1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/paravirt.h>
54 #include <asm/paravirt_patch.h>
55 #include <asm/patch.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/sal.h>
59 #include <asm/sections.h>
60 #include <asm/setup.h>
61 #include <asm/smp.h>
62 #include <asm/system.h>
63 #include <asm/tlbflush.h>
64 #include <asm/unistd.h>
65 #include <asm/hpsim.h>
66
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
69 #endif
70
71 #ifdef CONFIG_SMP
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
74 #endif
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93
94 static struct resource bss_resource = {
95 .name = "Kernel bss",
96 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98
99 unsigned long ia64_max_cacheline_size;
100
101 unsigned long ia64_iobase; /* virtual address for I/O accesses */
102 EXPORT_SYMBOL(ia64_iobase);
103 struct io_space io_space[MAX_IO_SPACES];
104 EXPORT_SYMBOL(io_space);
105 unsigned int num_io_spaces;
106
107 /*
108 * "flush_icache_range()" needs to know what processor dependent stride size to use
109 * when it makes i-cache(s) coherent with d-caches.
110 */
111 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
112 unsigned long ia64_i_cache_stride_shift = ~0;
113 /*
114 * "clflush_cache_range()" needs to know what processor dependent stride size to
115 * use when it flushes cache lines including both d-cache and i-cache.
116 */
117 /* Safest way to go: 32 bytes by 32 bytes */
118 #define CACHE_STRIDE_SHIFT 5
119 unsigned long ia64_cache_stride_shift = ~0;
120
121 /*
122 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
123 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125 * address of the second buffer must be aligned to (merge_mask+1) in order to be
126 * mergeable). By default, we assume there is no I/O MMU which can merge physically
127 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128 * page-size of 2^64.
129 */
130 unsigned long ia64_max_iommu_merge_mask = ~0UL;
131 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132
133 /*
134 * We use a special marker for the end of memory and it uses the extra (+1) slot
135 */
136 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137 int num_rsvd_regions __initdata;
138
139
140 /*
141 * Filter incoming memory segments based on the primitive map created from the boot
142 * parameters. Segments contained in the map are removed from the memory ranges. A
143 * caller-specified function is called with the memory ranges that remain after filtering.
144 * This routine does not assume the incoming segments are sorted.
145 */
146 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)147 filter_rsvd_memory (u64 start, u64 end, void *arg)
148 {
149 u64 range_start, range_end, prev_start;
150 void (*func)(unsigned long, unsigned long, int);
151 int i;
152
153 #if IGNORE_PFN0
154 if (start == PAGE_OFFSET) {
155 printk(KERN_WARNING "warning: skipping physical page 0\n");
156 start += PAGE_SIZE;
157 if (start >= end) return 0;
158 }
159 #endif
160 /*
161 * lowest possible address(walker uses virtual)
162 */
163 prev_start = PAGE_OFFSET;
164 func = arg;
165
166 for (i = 0; i < num_rsvd_regions; ++i) {
167 range_start = max(start, prev_start);
168 range_end = min(end, rsvd_region[i].start);
169
170 if (range_start < range_end)
171 call_pernode_memory(__pa(range_start), range_end - range_start, func);
172
173 /* nothing more available in this segment */
174 if (range_end == end) return 0;
175
176 prev_start = rsvd_region[i].end;
177 }
178 /* end of memory marker allows full processing inside loop body */
179 return 0;
180 }
181
182 /*
183 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
184 * are not filtered out.
