1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33
34 static struct kmem_cache *extent_state_cache;
35 static struct kmem_cache *extent_buffer_cache;
36 static struct bio_set btrfs_bioset;
37
extent_state_in_tree(const struct extent_state * state)38 static inline bool extent_state_in_tree(const struct extent_state *state)
39 {
40 return !RB_EMPTY_NODE(&state->rb_node);
41 }
42
43 #ifdef CONFIG_BTRFS_DEBUG
44 static LIST_HEAD(states);
45 static DEFINE_SPINLOCK(leak_lock);
46
btrfs_leak_debug_add(spinlock_t * lock,struct list_head * new,struct list_head * head)47 static inline void btrfs_leak_debug_add(spinlock_t *lock,
48 struct list_head *new,
49 struct list_head *head)
50 {
51 unsigned long flags;
52
53 spin_lock_irqsave(lock, flags);
54 list_add(new, head);
55 spin_unlock_irqrestore(lock, flags);
56 }
57
btrfs_leak_debug_del(spinlock_t * lock,struct list_head * entry)58 static inline void btrfs_leak_debug_del(spinlock_t *lock,
59 struct list_head *entry)
60 {
61 unsigned long flags;
62
63 spin_lock_irqsave(lock, flags);
64 list_del(entry);
65 spin_unlock_irqrestore(lock, flags);
66 }
67
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)68 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 {
70 struct extent_buffer *eb;
71 unsigned long flags;
72
73 /*
74 * If we didn't get into open_ctree our allocated_ebs will not be
75 * initialized, so just skip this.
76 */
77 if (!fs_info->allocated_ebs.next)
78 return;
79
80 WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
82 while (!list_empty(&fs_info->allocated_ebs)) {
83 eb = list_first_entry(&fs_info->allocated_ebs,
84 struct extent_buffer, leak_list);
85 pr_err(
86 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
87 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
88 btrfs_header_owner(eb));
89 list_del(&eb->leak_list);
90 kmem_cache_free(extent_buffer_cache, eb);
91 }
92 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 }
94
btrfs_extent_state_leak_debug_check(void)95 static inline void btrfs_extent_state_leak_debug_check(void)
96 {
97 struct extent_state *state;
98
99 while (!list_empty(&states)) {
100 state = list_entry(states.next, struct extent_state, leak_list);
101 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 state->start, state->end, state->state,
103 extent_state_in_tree(state),
104 refcount_read(&state->refs));
105 list_del(&state->leak_list);
106 kmem_cache_free(extent_state_cache, state);
107 }
108 }
109
110 #define btrfs_debug_check_extent_io_range(tree, start, end) \
111 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)112 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113 struct extent_io_tree *tree, u64 start, u64 end)
114 {
115 struct inode *inode = tree->private_data;
116 u64 isize;
117
118 if (!inode || !is_data_inode(inode))
119 return;
120
121 isize = i_size_read(inode);
122 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
123 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
124 "%s: ino %llu isize %llu odd range [%llu,%llu]",
125 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
126 }
127 }
128 #else
129 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
130 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
131 #define btrfs_extent_state_leak_debug_check() do {} while (0)
132 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
133 #endif
134
135 struct tree_entry {
136 u64 start;
137 u64 end;
138 struct rb_node rb_node;
139 };
140
141 /*
142 * Structure to record info about the bio being assembled, and other info like
143 * how many bytes are there before stripe/ordered extent boundary.
144 */
145 struct btrfs_bio_ctrl {
146 struct bio *bio;
147 enum btrfs_compression_type compress_type;
148 u32 len_to_stripe_boundary;
149 u32 len_to_oe_boundary;
150 };
151
152 struct extent_page_data {
153 struct btrfs_bio_ctrl bio_ctrl;
154 /* tells writepage not to lock the state bits for this range
155 * it still does the unlocking
156 */
157 unsigned int extent_locked:1;
158
159 /* tells the submit_bio code to use REQ_SYNC */
160 unsigned int sync_io:1;
161 };
162
add_extent_changeset(struct extent_state * state,u32 bits,struct extent_changeset * changeset,int set)163 static int add_extent_changeset(struct extent_state *state, u32 bits,
164 struct extent_changeset *changeset,
165 int set)
166 {
167 int ret;
168
169 if (!changeset)
170 return 0;
171 if (set && (state->state & bits) == bits)
172 return 0;
173 if (!set && (state->state & bits) == 0)
174 return 0;
175 changeset->bytes_changed += state->end - state->start + 1;
176 ret = ulist_add(&changeset->range_changed, state->start, state->end,
177 GFP_ATOMIC);
178 return ret;
179 }
180
submit_one_bio(struct bio * bio,int mirror_num,enum btrfs_compression_type compress_type)181 static void submit_one_bio(struct bio *bio, int mirror_num,
182 enum btrfs_compression_type compress_type)
183 {
184 struct extent_io_tree *tree = bio->bi_private;
185
186 bio->bi_private = NULL;
187
188 /* Caller should ensure the bio has at least some range added */
189 ASSERT(bio->bi_iter.bi_size);
190
191 if (is_data_inode(tree->private_data))
192 btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
193 compress_type);
194 else
195 btrfs_submit_metadata_bio(tree->private_data, bio, mirror_num);
196 /*
197 * Above submission hooks will handle the error by ending the bio,
198 * which will do the cleanup properly. So here we should not return
199 * any error, or the caller of submit_extent_page() will do cleanup
200 * again, causing problems.
201 */
202 }
203
204 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)205 static void end_write_bio(struct extent_page_data *epd, int ret)
206 {
207 struct bio *bio = epd->bio_ctrl.bio;
208
209 if (bio) {
210 bio->bi_status = errno_to_blk_status(ret);
211 bio_endio(bio);
212 epd->bio_ctrl.bio = NULL;
213 }
214 }
215
216 /*
217 * Submit bio from extent page data via submit_one_bio
218 *
219 * Return 0 if everything is OK.
220 * Return <0 for error.
221 */
flush_write_bio(struct extent_page_data * epd)222 static void flush_write_bio(struct extent_page_data *epd)
223 {
224 struct bio *bio = epd->bio_ctrl.bio;
225
226 if (bio) {
227 submit_one_bio(bio, 0, 0);
228 /*
229 * Clean up of epd->bio is handled by its endio function.
230 * And endio is either triggered by successful bio execution
231 * or the error handler of submit bio hook.
232 * So at this point, no matter what happened, we don't need
233 * to clean up epd->bio.
234 */
235 epd->bio_ctrl.bio = NULL;
236 }
237 }
238
extent_state_cache_init(void)239 int __init extent_state_cache_init(void)
240 {
241 extent_state_cache = kmem_cache_create("btrfs_extent_state",
242 sizeof(struct extent_state), 0,
243 SLAB_MEM_SPREAD, NULL);
244 if (!extent_state_cache)
245 return -ENOMEM;
246 return 0;
247 }
248
extent_io_init(void)249 int __init extent_io_init(void)
250 {
251 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
252 sizeof(struct extent_buffer), 0,
253 SLAB_MEM_SPREAD, NULL);
254 if (!extent_buffer_cache)
255 return -ENOMEM;
256
257 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
258 offsetof(struct btrfs_bio, bio),
259 BIOSET_NEED_BVECS))
260 goto free_buffer_cache;
261
262 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
263 goto free_bioset;
264
265 return 0;
266
267 free_bioset:
268 bioset_exit(&btrfs_bioset);
269
270 free_buffer_cache:
271 kmem_cache_destroy(extent_buffer_cache);
272 extent_buffer_cache = NULL;
273 return -ENOMEM;
274 }
275
extent_state_cache_exit(void)276 void __cold extent_state_cache_exit(void)
277 {
278 btrfs_extent_state_leak_debug_check();
279 kmem_cache_destroy(extent_state_cache);
280 }
281
extent_io_exit(void)282 void __cold extent_io_exit(void)
283 {
284 /*
285 * Make sure all delayed rcu free are flushed before we
286 * destroy caches.
287 */
288 rcu_barrier();
289 kmem_cache_destroy(extent_buffer_cache);
290 bioset_exit(&btrfs_bioset);
291 }
292
293 /*
294 * For the file_extent_tree, we want to hold the inode lock when we lookup and
295 * update the disk_i_size, but lockdep will complain because our io_tree we hold
296 * the tree lock and get the inode lock when setting delalloc. These two things
297 * are unrelated, so make a class for the file_extent_tree so we don't get the
298 * two locking patterns mixed up.
299 */
300 static struct lock_class_key file_extent_tree_class;
301
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)302 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
303 struct extent_io_tree *tree, unsigned int owner,
304 void *private_data)
305 {
306 tree->fs_info = fs_info;
307 tree->state = RB_ROOT;
308 tree->dirty_bytes = 0;
309 spin_lock_init(&tree->lock);
310 tree->private_data = private_data;
311 tree->owner = owner;
312 if (owner == IO_TREE_INODE_FILE_EXTENT)
313 lockdep_set_class(&tree->lock, &file_extent_tree_class);
314 }
315
extent_io_tree_release(struct extent_io_tree * tree)316 void extent_io_tree_release(struct extent_io_tree *tree)
317 {
318 spin_lock(&tree->lock);
319 /*
320 * Do a single barrier for the waitqueue_active check here, the state
321 * of the waitqueue should not change once extent_io_tree_release is
322 * called.
323 */
324 smp_mb();
325 while (!RB_EMPTY_ROOT(&tree->state)) {
326 struct rb_node *node;
327 struct extent_state *state;
328
329 node = rb_first(&tree->state);
330 state = rb_entry(node, struct extent_state, rb_node);
331 rb_erase(&state->rb_node, &tree->state);
332 RB_CLEAR_NODE(&state->rb_node);
333 /*
334 * btree io trees aren't supposed to have tasks waiting for
335 * changes in the flags of extent states ever.
336 */
337 ASSERT(!waitqueue_active(&state->wq));
338 free_extent_state(state);
339
340 cond_resched_lock(&tree->lock);
341 }
342 spin_unlock(&tree->lock);
343 }
344
alloc_extent_state(gfp_t mask)345 static struct extent_state *alloc_extent_state(gfp_t mask)
346 {
347 struct extent_state *state;
348
349 /*
350 * The given mask might be not appropriate for the slab allocator,
351 * drop the unsupported bits
352 */
353 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
354 state = kmem_cache_alloc(extent_state_cache, mask);
355 if (!state)
356 return state;
357 state->state = 0;
358 state->failrec = NULL;
359 RB_CLEAR_NODE(&state->rb_node);
360 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
361 refcount_set(&state->refs, 1);
362 init_waitqueue_head(&state->wq);
363 trace_alloc_extent_state(state, mask, _RET_IP_);
364 return state;
365 }
366
free_extent_state(struct extent_state * state)367 void free_extent_state(struct extent_state *state)
368 {
369 if (!state)
370 return;
371 if (refcount_dec_and_test(&state->refs)) {
372 WARN_ON(extent_state_in_tree(state));
373 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
374 trace_free_extent_state(state, _RET_IP_);
375 kmem_cache_free(extent_state_cache, state);
376 }
377 }
378
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)379 static struct rb_node *tree_insert(struct rb_root *root,
380 struct rb_node *search_start,
381 u64 offset,
382 struct rb_node *node,
383 struct rb_node ***p_in,
384 struct rb_node **parent_in)
385 {
386 struct rb_node **p;
387 struct rb_node *parent = NULL;
388 struct tree_entry *entry;
389
390 if (p_in && parent_in) {
391 p = *p_in;
392 parent = *parent_in;
393 goto do_insert;
394 }
395
396 p = search_start ? &search_start : &root->rb_node;
397 while (*p) {
398 parent = *p;
399 entry = rb_entry(parent, struct tree_entry, rb_node);
400
401 if (offset < entry->start)
402 p = &(*p)->rb_left;
403 else if (offset > entry->end)
404 p = &(*p)->rb_right;
405 else
406 return parent;
407 }
408
409 do_insert:
410 rb_link_node(node, parent, p);
411 rb_insert_color(node, root);
412 return NULL;
413 }
414
415 /**
416 * Search @tree for an entry that contains @offset. Such entry would have
417 * entry->start <= offset && entry->end >= offset.
418 *
419 * @tree: the tree to search
420 * @offset: offset that should fall within an entry in @tree
421 * @next_ret: pointer to the first entry whose range ends after @offset
422 * @prev_ret: pointer to the first entry whose range begins before @offset
423 * @p_ret: pointer where new node should be anchored (used when inserting an
424 * entry in the tree)
425 * @parent_ret: points to entry which would have been the parent of the entry,
426 * containing @offset
427 *
428 * This function returns a pointer to the entry that contains @offset byte
429 * address. If no such entry exists, then NULL is returned and the other
430 * pointer arguments to the function are filled, otherwise the found entry is
431 * returned and other pointers are left untouched.
