_rq;
81 struct rt_rq;
82
83 extern struct list_head task_groups;
84
85 struct cfs_bandwidth {
86 #ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100 #endif
101 };
102
103 /* task group related information */
104 struct task_group {
105 struct cgroup_subsys_state css;
106
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115 #endif
116
117 #ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122 #endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131 #ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133 #endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136 };
137
138 #ifdef CONFIG_FAIR_GROUP_SCHED
139 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141 /*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149 #define MIN_SHARES (1UL << 1)
150 #define MAX_SHARES (1UL << 18)
151 #endif
152
153 /* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156 extern struct task_group root_task_group;
157
158 typedef int (*tg_visitor)(struct task_group *, void *);
159
160 extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163 /*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)169 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170 {
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172 }
173
174 extern int tg_nop(struct task_group *tg, void *data);
175
176 extern void free_fair_sched_group(struct task_group *tg);
177 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189 extern void free_rt_sched_group(struct task_group *tg);
190 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195 #else /* CONFIG_CGROUP_SCHED */
196
197 struct cfs_bandwidth { };
198
199 #endif /* CONFIG_CGROUP_SCHED */
200
201 /* CFS-related fields in a runqueue */
202 struct cfs_rq {
203 struct load_weight load;
204 unsigned long nr_running, h_nr_running;
205
206 u64 exec_clock;
207 u64 min_vruntime;
208 #ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210 #endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221 #ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223 #endif
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240 #ifdef CONFIG_SMP
241 /*
242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261 #endif /* CONFIG_SMP */
262 #ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270 #endif /* CONFIG_CFS_BANDWIDTH */
271 #endif /* CONFIG_FAIR_GROUP_SCHED */
272 };
273
rt_bandwidth_enabled(void)274 static inline int rt_bandwidth_enabled(void)
275 {
276 return sysctl_sched_rt_runtime >= 0;
277 }
278
279 /* Real-Time classes' related field in a runqueue: */
280 struct rt_rq {
281 struct rt_prio_array active;
282 unsigned long rt_nr_running;
283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286 #ifdef CONFIG_SMP
287 int next; /* next highest */
288 #endif
289 } highest_prio;
290 #endif
291 #ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296 #endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309 #endif
310 };
311
312 #ifdef CONFIG_SMP
313
314 /*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322 struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335 };
336
337 extern struct root_domain def_root_domain;
338
339 #endif /* CONFIG_SMP */
340
341 /*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348 struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
356 unsigned long nr_running;
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360 #ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
362 unsigned long nohz_flags;
363 #endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
377 #endif
378 #ifdef CONFIG_RT_GROUP_SCHED
379 struct list_head leaf_rt_rq_list;
380 #endif
381
382 /*
383 * This is part of a global counter where only the total sum
384 * over all CPUs matters. A task can increase this counter on
385 * one CPU and if it got migrated afterwards it may decrease
386 * it on another CPU. Always updated under the runqueue lock:
387 */
388 unsigned long nr_uninterruptible;
389
390 struct task_struct *curr, *idle, *stop;
391 unsigned long next_balance;
392 struct mm_struct *prev_mm;
393
394 u64 clock;
395 u64 clock_task;
396
397 atomic_t nr_iowait;
398
399 #ifdef CONFIG_SMP
400 struct root_domain *rd;
401 struct sched_domain *sd;
402
403 unsigned long cpu_power;
404
405 unsigned char idle_balance;
406 /* For active balancing */
407 int post_schedule;
408 int active_balance;
409 int push_cpu;
410 struct cpu_stop_work active_balance_work;
411 /* cpu of this runqueue: */
412 int cpu;
413 int online;
414
415 struct list_head cfs_tasks;
416
417 u64 rt_avg;
418 u64 age_stamp;
419 u64 idle_stamp;
420 u64 avg_idle;
421 #endif
422
423 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
424 u64 prev_irq_time;
425 #endif
426 #ifdef CONFIG_PARAVIRT