185 */
186 int __init
filter_memory(u64 start,u64 end,void * arg)187 filter_memory(u64 start, u64 end, void *arg)
188 {
189 void (*func)(unsigned long, unsigned long, int);
190
191 #if IGNORE_PFN0
192 if (start == PAGE_OFFSET) {
193 printk(KERN_WARNING "warning: skipping physical page 0\n");
194 start += PAGE_SIZE;
195 if (start >= end)
196 return 0;
197 }
198 #endif
199 func = arg;
200 if (start < end)
201 call_pernode_memory(__pa(start), end - start, func);
202 return 0;
203 }
204
205 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)206 sort_regions (struct rsvd_region *rsvd_region, int max)
207 {
208 int j;
209
210 /* simple bubble sorting */
211 while (max--) {
212 for (j = 0; j < max; ++j) {
213 if (rsvd_region[j].start > rsvd_region[j+1].start) {
214 struct rsvd_region tmp;
215 tmp = rsvd_region[j];
216 rsvd_region[j] = rsvd_region[j + 1];
217 rsvd_region[j + 1] = tmp;
218 }
219 }
220 }
221 }
222
223 /*
224 * Request address space for all standard resources
225 */
register_memory(void)226 static int __init register_memory(void)
227 {
228 code_resource.start = ia64_tpa(_text);
229 code_resource.end = ia64_tpa(_etext) - 1;
230 data_resource.start = ia64_tpa(_etext);
231 data_resource.end = ia64_tpa(_edata) - 1;
232 bss_resource.start = ia64_tpa(__bss_start);
233 bss_resource.end = ia64_tpa(_end) - 1;
234 efi_initialize_iomem_resources(&code_resource, &data_resource,
235 &bss_resource);
236
237 return 0;
238 }
239
240 __initcall(register_memory);
241
242
243 #ifdef CONFIG_KEXEC
244
245 /*
246 * This function checks if the reserved crashkernel is allowed on the specific
247 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
248 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
249 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
250 * in kdump case. See the comment in sba_init() in sba_iommu.c.
251 *
252 * So, the only machvec that really supports loading the kdump kernel
253 * over 4 GB is "sn2".
254 */
check_crashkernel_memory(unsigned long pbase,size_t size)255 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
256 {
257 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
258 return 1;
259 else
260 return pbase < (1UL << 32);
261 }
262
setup_crashkernel(unsigned long total,int * n)263 static void __init setup_crashkernel(unsigned long total, int *n)
264 {
265 unsigned long long base = 0, size = 0;
266 int ret;
267
268 ret = parse_crashkernel(boot_command_line, total,
269 &size, &base);
270 if (ret == 0 && size > 0) {
271 if (!base) {
272 sort_regions(rsvd_region, *n);
273 base = kdump_find_rsvd_region(size,
274 rsvd_region, *n);
275 }
276
277 if (!check_crashkernel_memory(base, size)) {
278 pr_warning("crashkernel: There would be kdump memory "
279 "at %ld GB but this is unusable because it "
280 "must\nbe below 4 GB. Change the memory "
281 "configuration of the machine.\n",
282 (unsigned long)(base >> 30));
283 return;
284 }
285
286 if (base != ~0UL) {
287 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
288 "for crashkernel (System RAM: %ldMB)\n",
289 (unsigned long)(size >> 20),
290 (unsigned long)(base >> 20),
291 (unsigned long)(total >> 20));
292 rsvd_region[*n].start =
293 (unsigned long)__va(base);
294 rsvd_region[*n].end =
295 (unsigned long)__va(base + size);
296 (*n)++;
297 crashk_res.start = base;
298 crashk_res.end = base + size - 1;
299 }
300 }
301 efi_memmap_res.start = ia64_boot_param->efi_memmap;
302 efi_memmap_res.end = efi_memmap_res.start +
303 ia64_boot_param->efi_memmap_size;
304 boot_param_res.start = __pa(ia64_boot_param);
305 boot_param_res.end = boot_param_res.start +
306 sizeof(*ia64_boot_param);
307 }
308 #else
setup_crashkernel(unsigned long total,int * n)309 static inline void __init setup_crashkernel(unsigned long total, int *n)
310 {}
311 #endif
312
313 /**
314 * reserve_memory - setup reserved memory areas
315 *
316 * Setup the reserved memory areas set aside for the boot parameters,
317 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
318 * see arch/ia64/include/asm/meminit.h if you need to define more.