432 */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)433 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
434 struct rb_node **next_ret,
435 struct rb_node **prev_ret,
436 struct rb_node ***p_ret,
437 struct rb_node **parent_ret)
438 {
439 struct rb_root *root = &tree->state;
440 struct rb_node **n = &root->rb_node;
441 struct rb_node *prev = NULL;
442 struct rb_node *orig_prev = NULL;
443 struct tree_entry *entry;
444 struct tree_entry *prev_entry = NULL;
445
446 while (*n) {
447 prev = *n;
448 entry = rb_entry(prev, struct tree_entry, rb_node);
449 prev_entry = entry;
450
451 if (offset < entry->start)
452 n = &(*n)->rb_left;
453 else if (offset > entry->end)
454 n = &(*n)->rb_right;
455 else
456 return *n;
457 }
458
459 if (p_ret)
460 *p_ret = n;
461 if (parent_ret)
462 *parent_ret = prev;
463
464 if (next_ret) {
465 orig_prev = prev;
466 while (prev && offset > prev_entry->end) {
467 prev = rb_next(prev);
468 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
469 }
470 *next_ret = prev;
471 prev = orig_prev;
472 }
473
474 if (prev_ret) {
475 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
476 while (prev && offset < prev_entry->start) {
477 prev = rb_prev(prev);
478 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
479 }
480 *prev_ret = prev;
481 }
482 return NULL;
483 }
484
485 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)486 tree_search_for_insert(struct extent_io_tree *tree,
487 u64 offset,
488 struct rb_node ***p_ret,
489 struct rb_node **parent_ret)
490 {
491 struct rb_node *next= NULL;
492 struct rb_node *ret;
493
494 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
495 if (!ret)
496 return next;
497 return ret;
498 }
499
tree_search(struct extent_io_tree * tree,u64 offset)500 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
501 u64 offset)
502 {
503 return tree_search_for_insert(tree, offset, NULL, NULL);
504 }
505
506 /*
507 * utility function to look for merge candidates inside a given range.
508 * Any extents with matching state are merged together into a single
509 * extent in the tree. Extents with EXTENT_IO in their state field
510 * are not merged because the end_io handlers need to be able to do
511 * operations on them without sleeping (or doing allocations/splits).
512 *
513 * This should be called with the tree lock held.
514 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)515 static void merge_state(struct extent_io_tree *tree,
516 struct extent_state *state)
517 {
518 struct extent_state *other;
519 struct rb_node *other_node;
520
521 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
522 return;
523
524 other_node = rb_prev(&state->rb_node);
525 if (other_node) {
526 other = rb_entry(other_node, struct extent_state, rb_node);
527 if (other->end == state->start - 1 &&
528 other->state == state->state) {
529 if (tree->private_data &&
530 is_data_inode(tree->private_data))
531 btrfs_merge_delalloc_extent(tree->private_data,
532 state, other);
533 state->start = other->start;
534 rb_erase(&other->rb_node, &tree->state);
535 RB_CLEAR_NODE(&other->rb_node);
536 free_extent_state(other);
537 }
538 }
539 other_node = rb_next(&state->rb_node);
540 if (other_node) {
541 other = rb_entry(other_node, struct extent_state, rb_node);
542 if (other->start == state->end + 1 &&
543 other->state == state->state) {
544 if (tree->private_data &&
545 is_data_inode(tree->private_data))
546 btrfs_merge_delalloc_extent(tree->private_data,
547 state, other);
548 state->end = other->end;
549 rb_erase(&other->rb_node, &tree->state);
550 RB_CLEAR_NODE(&other->rb_node);
551 free_extent_state(other);
552 }
553 }
554 }
555
556 static void set_state_bits(struct extent_io_tree *tree,
557 struct extent_state *state, u32 *bits,
558 struct extent_changeset *changeset);
559
560 /*
561 * insert an extent_state struct into the tree. 'bits' are set on the
562 * struct before it is inserted.
563 *
564 * This may return -EEXIST if the extent is already there, in which case the
565 * state struct is freed.
566 *
567 * The tree lock is not taken internally. This is a utility function and
568 * probably isn't what you want to call (see set/clear_extent_bit).
569 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,u32 * bits,struct extent_changeset * changeset)570 static int insert_state(struct extent_io_tree *tree,
571 struct extent_state *state, u64 start, u64 end,
572 struct rb_node ***p,
573 struct rb_node **parent,
574 u32 *bits, struct extent_changeset *changeset)
575 {
576 struct rb_node *node;
577
578 if (end < start) {
579 btrfs_err(tree->fs_info,
580 "insert state: end < start %llu %llu", end, start);
581 WARN_ON(1);
582 }
583 state->start = start;
584 state->end = end;
585
586 set_state_bits(tree, state, bits, changeset);
587
588 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
589 if (node) {
590 struct extent_state *found;
591 found = rb_entry(node, struct extent_state, rb_node);
592 btrfs_err(tree->fs_info,
593 "found node %llu %llu on insert of %llu %llu",
594 found->start, found->end, start, end);
595 return -EEXIST;
596 }
597 merge_state(tree, state);
598 return 0;
599 }
600
601 /*
602 * split a given extent state struct in two, inserting the preallocated
603 * struct 'prealloc' as the newly created second half. 'split' indicates an
604 * offset inside 'orig' where it should be split.
605 *
606 * Before calling,
607 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
608 * are two extent state structs in the tree:
609 * prealloc: [orig->start, split - 1]
610 * orig: [ split, orig->end ]
611 *
612 * The tree locks are not taken by this function. They need to be held
613 * by the caller.
614 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)615 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
616 struct extent_state *prealloc, u64 split)
617 {
618 struct rb_node *node;
619
620 if (tree->private_data && is_data_inode(tree->private_data))
621 btrfs_split_delalloc_extent(tree->private_data, orig, split);
622
623 prealloc->start = orig->start;
624 prealloc->end = split - 1;
625 prealloc->state = orig->state;
626 orig->start = split;
627
628 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
629 &prealloc->rb_node, NULL, NULL);
630 if (node) {
631 free_extent_state(prealloc);
632 return -EEXIST;
633 }
634 return 0;
635 }
636
next_state(struct extent_state * state)637 static struct extent_state *next_state(struct extent_state *state)
638 {
639 struct rb_node *next = rb_next(&state->rb_node);
640 if (next)
641 return rb_entry(next, struct extent_state, rb_node);
642 else
643 return NULL;
644 }
645
646 /*
647 * utility function to clear some bits in an extent state struct.
648 * it will optionally wake up anyone waiting on this state (wake == 1).
649 *
650 * If no bits are set on the state struct after clearing things, the
651 * struct is freed and removed from the tree
652 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,int wake,struct extent_changeset * changeset)653 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
654 struct extent_state *state,
655 u32 *bits, int wake,
656 struct extent_changeset *changeset)
657 {
658 struct extent_state *next;
659 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
660 int ret;
661
662 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
663 u64 range = state->end - state->start + 1;
664 WARN_ON(range > tree->dirty_bytes);
665 tree->dirty_bytes -= range;
666 }
667
668 if (tree->private_data && is_data_inode(tree->private_data))
669 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
670
671 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
672 BUG_ON(ret < 0);
673 state->state &= ~bits_to_clear;
674 if (wake)
675 wake_up(&state->wq);
676 if (state->state == 0) {
677 next = next_state(state);
678 if (extent_state_in_tree(state)) {
679 rb_erase(&state->rb_node, &tree->state);
680 RB_CLEAR_NODE(&state->rb_node);
681 free_extent_state(state);
682 } else {
683 WARN_ON(1);
684 }
685 } else {
686 merge_state(tree, state);
687 next = next_state(state);
688 }
689 return next;
690 }
691
692 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)693 alloc_extent_state_atomic(struct extent_state *prealloc)
694 {
695 if (!prealloc)
696 prealloc = alloc_extent_state(GFP_ATOMIC);
697
698 return prealloc;
699 }
700
extent_io_tree_panic(struct extent_io_tree * tree,int err)701 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
702 {
703 btrfs_panic(tree->fs_info, err,
704 "locking error: extent tree was modified by another thread while locked");
705 }
706
707 /*
708 * clear some bits on a range in the tree. This may require splitting
709 * or inserting elements in the tree, so the gfp mask is used to
710 * indicate which allocations or sleeping are allowed.
711 *
712 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
713 * the given range from the tree regardless of state (ie for truncate).
714 *
715 * the range [start, end] is inclusive.
716 *
717 * This takes the tree lock, and returns 0 on success and < 0 on error.
718 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)719 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
720 u32 bits, int wake, int delete,
721 struct extent_state **cached_state,
722 gfp_t mask, struct extent_changeset *changeset)
723 {
724 struct extent_state *state;
725 struct extent_state *cached;
726 struct extent_state *prealloc = NULL;
727 struct rb_node *node;
728 u64 last_end;
729 int err;
730 int clear = 0;
731
732 btrfs_debug_check_extent_io_range(tree, start, end);
733 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
734
735 if (bits & EXTENT_DELALLOC)
736 bits |= EXTENT_NORESERVE;
737
738 if (delete)
739 bits |= ~EXTENT_CTLBITS;
740
741 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
742 clear = 1;
743 again:
744 if (!prealloc && gfpflags_allow_blocking(mask)) {
745 /*
746 * Don't care for allocation failure here because we might end
747 * up not needing the pre-allocated extent state at all, which
748 * is the case if we only have in the tree extent states that
749 * cover our input range and don't cover too any other range.
750 * If we end up needing a new extent state we allocate it later.
751 */
752 prealloc = alloc_extent_state(mask);
753 }
754
755 spin_lock(&tree->lock);
756 if (cached_state) {
757 cached = *cached_state;
758
759 if (clear) {
760 *cached_state = NULL;
761 cached_state = NULL;
762 }
763
764 if (cached && extent_state_in_tree(cached) &&
765 cached->start <= start && cached->end > start) {
766 if (clear)
767 refcount_dec(&cached->refs);
768 state = cached;
769 goto hit_next;
770 }
771 if (clear)
772 free_extent_state(cached);
773 }
774 /*
775 * this search will find the extents that end after
776 * our range starts
777 */
778 node = tree_search(tree, start);
779 if (!node)
780 goto out;
781 state = rb_entry(node, struct extent_state, rb_node);
782 hit_next:
783 if (state->start > end)
784 goto out;
785 WARN_ON(state->end < start);
786 last_end = state->end;
787
788 /* the state doesn't have the wanted bits, go ahead */
789 if (!(state->state & bits)) {
790 state = next_state(state);
791 goto next;
792 }
793
794 /*
795 * | ---- desired range ---- |
796 * | state | or
797 * | ------------- state -------------- |
798 *
799 * We need to split the extent we found, and may flip
800 * bits on second half.
801 *
802 * If the extent we found extends past our range, we
803 * just split and search again. It'll get split again
804 * the next time though.
805 *
806 * If the extent we found is inside our range, we clear
807 * the desired bit on it.
808 */
809
810 if (state->start < start) {
811 prealloc = alloc_extent_state_atomic(prealloc);
812 BUG_ON(!prealloc);
813 err = split_state(tree, state, prealloc, start);
814 if (err)
815 extent_io_tree_panic(tree, err);
816
817 prealloc = NULL;
818 if (err)
819 goto out;
820 if (state->end <= end) {
821 state = clear_state_bit(tree, state, &bits, wake,
822 changeset);
823 goto next;
824 }
825 goto search_again;
826 }
827 /*
828 * | ---- desired range ---- |
829 * | state |
830 * We need to split the extent, and clear the bit
831 * on the first half
832 */
833 if (state->start <= end && state->end > end) {
834 prealloc = alloc_extent_state_atomic(prealloc);
835 BUG_ON(!prealloc);
836 err = split_state(tree, state, prealloc, end + 1);
837 if (err)
838 extent_io_tree_panic(tree, err);
839
840 if (wake)
841 wake_up(&state->wq);
842
843 clear_state_bit(tree, prealloc, &bits, wake, changeset);
844
845 prealloc = NULL;
846 goto out;
847 }
848
849 state = clear_state_bit(tree, state, &bits, wake, changeset);
850 next:
851 if (last_end == (u64)-1)
852 goto out;
853 start = last_end + 1;
854 if (start <= end && state && !need_resched())
855 goto hit_next;
856
857 search_again:
858 if (start > end)
859 goto out;
860 spin_unlock(&tree->lock);
861 if (gfpflags_allow_blocking(mask))
862 cond_resched();
863 goto again;
864
865 out:
866 spin_unlock(&tree->lock);
867 if (prealloc)
868 free_extent_state(prealloc);
869
870 return 0;
871
872 }
873
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)874 static void wait_on_state(struct extent_io_tree *tree,
875 struct extent_state *state)
876 __releases(tree->lock)
877 __acquires(tree->lock)
878 {
879 DEFINE_WAIT(wait);
880 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
881 spin_unlock(&tree->lock);
882 schedule();
883 spin_lock(&tree->lock);
884 finish_wait(&state->wq, &wait);
885 }
886
887 /*
888 * waits for one or more bits to clear on a range in the state tree.
889 * The range [start, end] is inclusive.
