1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82 }
83
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91 }
92
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101 * Handle nr_inode sysctl
102 */
103 #ifdef CONFIG_SYSCTL
104 /*
105 * Statistics gathering..
106 */
107 static struct inodes_stat_t inodes_stat;
108
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133 };
134
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 return -ENXIO;
146 }
147
148 /**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193 #endif
194
195 if (security_inode_alloc(inode))
196 goto out;
197 spin_lock_init(&inode->i_lock);
198 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
199
200 init_rwsem(&inode->i_rwsem);
201 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
202
203 atomic_set(&inode->i_dio_count, 0);
204
205 mapping->a_ops = &empty_aops;
206 mapping->host = inode;
207 mapping->flags = 0;
208 mapping->wb_err = 0;
209 atomic_set(&mapping->i_mmap_writable, 0);
210 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
211 atomic_set(&mapping->nr_thps, 0);
212 #endif
213 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
214 mapping->private_data = NULL;
215 mapping->writeback_index = 0;
216 init_rwsem(&mapping->invalidate_lock);
217 lockdep_set_class_and_name(&mapping->invalidate_lock,
218 &sb->s_type->invalidate_lock_key,
219 "mapping.invalidate_lock");
220 inode->i_private = NULL;
221 inode->i_mapping = mapping;
222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226
227 #ifdef CONFIG_FSNOTIFY
228 inode->i_fsnotify_mask = 0;
229 #endif
230 inode->i_flctx = NULL;
231 this_cpu_inc(nr_inodes);
232
233 return 0;
234 out:
235 return -ENOMEM;
236 }
237 EXPORT_SYMBOL(inode_init_always);
238
free_inode_nonrcu(struct inode * inode)239 void free_inode_nonrcu(struct inode *inode)
240 {
241 kmem_cache_free(inode_cachep, inode);
242 }
243 EXPORT_SYMBOL(free_inode_nonrcu);
244
i_callback(struct rcu_head * head)245 static void i_callback(struct rcu_head *head)
246 {
247 struct inode *inode = container_of(head, struct inode, i_rcu);
248 if (inode->free_inode)
249 inode->free_inode(inode);
250 else
251 free_inode_nonrcu(inode);
252 }
253
alloc_inode(struct super_block * sb)254 static struct inode *alloc_inode(struct super_block *sb)
255 {
256 const struct super_operations *ops = sb->s_op;
257 struct inode *inode;
258
259 if (ops->alloc_inode)
260 inode = ops->alloc_inode(sb);
261 else
262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
263
264 if (!inode)
265 return NULL;
266
267 if (unlikely(inode_init_always(sb, inode))) {
268 if (ops->destroy_inode) {
269 ops->destroy_inode(inode);
270 if (!ops->free_inode)
271 return NULL;
272 }
273 inode->free_inode = ops->free_inode;
274 i_callback(&inode->i_rcu);
275 return NULL;
276 }
277
278 return inode;
279 }
280
__destroy_inode(struct inode * inode)281 void __destroy_inode(struct inode *inode)
282 {
283 BUG_ON(inode_has_buffers(inode));
284 inode_detach_wb(inode);
285 security_inode_free(inode);
286 fsnotify_inode_delete(inode);
287 locks_free_lock_context(inode);
288 if (!inode->i_nlink) {
289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290 atomic_long_dec(&inode->i_sb->s_remove_count);
291 }
292
293 #ifdef CONFIG_FS_POSIX_ACL
294 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295 posix_acl_release(inode->i_acl);
296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297 posix_acl_release(inode->i_default_acl);
298 #endif
299 this_cpu_dec(nr_inodes);
300 }
301 EXPORT_SYMBOL(__destroy_inode);
302
destroy_inode(struct inode * inode)303 static void destroy_inode(struct inode *inode)
304 {
305 const struct super_operations *ops = inode->i_sb->s_op;
306
307 BUG_ON(!list_empty(&inode->i_lru));
308 __destroy_inode(inode);
309 if (ops->destroy_inode) {
310 ops->destroy_inode(inode);
311 if (!ops->free_inode)
312 return;
313 }
314 inode->free_inode = ops->free_inode;
315 call_rcu(&inode->i_rcu, i_callback);
316 }
317
318 /**
319 * drop_nlink - directly drop an inode's link count
320 * @inode: inode
321 *
322 * This is a low-level filesystem helper to replace any
323 * direct filesystem manipulation of i_nlink. In cases
324 * where we are attempting to track writes to the
325 * filesystem, a decrement to zero means an imminent
326 * write when the file is truncated and actually unlinked
327 * on the filesystem.
328 */
drop_nlink(struct inode * inode)329 void drop_nlink(struct inode *inode)
330 {
331 WARN_ON(inode->i_nlink == 0);
332 inode->__i_nlink--;
333 if (!inode->i_nlink)
334 atomic_long_inc(&inode->i_sb->s_remove_count);
335 }
336 EXPORT_SYMBOL(drop_nlink);
337
338 /**
339 * clear_nlink - directly zero an inode's link count
340 * @inode: inode
341 *
342 * This is a low-level filesystem helper to replace any
343 * direct filesystem manipulation of i_nlink. See
344 * drop_nlink() for why we care about i_nlink hitting zero.
345 */
clear_nlink(struct inode * inode)346 void clear_nlink(struct inode *inode)
347 {
348 if (inode->i_nlink) {
349 inode->__i_nlink = 0;
350 atomic_long_inc(&inode->i_sb->s_remove_count);
351 }
352 }
353 EXPORT_SYMBOL(clear_nlink);
354
355 /**
356 * set_nlink - directly set an inode's link count
357 * @inode: inode
358 * @nlink: new nlink (should be non-zero)
359 *
360 * This is a low-level filesystem helper to replace any
361 * direct filesystem manipulation of i_nlink.
362 */
set_nlink(struct inode * inode,unsigned int nlink)363 void set_nlink(struct inode *inode, unsigned int nlink)
364 {
365 if (!nlink) {
366 clear_nlink(inode);
367 } else {
368 /* Yes, some filesystems do change nlink from zero to one */
369 if (inode->i_nlink == 0)
370 atomic_long_dec(&inode->i_sb->s_remove_count);
371
372 inode->__i_nlink = nlink;
373 }
374 }
375 EXPORT_SYMBOL(set_nlink);
376
377 /**
378 * inc_nlink - directly increment an inode's link count
379 * @inode: inode
380 *
381 * This is a low-level filesystem helper to replace any
382 * direct filesystem manipulation of i_nlink. Currently,
383 * it is only here for parity with dec_nlink().
384 */
inc_nlink(struct inode * inode)385 void inc_nlink(struct inode *inode)
386 {
387 if (unlikely(inode->i_nlink == 0)) {
388 WARN_ON(!(inode->i_state & I_LINKABLE));
389 atomic_long_dec(&inode->i_sb->s_remove_count);
390 }
391
392 inode->__i_nlink++;
393 }
394 EXPORT_SYMBOL(inc_nlink);
395
__address_space_init_once(struct address_space * mapping)396 static void __address_space_init_once(struct address_space *mapping)
397 {
398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399 init_rwsem(&mapping->i_mmap_rwsem);
400 INIT_LIST_HEAD(&mapping->private_list);
401 spin_lock_init(&mapping->private_lock);
402 mapping->i_mmap = RB_ROOT_CACHED;
403 }
404
address_space_init_once(struct address_space * mapping)405 void address_space_init_once(struct address_space *mapping)
406 {
407 memset(mapping, 0, sizeof(*mapping));
408 __address_space_init_once(mapping);
409 }
410 EXPORT_SYMBOL(address_space_init_once);
411
412 /*
413 * These are initializations that only need to be done
414 * once, because the fields are idempotent across use
415 * of the inode, so let the slab aware of that.