319 */
320 void __init
reserve_memory(void)321 reserve_memory (void)
322 {
323 int n = 0;
324 unsigned long total_memory;
325
326 /*
327 * none of the entries in this table overlap
328 */
329 rsvd_region[n].start = (unsigned long) ia64_boot_param;
330 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
331 n++;
332
333 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
334 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
335 n++;
336
337 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
338 rsvd_region[n].end = (rsvd_region[n].start
339 + strlen(__va(ia64_boot_param->command_line)) + 1);
340 n++;
341
342 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
343 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
344 n++;
345
346 n += paravirt_reserve_memory(&rsvd_region[n]);
347
348 #ifdef CONFIG_BLK_DEV_INITRD
349 if (ia64_boot_param->initrd_start) {
350 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
351 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
352 n++;
353 }
354 #endif
355
356 #ifdef CONFIG_CRASH_DUMP
357 if (reserve_elfcorehdr(&rsvd_region[n].start,
358 &rsvd_region[n].end) == 0)
359 n++;
360 #endif
361
362 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
363 n++;
364
365 setup_crashkernel(total_memory, &n);
366
367 /* end of memory marker */
368 rsvd_region[n].start = ~0UL;
369 rsvd_region[n].end = ~0UL;
370 n++;
371
372 num_rsvd_regions = n;
373 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
374
375 sort_regions(rsvd_region, num_rsvd_regions);
376 }
377
378
379 /**
380 * find_initrd - get initrd parameters from the boot parameter structure
381 *
382 * Grab the initrd start and end from the boot parameter struct given us by
383 * the boot loader.
384 */
385 void __init
find_initrd(void)386 find_initrd (void)
387 {
388 #ifdef CONFIG_BLK_DEV_INITRD
389 if (ia64_boot_param->initrd_start) {
390 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
391 initrd_end = initrd_start+ia64_boot_param->initrd_size;
392
393 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
394 initrd_start, ia64_boot_param->initrd_size);
395 }
396 #endif
397 }
398
399 static void __init
io_port_init(void)400 io_port_init (void)
401 {
402 unsigned long phys_iobase;
403
404 /*
405 * Set `iobase' based on the EFI memory map or, failing that, the
406 * value firmware left in ar.k0.
407 *
408 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
409 * the port's virtual address, so ia32_load_state() loads it with a
410 * user virtual address. But in ia64 mode, glibc uses the
411 * *physical* address in ar.k0 to mmap the appropriate area from
412 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
413 * cases, user-mode can only use the legacy 0-64K I/O port space.
414 *
415 * ar.k0 is not involved in kernel I/O port accesses, which can use
416 * any of the I/O port spaces and are done via MMIO using the
417 * virtual mmio_base from the appropriate io_space[].
418 */
419 phys_iobase = efi_get_iobase();
420 if (!phys_iobase) {
421 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
422 printk(KERN_INFO "No I/O port range found in EFI memory map, "
423 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
424 }
425 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
426 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
427
428 /* setup legacy IO port space */
429 io_space[0].mmio_base = ia64_iobase;
430 io_space[0].sparse = 1;
431 num_io_spaces = 1;
432 }
433
434 /**
435 * early_console_setup - setup debugging console
436 *
437 * Consoles started here require little enough setup that we can start using
438 * them very early in the boot process, either right after the machine
439 * vector initialization, or even before if the drivers can detect their hw.
440 *
441 * Returns non-zero if a console couldn't be setup.
442 */
443 static inline int __init
early_console_setup(char * cmdline)444 early_console_setup (char *cmdline)
445 {
446 int earlycons = 0;
447
448 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
449 {
450 extern int sn_serial_console_early_setup(void);
451 if (!sn_serial_console_early_setup())
452 earlycons++;
453 }
454 #endif
455 #ifdef CONFIG_EFI_PCDP
456 if (!efi_setup_pcdp_console(cmdline))
457 earlycons++;
458 #endif
459 if (!simcons_register())
460 earlycons++;
461
462 return (earlycons) ? 0 : -1;
463 }
464
465 static inline void
mark_bsp_online(void)466 mark_bsp_online (void)
467 {
468 #ifdef CONFIG_SMP
469 /* If we register an early console, allow CPU 0 to printk */
470 cpu_set(smp_processor_id(), cpu_online_map);
471 #endif
472 }
473
474 static __initdata int nomca;
setup_nomca(char * s)475 static __init int setup_nomca(char *s)
476 {
477 nomca = 1;
478 return 0;
479 }
480 early_param("nomca", setup_nomca);
481
482 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)483 int __init reserve_elfcorehdr(u64 *start, u64 *end)
484 {
485 u64 length;
486
487 /* We get the address using the kernel command line,
488 * but the size is extracted from the EFI tables.
489 * Both address and size are required for reservation
490 * to work properly.