427 u64 prev_steal_time;
428 #endif
429 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
430 u64 prev_steal_time_rq;
431 #endif
432
433 /* calc_load related fields */
434 unsigned long calc_load_update;
435 long calc_load_active;
436
437 #ifdef CONFIG_SCHED_HRTICK
438 #ifdef CONFIG_SMP
439 int hrtick_csd_pending;
440 struct call_single_data hrtick_csd;
441 #endif
442 struct hrtimer hrtick_timer;
443 #endif
444
445 #ifdef CONFIG_SCHEDSTATS
446 /* latency stats */
447 struct sched_info rq_sched_info;
448 unsigned long long rq_cpu_time;
449 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
450
451 /* sys_sched_yield() stats */
452 unsigned int yld_count;
453
454 /* schedule() stats */
455 unsigned int sched_count;
456 unsigned int sched_goidle;
457
458 /* try_to_wake_up() stats */
459 unsigned int ttwu_count;
460 unsigned int ttwu_local;
461 #endif
462
463 #ifdef CONFIG_SMP
464 struct llist_head wake_list;
465 #endif
466 };
467
cpu_of(struct rq * rq)468 static inline int cpu_of(struct rq *rq)
469 {
470 #ifdef CONFIG_SMP
471 return rq->cpu;
472 #else
473 return 0;
474 #endif
475 }
476
477 DECLARE_PER_CPU(struct rq, runqueues);
478
479 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
480 #define this_rq() (&__get_cpu_var(runqueues))
481 #define task_rq(p) cpu_rq(task_cpu(p))
482 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
483 #define raw_rq() (&__raw_get_cpu_var(runqueues))
484
485 #ifdef CONFIG_SMP
486
487 #define rcu_dereference_check_sched_domain(p) \
488 rcu_dereference_check((p), \
489 lockdep_is_held(&sched_domains_mutex))
490
491 /*
492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
493 * See detach_destroy_domains: synchronize_sched for details.
494 *
495 * The domain tree of any CPU may only be accessed from within
496 * preempt-disabled sections.
497 */
498 #define for_each_domain(cpu, __sd) \
499 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
500 __sd; __sd = __sd->parent)
501
502 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
503
504 /**
505 * highest_flag_domain - Return highest sched_domain containing flag.
506 * @cpu: The cpu whose highest level of sched domain is to
507 * be returned.
508 * @flag: The flag to check for the highest sched_domain
509 * for the given cpu.
510 *
511 * Returns the highest sched_domain of a cpu which contains the given flag.
512 */
highest_flag_domain(int cpu,int flag)513 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
514 {
515 struct sched_domain *sd, *hsd = NULL;
516
517 for_each_domain(cpu, sd) {
518 if (!(sd->flags & flag))
519 break;
520 hsd = sd;
521 }
522
523 return hsd;
524 }
525
526 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
527 DECLARE_PER_CPU(int, sd_llc_id);
528
529 #endif /* CONFIG_SMP */
530
531 #include "stats.h"
532 #include "auto_group.h"
533
534 #ifdef CONFIG_CGROUP_SCHED
535
536 /*
537 * Return the group to which this tasks belongs.
538 *
539 * We cannot use task_subsys_state() and friends because the cgroup
540 * subsystem changes that value before the cgroup_subsys::attach() method
541 * is called, therefore we cannot pin it and might observe the wrong value.
542 *
543 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
544 * core changes this before calling sched_move_task().
545 *
546 * Instead we use a 'copy' which is updated from sched_move_task() while
547 * holding both task_struct::pi_lock and rq::lock.
548 */
task_group(struct task_struct * p)549 static inline struct task_group *task_group(struct task_struct *p)
550 {
551 return p->sched_task_group;
552 }
553
554 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)555 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
556 {
557 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
558 struct task_group *tg = task_group(p);
559 #endif
560
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 p->se.cfs_rq = tg->cfs_rq[cpu];
563 p->se.parent = tg->se[cpu];
564 #endif
565
566 #ifdef CONFIG_RT_GROUP_SCHED
567 p->rt.rt_rq = tg->rt_rq[cpu];
568 p->rt.parent = tg->rt_se[cpu];
569 #endif
570 }
571
572 #else /* CONFIG_CGROUP_SCHED */
573
set_task_rq(struct task_struct * p,unsigned int cpu)574 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)575 static inline struct task_group *task_group(struct task_struct *p)
576 {
577 return NULL;
578 }
579
580 #endif /* CONFIG_CGROUP_SCHED */
581
__set_task_cpu(struct task_struct * p,unsigned int cpu)582 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
583 {
584 set_task_rq(p, cpu);
585 #ifdef CONFIG_SMP
586 /*
587 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
588 * successfuly executed on another CPU. We must ensure that updates of
589 * per-task data have been completed by this moment.