416 */
inode_init_once(struct inode * inode)417 void inode_init_once(struct inode *inode)
418 {
419 memset(inode, 0, sizeof(*inode));
420 INIT_HLIST_NODE(&inode->i_hash);
421 INIT_LIST_HEAD(&inode->i_devices);
422 INIT_LIST_HEAD(&inode->i_io_list);
423 INIT_LIST_HEAD(&inode->i_wb_list);
424 INIT_LIST_HEAD(&inode->i_lru);
425 __address_space_init_once(&inode->i_data);
426 i_size_ordered_init(inode);
427 }
428 EXPORT_SYMBOL(inode_init_once);
429
init_once(void * foo)430 static void init_once(void *foo)
431 {
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435 }
436
437 /*
438 * inode->i_lock must be held
439 */
__iget(struct inode * inode)440 void __iget(struct inode *inode)
441 {
442 atomic_inc(&inode->i_count);
443 }
444
445 /*
446 * get additional reference to inode; caller must already hold one.
447 */
ihold(struct inode * inode)448 void ihold(struct inode *inode)
449 {
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451 }
452 EXPORT_SYMBOL(ihold);
453
__inode_add_lru(struct inode * inode,bool rotate)454 static void __inode_add_lru(struct inode *inode, bool rotate)
455 {
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(&inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(&inode->i_data))
463 return;
464
465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469 }
470
471 /*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
inode_add_lru(struct inode * inode)476 void inode_add_lru(struct inode *inode)
477 {
478 __inode_add_lru(inode, false);
479 }
480
inode_lru_list_del(struct inode * inode)481 static void inode_lru_list_del(struct inode *inode)
482 {
483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 this_cpu_dec(nr_unused);
485 }
486
487 /**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
inode_sb_list_add(struct inode * inode)491 void inode_sb_list_add(struct inode *inode)
492 {
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496 }
497 EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
inode_sb_list_del(struct inode * inode)499 static inline void inode_sb_list_del(struct inode *inode)
500 {
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506 }
507
hash(struct super_block * sb,unsigned long hashval)508 static unsigned long hash(struct super_block *sb, unsigned long hashval)
509 {
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516 }
517
518 /**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)526 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527 {
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head_rcu(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535 }
536 EXPORT_SYMBOL(__insert_inode_hash);
537
538 /**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
__remove_inode_hash(struct inode * inode)544 void __remove_inode_hash(struct inode *inode)
545 {
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init_rcu(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551 }
552 EXPORT_SYMBOL(__remove_inode_hash);
553
dump_mapping(const struct address_space * mapping)554 void dump_mapping(const struct address_space *mapping)
555 {
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601 }
602
clear_inode(struct inode * inode)603 void clear_inode(struct inode *inode)
604 {
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __delete_from_page_cache())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627 }
628 EXPORT_SYMBOL(clear_inode);
629
630 /*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
evict(struct inode * inode)643 static void evict(struct inode *inode)
644 {
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(&inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(&inode->i_lock);
675 wake_up_bit(&inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(&inode->i_lock);
678
679 destroy_inode(inode);
680 }
681
682 /*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
dispose_list(struct list_head * head)689 static void dispose_list(struct list_head *head)
690 {
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(&inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700 }
701
702 /**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
evict_inodes(struct super_block * sb)711 void evict_inodes(struct super_block *sb)
712 {
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716 again:
717 spin_lock(&sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(&inode->i_count))
720 continue;
721
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(&inode->i_lock);
731 list_add(&inode->i_lru, &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(&sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(&dispose);
742 goto again;
743 }
744 }
745 spin_unlock(&sb->s_inode_list_lock);
746
747 dispose_list(&dispose);
748 }
749 EXPORT_SYMBOL_GPL(evict_inodes);
750
751 /**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 * @kill_dirty: flag to guide handling of dirty inodes
755 *
756 * Attempts to free all inodes for a given superblock. If there were any
757 * busy inodes return a non-zero value, else zero.
758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
759 * them as busy.
760 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)761 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
762 {
763 int busy = 0;
764 struct inode *inode, *next;
765 LIST_HEAD(dispose);
766
767 again:
768 spin_lock(&sb->s_inode_list_lock);
769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
770 spin_lock(&inode->i_lock);
771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
776 spin_unlock(&inode->i_lock);
777 busy = 1;
778 continue;
779 }
780 if (atomic_read(&inode->i_count)) {
781 spin_unlock(&inode->i_lock);
782 busy = 1;
783 continue;
784 }
785
786 inode->i_state |= I_FREEING;
787 inode_lru_list_del(inode);
788 spin_unlock(&inode->i_lock);
789 list_add(&inode->i_lru, &dispose);
790 if (need_resched()) {
791 spin_unlock(&sb->s_inode_list_lock);
792 cond_resched();
793 dispose_list(&dispose);
794 goto again;
795 }
796 }
797 spin_unlock(&sb->s_inode_list_lock);
798
799 dispose_list(&dispose);
800
801 return busy;
802 }
803
804 /*
805 * Isolate the inode from the LRU in preparation for freeing it.
806 *
807 * If the inode has the I_REFERENCED flag set, then it means that it has been
808 * used recently - the flag is set in iput_final(). When we encounter such an
809 * inode, clear the flag and move it to the back of the LRU so it gets another
810 * pass through the LRU before it gets reclaimed. This is necessary because of
811 * the fact we are doing lazy LRU updates to minimise lock contention so the
812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
813 * with this flag set because they are the inodes that are out of order.
814 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)815 static enum lru_status inode_lru_isolate(struct list_head *item,
816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
817 {
818 struct list_head *freeable = arg;
819 struct inode *inode = container_of(item, struct inode, i_lru);
820
821 /*
822 * We are inverting the lru lock/inode->i_lock here, so use a
823 * trylock. If we fail to get the lock, just skip it.
824 */
825 if (!spin_trylock(&inode->i_lock))
826 return LRU_SKIP;
827
828 /*
829 * Inodes can get referenced, redirtied, or repopulated while
830 * they're already on the LRU, and this can make them
831 * unreclaimable for a while. Remove them lazily here; iput,
832 * sync, or the last page cache deletion will requeue them.
833 */
834 if (atomic_read(&inode->i_count) ||
835 (inode->i_state & ~I_REFERENCED) ||
836 !mapping_shrinkable(&inode->i_data)) {
837 list_lru_isolate(lru, &inode->i_lru);
838 spin_unlock(&inode->i_lock);
839 this_cpu_dec(nr_unused);
840 return LRU_REMOVED;
841 }
842
843 /* Recently referenced inodes get one more pass */
844 if (inode->i_state & I_REFERENCED) {
845 inode->i_state &= ~I_REFERENCED;
846 spin_unlock(&inode->i_lock);
847 return LRU_ROTATE;
848 }
849
850 /*
851 * On highmem systems, mapping_shrinkable() permits dropping
852 * page cache in order to free up struct inodes: lowmem might
853 * be under pressure before the cache inside the highmem zone.
854 */
855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
856 __iget(inode);
857 spin_unlock(&inode->i_lock);
858 spin_unlock(lru_lock);
859 if (remove_inode_buffers(inode)) {
860 unsigned long reap;
861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
862 if (current_is_kswapd())
863 __count_vm_events(KSWAPD_INODESTEAL, reap);
864 else
865 __count_vm_events(PGINODESTEAL, reap);
866 if (current->reclaim_state)
867 current->reclaim_state->reclaimed_slab += reap;
868 }
869 iput(inode);
870 spin_lock(lru_lock);
871 return LRU_RETRY;
872 }
873
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
878
879 this_cpu_dec(nr_unused);
880 return LRU_REMOVED;
881 }
882
883 /*
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
888 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890 {
891 LIST_HEAD(freeable);
892 long freed;
893
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
897 return freed;
898 }
899
900 static void __wait_on_freeing_inode(struct inode *inode);
901 /*
902 * Called with the inode lock held.