491 */
492
493 if (!is_vmcore_usable())
494 return -EINVAL;
495
496 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
497 vmcore_unusable();
498 return -EINVAL;
499 }
500
501 *start = (unsigned long)__va(elfcorehdr_addr);
502 *end = *start + length;
503 return 0;
504 }
505
506 #endif /* CONFIG_PROC_VMCORE */
507
508 void __init
setup_arch(char ** cmdline_p)509 setup_arch (char **cmdline_p)
510 {
511 unw_init();
512
513 paravirt_arch_setup_early();
514
515 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
516 paravirt_patch_apply();
517
518 *cmdline_p = __va(ia64_boot_param->command_line);
519 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
520
521 efi_init();
522 io_port_init();
523
524 #ifdef CONFIG_IA64_GENERIC
525 /* machvec needs to be parsed from the command line
526 * before parse_early_param() is called to ensure
527 * that ia64_mv is initialised before any command line
528 * settings may cause console setup to occur
529 */
530 machvec_init_from_cmdline(*cmdline_p);
531 #endif
532
533 parse_early_param();
534
535 if (early_console_setup(*cmdline_p) == 0)
536 mark_bsp_online();
537
538 #ifdef CONFIG_ACPI
539 /* Initialize the ACPI boot-time table parser */
540 acpi_table_init();
541 early_acpi_boot_init();
542 # ifdef CONFIG_ACPI_NUMA
543 acpi_numa_init();
544 # ifdef CONFIG_ACPI_HOTPLUG_CPU
545 prefill_possible_map();
546 # endif
547 per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
548 32 : cpus_weight(early_cpu_possible_map)),
549 additional_cpus > 0 ? additional_cpus : 0);
550 # endif
551 #endif /* CONFIG_APCI_BOOT */
552
553 #ifdef CONFIG_SMP
554 smp_build_cpu_map();
555 #endif
556 find_memory();
557
558 /* process SAL system table: */
559 ia64_sal_init(__va(efi.sal_systab));
560
561 #ifdef CONFIG_ITANIUM
562 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
563 #else
564 {
565 unsigned long num_phys_stacked;
566
567 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
568 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
569 }
570 #endif
571
572 #ifdef CONFIG_SMP
573 cpu_physical_id(0) = hard_smp_processor_id();
574 #endif
575
576 cpu_init(); /* initialize the bootstrap CPU */
577 mmu_context_init(); /* initialize context_id bitmap */
578
579 paravirt_banner();
580 paravirt_arch_setup_console(cmdline_p);
581
582 #ifdef CONFIG_VT
583 if (!conswitchp) {
584 # if defined(CONFIG_DUMMY_CONSOLE)
585 conswitchp = &dummy_con;
586 # endif
587 # if defined(CONFIG_VGA_CONSOLE)
588 /*
589 * Non-legacy systems may route legacy VGA MMIO range to system
590 * memory. vga_con probes the MMIO hole, so memory looks like
591 * a VGA device to it. The EFI memory map can tell us if it's
592 * memory so we can avoid this problem.
593 */
594 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
595 conswitchp = &vga_con;
596 # endif
597 }
598 #endif
599
600 /* enable IA-64 Machine Check Abort Handling unless disabled */
601 if (paravirt_arch_setup_nomca())
602 nomca = 1;
603 if (!nomca)
604 ia64_mca_init();
605
606 platform_setup(cmdline_p);
607 #ifndef CONFIG_IA64_HP_SIM
608 check_sal_cache_flush();
609 #endif
610 paging_init();
611 }
612
613 /*
614 * Display cpu info for all CPUs.