590 */
591 smp_wmb();
592 task_thread_info(p)->cpu = cpu;
593 #endif
594 }
595
596 /*
597 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
598 */
599 #ifdef CONFIG_SCHED_DEBUG
600 # include <linux/static_key.h>
601 # define const_debug __read_mostly
602 #else
603 # define const_debug const
604 #endif
605
606 extern const_debug unsigned int sysctl_sched_features;
607
608 #define SCHED_FEAT(name, enabled) \
609 __SCHED_FEAT_##name ,
610
611 enum {
612 #include "features.h"
613 __SCHED_FEAT_NR,
614 };
615
616 #undef SCHED_FEAT
617
618 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
static_branch__true(struct static_key * key)619 static __always_inline bool static_branch__true(struct static_key *key)
620 {
621 return static_key_true(key); /* Not out of line branch. */
622 }
623
static_branch__false(struct static_key * key)624 static __always_inline bool static_branch__false(struct static_key *key)
625 {
626 return static_key_false(key); /* Out of line branch. */
627 }
628
629 #define SCHED_FEAT(name, enabled) \
630 static __always_inline bool static_branch_##name(struct static_key *key) \
631 { \
632 return static_branch__##enabled(key); \
633 }
634
635 #include "features.h"
636
637 #undef SCHED_FEAT
638
639 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
640 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
641 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
642 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
643 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
644
global_rt_period(void)645 static inline u64 global_rt_period(void)
646 {
647 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
648 }
649
global_rt_runtime(void)650 static inline u64 global_rt_runtime(void)
651 {
652 if (sysctl_sched_rt_runtime < 0)
653 return RUNTIME_INF;
654
655 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
656 }
657
658
659
task_current(struct rq * rq,struct task_struct * p)660 static inline int task_current(struct rq *rq, struct task_struct *p)
661 {
662 return rq->curr == p;
663 }
664
task_running(struct rq * rq,struct task_struct * p)665 static inline int task_running(struct rq *rq, struct task_struct *p)
666 {
667 #ifdef CONFIG_SMP
668 return p->on_cpu;
669 #else
670 return task_current(rq, p);
671 #endif
672 }
673
674
675 #ifndef prepare_arch_switch
676 # define prepare_arch_switch(next) do { } while (0)
677 #endif
678 #ifndef finish_arch_switch
679 # define finish_arch_switch(prev) do { } while (0)
680 #endif
681 #ifndef finish_arch_post_lock_switch
682 # define finish_arch_post_lock_switch() do { } while (0)
683 #endif
684
685 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
prepare_lock_switch(struct rq * rq,struct task_struct * next)686 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
687 {
688 #ifdef CONFIG_SMP
689 /*
690 * We can optimise this out completely for !SMP, because the
691 * SMP rebalancing from interrupt is the only thing that cares
692 * here.
693 */
694 next->on_cpu = 1;
695 #endif
696 }
697
finish_lock_switch(struct rq * rq,struct task_struct * prev)698 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
699 {
700 #ifdef CONFIG_SMP
701 /*
702 * After ->on_cpu is cleared, the task can be moved to a different CPU.
703 * We must ensure this doesn't happen until the switch is completely
704 * finished.