903 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)904 static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
907 void *data)
908 {
909 struct inode *inode = NULL;
910
911 repeat:
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
914 continue;
915 if (!test(inode, data))
916 continue;
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
920 goto repeat;
921 }
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
925 }
926 __iget(inode);
927 spin_unlock(&inode->i_lock);
928 return inode;
929 }
930 return NULL;
931 }
932
933 /*
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
936 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)937 static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
939 {
940 struct inode *inode = NULL;
941
942 repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
945 continue;
946 if (inode->i_sb != sb)
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962 }
963
964 /*
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
968 *
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
974 *
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
978 */
979 #define LAST_INO_BATCH 1024
980 static DEFINE_PER_CPU(unsigned int, last_ino);
981
get_next_ino(void)982 unsigned int get_next_ino(void)
983 {
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
986
987 #ifdef CONFIG_SMP
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991
992 res = next - LAST_INO_BATCH;
993 }
994 #endif
995
996 res++;
997 /* get_next_ino should not provide a 0 inode number */
998 if (unlikely(!res))
999 res++;
1000 *p = res;
1001 put_cpu_var(last_ino);
1002 return res;
1003 }
1004 EXPORT_SYMBOL(get_next_ino);
1005
1006 /**
1007 * new_inode_pseudo - obtain an inode
1008 * @sb: superblock
1009 *
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1012 * This means :
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1015 */
new_inode_pseudo(struct super_block * sb)1016 struct inode *new_inode_pseudo(struct super_block *sb)
1017 {
1018 struct inode *inode = alloc_inode(sb);
1019
1020 if (inode) {
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = 0;
1023 spin_unlock(&inode->i_lock);
1024 INIT_LIST_HEAD(&inode->i_sb_list);
1025 }
1026 return inode;
1027 }
1028
1029 /**
1030 * new_inode - obtain an inode
1031 * @sb: superblock
1032 *
1033 * Allocates a new inode for given superblock. The default gfp_mask
1034 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1035 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1036 * for the page cache are not reclaimable or migratable,
1037 * mapping_set_gfp_mask() must be called with suitable flags on the
1038 * newly created inode's mapping
1039 *
1040 */
new_inode(struct super_block * sb)1041 struct inode *new_inode(struct super_block *sb)
1042 {
1043 struct inode *inode;
1044
1045 spin_lock_prefetch(&sb->s_inode_list_lock);
1046
1047 inode = new_inode_pseudo(sb);
1048 if (inode)
1049 inode_sb_list_add(inode);
1050 return inode;
1051 }
1052 EXPORT_SYMBOL(new_inode);
1053
1054 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1055 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1056 {
1057 if (S_ISDIR(inode->i_mode)) {
1058 struct file_system_type *type = inode->i_sb->s_type;
1059
1060 /* Set new key only if filesystem hasn't already changed it */
1061 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1062 /*
1063 * ensure nobody is actually holding i_mutex
1064 */
1065 // mutex_destroy(&inode->i_mutex);
1066 init_rwsem(&inode->i_rwsem);
1067 lockdep_set_class(&inode->i_rwsem,
1068 &type->i_mutex_dir_key);
1069 }
1070 }
1071 }
1072 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1073 #endif
1074
1075 /**
1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1077 * @inode: new inode to unlock
1078 *
1079 * Called when the inode is fully initialised to clear the new state of the
1080 * inode and wake up anyone waiting for the inode to finish initialisation.
1081 */
unlock_new_inode(struct inode * inode)1082 void unlock_new_inode(struct inode *inode)
1083 {
1084 lockdep_annotate_inode_mutex_key(inode);
1085 spin_lock(&inode->i_lock);
1086 WARN_ON(!(inode->i_state & I_NEW));
1087 inode->i_state &= ~I_NEW & ~I_CREATING;
1088 smp_mb();
1089 wake_up_bit(&inode->i_state, __I_NEW);
1090 spin_unlock(&inode->i_lock);
1091 }
1092 EXPORT_SYMBOL(unlock_new_inode);
1093
discard_new_inode(struct inode * inode)1094 void discard_new_inode(struct inode *inode)
1095 {
1096 lockdep_annotate_inode_mutex_key(inode);
1097 spin_lock(&inode->i_lock);
1098 WARN_ON(!(inode->i_state & I_NEW));
1099 inode->i_state &= ~I_NEW;
1100 smp_mb();
1101 wake_up_bit(&inode->i_state, __I_NEW);
1102 spin_unlock(&inode->i_lock);
1103 iput(inode);
1104 }
1105 EXPORT_SYMBOL(discard_new_inode);
1106
1107 /**
1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1109 *
1110 * Lock any non-NULL argument that is not a directory.
1111 * Zero, one or two objects may be locked by this function.
1112 *
1113 * @inode1: first inode to lock
1114 * @inode2: second inode to lock
1115 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1116 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1117 {
1118 if (inode1 > inode2)
1119 swap(inode1, inode2);
1120
1121 if (inode1 && !S_ISDIR(inode1->i_mode))
1122 inode_lock(inode1);
1123 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1124 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1125 }
1126 EXPORT_SYMBOL(lock_two_nondirectories);
1127
1128 /**
1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1130 * @inode1: first inode to unlock
1131 * @inode2: second inode to unlock
1132 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1133 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1134 {
1135 if (inode1 && !S_ISDIR(inode1->i_mode))
1136 inode_unlock(inode1);
1137 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1138 inode_unlock(inode2);
1139 }
1140 EXPORT_SYMBOL(unlock_two_nondirectories);
1141
1142 /**
1143 * inode_insert5 - obtain an inode from a mounted file system
1144 * @inode: pre-allocated inode to use for insert to cache
1145 * @hashval: hash value (usually inode number) to get
1146 * @test: callback used for comparisons between inodes
1147 * @set: callback used to initialize a new struct inode
1148 * @data: opaque data pointer to pass to @test and @set
1149 *
1150 * Search for the inode specified by @hashval and @data in the inode cache,
1151 * and if present it is return it with an increased reference count. This is
1152 * a variant of iget5_locked() for callers that don't want to fail on memory
1153 * allocation of inode.
1154 *
1155 * If the inode is not in cache, insert the pre-allocated inode to cache and
1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1157 * to fill it in before unlocking it via unlock_new_inode().
1158 *
1159 * Note both @test and @set are called with the inode_hash_lock held, so can't
1160 * sleep.
1161 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1162 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1163 int (*test)(struct inode *, void *),
1164 int (*set)(struct inode *, void *), void *data)
1165 {
1166 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1167 struct inode *old;
1168 bool creating = inode->i_state & I_CREATING;
1169
1170 again:
1171 spin_lock(&inode_hash_lock);
1172 old = find_inode(inode->i_sb, head, test, data);
1173 if (unlikely(old)) {
1174 /*
1175 * Uhhuh, somebody else created the same inode under us.
1176 * Use the old inode instead of the preallocated one.
1177 */
1178 spin_unlock(&inode_hash_lock);
1179 if (IS_ERR(old))
1180 return NULL;
1181 wait_on_inode(old);
1182 if (unlikely(inode_unhashed(old))) {
1183 iput(old);
1184 goto again;
1185 }
1186 return old;
1187 }
1188
1189 if (set && unlikely(set(inode, data))) {
1190 inode = NULL;
1191 goto unlock;
1192 }
1193
1194 /*
1195 * Return the locked inode with I_NEW set, the
1196 * caller is responsible for filling in the contents
1197 */
1198 spin_lock(&inode->i_lock);
1199 inode->i_state |= I_NEW;
1200 hlist_add_head_rcu(&inode->i_hash, head);
1201 spin_unlock(&inode->i_lock);
1202 if (!creating)
1203 inode_sb_list_add(inode);
1204 unlock:
1205 spin_unlock(&inode_hash_lock);
1206
1207 return inode;
1208 }
1209 EXPORT_SYMBOL(inode_insert5);
1210
1211 /**
1212 * iget5_locked - obtain an inode from a mounted file system
1213 * @sb: super block of file system
1214 * @hashval: hash value (usually inode number) to get
1215 * @test: callback used for comparisons between inodes
1216 * @set: callback used to initialize a new struct inode
1217 * @data: opaque data pointer to pass to @test and @set
1218 *
1219 * Search for the inode specified by @hashval and @data in the inode cache,
1220 * and if present it is return it with an increased reference count. This is
1221 * a generalized version of iget_locked() for file systems where the inode
1222 * number is not sufficient for unique identification of an inode.