615 */
616 static int
show_cpuinfo(struct seq_file * m,void * v)617 show_cpuinfo (struct seq_file *m, void *v)
618 {
619 #ifdef CONFIG_SMP
620 # define lpj c->loops_per_jiffy
621 # define cpunum c->cpu
622 #else
623 # define lpj loops_per_jiffy
624 # define cpunum 0
625 #endif
626 static struct {
627 unsigned long mask;
628 const char *feature_name;
629 } feature_bits[] = {
630 { 1UL << 0, "branchlong" },
631 { 1UL << 1, "spontaneous deferral"},
632 { 1UL << 2, "16-byte atomic ops" }
633 };
634 char features[128], *cp, *sep;
635 struct cpuinfo_ia64 *c = v;
636 unsigned long mask;
637 unsigned long proc_freq;
638 int i, size;
639
640 mask = c->features;
641
642 /* build the feature string: */
643 memcpy(features, "standard", 9);
644 cp = features;
645 size = sizeof(features);
646 sep = "";
647 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
648 if (mask & feature_bits[i].mask) {
649 cp += snprintf(cp, size, "%s%s", sep,
650 feature_bits[i].feature_name),
651 sep = ", ";
652 mask &= ~feature_bits[i].mask;
653 size = sizeof(features) - (cp - features);
654 }
655 }
656 if (mask && size > 1) {
657 /* print unknown features as a hex value */
658 snprintf(cp, size, "%s0x%lx", sep, mask);
659 }
660
661 proc_freq = cpufreq_quick_get(cpunum);
662 if (!proc_freq)
663 proc_freq = c->proc_freq / 1000;
664
665 seq_printf(m,
666 "processor : %d\n"
667 "vendor : %s\n"
668 "arch : IA-64\n"
669 "family : %u\n"
670 "model : %u\n"
671 "model name : %s\n"
672 "revision : %u\n"
673 "archrev : %u\n"
674 "features : %s\n"
675 "cpu number : %lu\n"
676 "cpu regs : %u\n"
677 "cpu MHz : %lu.%03lu\n"
678 "itc MHz : %lu.%06lu\n"
679 "BogoMIPS : %lu.%02lu\n",
680 cpunum, c->vendor, c->family, c->model,
681 c->model_name, c->revision, c->archrev,
682 features, c->ppn, c->number,
683 proc_freq / 1000, proc_freq % 1000,
684 c->itc_freq / 1000000, c->itc_freq % 1000000,
685 lpj*HZ/500000, (lpj*HZ/5000) % 100);
686 #ifdef CONFIG_SMP
687 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
688 if (c->socket_id != -1)
689 seq_printf(m, "physical id: %u\n", c->socket_id);
690 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
691 seq_printf(m,
692 "core id : %u\n"
693 "thread id : %u\n",
694 c->core_id, c->thread_id);
695 #endif
696 seq_printf(m,"\n");
697
698 return 0;
699 }
700
701 static void *
c_start(struct seq_file * m,loff_t * pos)702 c_start (struct seq_file *m, loff_t *pos)
703 {
704 #ifdef CONFIG_SMP
705 while (*pos < nr_cpu_ids && !cpu_online(*pos))
706 ++*pos;
707 #endif
708 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
709 }
710
711 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)712 c_next (struct seq_file *m, void *v, loff_t *pos)
713 {
714 ++*pos;
715 return c_start(m, pos);
716 }
717
718 static void
c_stop(struct seq_file * m,void * v)719 c_stop (struct seq_file *m, void *v)
720 {
721 }
722
723 const struct seq_operations cpuinfo_op = {
724 .start = c_start,
725 .next = c_next,
726 .stop = c_stop,
727 .show = show_cpuinfo
728 };
729
730 #define MAX_BRANDS 8
731 static char brandname[MAX_BRANDS][128];
732
733 static char * __cpuinit
get_model_name(__u8 family,__u8 model)734 get_model_name(__u8 family, __u8 model)
735 {
736 static int overflow;
737 char brand[128];
738 int i;
739
740 memcpy(brand, "Unknown", 8);
741 if (ia64_pal_get_brand_info(brand)) {
742 if (family == 0x7)
743 memcpy(brand, "Merced", 7);
744 else if (family == 0x1f) switch (model) {
745 case 0: memcpy(brand, "McKinley", 9); break;
746 case 1: memcpy(brand, "Madison", 8); break;
747 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
748 }
749 }
750 for (i = 0; i < MAX_BRANDS; i++)
751 if (strcmp(brandname[i], brand) == 0)
752 return brandname[i];
753 for (i = 0; i < MAX_BRANDS; i++)
754 if (brandname[i][0] == '\0')
755 return strcpy(brandname[i], brand);
756 if (overflow++ == 0)
757 printk(KERN_ERR
758 "%s: Table overflow. Some processor model information will be missing\n",
759 __func__);
760 return "Unknown";
761 }
762
763 static void __cpuinit
identify_cpu(struct cpuinfo_ia64 * c)764 identify_cpu (struct cpuinfo_ia64 *c)