890 * The tree lock is taken by this function
891 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)892 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
893 u32 bits)
894 {
895 struct extent_state *state;
896 struct rb_node *node;
897
898 btrfs_debug_check_extent_io_range(tree, start, end);
899
900 spin_lock(&tree->lock);
901 again:
902 while (1) {
903 /*
904 * this search will find all the extents that end after
905 * our range starts
906 */
907 node = tree_search(tree, start);
908 process_node:
909 if (!node)
910 break;
911
912 state = rb_entry(node, struct extent_state, rb_node);
913
914 if (state->start > end)
915 goto out;
916
917 if (state->state & bits) {
918 start = state->start;
919 refcount_inc(&state->refs);
920 wait_on_state(tree, state);
921 free_extent_state(state);
922 goto again;
923 }
924 start = state->end + 1;
925
926 if (start > end)
927 break;
928
929 if (!cond_resched_lock(&tree->lock)) {
930 node = rb_next(node);
931 goto process_node;
932 }
933 }
934 out:
935 spin_unlock(&tree->lock);
936 }
937
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,struct extent_changeset * changeset)938 static void set_state_bits(struct extent_io_tree *tree,
939 struct extent_state *state,
940 u32 *bits, struct extent_changeset *changeset)
941 {
942 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
943 int ret;
944
945 if (tree->private_data && is_data_inode(tree->private_data))
946 btrfs_set_delalloc_extent(tree->private_data, state, bits);
947
948 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
949 u64 range = state->end - state->start + 1;
950 tree->dirty_bytes += range;
951 }
952 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
953 BUG_ON(ret < 0);
954 state->state |= bits_to_set;
955 }
956
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)957 static void cache_state_if_flags(struct extent_state *state,
958 struct extent_state **cached_ptr,
959 unsigned flags)
960 {
961 if (cached_ptr && !(*cached_ptr)) {
962 if (!flags || (state->state & flags)) {
963 *cached_ptr = state;
964 refcount_inc(&state->refs);
965 }
966 }
967 }
968
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)969 static void cache_state(struct extent_state *state,
970 struct extent_state **cached_ptr)
971 {
972 return cache_state_if_flags(state, cached_ptr,
973 EXTENT_LOCKED | EXTENT_BOUNDARY);
974 }
975
976 /*
977 * set some bits on a range in the tree. This may require allocations or
978 * sleeping, so the gfp mask is used to indicate what is allowed.
979 *
980 * If any of the exclusive bits are set, this will fail with -EEXIST if some
981 * part of the range already has the desired bits set. The start of the
982 * existing range is returned in failed_start in this case.
983 *
984 * [start, end] is inclusive This takes the tree lock.
985 */
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)986 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
987 u32 exclusive_bits, u64 *failed_start,
988 struct extent_state **cached_state, gfp_t mask,
989 struct extent_changeset *changeset)
990 {
991 struct extent_state *state;
992 struct extent_state *prealloc = NULL;
993 struct rb_node *node;
994 struct rb_node **p;
995 struct rb_node *parent;
996 int err = 0;
997 u64 last_start;
998 u64 last_end;
999
1000 btrfs_debug_check_extent_io_range(tree, start, end);
1001 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
1002
1003 if (exclusive_bits)
1004 ASSERT(failed_start);
1005 else
1006 ASSERT(failed_start == NULL);
1007 again:
1008 if (!prealloc && gfpflags_allow_blocking(mask)) {
1009 /*
1010 * Don't care for allocation failure here because we might end
1011 * up not needing the pre-allocated extent state at all, which
1012 * is the case if we only have in the tree extent states that
1013 * cover our input range and don't cover too any other range.
1014 * If we end up needing a new extent state we allocate it later.
1015 */
1016 prealloc = alloc_extent_state(mask);
1017 }
1018
1019 spin_lock(&tree->lock);
1020 if (cached_state && *cached_state) {
1021 state = *cached_state;
1022 if (state->start <= start && state->end > start &&
1023 extent_state_in_tree(state)) {
1024 node = &state->rb_node;
1025 goto hit_next;
1026 }
1027 }
1028 /*
1029 * this search will find all the extents that end after
1030 * our range starts.
1031 */
1032 node = tree_search_for_insert(tree, start, &p, &parent);
1033 if (!node) {
1034 prealloc = alloc_extent_state_atomic(prealloc);
1035 BUG_ON(!prealloc);
1036 err = insert_state(tree, prealloc, start, end,
1037 &p, &parent, &bits, changeset);
1038 if (err)
1039 extent_io_tree_panic(tree, err);
1040
1041 cache_state(prealloc, cached_state);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045 state = rb_entry(node, struct extent_state, rb_node);
1046 hit_next:
1047 last_start = state->start;
1048 last_end = state->end;
1049
1050 /*
1051 * | ---- desired range ---- |
1052 * | state |
1053 *
1054 * Just lock what we found and keep going
1055 */
1056 if (state->start == start && state->end <= end) {
1057 if (state->state & exclusive_bits) {
1058 *failed_start = state->start;
1059 err = -EEXIST;
1060 goto out;
1061 }
1062
1063 set_state_bits(tree, state, &bits, changeset);
1064 cache_state(state, cached_state);
1065 merge_state(tree, state);
1066 if (last_end == (u64)-1)
1067 goto out;
1068 start = last_end + 1;
1069 state = next_state(state);
1070 if (start < end && state && state->start == start &&
1071 !need_resched())
1072 goto hit_next;
1073 goto search_again;
1074 }
1075
1076 /*
1077 * | ---- desired range ---- |
1078 * | state |
1079 * or
1080 * | ------------- state -------------- |
1081 *
1082 * We need to split the extent we found, and may flip bits on
1083 * second half.
1084 *
1085 * If the extent we found extends past our
1086 * range, we just split and search again. It'll get split
1087 * again the next time though.
1088 *
1089 * If the extent we found is inside our range, we set the
1090 * desired bit on it.
1091 */
1092 if (state->start < start) {
1093 if (state->state & exclusive_bits) {
1094 *failed_start = start;
1095 err = -EEXIST;
1096 goto out;
1097 }
1098
1099 /*
1100 * If this extent already has all the bits we want set, then
1101 * skip it, not necessary to split it or do anything with it.
1102 */
1103 if ((state->state & bits) == bits) {
1104 start = state->end + 1;
1105 cache_state(state, cached_state);
1106 goto search_again;
1107 }
1108
1109 prealloc = alloc_extent_state_atomic(prealloc);
1110 BUG_ON(!prealloc);
1111 err = split_state(tree, state, prealloc, start);
1112 if (err)
1113 extent_io_tree_panic(tree, err);
1114
1115 prealloc = NULL;
1116 if (err)
1117 goto out;
1118 if (state->end <= end) {
1119 set_state_bits(tree, state, &bits, changeset);
1120 cache_state(state, cached_state);
1121 merge_state(tree, state);
1122 if (last_end == (u64)-1)
1123 goto out;
1124 start = last_end + 1;
1125 state = next_state(state);
1126 if (start < end && state && state->start == start &&
1127 !need_resched())
1128 goto hit_next;
1129 }
1130 goto search_again;
1131 }
1132 /*
1133 * | ---- desired range ---- |
1134 * | state | or | state |
1135 *
1136 * There's a hole, we need to insert something in it and
1137 * ignore the extent we found.
1138 */
1139 if (state->start > start) {
1140 u64 this_end;
1141 if (end < last_start)
1142 this_end = end;
1143 else
1144 this_end = last_start - 1;
1145
1146 prealloc = alloc_extent_state_atomic(prealloc);
1147 BUG_ON(!prealloc);
1148
1149 /*
1150 * Avoid to free 'prealloc' if it can be merged with
1151 * the later extent.
1152 */
1153 err = insert_state(tree, prealloc, start, this_end,
1154 NULL, NULL, &bits, changeset);
1155 if (err)
1156 extent_io_tree_panic(tree, err);
1157
1158 cache_state(prealloc, cached_state);
1159 prealloc = NULL;
1160 start = this_end + 1;
1161 goto search_again;
1162 }
1163 /*
1164 * | ---- desired range ---- |
1165 * | state |
1166 * We need to split the extent, and set the bit
1167 * on the first half
1168 */
1169 if (state->start <= end && state->end > end) {
1170 if (state->state & exclusive_bits) {
1171 *failed_start = start;
1172 err = -EEXIST;
1173 goto out;
1174 }
1175
1176 prealloc = alloc_extent_state_atomic(prealloc);
1177 BUG_ON(!prealloc);
1178 err = split_state(tree, state, prealloc, end + 1);
1179 if (err)
1180 extent_io_tree_panic(tree, err);
1181
1182 set_state_bits(tree, prealloc, &bits, changeset);
1183 cache_state(prealloc, cached_state);
1184 merge_state(tree, prealloc);
1185 prealloc = NULL;
1186 goto out;
1187 }
1188
1189 search_again:
1190 if (start > end)
1191 goto out;
1192 spin_unlock(&tree->lock);
1193 if (gfpflags_allow_blocking(mask))
1194 cond_resched();
1195 goto again;
1196
1197 out:
1198 spin_unlock(&tree->lock);
1199 if (prealloc)
1200 free_extent_state(prealloc);
1201
1202 return err;
1203
1204 }
1205
1206 /**
1207 * convert_extent_bit - convert all bits in a given range from one bit to
1208 * another
1209 * @tree: the io tree to search
1210 * @start: the start offset in bytes
1211 * @end: the end offset in bytes (inclusive)
1212 * @bits: the bits to set in this range
1213 * @clear_bits: the bits to clear in this range
1214 * @cached_state: state that we're going to cache
1215 *
1216 * This will go through and set bits for the given range. If any states exist
1217 * already in this range they are set with the given bit and cleared of the
1218 * clear_bits. This is only meant to be used by things that are mergeable, ie
1219 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1220 * boundary bits like LOCK.
1221 *
1222 * All allocations are done with GFP_NOFS.
1223 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 clear_bits,struct extent_state ** cached_state)1224 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1225 u32 bits, u32 clear_bits,
1226 struct extent_state **cached_state)
1227 {
1228 struct extent_state *state;
1229 struct extent_state *prealloc = NULL;
1230 struct rb_node *node;
1231 struct rb_node **p;
1232 struct rb_node *parent;
1233 int err = 0;
1234 u64 last_start;
1235 u64 last_end;
1236 bool first_iteration = true;
1237
1238 btrfs_debug_check_extent_io_range(tree, start, end);
1239 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1240 clear_bits);
1241
1242 again:
1243 if (!prealloc) {
1244 /*
1245 * Best effort, don't worry if extent state allocation fails
1246 * here for the first iteration. We might have a cached state
1247 * that matches exactly the target range, in which case no
1248 * extent state allocations are needed. We'll only know this
1249 * after locking the tree.
1250 */
1251 prealloc = alloc_extent_state(GFP_NOFS);
1252 if (!prealloc && !first_iteration)
1253 return -ENOMEM;
1254 }
1255
1256 spin_lock(&tree->lock);
1257 if (cached_state && *cached_state) {
1258 state = *cached_state;
1259 if (state->start <= start && state->end > start &&
1260 extent_state_in_tree(state)) {
1261 node = &state->rb_node;
1262 goto hit_next;
1263 }
1264 }
1265
1266 /*
1267 * this search will find all the extents that end after
1268 * our range starts.
1269 */
1270 node = tree_search_for_insert(tree, start, &p, &parent);
1271 if (!node) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
1277 err = insert_state(tree, prealloc, start, end,
1278 &p, &parent, &bits, NULL);
1279 if (err)
1280 extent_io_tree_panic(tree, err);
1281 cache_state(prealloc, cached_state);
1282 prealloc = NULL;
1283 goto out;
1284 }
1285 state = rb_entry(node, struct extent_state, rb_node);
1286 hit_next:
1287 last_start = state->start;
1288 last_end = state->end;
1289
1290 /*
1291 * | ---- desired range ---- |
1292 * | state |
1293 *
1294 * Just lock what we found and keep going
1295 */
1296 if (state->start == start && state->end <= end) {
1297 set_state_bits(tree, state, &bits, NULL);
1298 cache_state(state, cached_state);
1299 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1300 if (last_end == (u64)-1)
1301 goto out;
1302 start = last_end + 1;
1303 if (start < end && state && state->start == start &&
1304 !need_resched())
1305 goto hit_next;
1306 goto search_again;
1307 }
1308
1309 /*
1310 * | ---- desired range ---- |
1311 * | state |
1312 * or
1313 * | ------------- state -------------- |
1314 *
1315 * We need to split the extent we found, and may flip bits on
1316 * second half.
1317 *
1318 * If the extent we found extends past our
1319 * range, we just split and search again. It'll get split
1320 * again the next time though.
1321 *
1322 * If the extent we found is inside our range, we set the
1323 * desired bit on it.
1324 */
1325 if (state->start < start) {
1326 prealloc = alloc_extent_state_atomic(prealloc);
1327 if (!prealloc) {
1328 err = -ENOMEM;
1329 goto out;
1330 }
1331 err = split_state(tree, state, prealloc, start);
1332 if (err)
1333 extent_io_tree_panic(tree, err);
1334 prealloc = NULL;
1335 if (err)
1336 goto out;
1337 if (state->end <= end) {
1338 set_state_bits(tree, state, &bits, NULL);
1339 cache_state(state, cached_state);
1340 state = clear_state_bit(tree, state, &clear_bits, 0,
1341 NULL);
1342 if (last_end == (u64)-1)
1343 goto out;
1344 start = last_end + 1;
1345 if (start < end && state && state->start == start &&
1346 !need_resched())
1347 goto hit_next;
1348 }
1349 goto search_again;
1350 }
1351 /*
1352 * | ---- desired range ---- |
1353 * | state | or | state |
1354 *
1355 * There's a hole, we need to insert something in it and
1356 * ignore the extent we found.
1357 */
1358 if (state->start > start) {
1359 u64 this_end;
1360 if (end < last_start)
1361 this_end = end;
1362 else
1363 this_end = last_start - 1;
1364
1365 prealloc = alloc_extent_state_atomic(prealloc);
1366 if (!prealloc) {
1367 err = -ENOMEM;
1368 goto out;
1369 }
1370
1371 /*
1372 * Avoid to free 'prealloc' if it can be merged with
1373 * the later extent.