705 */
706 smp_wmb();
707 prev->on_cpu = 0;
708 #endif
709 #ifdef CONFIG_DEBUG_SPINLOCK
710 /* this is a valid case when another task releases the spinlock */
711 rq->lock.owner = current;
712 #endif
713 /*
714 * If we are tracking spinlock dependencies then we have to
715 * fix up the runqueue lock - which gets 'carried over' from
716 * prev into current:
717 */
718 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
719
720 raw_spin_unlock_irq(&rq->lock);
721 }
722
723 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
prepare_lock_switch(struct rq * rq,struct task_struct * next)724 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
725 {
726 #ifdef CONFIG_SMP
727 /*
728 * We can optimise this out completely for !SMP, because the
729 * SMP rebalancing from interrupt is the only thing that cares
730 * here.
731 */
732 next->on_cpu = 1;
733 #endif
734 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
735 raw_spin_unlock_irq(&rq->lock);
736 #else
737 raw_spin_unlock(&rq->lock);
738 #endif
739 }
740
finish_lock_switch(struct rq * rq,struct task_struct * prev)741 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
742 {
743 #ifdef CONFIG_SMP
744 /*
745 * After ->on_cpu is cleared, the task can be moved to a different CPU.
746 * We must ensure this doesn't happen until the switch is completely
747 * finished.
748 */
749 smp_wmb();
750 prev->on_cpu = 0;
751 #endif
752 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 local_irq_enable();
754 #endif
755 }
756 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
757
758
update_load_add(struct load_weight * lw,unsigned long inc)759 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
760 {
761 lw->weight += inc;
762 lw->inv_weight = 0;
763 }
764
update_load_sub(struct load_weight * lw,unsigned long dec)765 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
766 {
767 lw->weight -= dec;
768 lw->inv_weight = 0;
769 }
770
update_load_set(struct load_weight * lw,unsigned long w)771 static inline void update_load_set(struct load_weight *lw, unsigned long w)
772 {
773 lw->weight = w;
774 lw->inv_weight = 0;
775 }
776
777 /*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
786 #define WEIGHT_IDLEPRIO 3
787 #define WMULT_IDLEPRIO 1431655765
788
789 /*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
800 */
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
810 };
811
812 /*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829
830 /* Time spent by the tasks of the cpu accounting group executing in ... */
831 enum cpuacct_stat_index {
832 CPUACCT_STAT_USER, /* ... user mode */
833 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
834
835 CPUACCT_STAT_NSTATS,
836 };
837
838
839 #define sched_class_highest (&stop_sched_class)
840 #define for_each_class(class) \
841 for (class = sched_class_highest; class; class = class->next)
842
843 extern const struct sched_class stop_sched_class;
844 extern const struct sched_class rt_sched_class;
845 extern const struct sched_class fair_sched_class;
846 extern const struct sched_class idle_sched_class;
847
848
849 #ifdef CONFIG_SMP
850
851 extern void trigger_load_balance(struct rq *rq, int cpu);
852 extern void idle_balance(int this_cpu, struct rq *this_rq);
853
854 #else /* CONFIG_SMP */
855
idle_balance(int cpu,struct rq * rq)856 static inline void idle_balance(int cpu, struct rq *rq)
857 {
858 }
859
860 #endif
861
862 extern void sysrq_sched_debug_show(void);
863 extern void sched_init_granularity(void);
864 extern void update_max_interval(void);
865 extern void update_group_power(struct sched_domain *sd, int cpu);
866 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
867 extern void init_sched_rt_class(void);
868 extern void init_sched_fair_class(void);
869
870 extern void resched_task(struct task_struct *p);
871 extern void resched_cpu(int cpu);
872
873 extern struct rt_bandwidth def_rt_bandwidth;
874 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
875
876 extern void update_idle_cpu_load(struct rq *this_rq);
877
878 #ifdef CONFIG_CGROUP_CPUACCT
879 #include <linux/cgroup.h>
880 /* track cpu usage of a group of tasks and its child groups */
881 struct cpuacct {
882 struct cgroup_subsys_state css;