765 {
766 union {
767 unsigned long bits[5];
768 struct {
769 /* id 0 & 1: */
770 char vendor[16];
771
772 /* id 2 */
773 u64 ppn; /* processor serial number */
774
775 /* id 3: */
776 unsigned number : 8;
777 unsigned revision : 8;
778 unsigned model : 8;
779 unsigned family : 8;
780 unsigned archrev : 8;
781 unsigned reserved : 24;
782
783 /* id 4: */
784 u64 features;
785 } field;
786 } cpuid;
787 pal_vm_info_1_u_t vm1;
788 pal_vm_info_2_u_t vm2;
789 pal_status_t status;
790 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
791 int i;
792 for (i = 0; i < 5; ++i)
793 cpuid.bits[i] = ia64_get_cpuid(i);
794
795 memcpy(c->vendor, cpuid.field.vendor, 16);
796 #ifdef CONFIG_SMP
797 c->cpu = smp_processor_id();
798
799 /* below default values will be overwritten by identify_siblings()
800 * for Multi-Threading/Multi-Core capable CPUs
801 */
802 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
803 c->socket_id = -1;
804
805 identify_siblings(c);
806
807 if (c->threads_per_core > smp_num_siblings)
808 smp_num_siblings = c->threads_per_core;
809 #endif
810 c->ppn = cpuid.field.ppn;
811 c->number = cpuid.field.number;
812 c->revision = cpuid.field.revision;
813 c->model = cpuid.field.model;
814 c->family = cpuid.field.family;
815 c->archrev = cpuid.field.archrev;
816 c->features = cpuid.field.features;
817 c->model_name = get_model_name(c->family, c->model);
818
819 status = ia64_pal_vm_summary(&vm1, &vm2);
820 if (status == PAL_STATUS_SUCCESS) {
821 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
822 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
823 }
824 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
825 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
826 }
827
828 /*
829 * Do the following calculations:
830 *
831 * 1. the max. cache line size.
832 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
833 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
834 */
835 static void __cpuinit
get_cache_info(void)836 get_cache_info(void)
837 {
838 unsigned long line_size, max = 1;
839 unsigned long l, levels, unique_caches;
840 pal_cache_config_info_t cci;
841 long status;
842
843 status = ia64_pal_cache_summary(&levels, &unique_caches);
844 if (status != 0) {
845 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
846 __func__, status);
847 max = SMP_CACHE_BYTES;
848 /* Safest setup for "flush_icache_range()" */
849 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
850 /* Safest setup for "clflush_cache_range()" */
851 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
852 goto out;
853 }
854
855 for (l = 0; l < levels; ++l) {
856 /* cache_type (data_or_unified)=2 */
857 status = ia64_pal_cache_config_info(l, 2, &cci);
858 if (status != 0) {
859 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
860 "(l=%lu, 2) failed (status=%ld)\n",
861 __func__, l, status);
862 max = SMP_CACHE_BYTES;
863 /* The safest setup for "flush_icache_range()" */
864 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
865 /* The safest setup for "clflush_cache_range()" */
866 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
867 cci.pcci_unified = 1;
868 } else {
869 if (cci.pcci_stride < ia64_cache_stride_shift)
870 ia64_cache_stride_shift = cci.pcci_stride;
871
872 line_size = 1 << cci.pcci_line_size;
873 if (line_size > max)
874 max = line_size;
875 }
876
877 if (!cci.pcci_unified) {
878 /* cache_type (instruction)=1*/
879 status = ia64_pal_cache_config_info(l, 1, &cci);
880 if (status != 0) {
881 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
882 "(l=%lu, 1) failed (status=%ld)\n",
883 __func__, l, status);
884 /* The safest setup for flush_icache_range() */
885 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
886 }
887 }
888 if (cci.pcci_stride < ia64_i_cache_stride_shift)
889 ia64_i_cache_stride_shift = cci.pcci_stride;
890 }
891 out:
892 if (max > ia64_max_cacheline_size)
893 ia64_max_cacheline_size = max;
894 }
895
896 /*
897 * cpu_init() initializes state that is per-CPU. This function acts
898 * as a 'CPU state barrier', nothing should get across.