1374 */
1375 err = insert_state(tree, prealloc, start, this_end,
1376 NULL, NULL, &bits, NULL);
1377 if (err)
1378 extent_io_tree_panic(tree, err);
1379 cache_state(prealloc, cached_state);
1380 prealloc = NULL;
1381 start = this_end + 1;
1382 goto search_again;
1383 }
1384 /*
1385 * | ---- desired range ---- |
1386 * | state |
1387 * We need to split the extent, and set the bit
1388 * on the first half
1389 */
1390 if (state->start <= end && state->end > end) {
1391 prealloc = alloc_extent_state_atomic(prealloc);
1392 if (!prealloc) {
1393 err = -ENOMEM;
1394 goto out;
1395 }
1396
1397 err = split_state(tree, state, prealloc, end + 1);
1398 if (err)
1399 extent_io_tree_panic(tree, err);
1400
1401 set_state_bits(tree, prealloc, &bits, NULL);
1402 cache_state(prealloc, cached_state);
1403 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1404 prealloc = NULL;
1405 goto out;
1406 }
1407
1408 search_again:
1409 if (start > end)
1410 goto out;
1411 spin_unlock(&tree->lock);
1412 cond_resched();
1413 first_iteration = false;
1414 goto again;
1415
1416 out:
1417 spin_unlock(&tree->lock);
1418 if (prealloc)
1419 free_extent_state(prealloc);
1420
1421 return err;
1422 }
1423
1424 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1425 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1426 u32 bits, struct extent_changeset *changeset)
1427 {
1428 /*
1429 * We don't support EXTENT_LOCKED yet, as current changeset will
1430 * record any bits changed, so for EXTENT_LOCKED case, it will
1431 * either fail with -EEXIST or changeset will record the whole
1432 * range.
1433 */
1434 BUG_ON(bits & EXTENT_LOCKED);
1435
1436 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1437 changeset);
1438 }
1439
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)1440 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1441 u32 bits)
1442 {
1443 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1444 GFP_NOWAIT, NULL);
1445 }
1446
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached)1447 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1448 u32 bits, int wake, int delete,
1449 struct extent_state **cached)
1450 {
1451 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1452 cached, GFP_NOFS, NULL);
1453 }
1454
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1455 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 u32 bits, struct extent_changeset *changeset)
1457 {
1458 /*
1459 * Don't support EXTENT_LOCKED case, same reason as
1460 * set_record_extent_bits().
1461 */
1462 BUG_ON(bits & EXTENT_LOCKED);
1463
1464 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1465 changeset);
1466 }
1467
1468 /*
1469 * either insert or lock state struct between start and end use mask to tell
1470 * us if waiting is desired.
1471 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1472 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1473 struct extent_state **cached_state)
1474 {
1475 int err;
1476 u64 failed_start;
1477
1478 while (1) {
1479 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1480 EXTENT_LOCKED, &failed_start,
1481 cached_state, GFP_NOFS, NULL);
1482 if (err == -EEXIST) {
1483 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1484 start = failed_start;
1485 } else
1486 break;
1487 WARN_ON(start > end);
1488 }
1489 return err;
1490 }
1491
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1492 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1493 {
1494 int err;
1495 u64 failed_start;
1496
1497 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1498 &failed_start, NULL, GFP_NOFS, NULL);
1499 if (err == -EEXIST) {
1500 if (failed_start > start)
1501 clear_extent_bit(tree, start, failed_start - 1,
1502 EXTENT_LOCKED, 1, 0, NULL);
1503 return 0;
1504 }
1505 return 1;
1506 }
1507
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1508 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 clear_page_dirty_for_io(page);
1518 put_page(page);
1519 index++;
1520 }
1521 }
1522
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1523 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1524 {
1525 struct address_space *mapping = inode->i_mapping;
1526 unsigned long index = start >> PAGE_SHIFT;
1527 unsigned long end_index = end >> PAGE_SHIFT;
1528 struct folio *folio;
1529
1530 while (index <= end_index) {
1531 folio = filemap_get_folio(mapping, index);
1532 filemap_dirty_folio(mapping, folio);
1533 folio_account_redirty(folio);
1534 index += folio_nr_pages(folio);
1535 folio_put(folio);
1536 }
1537 }
1538
1539 /* find the first state struct with 'bits' set after 'start', and
1540 * return it. tree->lock must be held. NULL will returned if
1541 * nothing was found after 'start'
1542 */
1543 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,u32 bits)1544 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1545 {
1546 struct rb_node *node;
1547 struct extent_state *state;
1548
1549 /*
1550 * this search will find all the extents that end after
1551 * our range starts.
1552 */
1553 node = tree_search(tree, start);
1554 if (!node)
1555 goto out;
1556
1557 while (1) {
1558 state = rb_entry(node, struct extent_state, rb_node);
1559 if (state->end >= start && (state->state & bits))
1560 return state;
1561
1562 node = rb_next(node);
1563 if (!node)
1564 break;
1565 }
1566 out:
1567 return NULL;
1568 }
1569
1570 /*
1571 * Find the first offset in the io tree with one or more @bits set.
1572 *
1573 * Note: If there are multiple bits set in @bits, any of them will match.
1574 *
1575 * Return 0 if we find something, and update @start_ret and @end_ret.
1576 * Return 1 if we found nothing.
1577 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits,struct extent_state ** cached_state)1578 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1579 u64 *start_ret, u64 *end_ret, u32 bits,
1580 struct extent_state **cached_state)
1581 {
1582 struct extent_state *state;
1583 int ret = 1;
1584
1585 spin_lock(&tree->lock);
1586 if (cached_state && *cached_state) {
1587 state = *cached_state;
1588 if (state->end == start - 1 && extent_state_in_tree(state)) {
1589 while ((state = next_state(state)) != NULL) {
1590 if (state->state & bits)
1591 goto got_it;
1592 }
1593 free_extent_state(*cached_state);
1594 *cached_state = NULL;
1595 goto out;
1596 }
1597 free_extent_state(*cached_state);
1598 *cached_state = NULL;
1599 }
1600
1601 state = find_first_extent_bit_state(tree, start, bits);
1602 got_it:
1603 if (state) {
1604 cache_state_if_flags(state, cached_state, 0);
1605 *start_ret = state->start;
1606 *end_ret = state->end;
1607 ret = 0;
1608 }
1609 out:
1610 spin_unlock(&tree->lock);
1611 return ret;
1612 }
1613
1614 /**
1615 * Find a contiguous area of bits
1616 *
1617 * @tree: io tree to check
1618 * @start: offset to start the search from
1619 * @start_ret: the first offset we found with the bits set
1620 * @end_ret: the final contiguous range of the bits that were set
1621 * @bits: bits to look for
1622 *
1623 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1624 * to set bits appropriately, and then merge them again. During this time it
1625 * will drop the tree->lock, so use this helper if you want to find the actual
1626 * contiguous area for given bits. We will search to the first bit we find, and
1627 * then walk down the tree until we find a non-contiguous area. The area
1628 * returned will be the full contiguous area with the bits set.
1629 */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1630 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1631 u64 *start_ret, u64 *end_ret, u32 bits)
1632 {
1633 struct extent_state *state;
1634 int ret = 1;
1635
1636 spin_lock(&tree->lock);
1637 state = find_first_extent_bit_state(tree, start, bits);
1638 if (state) {
1639 *start_ret = state->start;
1640 *end_ret = state->end;
1641 while ((state = next_state(state)) != NULL) {
1642 if (state->start > (*end_ret + 1))
1643 break;
1644 *end_ret = state->end;
1645 }
1646 ret = 0;
1647 }
1648 spin_unlock(&tree->lock);
1649 return ret;
1650 }
1651
1652 /**
1653 * Find the first range that has @bits not set. This range could start before
1654 * @start.
1655 *
1656 * @tree: the tree to search
1657 * @start: offset at/after which the found extent should start
1658 * @start_ret: records the beginning of the range
1659 * @end_ret: records the end of the range (inclusive)
1660 * @bits: the set of bits which must be unset
1661 *
1662 * Since unallocated range is also considered one which doesn't have the bits
1663 * set it's possible that @end_ret contains -1, this happens in case the range
1664 * spans (last_range_end, end of device]. In this case it's up to the caller to
1665 * trim @end_ret to the appropriate size.
1666 */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1667 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1668 u64 *start_ret, u64 *end_ret, u32 bits)
1669 {
1670 struct extent_state *state;
1671 struct rb_node *node, *prev = NULL, *next;
1672
1673 spin_lock(&tree->lock);
1674
1675 /* Find first extent with bits cleared */
1676 while (1) {
1677 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1678 if (!node && !next && !prev) {
1679 /*
1680 * Tree is completely empty, send full range and let
1681 * caller deal with it
1682 */
1683 *start_ret = 0;
1684 *end_ret = -1;
1685 goto out;
1686 } else if (!node && !next) {
1687 /*
1688 * We are past the last allocated chunk, set start at
1689 * the end of the last extent.
1690 */
1691 state = rb_entry(prev, struct extent_state, rb_node);
1692 *start_ret = state->end + 1;
1693 *end_ret = -1;
1694 goto out;
1695 } else if (!node) {
1696 node = next;
1697 }
1698 /*
1699 * At this point 'node' either contains 'start' or start is
1700 * before 'node'
1701 */
1702 state = rb_entry(node, struct extent_state, rb_node);
1703
1704 if (in_range(start, state->start, state->end - state->start + 1)) {
1705 if (state->state & bits) {
1706 /*
1707 * |--range with bits sets--|
1708 * |
1709 * start
1710 */
1711 start = state->end + 1;
1712 } else {
1713 /*
1714 * 'start' falls within a range that doesn't
1715 * have the bits set, so take its start as
1716 * the beginning of the desired range
1717 *
1718 * |--range with bits cleared----|
1719 * |
1720 * start
1721 */
1722 *start_ret = state->start;
1723 break;
1724 }
1725 } else {
1726 /*
1727 * |---prev range---|---hole/unset---|---node range---|
1728 * |
1729 * start
1730 *
1731 * or
1732 *
1733 * |---hole/unset--||--first node--|
1734 * 0 |
1735 * start
1736 */
1737 if (prev) {
1738 state = rb_entry(prev, struct extent_state,
1739 rb_node);
1740 *start_ret = state->end + 1;
1741 } else {
1742 *start_ret = 0;
1743 }
1744 break;
1745 }
1746 }
1747
1748 /*
1749 * Find the longest stretch from start until an entry which has the
1750 * bits set
1751 */
1752 while (1) {
1753 state = rb_entry(node, struct extent_state, rb_node);
1754 if (state->end >= start && !(state->state & bits)) {
1755 *end_ret = state->end;
1756 } else {
1757 *end_ret = state->start - 1;
1758 break;
1759 }
1760
1761 node = rb_next(node);
1762 if (!node)
1763 break;
1764 }
1765 out:
1766 spin_unlock(&tree->lock);
1767 }
1768
1769 /*
1770 * find a contiguous range of bytes in the file marked as delalloc, not
1771 * more than 'max_bytes'. start and end are used to return the range,
1772 *
1773 * true is returned if we find something, false if nothing was in the tree
1774 */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1775 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1776 u64 *end, u64 max_bytes,
1777 struct extent_state **cached_state)
1778 {
1779 struct rb_node *node;
1780 struct extent_state *state;
1781 u64 cur_start = *start;
1782 bool found = false;
1783 u64 total_bytes = 0;
1784
1785 spin_lock(&tree->lock);
1786
1787 /*
1788 * this search will find all the extents that end after
1789 * our range starts.
1790 */
1791 node = tree_search(tree, cur_start);
1792 if (!node) {
1793 *end = (u64)-1;
1794 goto out;
1795 }
1796
1797 while (1) {
1798 state = rb_entry(node, struct extent_state, rb_node);
1799 if (found && (state->start != cur_start ||
1800 (state->state & EXTENT_BOUNDARY))) {
1801 goto out;
1802 }
1803 if (!(state->state & EXTENT_DELALLOC)) {
1804 if (!found)
1805 *end = state->end;
1806 goto out;
1807 }
1808 if (!found) {
1809 *start = state->start;
1810 *cached_state = state;
1811 refcount_inc(&state->refs);
1812 }
1813 found = true;
1814 *end = state->end;
1815 cur_start = state->end + 1;
1816 node = rb_next(node);
1817 total_bytes += state->end - state->start + 1;
1818 if (total_bytes >= max_bytes)
1819 break;
1820 if (!node)
1821 break;
1822 }
1823 out:
1824 spin_unlock(&tree->lock);
1825 return found;
1826 }
1827
1828 /*
1829 * Process one page for __process_pages_contig().
1830 *
1831 * Return >0 if we hit @page == @locked_page.
1832 * Return 0 if we updated the page status.
1833 * Return -EGAIN if the we need to try again.