883 /* cpuusage holds pointer to a u64-type object on every cpu */
884 u64 __percpu *cpuusage;
885 struct kernel_cpustat __percpu *cpustat;
886 };
887
888 /* return cpu accounting group corresponding to this container */
cgroup_ca(struct cgroup * cgrp)889 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
890 {
891 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
892 struct cpuacct, css);
893 }
894
895 /* return cpu accounting group to which this task belongs */
task_ca(struct task_struct * tsk)896 static inline struct cpuacct *task_ca(struct task_struct *tsk)
897 {
898 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
899 struct cpuacct, css);
900 }
901
parent_ca(struct cpuacct * ca)902 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
903 {
904 if (!ca || !ca->css.cgroup->parent)
905 return NULL;
906 return cgroup_ca(ca->css.cgroup->parent);
907 }
908
909 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
910 #else
cpuacct_charge(struct task_struct * tsk,u64 cputime)911 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
912 #endif
913
inc_nr_running(struct rq * rq)914 static inline void inc_nr_running(struct rq *rq)
915 {
916 rq->nr_running++;
917 }
918
dec_nr_running(struct rq * rq)919 static inline void dec_nr_running(struct rq *rq)
920 {
921 rq->nr_running--;
922 }
923
924 extern void update_rq_clock(struct rq *rq);
925
926 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
927 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
928
929 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
930
931 extern const_debug unsigned int sysctl_sched_time_avg;
932 extern const_debug unsigned int sysctl_sched_nr_migrate;
933 extern const_debug unsigned int sysctl_sched_migration_cost;
934
sched_avg_period(void)935 static inline u64 sched_avg_period(void)
936 {
937 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
938 }
939
940 #ifdef CONFIG_SCHED_HRTICK
941
942 /*
943 * Use hrtick when:
944 * - enabled by features
945 * - hrtimer is actually high res
946 */
hrtick_enabled(struct rq * rq)947 static inline int hrtick_enabled(struct rq *rq)
948 {
949 if (!sched_feat(HRTICK))
950 return 0;
951 if (!cpu_active(cpu_of(rq)))
952 return 0;
953 return hrtimer_is_hres_active(&rq->hrtick_timer);
954 }
955
956 void hrtick_start(struct rq *rq, u64 delay);
957
958 #else
959
hrtick_enabled(struct rq * rq)960 static inline int hrtick_enabled(struct rq *rq)
961 {
962 return 0;
963 }
964
965 #endif /* CONFIG_SCHED_HRTICK */
966
967 #ifdef CONFIG_SMP
968 extern void sched_avg_update(struct rq *rq);
sched_rt_avg_update(struct rq * rq,u64 rt_delta)969 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
970 {
971 rq->rt_avg += rt_delta;
972 sched_avg_update(rq);
973 }
974 #else
sched_rt_avg_update(struct rq * rq,u64 rt_delta)975 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
sched_avg_update(struct rq * rq)976 static inline void sched_avg_update(struct rq *rq) { }
977 #endif
978
979 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
980
981 #ifdef CONFIG_SMP
982 #ifdef CONFIG_PREEMPT
983
984 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
985
986 /*
987 * fair double_lock_balance: Safely acquires both rq->locks in a fair
988 * way at the expense of forcing extra atomic operations in all
989 * invocations. This assures that the double_lock is acquired using the
990 * same underlying policy as the spinlock_t on this architecture, which
991 * reduces latency compared to the unfair variant below. However, it
992 * also adds more overhead and therefore may reduce throughput.
993 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)994 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
995 __releases(this_rq->lock)
996 __acquires(busiest->lock)
997 __acquires(this_rq->lock)
998 {
999 raw_spin_unlock(&this_rq->lock);
1000 double_rq_lock(this_rq, busiest);
1001
1002 return 1;
1003 }
1004
1005 #else
1006 /*
1007 * Unfair double_lock_balance: Optimizes throughput at the expense of
1008 * latency by eliminating extra atomic operations when the locks are
1009 * already in proper order on entry. This favors lower cpu-ids and will
1010 * grant the double lock to lower cpus over higher ids under contention,
1011 * regardless of entry order into the function.