1223 *
1224 * If the inode is not in cache, allocate a new inode and return it locked,
1225 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1226 * before unlocking it via unlock_new_inode().
1227 *
1228 * Note both @test and @set are called with the inode_hash_lock held, so can't
1229 * sleep.
1230 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1231 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1232 int (*test)(struct inode *, void *),
1233 int (*set)(struct inode *, void *), void *data)
1234 {
1235 struct inode *inode = ilookup5(sb, hashval, test, data);
1236
1237 if (!inode) {
1238 struct inode *new = alloc_inode(sb);
1239
1240 if (new) {
1241 new->i_state = 0;
1242 inode = inode_insert5(new, hashval, test, set, data);
1243 if (unlikely(inode != new))
1244 destroy_inode(new);
1245 }
1246 }
1247 return inode;
1248 }
1249 EXPORT_SYMBOL(iget5_locked);
1250
1251 /**
1252 * iget_locked - obtain an inode from a mounted file system
1253 * @sb: super block of file system
1254 * @ino: inode number to get
1255 *
1256 * Search for the inode specified by @ino in the inode cache and if present
1257 * return it with an increased reference count. This is for file systems
1258 * where the inode number is sufficient for unique identification of an inode.
1259 *
1260 * If the inode is not in cache, allocate a new inode and return it locked,
1261 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1262 * before unlocking it via unlock_new_inode().
1263 */
iget_locked(struct super_block * sb,unsigned long ino)1264 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1265 {
1266 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1267 struct inode *inode;
1268 again:
1269 spin_lock(&inode_hash_lock);
1270 inode = find_inode_fast(sb, head, ino);
1271 spin_unlock(&inode_hash_lock);
1272 if (inode) {
1273 if (IS_ERR(inode))
1274 return NULL;
1275 wait_on_inode(inode);
1276 if (unlikely(inode_unhashed(inode))) {
1277 iput(inode);
1278 goto again;
1279 }
1280 return inode;
1281 }
1282
1283 inode = alloc_inode(sb);
1284 if (inode) {
1285 struct inode *old;
1286
1287 spin_lock(&inode_hash_lock);
1288 /* We released the lock, so.. */
1289 old = find_inode_fast(sb, head, ino);
1290 if (!old) {
1291 inode->i_ino = ino;
1292 spin_lock(&inode->i_lock);
1293 inode->i_state = I_NEW;
1294 hlist_add_head_rcu(&inode->i_hash, head);
1295 spin_unlock(&inode->i_lock);
1296 inode_sb_list_add(inode);
1297 spin_unlock(&inode_hash_lock);
1298
1299 /* Return the locked inode with I_NEW set, the
1300 * caller is responsible for filling in the contents
1301 */
1302 return inode;
1303 }
1304
1305 /*
1306 * Uhhuh, somebody else created the same inode under
1307 * us. Use the old inode instead of the one we just
1308 * allocated.
1309 */
1310 spin_unlock(&inode_hash_lock);
1311 destroy_inode(inode);
1312 if (IS_ERR(old))
1313 return NULL;
1314 inode = old;
1315 wait_on_inode(inode);
1316 if (unlikely(inode_unhashed(inode))) {
1317 iput(inode);
1318 goto again;
1319 }
1320 }
1321 return inode;
1322 }
1323 EXPORT_SYMBOL(iget_locked);
1324
1325 /*
1326 * search the inode cache for a matching inode number.
1327 * If we find one, then the inode number we are trying to
1328 * allocate is not unique and so we should not use it.
1329 *
1330 * Returns 1 if the inode number is unique, 0 if it is not.
1331 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1332 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1333 {
1334 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1335 struct inode *inode;
1336
1337 hlist_for_each_entry_rcu(inode, b, i_hash) {
1338 if (inode->i_ino == ino && inode->i_sb == sb)
1339 return 0;
1340 }
1341 return 1;
1342 }
1343
1344 /**
1345 * iunique - get a unique inode number
1346 * @sb: superblock
1347 * @max_reserved: highest reserved inode number
1348 *
1349 * Obtain an inode number that is unique on the system for a given
1350 * superblock. This is used by file systems that have no natural
1351 * permanent inode numbering system. An inode number is returned that
1352 * is higher than the reserved limit but unique.
1353 *
1354 * BUGS:
1355 * With a large number of inodes live on the file system this function
1356 * currently becomes quite slow.
1357 */
iunique(struct super_block * sb,ino_t max_reserved)1358 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1359 {
1360 /*
1361 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1362 * error if st_ino won't fit in target struct field. Use 32bit counter
1363 * here to attempt to avoid that.
1364 */
1365 static DEFINE_SPINLOCK(iunique_lock);
1366 static unsigned int counter;
1367 ino_t res;
1368
1369 rcu_read_lock();
1370 spin_lock(&iunique_lock);
1371 do {
1372 if (counter <= max_reserved)
1373 counter = max_reserved + 1;
1374 res = counter++;
1375 } while (!test_inode_iunique(sb, res));
1376 spin_unlock(&iunique_lock);
1377 rcu_read_unlock();
1378
1379 return res;
1380 }
1381 EXPORT_SYMBOL(iunique);
1382
igrab(struct inode * inode)1383 struct inode *igrab(struct inode *inode)
1384 {
1385 spin_lock(&inode->i_lock);
1386 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1387 __iget(inode);
1388 spin_unlock(&inode->i_lock);
1389 } else {
1390 spin_unlock(&inode->i_lock);
1391 /*
1392 * Handle the case where s_op->clear_inode is not been
1393 * called yet, and somebody is calling igrab
1394 * while the inode is getting freed.
1395 */
1396 inode = NULL;
1397 }
1398 return inode;
1399 }
1400 EXPORT_SYMBOL(igrab);
1401
1402 /**
1403 * ilookup5_nowait - search for an inode in the inode cache
1404 * @sb: super block of file system to search
1405 * @hashval: hash value (usually inode number) to search for
1406 * @test: callback used for comparisons between inodes
1407 * @data: opaque data pointer to pass to @test
1408 *
1409 * Search for the inode specified by @hashval and @data in the inode cache.
1410 * If the inode is in the cache, the inode is returned with an incremented
1411 * reference count.
1412 *
1413 * Note: I_NEW is not waited upon so you have to be very careful what you do
1414 * with the returned inode. You probably should be using ilookup5() instead.
1415 *
1416 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1417 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1418 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1419 int (*test)(struct inode *, void *), void *data)
1420 {
1421 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1422 struct inode *inode;
1423
1424 spin_lock(&inode_hash_lock);
1425 inode = find_inode(sb, head, test, data);
1426 spin_unlock(&inode_hash_lock);
1427
1428 return IS_ERR(inode) ? NULL : inode;
1429 }
1430 EXPORT_SYMBOL(ilookup5_nowait);
1431
1432 /**
1433 * ilookup5 - search for an inode in the inode cache
1434 * @sb: super block of file system to search
1435 * @hashval: hash value (usually inode number) to search for
1436 * @test: callback used for comparisons between inodes
1437 * @data: opaque data pointer to pass to @test
1438 *
1439 * Search for the inode specified by @hashval and @data in the inode cache,
1440 * and if the inode is in the cache, return the inode with an incremented
1441 * reference count. Waits on I_NEW before returning the inode.
1442 * returned with an incremented reference count.
1443 *
1444 * This is a generalized version of ilookup() for file systems where the
1445 * inode number is not sufficient for unique identification of an inode.