1834 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1835 */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)1836 static int process_one_page(struct btrfs_fs_info *fs_info,
1837 struct address_space *mapping,
1838 struct page *page, struct page *locked_page,
1839 unsigned long page_ops, u64 start, u64 end)
1840 {
1841 u32 len;
1842
1843 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1844 len = end + 1 - start;
1845
1846 if (page_ops & PAGE_SET_ORDERED)
1847 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1848 if (page_ops & PAGE_SET_ERROR)
1849 btrfs_page_clamp_set_error(fs_info, page, start, len);
1850 if (page_ops & PAGE_START_WRITEBACK) {
1851 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1852 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1853 }
1854 if (page_ops & PAGE_END_WRITEBACK)
1855 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1856
1857 if (page == locked_page)
1858 return 1;
1859
1860 if (page_ops & PAGE_LOCK) {
1861 int ret;
1862
1863 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1864 if (ret)
1865 return ret;
1866 if (!PageDirty(page) || page->mapping != mapping) {
1867 btrfs_page_end_writer_lock(fs_info, page, start, len);
1868 return -EAGAIN;
1869 }
1870 }
1871 if (page_ops & PAGE_UNLOCK)
1872 btrfs_page_end_writer_lock(fs_info, page, start, len);
1873 return 0;
1874 }
1875
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)1876 static int __process_pages_contig(struct address_space *mapping,
1877 struct page *locked_page,
1878 u64 start, u64 end, unsigned long page_ops,
1879 u64 *processed_end)
1880 {
1881 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1882 pgoff_t start_index = start >> PAGE_SHIFT;
1883 pgoff_t end_index = end >> PAGE_SHIFT;
1884 pgoff_t index = start_index;
1885 unsigned long nr_pages = end_index - start_index + 1;
1886 unsigned long pages_processed = 0;
1887 struct page *pages[16];
1888 int err = 0;
1889 int i;
1890
1891 if (page_ops & PAGE_LOCK) {
1892 ASSERT(page_ops == PAGE_LOCK);
1893 ASSERT(processed_end && *processed_end == start);
1894 }
1895
1896 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1897 mapping_set_error(mapping, -EIO);
1898
1899 while (nr_pages > 0) {
1900 int found_pages;
1901
1902 found_pages = find_get_pages_contig(mapping, index,
1903 min_t(unsigned long,
1904 nr_pages, ARRAY_SIZE(pages)), pages);
1905 if (found_pages == 0) {
1906 /*
1907 * Only if we're going to lock these pages, we can find
1908 * nothing at @index.
1909 */
1910 ASSERT(page_ops & PAGE_LOCK);
1911 err = -EAGAIN;
1912 goto out;
1913 }
1914
1915 for (i = 0; i < found_pages; i++) {
1916 int process_ret;
1917
1918 process_ret = process_one_page(fs_info, mapping,
1919 pages[i], locked_page, page_ops,
1920 start, end);
1921 if (process_ret < 0) {
1922 for (; i < found_pages; i++)
1923 put_page(pages[i]);
1924 err = -EAGAIN;
1925 goto out;
1926 }
1927 put_page(pages[i]);
1928 pages_processed++;
1929 }
1930 nr_pages -= found_pages;
1931 index += found_pages;
1932 cond_resched();
1933 }
1934 out:
1935 if (err && processed_end) {
1936 /*
1937 * Update @processed_end. I know this is awful since it has
1938 * two different return value patterns (inclusive vs exclusive).
1939 *
1940 * But the exclusive pattern is necessary if @start is 0, or we
1941 * underflow and check against processed_end won't work as
1942 * expected.
1943 */
1944 if (pages_processed)
1945 *processed_end = min(end,
1946 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1947 else
1948 *processed_end = start;
1949 }
1950 return err;
1951 }
1952
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1953 static noinline void __unlock_for_delalloc(struct inode *inode,
1954 struct page *locked_page,
1955 u64 start, u64 end)
1956 {
1957 unsigned long index = start >> PAGE_SHIFT;
1958 unsigned long end_index = end >> PAGE_SHIFT;
1959
1960 ASSERT(locked_page);
1961 if (index == locked_page->index && end_index == index)
1962 return;
1963
1964 __process_pages_contig(inode->i_mapping, locked_page, start, end,
1965 PAGE_UNLOCK, NULL);
1966 }
1967
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1968 static noinline int lock_delalloc_pages(struct inode *inode,
1969 struct page *locked_page,
1970 u64 delalloc_start,
1971 u64 delalloc_end)
1972 {
1973 unsigned long index = delalloc_start >> PAGE_SHIFT;
1974 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1975 u64 processed_end = delalloc_start;
1976 int ret;
1977
1978 ASSERT(locked_page);
1979 if (index == locked_page->index && index == end_index)
1980 return 0;
1981
1982 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1983 delalloc_end, PAGE_LOCK, &processed_end);
1984 if (ret == -EAGAIN && processed_end > delalloc_start)
1985 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1986 processed_end);
1987 return ret;
1988 }
1989
1990 /*
1991 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1992 * more than @max_bytes.
1993 *
1994 * @start: The original start bytenr to search.
1995 * Will store the extent range start bytenr.
1996 * @end: The original end bytenr of the search range
1997 * Will store the extent range end bytenr.
1998 *
1999 * Return true if we find a delalloc range which starts inside the original
2000 * range, and @start/@end will store the delalloc range start/end.
2001 *
2002 * Return false if we can't find any delalloc range which starts inside the
2003 * original range, and @start/@end will be the non-delalloc range start/end.
2004 */
2005 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)2006 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2007 struct page *locked_page, u64 *start,
2008 u64 *end)
2009 {
2010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2011 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2012 const u64 orig_start = *start;
2013 const u64 orig_end = *end;
2014 /* The sanity tests may not set a valid fs_info. */
2015 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
2016 u64 delalloc_start;
2017 u64 delalloc_end;
2018 bool found;
2019 struct extent_state *cached_state = NULL;
2020 int ret;
2021 int loops = 0;
2022
2023 /* Caller should pass a valid @end to indicate the search range end */
2024 ASSERT(orig_end > orig_start);
2025
2026 /* The range should at least cover part of the page */
2027 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2028 orig_end <= page_offset(locked_page)));
2029 again:
2030 /* step one, find a bunch of delalloc bytes starting at start */
2031 delalloc_start = *start;
2032 delalloc_end = 0;
2033 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2034 max_bytes, &cached_state);
2035 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
2036 *start = delalloc_start;
2037
2038 /* @delalloc_end can be -1, never go beyond @orig_end */
2039 *end = min(delalloc_end, orig_end);
2040 free_extent_state(cached_state);
2041 return false;
2042 }
2043
2044 /*
2045 * start comes from the offset of locked_page. We have to lock
2046 * pages in order, so we can't process delalloc bytes before
2047 * locked_page
2048 */
2049 if (delalloc_start < *start)
2050 delalloc_start = *start;
2051
2052 /*
2053 * make sure to limit the number of pages we try to lock down
2054 */
2055 if (delalloc_end + 1 - delalloc_start > max_bytes)
2056 delalloc_end = delalloc_start + max_bytes - 1;
2057
2058 /* step two, lock all the pages after the page that has start */
2059 ret = lock_delalloc_pages(inode, locked_page,
2060 delalloc_start, delalloc_end);
2061 ASSERT(!ret || ret == -EAGAIN);
2062 if (ret == -EAGAIN) {
2063 /* some of the pages are gone, lets avoid looping by
2064 * shortening the size of the delalloc range we're searching
2065 */
2066 free_extent_state(cached_state);
2067 cached_state = NULL;
2068 if (!loops) {
2069 max_bytes = PAGE_SIZE;
2070 loops = 1;
2071 goto again;
2072 } else {
2073 found = false;
2074 goto out_failed;
2075 }
2076 }
2077
2078 /* step three, lock the state bits for the whole range */
2079 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2080
2081 /* then test to make sure it is all still delalloc */
2082 ret = test_range_bit(tree, delalloc_start, delalloc_end,
2083 EXTENT_DELALLOC, 1, cached_state);
2084 if (!ret) {
2085 unlock_extent_cached(tree, delalloc_start, delalloc_end,
2086 &cached_state);
2087 __unlock_for_delalloc(inode, locked_page,
2088 delalloc_start, delalloc_end);
2089 cond_resched();
2090 goto again;
2091 }
2092 free_extent_state(cached_state);
2093 *start = delalloc_start;
2094 *end = delalloc_end;
2095 out_failed:
2096 return found;
2097 }
2098
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)2099 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2100 struct page *locked_page,
2101 u32 clear_bits, unsigned long page_ops)
2102 {
2103 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2104
2105 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2106 start, end, page_ops, NULL);
2107 }
2108
2109 /*
2110 * count the number of bytes in the tree that have a given bit(s)
2111 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2112 * cached. The total number found is returned.
2113 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,u32 bits,int contig)2114 u64 count_range_bits(struct extent_io_tree *tree,
2115 u64 *start, u64 search_end, u64 max_bytes,
2116 u32 bits, int contig)
2117 {
2118 struct rb_node *node;
2119 struct extent_state *state;
2120 u64 cur_start = *start;
2121 u64 total_bytes = 0;
2122 u64 last = 0;
2123 int found = 0;
2124
2125 if (WARN_ON(search_end <= cur_start))
2126 return 0;
2127
2128 spin_lock(&tree->lock);
2129 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2130 total_bytes = tree->dirty_bytes;
2131 goto out;
2132 }
2133 /*
2134 * this search will find all the extents that end after
2135 * our range starts.
2136 */
2137 node = tree_search(tree, cur_start);
2138 if (!node)
2139 goto out;
2140
2141 while (1) {
2142 state = rb_entry(node, struct extent_state, rb_node);
2143 if (state->start > search_end)
2144 break;
2145 if (contig && found && state->start > last + 1)
2146 break;
2147 if (state->end >= cur_start && (state->state & bits) == bits) {
2148 total_bytes += min(search_end, state->end) + 1 -
2149 max(cur_start, state->start);
2150 if (total_bytes >= max_bytes)
2151 break;
2152 if (!found) {
2153 *start = max(cur_start, state->start);
2154 found = 1;
2155 }
2156 last = state->end;
2157 } else if (contig && found) {
2158 break;
2159 }
2160 node = rb_next(node);
2161 if (!node)
2162 break;
2163 }
2164 out:
2165 spin_unlock(&tree->lock);
2166 return total_bytes;
2167 }
2168
2169 /*
2170 * set the private field for a given byte offset in the tree. If there isn't
2171 * an extent_state there already, this does nothing.
2172 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2173 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2174 struct io_failure_record *failrec)
2175 {
2176 struct rb_node *node;
2177 struct extent_state *state;
2178 int ret = 0;
2179
2180 spin_lock(&tree->lock);
2181 /*
2182 * this search will find all the extents that end after
2183 * our range starts.
2184 */
2185 node = tree_search(tree, start);
2186 if (!node) {
2187 ret = -ENOENT;
2188 goto out;
2189 }
2190 state = rb_entry(node, struct extent_state, rb_node);
2191 if (state->start != start) {
2192 ret = -ENOENT;
2193 goto out;
2194 }
2195 state->failrec = failrec;
2196 out:
2197 spin_unlock(&tree->lock);
2198 return ret;
2199 }
2200
get_state_failrec(struct extent_io_tree * tree,u64 start)2201 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2202 {
2203 struct rb_node *node;
2204 struct extent_state *state;
2205 struct io_failure_record *failrec;
2206
2207 spin_lock(&tree->lock);
2208 /*
2209 * this search will find all the extents that end after
2210 * our range starts.
2211 */
2212 node = tree_search(tree, start);
2213 if (!node) {
2214 failrec = ERR_PTR(-ENOENT);
2215 goto out;
2216 }
2217 state = rb_entry(node, struct extent_state, rb_node);
2218 if (state->start != start) {
2219 failrec = ERR_PTR(-ENOENT);
2220 goto out;
2221 }
2222
2223 failrec = state->failrec;
2224 out:
2225 spin_unlock(&tree->lock);
2226 return failrec;
2227 }
2228
2229 /*
2230 * searches a range in the state tree for a given mask.
2231 * If 'filled' == 1, this returns 1 only if every extent in the tree
2232 * has the bits set. Otherwise, 1 is returned if any bit in the
2233 * range is found set.
2234 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int filled,struct extent_state * cached)2235 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2236 u32 bits, int filled, struct extent_state *cached)
2237 {
2238 struct extent_state *state = NULL;
2239 struct rb_node *node;
2240 int bitset = 0;
2241
2242 spin_lock(&tree->lock);
2243 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2244 cached->end > start)
2245 node = &cached->rb_node;
2246 else
2247 node = tree_search(tree, start);
2248 while (node && start <= end) {
2249 state = rb_entry(node, struct extent_state, rb_node);
2250
2251 if (filled && state->start > start) {
2252 bitset = 0;
2253 break;
2254 }
2255
2256 if (state->start > end)
2257 break;
2258
2259 if (state->state & bits) {
2260 bitset = 1;
2261 if (!filled)
2262 break;
2263 } else if (filled) {
2264 bitset = 0;
2265 break;
2266 }
2267
2268 if (state->end == (u64)-1)
2269 break;
2270
2271 start = state->end + 1;
2272 if (start > end)
2273 break;
2274 node = rb_next(node);
2275 if (!node) {
2276 if (filled)
2277 bitset = 0;
2278 break;
2279 }
2280 }
2281 spin_unlock(&tree->lock);
2282 return bitset;
2283 }
2284
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2285 int free_io_failure(struct extent_io_tree *failure_tree,
2286 struct extent_io_tree *io_tree,
2287 struct io_failure_record *rec)
2288 {
2289 int ret;
2290 int err = 0;
2291
2292 set_state_failrec(failure_tree, rec->start, NULL);
2293 ret = clear_extent_bits(failure_tree, rec->start,
2294 rec->start + rec->len - 1,
2295 EXTENT_LOCKED | EXTENT_DIRTY);
2296 if (ret)
2297 err = ret;
2298
2299 ret = clear_extent_bits(io_tree, rec->start,
2300 rec->start + rec->len - 1,
2301 EXTENT_DAMAGED);
2302 if (ret && !err)
2303 err = ret;
2304
2305 kfree(rec);
2306 return err;
2307 }
2308
2309 /*
2310 * this bypasses the standard btrfs submit functions deliberately, as
2311 * the standard behavior is to write all copies in a raid setup. here we only
2312 * want to write the one bad copy. so we do the mapping for ourselves and issue
2313 * submit_bio directly.