1012 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1013 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1014 __releases(this_rq->lock)
1015 __acquires(busiest->lock)
1016 __acquires(this_rq->lock)
1017 {
1018 int ret = 0;
1019
1020 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1021 if (busiest < this_rq) {
1022 raw_spin_unlock(&this_rq->lock);
1023 raw_spin_lock(&busiest->lock);
1024 raw_spin_lock_nested(&this_rq->lock,
1025 SINGLE_DEPTH_NESTING);
1026 ret = 1;
1027 } else
1028 raw_spin_lock_nested(&busiest->lock,
1029 SINGLE_DEPTH_NESTING);
1030 }
1031 return ret;
1032 }
1033
1034 #endif /* CONFIG_PREEMPT */
1035
1036 /*
1037 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1038 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1039 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1040 {
1041 if (unlikely(!irqs_disabled())) {
1042 /* printk() doesn't work good under rq->lock */
1043 raw_spin_unlock(&this_rq->lock);
1044 BUG_ON(1);
1045 }
1046
1047 return _double_lock_balance(this_rq, busiest);
1048 }
1049
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1050 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1051 __releases(busiest->lock)
1052 {
1053 raw_spin_unlock(&busiest->lock);
1054 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1055 }
1056
1057 /*
1058 * double_rq_lock - safely lock two runqueues
1059 *
1060 * Note this does not disable interrupts like task_rq_lock,
1061 * you need to do so manually before calling.
1062 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1063 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1064 __acquires(rq1->lock)
1065 __acquires(rq2->lock)
1066 {
1067 BUG_ON(!irqs_disabled());
1068 if (rq1 == rq2) {
1069 raw_spin_lock(&rq1->lock);
1070 __acquire(rq2->lock); /* Fake it out ;) */
1071 } else {
1072 if (rq1 < rq2) {
1073 raw_spin_lock(&rq1->lock);
1074 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1075 } else {
1076 raw_spin_lock(&rq2->lock);
1077 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1078 }
1079 }
1080 }
1081
1082 /*
1083 * double_rq_unlock - safely unlock two runqueues
1084 *
1085 * Note this does not restore interrupts like task_rq_unlock,
1086 * you need to do so manually after calling.
1087 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1088 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1089 __releases(rq1->lock)
1090 __releases(rq2->lock)
1091 {
1092 raw_spin_unlock(&rq1->lock);
1093 if (rq1 != rq2)
1094 raw_spin_unlock(&rq2->lock);
1095 else
1096 __release(rq2->lock);
1097 }
1098
1099 #else /* CONFIG_SMP */
1100
1101 /*
1102 * double_rq_lock - safely lock two runqueues
1103 *
1104 * Note this does not disable interrupts like task_rq_lock,
1105 * you need to do so manually before calling.
1106 */
double_rq_lock(struct rq * rq1,struct rq * rq2)1107 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1108 __acquires(rq1->lock)
1109 __acquires(rq2->lock)
1110 {
1111 BUG_ON(!irqs_disabled());
1112 BUG_ON(rq1 != rq2);
1113 raw_spin_lock(&rq1->lock);
1114 __acquire(rq2->lock); /* Fake it out ;) */
1115 }
1116
1117 /*
1118 * double_rq_unlock - safely unlock two runqueues
1119 *
1120 * Note this does not restore interrupts like task_rq_unlock,
1121 * you need to do so manually after calling.
1122 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1123 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1124 __releases(rq1->lock)
1125 __releases(rq2->lock)
1126 {
1127 BUG_ON(rq1 != rq2);
1128 raw_spin_unlock(&rq1->lock);
1129 __release(rq2->lock);
1130 }
1131
1132 #endif
1133
1134 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1135 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1136 extern void print_cfs_stats(struct seq_file *m, int cpu);
1137 extern void print_rt_stats(struct seq_file *m, int cpu);
1138
1139 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1140 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1141
1142 extern void cfs_bandwidth_usage_inc(void);
1143 extern void cfs_bandwidth_usage_dec(void);
1144
1145 #ifdef CONFIG_NO_HZ
1146 enum rq_nohz_flag_bits {
1147 NOHZ_TICK_STOPPED,
1148 NOHZ_BALANCE_KICK,
1149 NOHZ_IDLE,
1150 };
1151
1152 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1153 #endif
1154