1446 *
1447 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1448 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1449 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1450 int (*test)(struct inode *, void *), void *data)
1451 {
1452 struct inode *inode;
1453 again:
1454 inode = ilookup5_nowait(sb, hashval, test, data);
1455 if (inode) {
1456 wait_on_inode(inode);
1457 if (unlikely(inode_unhashed(inode))) {
1458 iput(inode);
1459 goto again;
1460 }
1461 }
1462 return inode;
1463 }
1464 EXPORT_SYMBOL(ilookup5);
1465
1466 /**
1467 * ilookup - search for an inode in the inode cache
1468 * @sb: super block of file system to search
1469 * @ino: inode number to search for
1470 *
1471 * Search for the inode @ino in the inode cache, and if the inode is in the
1472 * cache, the inode is returned with an incremented reference count.
1473 */
ilookup(struct super_block * sb,unsigned long ino)1474 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1475 {
1476 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1477 struct inode *inode;
1478 again:
1479 spin_lock(&inode_hash_lock);
1480 inode = find_inode_fast(sb, head, ino);
1481 spin_unlock(&inode_hash_lock);
1482
1483 if (inode) {
1484 if (IS_ERR(inode))
1485 return NULL;
1486 wait_on_inode(inode);
1487 if (unlikely(inode_unhashed(inode))) {
1488 iput(inode);
1489 goto again;
1490 }
1491 }
1492 return inode;
1493 }
1494 EXPORT_SYMBOL(ilookup);
1495
1496 /**
1497 * find_inode_nowait - find an inode in the inode cache
1498 * @sb: super block of file system to search
1499 * @hashval: hash value (usually inode number) to search for
1500 * @match: callback used for comparisons between inodes
1501 * @data: opaque data pointer to pass to @match
1502 *
1503 * Search for the inode specified by @hashval and @data in the inode
1504 * cache, where the helper function @match will return 0 if the inode
1505 * does not match, 1 if the inode does match, and -1 if the search
1506 * should be stopped. The @match function must be responsible for
1507 * taking the i_lock spin_lock and checking i_state for an inode being
1508 * freed or being initialized, and incrementing the reference count
1509 * before returning 1. It also must not sleep, since it is called with
1510 * the inode_hash_lock spinlock held.
1511 *
1512 * This is a even more generalized version of ilookup5() when the
1513 * function must never block --- find_inode() can block in
1514 * __wait_on_freeing_inode() --- or when the caller can not increment
1515 * the reference count because the resulting iput() might cause an
1516 * inode eviction. The tradeoff is that the @match funtion must be
1517 * very carefully implemented.
1518 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1519 struct inode *find_inode_nowait(struct super_block *sb,
1520 unsigned long hashval,
1521 int (*match)(struct inode *, unsigned long,
1522 void *),
1523 void *data)
1524 {
1525 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1526 struct inode *inode, *ret_inode = NULL;
1527 int mval;
1528
1529 spin_lock(&inode_hash_lock);
1530 hlist_for_each_entry(inode, head, i_hash) {
1531 if (inode->i_sb != sb)
1532 continue;
1533 mval = match(inode, hashval, data);
1534 if (mval == 0)
1535 continue;
1536 if (mval == 1)
1537 ret_inode = inode;
1538 goto out;
1539 }
1540 out:
1541 spin_unlock(&inode_hash_lock);
1542 return ret_inode;
1543 }
1544 EXPORT_SYMBOL(find_inode_nowait);
1545
1546 /**
1547 * find_inode_rcu - find an inode in the inode cache
1548 * @sb: Super block of file system to search
1549 * @hashval: Key to hash
1550 * @test: Function to test match on an inode
1551 * @data: Data for test function
1552 *
1553 * Search for the inode specified by @hashval and @data in the inode cache,
1554 * where the helper function @test will return 0 if the inode does not match
1555 * and 1 if it does. The @test function must be responsible for taking the
1556 * i_lock spin_lock and checking i_state for an inode being freed or being
1557 * initialized.
1558 *
1559 * If successful, this will return the inode for which the @test function
1560 * returned 1 and NULL otherwise.
1561 *
1562 * The @test function is not permitted to take a ref on any inode presented.
1563 * It is also not permitted to sleep.
1564 *
1565 * The caller must hold the RCU read lock.
1566 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1567 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1568 int (*test)(struct inode *, void *), void *data)
1569 {
1570 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1571 struct inode *inode;
1572
1573 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1574 "suspicious find_inode_rcu() usage");
1575
1576 hlist_for_each_entry_rcu(inode, head, i_hash) {
1577 if (inode->i_sb == sb &&
1578 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1579 test(inode, data))
1580 return inode;
1581 }
1582 return NULL;
1583 }
1584 EXPORT_SYMBOL(find_inode_rcu);
1585
1586 /**
1587 * find_inode_by_ino_rcu - Find an inode in the inode cache
1588 * @sb: Super block of file system to search
1589 * @ino: The inode number to match
1590 *
1591 * Search for the inode specified by @hashval and @data in the inode cache,
1592 * where the helper function @test will return 0 if the inode does not match
1593 * and 1 if it does. The @test function must be responsible for taking the
1594 * i_lock spin_lock and checking i_state for an inode being freed or being
1595 * initialized.
1596 *
1597 * If successful, this will return the inode for which the @test function
1598 * returned 1 and NULL otherwise.
1599 *
1600 * The @test function is not permitted to take a ref on any inode presented.
1601 * It is also not permitted to sleep.
1602 *
1603 * The caller must hold the RCU read lock.
1604 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1605 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1606 unsigned long ino)
1607 {
1608 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1609 struct inode *inode;
1610
1611 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1612 "suspicious find_inode_by_ino_rcu() usage");
1613
1614 hlist_for_each_entry_rcu(inode, head, i_hash) {
1615 if (inode->i_ino == ino &&
1616 inode->i_sb == sb &&
1617 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1618 return inode;
1619 }
1620 return NULL;
1621 }
1622 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1623
insert_inode_locked(struct inode * inode)1624 int insert_inode_locked(struct inode *inode)
1625 {
1626 struct super_block *sb = inode->i_sb;
1627 ino_t ino = inode->i_ino;
1628 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1629
1630 while (1) {
1631 struct inode *old = NULL;
1632 spin_lock(&inode_hash_lock);
1633 hlist_for_each_entry(old, head, i_hash) {
1634 if (old->i_ino != ino)
1635 continue;
1636 if (old->i_sb != sb)
1637 continue;
1638 spin_lock(&old->i_lock);
1639 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1640 spin_unlock(&old->i_lock);
1641 continue;
1642 }
1643 break;
1644 }
1645 if (likely(!old)) {
1646 spin_lock(&inode->i_lock);
1647 inode->i_state |= I_NEW | I_CREATING;
1648 hlist_add_head_rcu(&inode->i_hash, head);
1649 spin_unlock(&inode->i_lock);
1650 spin_unlock(&inode_hash_lock);
1651 return 0;
1652 }
1653 if (unlikely(old->i_state & I_CREATING)) {
1654 spin_unlock(&old->i_lock);
1655 spin_unlock(&inode_hash_lock);
1656 return -EBUSY;
1657 }
1658 __iget(old);
1659 spin_unlock(&old->i_lock);
1660 spin_unlock(&inode_hash_lock);
1661 wait_on_inode(old);
1662 if (unlikely(!inode_unhashed(old))) {
1663 iput(old);
1664 return -EBUSY;
1665 }
1666 iput(old);
1667 }
1668 }
1669 EXPORT_SYMBOL(insert_inode_locked);
1670
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1671 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1672 int (*test)(struct inode *, void *), void *data)
1673 {
1674 struct inode *old;
1675
1676 inode->i_state |= I_CREATING;
1677 old = inode_insert5(inode, hashval, test, NULL, data);
1678
1679 if (old != inode) {
1680 iput(old);
1681 return -EBUSY;
1682 }
1683 return 0;
1684 }
1685 EXPORT_SYMBOL(insert_inode_locked4);
1686
1687
generic_delete_inode(struct inode * inode)1688 int generic_delete_inode(struct inode *inode)
1689 {
1690 return 1;
1691 }
1692 EXPORT_SYMBOL(generic_delete_inode);
1693
1694 /*
1695 * Called when we're dropping the last reference
1696 * to an inode.