2314 * to avoid any synchronization issues, wait for the data after writing, which
2315 * actually prevents the read that triggered the error from finishing.
2316 * currently, there can be no more than two copies of every data bit. thus,
2317 * exactly one rewrite is required.
2318 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2319 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2320 u64 length, u64 logical, struct page *page,
2321 unsigned int pg_offset, int mirror_num)
2322 {
2323 struct btrfs_device *dev;
2324 struct bio_vec bvec;
2325 struct bio bio;
2326 u64 map_length = 0;
2327 u64 sector;
2328 struct btrfs_io_context *bioc = NULL;
2329 int ret = 0;
2330
2331 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2332 BUG_ON(!mirror_num);
2333
2334 if (btrfs_repair_one_zone(fs_info, logical))
2335 return 0;
2336
2337 map_length = length;
2338
2339 /*
2340 * Avoid races with device replace and make sure our bioc has devices
2341 * associated to its stripes that don't go away while we are doing the
2342 * read repair operation.
2343 */
2344 btrfs_bio_counter_inc_blocked(fs_info);
2345 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2346 /*
2347 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2348 * to update all raid stripes, but here we just want to correct
2349 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2350 * stripe's dev and sector.
2351 */
2352 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2353 &map_length, &bioc, 0);
2354 if (ret)
2355 goto out_counter_dec;
2356 ASSERT(bioc->mirror_num == 1);
2357 } else {
2358 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2359 &map_length, &bioc, mirror_num);
2360 if (ret)
2361 goto out_counter_dec;
2362 BUG_ON(mirror_num != bioc->mirror_num);
2363 }
2364
2365 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2366 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2367 btrfs_put_bioc(bioc);
2368
2369 if (!dev || !dev->bdev ||
2370 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2371 ret = -EIO;
2372 goto out_counter_dec;
2373 }
2374
2375 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
2376 bio.bi_iter.bi_sector = sector;
2377 __bio_add_page(&bio, page, length, pg_offset);
2378
2379 btrfsic_check_bio(&bio);
2380 ret = submit_bio_wait(&bio);
2381 if (ret) {
2382 /* try to remap that extent elsewhere? */
2383 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2384 goto out_bio_uninit;
2385 }
2386
2387 btrfs_info_rl_in_rcu(fs_info,
2388 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2389 ino, start,
2390 rcu_str_deref(dev->name), sector);
2391 ret = 0;
2392
2393 out_bio_uninit:
2394 bio_uninit(&bio);
2395 out_counter_dec:
2396 btrfs_bio_counter_dec(fs_info);
2397 return ret;
2398 }
2399
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)2400 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2401 {
2402 struct btrfs_fs_info *fs_info = eb->fs_info;
2403 u64 start = eb->start;
2404 int i, num_pages = num_extent_pages(eb);
2405 int ret = 0;
2406
2407 if (sb_rdonly(fs_info->sb))
2408 return -EROFS;
2409
2410 for (i = 0; i < num_pages; i++) {
2411 struct page *p = eb->pages[i];
2412
2413 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2414 start - page_offset(p), mirror_num);
2415 if (ret)
2416 break;
2417 start += PAGE_SIZE;
2418 }
2419
2420 return ret;
2421 }
2422
2423 /*
2424 * each time an IO finishes, we do a fast check in the IO failure tree
2425 * to see if we need to process or clean up an io_failure_record
2426 */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2427 int clean_io_failure(struct btrfs_fs_info *fs_info,
2428 struct extent_io_tree *failure_tree,
2429 struct extent_io_tree *io_tree, u64 start,
2430 struct page *page, u64 ino, unsigned int pg_offset)
2431 {
2432 u64 private;
2433 struct io_failure_record *failrec;
2434 struct extent_state *state;
2435 int num_copies;
2436 int ret;
2437
2438 private = 0;
2439 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2440 EXTENT_DIRTY, 0);
2441 if (!ret)
2442 return 0;
2443
2444 failrec = get_state_failrec(failure_tree, start);
2445 if (IS_ERR(failrec))
2446 return 0;
2447
2448 BUG_ON(!failrec->this_mirror);
2449
2450 if (sb_rdonly(fs_info->sb))
2451 goto out;
2452
2453 spin_lock(&io_tree->lock);
2454 state = find_first_extent_bit_state(io_tree,
2455 failrec->start,
2456 EXTENT_LOCKED);
2457 spin_unlock(&io_tree->lock);
2458
2459 if (state && state->start <= failrec->start &&
2460 state->end >= failrec->start + failrec->len - 1) {
2461 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2462 failrec->len);
2463 if (num_copies > 1) {
2464 repair_io_failure(fs_info, ino, start, failrec->len,
2465 failrec->logical, page, pg_offset,
2466 failrec->failed_mirror);
2467 }
2468 }
2469
2470 out:
2471 free_io_failure(failure_tree, io_tree, failrec);
2472
2473 return 0;
2474 }
2475
2476 /*
2477 * Can be called when
2478 * - hold extent lock
2479 * - under ordered extent
2480 * - the inode is freeing
2481 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2482 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2483 {
2484 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2485 struct io_failure_record *failrec;
2486 struct extent_state *state, *next;
2487
2488 if (RB_EMPTY_ROOT(&failure_tree->state))
2489 return;
2490
2491 spin_lock(&failure_tree->lock);
2492 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2493 while (state) {
2494 if (state->start > end)
2495 break;
2496
2497 ASSERT(state->end <= end);
2498
2499 next = next_state(state);
2500
2501 failrec = state->failrec;
2502 free_extent_state(state);
2503 kfree(failrec);
2504
2505 state = next;
2506 }
2507 spin_unlock(&failure_tree->lock);
2508 }
2509
btrfs_get_io_failure_record(struct inode * inode,u64 start)2510 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2511 u64 start)
2512 {
2513 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2514 struct io_failure_record *failrec;
2515 struct extent_map *em;
2516 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2517 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2518 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2519 const u32 sectorsize = fs_info->sectorsize;
2520 int ret;
2521 u64 logical;
2522
2523 failrec = get_state_failrec(failure_tree, start);
2524 if (!IS_ERR(failrec)) {
2525 btrfs_debug(fs_info,
2526 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2527 failrec->logical, failrec->start, failrec->len);
2528 /*
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2532 */
2533
2534 return failrec;
2535 }
2536
2537 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2538 if (!failrec)
2539 return ERR_PTR(-ENOMEM);
2540
2541 failrec->start = start;
2542 failrec->len = sectorsize;
2543 failrec->this_mirror = 0;
2544 failrec->compress_type = BTRFS_COMPRESS_NONE;
2545
2546 read_lock(&em_tree->lock);
2547 em = lookup_extent_mapping(em_tree, start, failrec->len);
2548 if (!em) {
2549 read_unlock(&em_tree->lock);
2550 kfree(failrec);
2551 return ERR_PTR(-EIO);
2552 }
2553
2554 if (em->start > start || em->start + em->len <= start) {
2555 free_extent_map(em);
2556 em = NULL;
2557 }
2558 read_unlock(&em_tree->lock);
2559 if (!em) {
2560 kfree(failrec);
2561 return ERR_PTR(-EIO);
2562 }
2563
2564 logical = start - em->start;
2565 logical = em->block_start + logical;
2566 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2567 logical = em->block_start;
2568 failrec->compress_type = em->compress_type;
2569 }
2570
2571 btrfs_debug(fs_info,
2572 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2573 logical, start, failrec->len);
2574
2575 failrec->logical = logical;
2576 free_extent_map(em);
2577
2578 /* Set the bits in the private failure tree */
2579 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2580 EXTENT_LOCKED | EXTENT_DIRTY);
2581 if (ret >= 0) {
2582 ret = set_state_failrec(failure_tree, start, failrec);
2583 /* Set the bits in the inode's tree */
2584 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2585 EXTENT_DAMAGED);
2586 } else if (ret < 0) {
2587 kfree(failrec);
2588 return ERR_PTR(ret);
2589 }
2590
2591 return failrec;
2592 }
2593
btrfs_check_repairable(struct inode * inode,struct io_failure_record * failrec,int failed_mirror)2594 static bool btrfs_check_repairable(struct inode *inode,
2595 struct io_failure_record *failrec,
2596 int failed_mirror)
2597 {
2598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2599 int num_copies;
2600
2601 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2602 if (num_copies == 1) {
2603 /*
2604 * we only have a single copy of the data, so don't bother with
2605 * all the retry and error correction code that follows. no
2606 * matter what the error is, it is very likely to persist.
2607 */
2608 btrfs_debug(fs_info,
2609 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2610 num_copies, failrec->this_mirror, failed_mirror);
2611 return false;
2612 }
2613
2614 /* The failure record should only contain one sector */
2615 ASSERT(failrec->len == fs_info->sectorsize);
2616
2617 /*
2618 * There are two premises:
2619 * a) deliver good data to the caller
2620 * b) correct the bad sectors on disk
2621 *
2622 * Since we're only doing repair for one sector, we only need to get
2623 * a good copy of the failed sector and if we succeed, we have setup
2624 * everything for repair_io_failure to do the rest for us.
2625 */
2626 ASSERT(failed_mirror);
2627 failrec->failed_mirror = failed_mirror;
2628 failrec->this_mirror++;
2629 if (failrec->this_mirror == failed_mirror)
2630 failrec->this_mirror++;
2631
2632 if (failrec->this_mirror > num_copies) {
2633 btrfs_debug(fs_info,
2634 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2635 num_copies, failrec->this_mirror, failed_mirror);
2636 return false;
2637 }
2638
2639 return true;
2640 }
2641
btrfs_repair_one_sector(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,int failed_mirror,submit_bio_hook_t * submit_bio_hook)2642 int btrfs_repair_one_sector(struct inode *inode,
2643 struct bio *failed_bio, u32 bio_offset,
2644 struct page *page, unsigned int pgoff,
2645 u64 start, int failed_mirror,
2646 submit_bio_hook_t *submit_bio_hook)
2647 {
2648 struct io_failure_record *failrec;
2649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2653 const int icsum = bio_offset >> fs_info->sectorsize_bits;
2654 struct bio *repair_bio;
2655 struct btrfs_bio *repair_bbio;
2656
2657 btrfs_debug(fs_info,
2658 "repair read error: read error at %llu", start);
2659
2660 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2661
2662 failrec = btrfs_get_io_failure_record(inode, start);
2663 if (IS_ERR(failrec))
2664 return PTR_ERR(failrec);
2665
2666
2667 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2668 free_io_failure(failure_tree, tree, failrec);
2669 return -EIO;
2670 }
2671
2672 repair_bio = btrfs_bio_alloc(1);
2673 repair_bbio = btrfs_bio(repair_bio);
2674 repair_bbio->file_offset = start;
2675 repair_bio->bi_opf = REQ_OP_READ;
2676 repair_bio->bi_end_io = failed_bio->bi_end_io;
2677 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2678 repair_bio->bi_private = failed_bio->bi_private;
2679
2680 if (failed_bbio->csum) {
2681 const u32 csum_size = fs_info->csum_size;
2682
2683 repair_bbio->csum = repair_bbio->csum_inline;
2684 memcpy(repair_bbio->csum,
2685 failed_bbio->csum + csum_size * icsum, csum_size);
2686 }
2687
2688 bio_add_page(repair_bio, page, failrec->len, pgoff);
2689 repair_bbio->iter = repair_bio->bi_iter;
2690
2691 btrfs_debug(btrfs_sb(inode->i_sb),
2692 "repair read error: submitting new read to mirror %d",
2693 failrec->this_mirror);
2694
2695 /*
2696 * At this point we have a bio, so any errors from submit_bio_hook()
2697 * will be handled by the endio on the repair_bio, so we can't return an
2698 * error here.