899 */
900 void __cpuinit
cpu_init(void)901 cpu_init (void)
902 {
903 extern void __cpuinit ia64_mmu_init (void *);
904 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
905 unsigned long num_phys_stacked;
906 pal_vm_info_2_u_t vmi;
907 unsigned int max_ctx;
908 struct cpuinfo_ia64 *cpu_info;
909 void *cpu_data;
910
911 cpu_data = per_cpu_init();
912 #ifdef CONFIG_SMP
913 /*
914 * insert boot cpu into sibling and core mapes
915 * (must be done after per_cpu area is setup)
916 */
917 if (smp_processor_id() == 0) {
918 cpu_set(0, per_cpu(cpu_sibling_map, 0));
919 cpu_set(0, cpu_core_map[0]);
920 } else {
921 /*
922 * Set ar.k3 so that assembly code in MCA handler can compute
923 * physical addresses of per cpu variables with a simple:
924 * phys = ar.k3 + &per_cpu_var
925 * and the alt-dtlb-miss handler can set per-cpu mapping into
926 * the TLB when needed. head.S already did this for cpu0.
927 */
928 ia64_set_kr(IA64_KR_PER_CPU_DATA,
929 ia64_tpa(cpu_data) - (long) __per_cpu_start);
930 }
931 #endif
932
933 get_cache_info();
934
935 /*
936 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
937 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
938 * depends on the data returned by identify_cpu(). We break the dependency by
939 * accessing cpu_data() through the canonical per-CPU address.
940 */
941 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
942 identify_cpu(cpu_info);
943
944 #ifdef CONFIG_MCKINLEY
945 {
946 # define FEATURE_SET 16
947 struct ia64_pal_retval iprv;
948
949 if (cpu_info->family == 0x1f) {
950 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
951 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
952 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
953 (iprv.v1 | 0x80), FEATURE_SET, 0);
954 }
955 }
956 #endif
957
958 /* Clear the stack memory reserved for pt_regs: */
959 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
960
961 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
962
963 /*
964 * Initialize the page-table base register to a global
965 * directory with all zeroes. This ensure that we can handle
966 * TLB-misses to user address-space even before we created the
967 * first user address-space. This may happen, e.g., due to
968 * aggressive use of lfetch.fault.
969 */
970 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
971
972 /*
973 * Initialize default control register to defer speculative faults except
974 * for those arising from TLB misses, which are not deferred. The
975 * kernel MUST NOT depend on a particular setting of these bits (in other words,
976 * the kernel must have recovery code for all speculative accesses). Turn on
977 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
978 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
979 * be fine).
980 */
981 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
982 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
983 atomic_inc(&init_mm.mm_count);
984 current->active_mm = &init_mm;
985 BUG_ON(current->mm);
986
987 ia64_mmu_init(ia64_imva(cpu_data));
988 ia64_mca_cpu_init(ia64_imva(cpu_data));
989
990 /* Clear ITC to eliminate sched_clock() overflows in human time. */
991 ia64_set_itc(0);
992
993 /* disable all local interrupt sources: */
994 ia64_set_itv(1 << 16);
995 ia64_set_lrr0(1 << 16);
996 ia64_set_lrr1(1 << 16);
997 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
998 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
999
1000 /* clear TPR & XTP to enable all interrupt classes: */
1001 ia64_setreg(_IA64_REG_CR_TPR, 0);
1002
1003 /* Clear any pending interrupts left by SAL/EFI */
1004 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1005 ia64_eoi();
1006
1007 #ifdef CONFIG_SMP
1008 normal_xtp();
1009 #endif
1010
1011 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1012 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1013 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1014 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1015 } else {
1016 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1017 max_ctx = (1U << 15) - 1; /* use architected minimum */
1018 }
1019 while (max_ctx < ia64_ctx.max_ctx) {
1020 unsigned int old = ia64_ctx.max_ctx;
1021 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1022 break;
1023 }
1024
1025 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1026 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1027 "stacked regs\n");
1028 num_phys_stacked = 96;
1029 }
1030 /* size of physical stacked register partition plus 8 bytes: */
1031 if (num_phys_stacked > max_num_phys_stacked) {
1032 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1033 max_num_phys_stacked = num_phys_stacked;
1034 }
1035 platform_cpu_init();
1036 pm_idle = default_idle;
1037 }
1038
1039 void __init
check_bugs(void)1040 check_bugs (void)
1041 {
1042 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1043 (unsigned long) __end___mckinley_e9_bundles);
1044 }
1045
run_dmi_scan(void)1046 static int __init run_dmi_scan(void)
1047 {
1048 dmi_scan_machine();
1049 return 0;
1050 }
1051 core_initcall(run_dmi_scan);
1052