1697 *
1698 * Call the FS "drop_inode()" function, defaulting to
1699 * the legacy UNIX filesystem behaviour. If it tells
1700 * us to evict inode, do so. Otherwise, retain inode
1701 * in cache if fs is alive, sync and evict if fs is
1702 * shutting down.
1703 */
iput_final(struct inode * inode)1704 static void iput_final(struct inode *inode)
1705 {
1706 struct super_block *sb = inode->i_sb;
1707 const struct super_operations *op = inode->i_sb->s_op;
1708 unsigned long state;
1709 int drop;
1710
1711 WARN_ON(inode->i_state & I_NEW);
1712
1713 if (op->drop_inode)
1714 drop = op->drop_inode(inode);
1715 else
1716 drop = generic_drop_inode(inode);
1717
1718 if (!drop &&
1719 !(inode->i_state & I_DONTCACHE) &&
1720 (sb->s_flags & SB_ACTIVE)) {
1721 __inode_add_lru(inode, true);
1722 spin_unlock(&inode->i_lock);
1723 return;
1724 }
1725
1726 state = inode->i_state;
1727 if (!drop) {
1728 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1729 spin_unlock(&inode->i_lock);
1730
1731 write_inode_now(inode, 1);
1732
1733 spin_lock(&inode->i_lock);
1734 state = inode->i_state;
1735 WARN_ON(state & I_NEW);
1736 state &= ~I_WILL_FREE;
1737 }
1738
1739 WRITE_ONCE(inode->i_state, state | I_FREEING);
1740 if (!list_empty(&inode->i_lru))
1741 inode_lru_list_del(inode);
1742 spin_unlock(&inode->i_lock);
1743
1744 evict(inode);
1745 }
1746
1747 /**
1748 * iput - put an inode
1749 * @inode: inode to put
1750 *
1751 * Puts an inode, dropping its usage count. If the inode use count hits
1752 * zero, the inode is then freed and may also be destroyed.
1753 *
1754 * Consequently, iput() can sleep.
1755 */
iput(struct inode * inode)1756 void iput(struct inode *inode)
1757 {
1758 if (!inode)
1759 return;
1760 BUG_ON(inode->i_state & I_CLEAR);
1761 retry:
1762 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1763 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1764 atomic_inc(&inode->i_count);
1765 spin_unlock(&inode->i_lock);
1766 trace_writeback_lazytime_iput(inode);
1767 mark_inode_dirty_sync(inode);
1768 goto retry;
1769 }
1770 iput_final(inode);
1771 }
1772 }
1773 EXPORT_SYMBOL(iput);
1774
1775 #ifdef CONFIG_BLOCK
1776 /**
1777 * bmap - find a block number in a file
1778 * @inode: inode owning the block number being requested
1779 * @block: pointer containing the block to find
1780 *
1781 * Replaces the value in ``*block`` with the block number on the device holding
1782 * corresponding to the requested block number in the file.
1783 * That is, asked for block 4 of inode 1 the function will replace the
1784 * 4 in ``*block``, with disk block relative to the disk start that holds that
1785 * block of the file.
1786 *
1787 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1788 * hole, returns 0 and ``*block`` is also set to 0.
1789 */
bmap(struct inode * inode,sector_t * block)1790 int bmap(struct inode *inode, sector_t *block)
1791 {
1792 if (!inode->i_mapping->a_ops->bmap)
1793 return -EINVAL;
1794
1795 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1796 return 0;
1797 }
1798 EXPORT_SYMBOL(bmap);
1799 #endif
1800
1801 /*
1802 * With relative atime, only update atime if the previous atime is
1803 * earlier than either the ctime or mtime or if at least a day has
1804 * passed since the last atime update.
1805 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1806 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1807 struct timespec64 now)
1808 {
1809
1810 if (!(mnt->mnt_flags & MNT_RELATIME))
1811 return 1;
1812 /*
1813 * Is mtime younger than atime? If yes, update atime:
1814 */
1815 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1816 return 1;
1817 /*
1818 * Is ctime younger than atime? If yes, update atime:
1819 */
1820 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1821 return 1;
1822
1823 /*
1824 * Is the previous atime value older than a day? If yes,
1825 * update atime:
1826 */
1827 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1828 return 1;
1829 /*
1830 * Good, we can skip the atime update:
1831 */
1832 return 0;
1833 }
1834
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1835 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1836 {
1837 int dirty_flags = 0;
1838
1839 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1840 if (flags & S_ATIME)
1841 inode->i_atime = *time;
1842 if (flags & S_CTIME)
1843 inode->i_ctime = *time;
1844 if (flags & S_MTIME)
1845 inode->i_mtime = *time;
1846
1847 if (inode->i_sb->s_flags & SB_LAZYTIME)
1848 dirty_flags |= I_DIRTY_TIME;
1849 else
1850 dirty_flags |= I_DIRTY_SYNC;
1851 }
1852
1853 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1854 dirty_flags |= I_DIRTY_SYNC;
1855
1856 __mark_inode_dirty(inode, dirty_flags);
1857 return 0;
1858 }
1859 EXPORT_SYMBOL(generic_update_time);
1860
1861 /*
1862 * This does the actual work of updating an inodes time or version. Must have
1863 * had called mnt_want_write() before calling this.
1864 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1865 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1866 {
1867 if (inode->i_op->update_time)
1868 return inode->i_op->update_time(inode, time, flags);
1869 return generic_update_time(inode, time, flags);
1870 }
1871 EXPORT_SYMBOL(inode_update_time);
1872
1873 /**
1874 * atime_needs_update - update the access time
1875 * @path: the &struct path to update
1876 * @inode: inode to update
1877 *
1878 * Update the accessed time on an inode and mark it for writeback.
1879 * This function automatically handles read only file systems and media,
1880 * as well as the "noatime" flag and inode specific "noatime" markers.
1881 */
atime_needs_update(const struct path * path,struct inode * inode)1882 bool atime_needs_update(const struct path *path, struct inode *inode)
1883 {
1884 struct vfsmount *mnt = path->mnt;
1885 struct timespec64 now;
1886
1887 if (inode->i_flags & S_NOATIME)
1888 return false;
1889
1890 /* Atime updates will likely cause i_uid and i_gid to be written
1891 * back improprely if their true value is unknown to the vfs.
1892 */
1893 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1894 return false;
1895
1896 if (IS_NOATIME(inode))
1897 return false;
1898 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1899 return false;
1900
1901 if (mnt->mnt_flags & MNT_NOATIME)
1902 return false;
1903 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1904 return false;
1905
1906 now = current_time(inode);
1907
1908 if (!relatime_need_update(mnt, inode, now))
1909 return false;
1910
1911 if (timespec64_equal(&inode->i_atime, &now))
1912 return false;
1913
1914 return true;
1915 }
1916
touch_atime(const struct path * path)1917 void touch_atime(const struct path *path)
1918 {
1919 struct vfsmount *mnt = path->mnt;
1920 struct inode *inode = d_inode(path->dentry);
1921 struct timespec64 now;
1922
1923 if (!atime_needs_update(path, inode))
1924 return;
1925
1926 if (!sb_start_write_trylock(inode->i_sb))
1927 return;
1928
1929 if (__mnt_want_write(mnt) != 0)
1930 goto skip_update;
1931 /*
1932 * File systems can error out when updating inodes if they need to
1933 * allocate new space to modify an inode (such is the case for
1934 * Btrfs), but since we touch atime while walking down the path we
1935 * really don't care if we failed to update the atime of the file,
1936 * so just ignore the return value.