2699 */
2700 submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
2701 return BLK_STS_OK;
2702 }
2703
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)2704 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2705 {
2706 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2707
2708 ASSERT(page_offset(page) <= start &&
2709 start + len <= page_offset(page) + PAGE_SIZE);
2710
2711 if (uptodate) {
2712 if (fsverity_active(page->mapping->host) &&
2713 !PageError(page) &&
2714 !PageUptodate(page) &&
2715 start < i_size_read(page->mapping->host) &&
2716 !fsverity_verify_page(page)) {
2717 btrfs_page_set_error(fs_info, page, start, len);
2718 } else {
2719 btrfs_page_set_uptodate(fs_info, page, start, len);
2720 }
2721 } else {
2722 btrfs_page_clear_uptodate(fs_info, page, start, len);
2723 btrfs_page_set_error(fs_info, page, start, len);
2724 }
2725
2726 if (!btrfs_is_subpage(fs_info, page))
2727 unlock_page(page);
2728 else
2729 btrfs_subpage_end_reader(fs_info, page, start, len);
2730 }
2731
submit_data_read_repair(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,unsigned int error_bitmap)2732 static blk_status_t submit_data_read_repair(struct inode *inode,
2733 struct bio *failed_bio,
2734 u32 bio_offset, struct page *page,
2735 unsigned int pgoff,
2736 u64 start, u64 end,
2737 int failed_mirror,
2738 unsigned int error_bitmap)
2739 {
2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2741 const u32 sectorsize = fs_info->sectorsize;
2742 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2743 int error = 0;
2744 int i;
2745
2746 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2747
2748 /* This repair is only for data */
2749 ASSERT(is_data_inode(inode));
2750
2751 /* We're here because we had some read errors or csum mismatch */
2752 ASSERT(error_bitmap);
2753
2754 /*
2755 * We only get called on buffered IO, thus page must be mapped and bio
2756 * must not be cloned.
2757 */
2758 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2759
2760 /* Iterate through all the sectors in the range */
2761 for (i = 0; i < nr_bits; i++) {
2762 const unsigned int offset = i * sectorsize;
2763 struct extent_state *cached = NULL;
2764 bool uptodate = false;
2765 int ret;
2766
2767 if (!(error_bitmap & (1U << i))) {
2768 /*
2769 * This sector has no error, just end the page read
2770 * and unlock the range.
2771 */
2772 uptodate = true;
2773 goto next;
2774 }
2775
2776 ret = btrfs_repair_one_sector(inode, failed_bio,
2777 bio_offset + offset,
2778 page, pgoff + offset, start + offset,
2779 failed_mirror, btrfs_submit_data_bio);
2780 if (!ret) {
2781 /*
2782 * We have submitted the read repair, the page release
2783 * will be handled by the endio function of the
2784 * submitted repair bio.
2785 * Thus we don't need to do any thing here.
2786 */
2787 continue;
2788 }
2789 /*
2790 * Repair failed, just record the error but still continue.
2791 * Or the remaining sectors will not be properly unlocked.
2792 */
2793 if (!error)
2794 error = ret;
2795 next:
2796 end_page_read(page, uptodate, start + offset, sectorsize);
2797 if (uptodate)
2798 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2799 start + offset,
2800 start + offset + sectorsize - 1,
2801 &cached, GFP_ATOMIC);
2802 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2803 start + offset,
2804 start + offset + sectorsize - 1,
2805 &cached);
2806 }
2807 return errno_to_blk_status(error);
2808 }
2809
2810 /* lots and lots of room for performance fixes in the end_bio funcs */
2811
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2812 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2813 {
2814 struct btrfs_inode *inode;
2815 const bool uptodate = (err == 0);
2816 int ret = 0;
2817
2818 ASSERT(page && page->mapping);
2819 inode = BTRFS_I(page->mapping->host);
2820 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2821
2822 if (!uptodate) {
2823 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2824 u32 len;
2825
2826 ASSERT(end + 1 - start <= U32_MAX);
2827 len = end + 1 - start;
2828
2829 btrfs_page_clear_uptodate(fs_info, page, start, len);
2830 btrfs_page_set_error(fs_info, page, start, len);
2831 ret = err < 0 ? err : -EIO;
2832 mapping_set_error(page->mapping, ret);
2833 }
2834 }
2835
2836 /*
2837 * after a writepage IO is done, we need to:
2838 * clear the uptodate bits on error
2839 * clear the writeback bits in the extent tree for this IO
2840 * end_page_writeback if the page has no more pending IO
2841 *
2842 * Scheduling is not allowed, so the extent state tree is expected
2843 * to have one and only one object corresponding to this IO.
2844 */
end_bio_extent_writepage(struct bio * bio)2845 static void end_bio_extent_writepage(struct bio *bio)
2846 {
2847 int error = blk_status_to_errno(bio->bi_status);
2848 struct bio_vec *bvec;
2849 u64 start;
2850 u64 end;
2851 struct bvec_iter_all iter_all;
2852 bool first_bvec = true;
2853
2854 ASSERT(!bio_flagged(bio, BIO_CLONED));
2855 bio_for_each_segment_all(bvec, bio, iter_all) {
2856 struct page *page = bvec->bv_page;
2857 struct inode *inode = page->mapping->host;
2858 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2859 const u32 sectorsize = fs_info->sectorsize;
2860
2861 /* Our read/write should always be sector aligned. */
2862 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2863 btrfs_err(fs_info,
2864 "partial page write in btrfs with offset %u and length %u",
2865 bvec->bv_offset, bvec->bv_len);
2866 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2867 btrfs_info(fs_info,
2868 "incomplete page write with offset %u and length %u",
2869 bvec->bv_offset, bvec->bv_len);
2870
2871 start = page_offset(page) + bvec->bv_offset;
2872 end = start + bvec->bv_len - 1;
2873
2874 if (first_bvec) {
2875 btrfs_record_physical_zoned(inode, start, bio);
2876 first_bvec = false;
2877 }
2878
2879 end_extent_writepage(page, error, start, end);
2880
2881 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2882 }
2883
2884 bio_put(bio);
2885 }
2886
2887 /*
2888 * Record previously processed extent range
2889 *
2890 * For endio_readpage_release_extent() to handle a full extent range, reducing
2891 * the extent io operations.
2892 */
2893 struct processed_extent {
2894 struct btrfs_inode *inode;
2895 /* Start of the range in @inode */
2896 u64 start;
2897 /* End of the range in @inode */
2898 u64 end;
2899 bool uptodate;
2900 };
2901
2902 /*
2903 * Try to release processed extent range
2904 *
2905 * May not release the extent range right now if the current range is
2906 * contiguous to processed extent.
2907 *
2908 * Will release processed extent when any of @inode, @uptodate, the range is
2909 * no longer contiguous to the processed range.
2910 *
2911 * Passing @inode == NULL will force processed extent to be released.
2912 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)2913 static void endio_readpage_release_extent(struct processed_extent *processed,
2914 struct btrfs_inode *inode, u64 start, u64 end,
2915 bool uptodate)
2916 {
2917 struct extent_state *cached = NULL;
2918 struct extent_io_tree *tree;
2919
2920 /* The first extent, initialize @processed */
2921 if (!processed->inode)
2922 goto update;
2923
2924 /*
2925 * Contiguous to processed extent, just uptodate the end.
2926 *
2927 * Several things to notice:
2928 *
2929 * - bio can be merged as long as on-disk bytenr is contiguous
2930 * This means we can have page belonging to other inodes, thus need to
2931 * check if the inode still matches.
2932 * - bvec can contain range beyond current page for multi-page bvec
2933 * Thus we need to do processed->end + 1 >= start check
2934 */
2935 if (processed->inode == inode && processed->uptodate == uptodate &&
2936 processed->end + 1 >= start && end >= processed->end) {
2937 processed->end = end;
2938 return;
2939 }
2940
2941 tree = &processed->inode->io_tree;
2942 /*
2943 * Now we don't have range contiguous to the processed range, release
2944 * the processed range now.
2945 */
2946 if (processed->uptodate && tree->track_uptodate)
2947 set_extent_uptodate(tree, processed->start, processed->end,
2948 &cached, GFP_ATOMIC);
2949 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2950 &cached);
2951
2952 update:
2953 /* Update processed to current range */
2954 processed->inode = inode;
2955 processed->start = start;
2956 processed->end = end;
2957 processed->uptodate = uptodate;
2958 }
2959
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)2960 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2961 {
2962 ASSERT(PageLocked(page));
2963 if (!btrfs_is_subpage(fs_info, page))
2964 return;
2965
2966 ASSERT(PagePrivate(page));
2967 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2968 }
2969
2970 /*
2971 * Find extent buffer for a givne bytenr.
2972 *
2973 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2974 * in endio context.
2975 */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)2976 static struct extent_buffer *find_extent_buffer_readpage(
2977 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2978 {
2979 struct extent_buffer *eb;
2980
2981 /*
2982 * For regular sectorsize, we can use page->private to grab extent
2983 * buffer
2984 */
2985 if (fs_info->nodesize >= PAGE_SIZE) {
2986 ASSERT(PagePrivate(page) && page->private);
2987 return (struct extent_buffer *)page->private;
2988 }
2989
2990 /* For subpage case, we need to lookup buffer radix tree */
2991 rcu_read_lock();
2992 eb = radix_tree_lookup(&fs_info->buffer_radix,
2993 bytenr >> fs_info->sectorsize_bits);
2994 rcu_read_unlock();
2995 ASSERT(eb);
2996 return eb;
2997 }
2998
2999 /*
3000 * after a readpage IO is done, we need to:
3001 * clear the uptodate bits on error
3002 * set the uptodate bits if things worked
3003 * set the page up to date if all extents in the tree are uptodate
3004 * clear the lock bit in the extent tree
3005 * unlock the page if there are no other extents locked for it
3006 *
3007 * Scheduling is not allowed, so the extent state tree is expected
3008 * to have one and only one object corresponding to this IO.
3009 */
end_bio_extent_readpage(struct bio * bio)3010 static void end_bio_extent_readpage(struct bio *bio)
3011 {
3012 struct bio_vec *bvec;
3013 struct btrfs_bio *bbio = btrfs_bio(bio);
3014 struct extent_io_tree *tree, *failure_tree;
3015 struct processed_extent processed = { 0 };
3016 /*
3017 * The offset to the beginning of a bio, since one bio can never be
3018 * larger than UINT_MAX, u32 here is enough.
3019 */
3020 u32 bio_offset = 0;
3021 int mirror;
3022 int ret;
3023 struct bvec_iter_all iter_all;
3024
3025 ASSERT(!bio_flagged(bio, BIO_CLONED));
3026 bio_for_each_segment_all(bvec, bio, iter_all) {
3027 bool uptodate = !bio->bi_status;
3028 struct page *page = bvec->bv_page;
3029 struct inode *inode = page->mapping->host;
3030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3031 const u32 sectorsize = fs_info->sectorsize;
3032 unsigned int error_bitmap = (unsigned int)-1;
3033 u64 start;
3034 u64 end;
3035 u32 len;
3036
3037 btrfs_debug(fs_info,
3038 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3039 bio->bi_iter.bi_sector, bio->bi_status,
3040 bbio->mirror_num);
3041 tree = &BTRFS_I(inode)->io_tree;
3042 failure_tree = &BTRFS_I(inode)->io_failure_tree;
3043
3044 /*
3045 * We always issue full-sector reads, but if some block in a
3046 * page fails to read, blk_update_request() will advance
3047 * bv_offset and adjust bv_len to compensate. Print a warning
3048 * for unaligned offsets, and an error if they don't add up to
3049 * a full sector.
3050 */
3051 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3052 btrfs_err(fs_info,
3053 "partial page read in btrfs with offset %u and length %u",
3054 bvec->bv_offset, bvec->bv_len);
3055 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3056 sectorsize))
3057 btrfs_info(fs_info,
3058 "incomplete page read with offset %u and length %u",
3059 bvec->bv_offset, bvec->bv_len);
3060
3061 start = page_offset(page) + bvec->bv_offset;
3062 end = start + bvec->bv_len - 1;
3063 len = bvec->bv_len;
3064
3065 mirror = bbio->mirror_num;
3066 if (likely(uptodate)) {
3067 if (is_data_inode(inode)) {
3068 error_bitmap = btrfs_verify_data_csum(bbio,
3069 bio_offset, page, start, end);
3070 ret = error_bitmap;
3071 } else {
3072 ret = btrfs_validate_metadata_buffer(bbio,
3073 page, start, end, mirror);
3074 }
3075 if (ret)
3076 uptodate = false;
3077 else
3078 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3079 failure_tree, tree, start,
3080 page,
3081 btrfs_ino(BTRFS_I(inode)), 0);
3082 }
3083
3084 if (likely(uptodate))
3085 goto readpage_ok;
3086
3087 if (is_data_inode(inode)) {
3088 /*
3089 * If we failed to submit the IO at all we'll have a
3090 * mirror_num == 0, in which case we need to just mark
3091 * the page with an error and unlock it and carry on.
3092 */
3093 if (mirror == 0)
3094 goto readpage_ok;
3095
3096 /*
3097 * submit_data_read_repair() will handle all the good
3098 * and bad sectors, we just continue to the next bvec.
3099 */
3100 submit_data_read_repair(inode, bio, bio_offset, page,
3101 start - page_offset(page),
3102 start, end, mirror,
3103 error_bitmap);
3104
3105 ASSERT(bio_offset + len > bio_offset);
3106 bio_offset += len;
3107 continue;
3108 } else {
3109 struct extent_buffer *eb;
3110
3111 eb = find_extent_buffer_readpage(fs_info, page, start);
3112 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3113 eb->read_mirror = mirror;
3114 atomic_dec(&eb->io_pages);
3115 }
3116 readpage_ok:
3117 if (likely(uptodate)) {
3118 loff_t i_size = i_size_read(inode);
3119 pgoff_t end_index = i_size >> PAGE_SHIFT;
3120
3121 /*
3122 * Zero out the remaining part if this range straddles
3123 * i_size.