1937 * We may also fail on filesystems that have the ability to make parts
1938 * of the fs read only, e.g. subvolumes in Btrfs.
1939 */
1940 now = current_time(inode);
1941 inode_update_time(inode, &now, S_ATIME);
1942 __mnt_drop_write(mnt);
1943 skip_update:
1944 sb_end_write(inode->i_sb);
1945 }
1946 EXPORT_SYMBOL(touch_atime);
1947
1948 /*
1949 * The logic we want is
1950 *
1951 * if suid or (sgid and xgrp)
1952 * remove privs
1953 */
should_remove_suid(struct dentry * dentry)1954 int should_remove_suid(struct dentry *dentry)
1955 {
1956 umode_t mode = d_inode(dentry)->i_mode;
1957 int kill = 0;
1958
1959 /* suid always must be killed */
1960 if (unlikely(mode & S_ISUID))
1961 kill = ATTR_KILL_SUID;
1962
1963 /*
1964 * sgid without any exec bits is just a mandatory locking mark; leave
1965 * it alone. If some exec bits are set, it's a real sgid; kill it.
1966 */
1967 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1968 kill |= ATTR_KILL_SGID;
1969
1970 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1971 return kill;
1972
1973 return 0;
1974 }
1975 EXPORT_SYMBOL(should_remove_suid);
1976
1977 /*
1978 * Return mask of changes for notify_change() that need to be done as a
1979 * response to write or truncate. Return 0 if nothing has to be changed.
1980 * Negative value on error (change should be denied).
1981 */
dentry_needs_remove_privs(struct dentry * dentry)1982 int dentry_needs_remove_privs(struct dentry *dentry)
1983 {
1984 struct inode *inode = d_inode(dentry);
1985 int mask = 0;
1986 int ret;
1987
1988 if (IS_NOSEC(inode))
1989 return 0;
1990
1991 mask = should_remove_suid(dentry);
1992 ret = security_inode_need_killpriv(dentry);
1993 if (ret < 0)
1994 return ret;
1995 if (ret)
1996 mask |= ATTR_KILL_PRIV;
1997 return mask;
1998 }
1999
__remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry,int kill)2000 static int __remove_privs(struct user_namespace *mnt_userns,
2001 struct dentry *dentry, int kill)
2002 {
2003 struct iattr newattrs;
2004
2005 newattrs.ia_valid = ATTR_FORCE | kill;
2006 /*
2007 * Note we call this on write, so notify_change will not
2008 * encounter any conflicting delegations:
2009 */
2010 return notify_change(mnt_userns, dentry, &newattrs, NULL);
2011 }
2012
2013 /*
2014 * Remove special file priviledges (suid, capabilities) when file is written
2015 * to or truncated.
2016 */
file_remove_privs(struct file * file)2017 int file_remove_privs(struct file *file)
2018 {
2019 struct dentry *dentry = file_dentry(file);
2020 struct inode *inode = file_inode(file);
2021 int kill;
2022 int error = 0;
2023
2024 /*
2025 * Fast path for nothing security related.
2026 * As well for non-regular files, e.g. blkdev inodes.
2027 * For example, blkdev_write_iter() might get here
2028 * trying to remove privs which it is not allowed to.
2029 */
2030 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2031 return 0;
2032
2033 kill = dentry_needs_remove_privs(dentry);
2034 if (kill < 0)
2035 return kill;
2036 if (kill)
2037 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2038 if (!error)
2039 inode_has_no_xattr(inode);
2040
2041 return error;
2042 }
2043 EXPORT_SYMBOL(file_remove_privs);
2044
2045 /**
2046 * file_update_time - update mtime and ctime time
2047 * @file: file accessed
2048 *
2049 * Update the mtime and ctime members of an inode and mark the inode
2050 * for writeback. Note that this function is meant exclusively for
2051 * usage in the file write path of filesystems, and filesystems may
2052 * choose to explicitly ignore update via this function with the
2053 * S_NOCMTIME inode flag, e.g. for network filesystem where these
2054 * timestamps are handled by the server. This can return an error for
2055 * file systems who need to allocate space in order to update an inode.
2056 */
2057
file_update_time(struct file * file)2058 int file_update_time(struct file *file)
2059 {
2060 struct inode *inode = file_inode(file);
2061 struct timespec64 now;
2062 int sync_it = 0;
2063 int ret;
2064
2065 /* First try to exhaust all avenues to not sync */
2066 if (IS_NOCMTIME(inode))
2067 return 0;
2068
2069 now = current_time(inode);
2070 if (!timespec64_equal(&inode->i_mtime, &now))
2071 sync_it = S_MTIME;
2072
2073 if (!timespec64_equal(&inode->i_ctime, &now))
2074 sync_it |= S_CTIME;
2075
2076 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2077 sync_it |= S_VERSION;
2078
2079 if (!sync_it)
2080 return 0;
2081
2082 /* Finally allowed to write? Takes lock. */
2083 if (__mnt_want_write_file(file))
2084 return 0;
2085
2086 ret = inode_update_time(inode, &now, sync_it);
2087 __mnt_drop_write_file(file);
2088
2089 return ret;
2090 }
2091 EXPORT_SYMBOL(file_update_time);
2092
2093 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2094 int file_modified(struct file *file)
2095 {
2096 int err;
2097
2098 /*
2099 * Clear the security bits if the process is not being run by root.
2100 * This keeps people from modifying setuid and setgid binaries.
2101 */
2102 err = file_remove_privs(file);
2103 if (err)
2104 return err;
2105
2106 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2107 return 0;
2108
2109 return file_update_time(file);
2110 }
2111 EXPORT_SYMBOL(file_modified);
2112
inode_needs_sync(struct inode * inode)2113 int inode_needs_sync(struct inode *inode)
2114 {
2115 if (IS_SYNC(inode))
2116 return 1;
2117 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2118 return 1;
2119 return 0;
2120 }
2121 EXPORT_SYMBOL(inode_needs_sync);
2122
2123 /*
2124 * If we try to find an inode in the inode hash while it is being
2125 * deleted, we have to wait until the filesystem completes its
2126 * deletion before reporting that it isn't found. This function waits
2127 * until the deletion _might_ have completed. Callers are responsible
2128 * to recheck inode state.
2129 *
2130 * It doesn't matter if I_NEW is not set initially, a call to
2131 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2132 * will DTRT.
2133 */
__wait_on_freeing_inode(struct inode * inode)2134 static void __wait_on_freeing_inode(struct inode *inode)
2135 {
2136 wait_queue_head_t *wq;
2137 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2138 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2139 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2140 spin_unlock(&inode->i_lock);
2141 spin_unlock(&inode_hash_lock);
2142 schedule();
2143 finish_wait(wq, &wait.wq_entry);
2144 spin_lock(&inode_hash_lock);
2145 }
2146
2147 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2148 static int __init set_ihash_entries(char *str)
2149 {
2150 if (!str)
2151 return 0;
2152 ihash_entries = simple_strtoul(str, &str, 0);
2153 return 1;
2154 }
2155 __setup("ihash_entries=", set_ihash_entries);
2156
2157 /*
2158 * Initialize the waitqueues and inode hash table.
2159 */
inode_init_early(void)2160 void __init inode_init_early(void)
2161 {
2162 /* If hashes are distributed across NUMA nodes, defer
2163 * hash allocation until vmalloc space is available.
2164 */
2165 if (hashdist)
2166 return;
2167
2168 inode_hashtable =
2169 alloc_large_system_hash("Inode-cache",
2170 sizeof(struct hlist_head),
2171 ihash_entries,
2172 14,
2173 HASH_EARLY | HASH_ZERO,
2174 &i_hash_shift,
2175 &i_hash_mask,
2176 0,
2177 0);
2178 }
2179
inode_init(void)2180 void __init inode_init(void)
2181 {
2182 /* inode slab cache */
2183 inode_cachep = kmem_cache_create("inode_cache",
2184 sizeof(struct inode),
2185 0,
2186 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2187 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2188 init_once);
2189
2190 /* Hash may have been set up in inode_init_early */
2191 if (!hashdist)
2192 return;
2193
2194 inode_hashtable =
2195 alloc_large_system_hash("Inode-cache",
2196 sizeof(struct hlist_head),
2197 ihash_entries,
2198 14,
2199 HASH_ZERO,
2200 &i_hash_shift,
2201 &i_hash_mask,
2202 0,
2203 0);
2204 }
2205
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2206 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2207 {
2208 inode->i_mode = mode;
2209 if (S_ISCHR(mode)) {
2210 inode->i_fop = &def_chr_fops;
2211 inode->i_rdev = rdev;
2212 } else if (S_ISBLK(mode)) {
2213 inode->i_fop = &def_blk_fops;
2214 inode->i_rdev = rdev;
2215 } else if (S_ISFIFO(mode))
2216 inode->i_fop = &pipefifo_fops;
2217 else if (S_ISSOCK(mode))
2218 ; /* leave it no_open_fops */
2219 else
2220 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2221 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2222 inode->i_ino);
2223 }
2224 EXPORT_SYMBOL(init_special_inode);
2225
2226 /**
2227 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2228 * @mnt_userns: User namespace of the mount the inode was created from
2229 * @inode: New inode
2230 * @dir: Directory inode
2231 * @mode: mode of the new inode
2232 *
2233 * If the inode has been created through an idmapped mount the user namespace of
2234 * the vfsmount must be passed through @mnt_userns. This function will then take
2235 * care to map the inode according to @mnt_userns before checking permissions
2236 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2237 * checking is to be performed on the raw inode simply passs init_user_ns.
2238 */
inode_init_owner(struct user_namespace * mnt_userns,struct inode * inode,const struct inode * dir,umode_t mode)2239 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2240 const struct inode *dir, umode_t mode)
2241 {
2242 inode_fsuid_set(inode, mnt_userns);
2243 if (dir && dir->i_mode & S_ISGID) {
2244 inode->i_gid = dir->i_gid;
2245
2246 /* Directories are special, and always inherit S_ISGID */
2247 if (S_ISDIR(mode))
2248 mode |= S_ISGID;
2249 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2250 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2251 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2252 mode &= ~S_ISGID;
2253 } else
2254 inode_fsgid_set(inode, mnt_userns);
2255 inode->i_mode = mode;
2256 }
2257 EXPORT_SYMBOL(inode_init_owner);
2258
2259 /**
2260 * inode_owner_or_capable - check current task permissions to inode
2261 * @mnt_userns: user namespace of the mount the inode was found from
2262 * @inode: inode being checked
2263 *
2264 * Return true if current either has CAP_FOWNER in a namespace with the
2265 * inode owner uid mapped, or owns the file.
2266 *
2267 * If the inode has been found through an idmapped mount the user namespace of
2268 * the vfsmount must be passed through @mnt_userns. This function will then take
2269 * care to map the inode according to @mnt_userns before checking permissions.
2270 * On non-idmapped mounts or if permission checking is to be performed on the
2271 * raw inode simply passs init_user_ns.
2272 */
inode_owner_or_capable(struct user_namespace * mnt_userns,const struct inode * inode)2273 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2274 const struct inode *inode)
2275 {
2276 kuid_t i_uid;
2277 struct user_namespace *ns;
2278
2279 i_uid = i_uid_into_mnt(mnt_userns, inode);
2280 if (uid_eq(current_fsuid(), i_uid))
2281 return true;
2282
2283 ns = current_user_ns();
2284 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2285 return true;
2286 return false;
2287 }
2288 EXPORT_SYMBOL(inode_owner_or_capable);
2289
2290 /*
2291 * Direct i/o helper functions
2292 */
__inode_dio_wait(struct inode * inode)2293 static void __inode_dio_wait(struct inode *inode)
2294 {
2295 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2296 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2297
2298 do {
2299 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2300 if (atomic_read(&inode->i_dio_count))
2301 schedule();
2302 } while (atomic_read(&inode->i_dio_count));
2303 finish_wait(wq, &q.wq_entry);
2304 }
2305
2306 /**
2307 * inode_dio_wait - wait for outstanding DIO requests to finish
2308 * @inode: inode to wait for
2309 *
2310 * Waits for all pending direct I/O requests to finish so that we can
2311 * proceed with a truncate or equivalent operation.
2312 *
2313 * Must be called under a lock that serializes taking new references
2314 * to i_dio_count, usually by inode->i_mutex.
2315 */
inode_dio_wait(struct inode * inode)2316 void inode_dio_wait(struct inode *inode)
2317 {
2318 if (atomic_read(&inode->i_dio_count))
2319 __inode_dio_wait(inode);
2320 }
2321 EXPORT_SYMBOL(inode_dio_wait);
2322
2323 /*
2324 * inode_set_flags - atomically set some inode flags
2325 *
2326 * Note: the caller should be holding i_mutex, or else be sure that
2327 * they have exclusive access to the inode structure (i.e., while the
2328 * inode is being instantiated). The reason for the cmpxchg() loop
2329 * --- which wouldn't be necessary if all code paths which modify
2330 * i_flags actually followed this rule, is that there is at least one
2331 * code path which doesn't today so we use cmpxchg() out of an abundance
2332 * of caution.
2333 *
2334 * In the long run, i_mutex is overkill, and we should probably look
2335 * at using the i_lock spinlock to protect i_flags, and then make sure
2336 * it is so documented in include/linux/fs.h and that all code follows
2337 * the locking convention!!
2338 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2339 void inode_set_flags(struct inode *inode, unsigned int flags,
2340 unsigned int mask)
2341 {
2342 WARN_ON_ONCE(flags & ~mask);
2343 set_mask_bits(&inode->i_flags, mask, flags);
2344 }
2345 EXPORT_SYMBOL(inode_set_flags);
2346
inode_nohighmem(struct inode * inode)2347 void inode_nohighmem(struct inode *inode)
2348 {
2349 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2350 }
2351 EXPORT_SYMBOL(inode_nohighmem);
2352
2353 /**
2354 * timestamp_truncate - Truncate timespec to a granularity
2355 * @t: Timespec
2356 * @inode: inode being updated
2357 *
2358 * Truncate a timespec to the granularity supported by the fs
2359 * containing the inode. Always rounds down. gran must
2360 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2361 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2362 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2363 {
2364 struct super_block *sb = inode->i_sb;
2365 unsigned int gran = sb->s_time_gran;
2366
2367 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2368 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2369 t.tv_nsec = 0;
2370
2371 /* Avoid division in the common cases 1 ns and 1 s. */
2372 if (gran == 1)
2373 ; /* nothing */
2374 else if (gran == NSEC_PER_SEC)
2375 t.tv_nsec = 0;
2376 else if (gran > 1 && gran < NSEC_PER_SEC)
2377 t.tv_nsec -= t.tv_nsec % gran;
2378 else
2379 WARN(1, "invalid file time granularity: %u", gran);
2380 return t;
2381 }
2382 EXPORT_SYMBOL(timestamp_truncate);
2383
2384 /**
2385 * current_time - Return FS time
2386 * @inode: inode.
2387 *
2388 * Return the current time truncated to the time granularity supported by
2389 * the fs.
2390 *
2391 * Note that inode and inode->sb cannot be NULL.
2392 * Otherwise, the function warns and returns time without truncation.
2393 */
current_time(struct inode * inode)2394 struct timespec64 current_time(struct inode *inode)
2395 {
2396 struct timespec64 now;
2397
2398 ktime_get_coarse_real_ts64(&now);
2399
2400 if (unlikely(!inode->i_sb)) {
2401 WARN(1, "current_time() called with uninitialized super_block in the inode");
2402 return now;
2403 }
2404
2405 return timestamp_truncate(now, inode);
2406 }
2407 EXPORT_SYMBOL(current_time);
2408