3124 *
3125 * Here we should only zero the range inside the bvec,
3126 * not touch anything else.
3127 *
3128 * NOTE: i_size is exclusive while end is inclusive.
3129 */
3130 if (page->index == end_index && i_size <= end) {
3131 u32 zero_start = max(offset_in_page(i_size),
3132 offset_in_page(start));
3133
3134 zero_user_segment(page, zero_start,
3135 offset_in_page(end) + 1);
3136 }
3137 }
3138 ASSERT(bio_offset + len > bio_offset);
3139 bio_offset += len;
3140
3141 /* Update page status and unlock */
3142 end_page_read(page, uptodate, start, len);
3143 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3144 start, end, PageUptodate(page));
3145 }
3146 /* Release the last extent */
3147 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3148 btrfs_bio_free_csum(bbio);
3149 bio_put(bio);
3150 }
3151
3152 /**
3153 * Populate every free slot in a provided array with pages.
3154 *
3155 * @nr_pages: number of pages to allocate
3156 * @page_array: the array to fill with pages; any existing non-null entries in
3157 * the array will be skipped
3158 *
3159 * Return: 0 if all pages were able to be allocated;
3160 * -ENOMEM otherwise, and the caller is responsible for freeing all
3161 * non-null page pointers in the array.
3162 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)3163 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
3164 {
3165 unsigned int allocated;
3166
3167 for (allocated = 0; allocated < nr_pages;) {
3168 unsigned int last = allocated;
3169
3170 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
3171
3172 if (allocated == nr_pages)
3173 return 0;
3174
3175 /*
3176 * During this iteration, no page could be allocated, even
3177 * though alloc_pages_bulk_array() falls back to alloc_page()
3178 * if it could not bulk-allocate. So we must be out of memory.
3179 */
3180 if (allocated == last)
3181 return -ENOMEM;
3182
3183 memalloc_retry_wait(GFP_NOFS);
3184 }
3185 return 0;
3186 }
3187
3188 /*
3189 * Initialize the members up to but not including 'bio'. Use after allocating a
3190 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3191 * 'bio' because use of __GFP_ZERO is not supported.
3192 */
btrfs_bio_init(struct btrfs_bio * bbio)3193 static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3194 {
3195 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3196 }
3197
3198 /*
3199 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3200 *
3201 * The bio allocation is backed by bioset and does not fail.
3202 */
btrfs_bio_alloc(unsigned int nr_iovecs)3203 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3204 {
3205 struct bio *bio;
3206
3207 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3208 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3209 btrfs_bio_init(btrfs_bio(bio));
3210 return bio;
3211 }
3212
btrfs_bio_clone(struct block_device * bdev,struct bio * bio)3213 struct bio *btrfs_bio_clone(struct block_device *bdev, struct bio *bio)
3214 {
3215 struct btrfs_bio *bbio;
3216 struct bio *new;
3217
3218 /* Bio allocation backed by a bioset does not fail */
3219 new = bio_alloc_clone(bdev, bio, GFP_NOFS, &btrfs_bioset);
3220 bbio = btrfs_bio(new);
3221 btrfs_bio_init(bbio);
3222 bbio->iter = bio->bi_iter;
3223 return new;
3224 }
3225
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size)3226 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3227 {
3228 struct bio *bio;
3229 struct btrfs_bio *bbio;
3230
3231 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3232
3233 /* this will never fail when it's backed by a bioset */
3234 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3235 ASSERT(bio);
3236
3237 bbio = btrfs_bio(bio);
3238 btrfs_bio_init(bbio);
3239
3240 bio_trim(bio, offset >> 9, size >> 9);
3241 bbio->iter = bio->bi_iter;
3242 return bio;
3243 }
3244
3245 /**
3246 * Attempt to add a page to bio
3247 *
3248 * @bio_ctrl: record both the bio, and its bio_flags
3249 * @page: page to add to the bio
3250 * @disk_bytenr: offset of the new bio or to check whether we are adding
3251 * a contiguous page to the previous one
3252 * @size: portion of page that we want to write
3253 * @pg_offset: starting offset in the page
3254 * @compress_type: compression type of the current bio to see if we can merge them
3255 *
3256 * Attempt to add a page to bio considering stripe alignment etc.
3257 *
3258 * Return >= 0 for the number of bytes added to the bio.
3259 * Can return 0 if the current bio is already at stripe/zone boundary.
3260 * Return <0 for error.
3261 */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,enum btrfs_compression_type compress_type)3262 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3263 struct page *page,
3264 u64 disk_bytenr, unsigned int size,
3265 unsigned int pg_offset,
3266 enum btrfs_compression_type compress_type)
3267 {
3268 struct bio *bio = bio_ctrl->bio;
3269 u32 bio_size = bio->bi_iter.bi_size;
3270 u32 real_size;
3271 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3272 bool contig;
3273 int ret;
3274
3275 ASSERT(bio);
3276 /* The limit should be calculated when bio_ctrl->bio is allocated */
3277 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3278 if (bio_ctrl->compress_type != compress_type)
3279 return 0;
3280
3281 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
3282 contig = bio->bi_iter.bi_sector == sector;
3283 else
3284 contig = bio_end_sector(bio) == sector;
3285 if (!contig)
3286 return 0;
3287
3288 real_size = min(bio_ctrl->len_to_oe_boundary,
3289 bio_ctrl->len_to_stripe_boundary) - bio_size;
3290 real_size = min(real_size, size);
3291
3292 /*
3293 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3294 * bio will still execute its endio function on the page!
3295 */
3296 if (real_size == 0)
3297 return 0;
3298
3299 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3300 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3301 else
3302 ret = bio_add_page(bio, page, real_size, pg_offset);
3303
3304 return ret;
3305 }
3306
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)3307 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3308 struct btrfs_inode *inode, u64 file_offset)
3309 {
3310 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3311 struct btrfs_io_geometry geom;
3312 struct btrfs_ordered_extent *ordered;
3313 struct extent_map *em;
3314 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3315 int ret;
3316
3317 /*
3318 * Pages for compressed extent are never submitted to disk directly,
3319 * thus it has no real boundary, just set them to U32_MAX.
3320 *
3321 * The split happens for real compressed bio, which happens in
3322 * btrfs_submit_compressed_read/write().
3323 */
3324 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3325 bio_ctrl->len_to_oe_boundary = U32_MAX;
3326 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3327 return 0;
3328 }
3329 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3330 if (IS_ERR(em))
3331 return PTR_ERR(em);
3332 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3333 logical, &geom);
3334 free_extent_map(em);
3335 if (ret < 0) {
3336 return ret;
3337 }
3338 if (geom.len > U32_MAX)
3339 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3340 else
3341 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3342
3343 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3344 bio_ctrl->len_to_oe_boundary = U32_MAX;
3345 return 0;
3346 }
3347
3348 /* Ordered extent not yet created, so we're good */
3349 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3350 if (!ordered) {
3351 bio_ctrl->len_to_oe_boundary = U32_MAX;
3352 return 0;
3353 }
3354
3355 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3356 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3357 btrfs_put_ordered_extent(ordered);
3358 return 0;
3359 }
3360
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,unsigned int opf,bio_end_io_t end_io_func,u64 disk_bytenr,u32 offset,u64 file_offset,enum btrfs_compression_type compress_type)3361 static int alloc_new_bio(struct btrfs_inode *inode,
3362 struct btrfs_bio_ctrl *bio_ctrl,
3363 struct writeback_control *wbc,
3364 unsigned int opf,
3365 bio_end_io_t end_io_func,
3366 u64 disk_bytenr, u32 offset, u64 file_offset,
3367 enum btrfs_compression_type compress_type)
3368 {
3369 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3370 struct bio *bio;
3371 int ret;
3372
3373 bio = btrfs_bio_alloc(BIO_MAX_VECS);
3374 /*
3375 * For compressed page range, its disk_bytenr is always @disk_bytenr
3376 * passed in, no matter if we have added any range into previous bio.
3377 */
3378 if (compress_type != BTRFS_COMPRESS_NONE)
3379 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3380 else
3381 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3382 bio_ctrl->bio = bio;
3383 bio_ctrl->compress_type = compress_type;
3384 bio->bi_end_io = end_io_func;
3385 bio->bi_private = &inode->io_tree;
3386 bio->bi_opf = opf;
3387 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3388 if (ret < 0)
3389 goto error;
3390
3391 if (wbc) {
3392 /*
3393 * For Zone append we need the correct block_device that we are
3394 * going to write to set in the bio to be able to respect the
3395 * hardware limitation. Look it up here:
3396 */
3397 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
3398 struct btrfs_device *dev;
3399
3400 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
3401 fs_info->sectorsize);
3402 if (IS_ERR(dev)) {
3403 ret = PTR_ERR(dev);
3404 goto error;
3405 }
3406
3407 bio_set_dev(bio, dev->bdev);
3408 } else {
3409 /*
3410 * Otherwise pick the last added device to support
3411 * cgroup writeback. For multi-device file systems this
3412 * means blk-cgroup policies have to always be set on the
3413 * last added/replaced device. This is a bit odd but has
3414 * been like that for a long time.
3415 */
3416 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3417 }
3418 wbc_init_bio(wbc, bio);
3419 } else {
3420 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3421 }
3422 return 0;
3423 error:
3424 bio_ctrl->bio = NULL;
3425 bio->bi_status = errno_to_blk_status(ret);
3426 bio_endio(bio);
3427 return ret;
3428 }
3429
3430 /*
3431 * @opf: bio REQ_OP_* and REQ_* flags as one value
3432 * @wbc: optional writeback control for io accounting
3433 * @page: page to add to the bio
3434 * @disk_bytenr: logical bytenr where the write will be
3435 * @size: portion of page that we want to write to
3436 * @pg_offset: offset of the new bio or to check whether we are adding
3437 * a contiguous page to the previous one
3438 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3439 * @end_io_func: end_io callback for new bio
3440 * @mirror_num: desired mirror to read/write
3441 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3442 * @compress_type: compress type for current bio
3443 */
submit_extent_page(unsigned int opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,size_t size,unsigned long pg_offset,bio_end_io_t end_io_func,int mirror_num,enum btrfs_compression_type compress_type,bool force_bio_submit)3444 static int submit_extent_page(unsigned int opf,
3445 struct writeback_control *wbc,
3446 struct btrfs_bio_ctrl *bio_ctrl,
3447 struct page *page, u64 disk_bytenr,
3448 size_t size, unsigned long pg_offset,
3449 bio_end_io_t end_io_func,
3450 int mirror_num,
3451 enum btrfs_compression_type compress_type,
3452 bool force_bio_submit)
3453 {
3454 int ret = 0;
3455 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3456 unsigned int cur = pg_offset;
3457
3458 ASSERT(bio_ctrl);
3459
3460 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3461 pg_offset + size <= PAGE_SIZE);
3462 if (force_bio_submit && bio_ctrl->bio) {
3463 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type);
3464 bio_ctrl->bio = NULL;
3465 }
3466
3467 while (cur < pg_offset + size) {
3468 u32 offset = cur - pg_offset;
3469 int added;
3470
3471 /* Allocate new bio if needed */
3472 if (!bio_ctrl->bio) {
3473 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3474 end_io_func, disk_bytenr, offset,
3475 page_offset(page) + cur,
3476 compress_type);
3477 if (ret < 0)
3478 return ret;
3479 }
3480 /*
3481 * We must go through btrfs_bio_add_page() to ensure each
3482 * page range won't cross various boundaries.
3483 */
3484 if (compress_type != BTRFS_COMPRESS_NONE)
3485 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3486 size - offset, pg_offset + offset,
3487 compress_type);
3488 else
3489 added = btrfs_bio_add_page(bio_ctrl, page,
3490 disk_bytenr + offset, size - offset,
3491 pg_offset + offset, compress_type);
3492
3493 /* Metadata page range should never be split */
3494 if (!is_data_inode(&inode->vfs_inode))
3495 ASSERT(added == 0 || added == size - offset);
3496
3497 /* At least we added some page, update the account */
3498 if (wbc && added)
3499 wbc_account_cgroup_owner(wbc, page, added);
3500
3501 /* We have reached boundary, submit right now */
3502 if (added < size - offset) {
3503 /* The bio should contain some page(s) */
3504 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3505 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type);
3506 bio_ctrl->bio = NULL;
3507 }
3508 cur += added;
3509 }
3510 return 0;
3511 }
3512
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)3513 static int attach_extent_buffer_page(struct extent_buffer *eb,
3514 struct page *page,
3515 struct btrfs_subpage *prealloc)
3516 {
3517 struct btrfs_fs_info *fs_info = eb->fs_info;
3518 int ret = 0;
3519
3520 /*
3521 * If the page is mapped to btree inode, we should hold the private
3522 * lock to prevent race.
3523 * For cloned or dummy extent buffers, their pages are not mapped and
3524 * will not race with any other ebs.
3525 */
3526 if (page->mapping)
3527 lockdep_assert_held(&page->mapping->private_lock);
3528
3529 if (fs_info->nodesize >= PAGE_SIZE) {
3530 if (!PagePrivate(page))
3531 attach_page_private(page, eb);
3532 else
3533 WARN_ON(page->private != (unsigned long)eb);
3534 return 0;
3535 }
3536
3537 /* Already mapped, just free prealloc */
3538 if (PagePrivate(page)) {
3539 btrfs_free_subpage(prealloc);
3540 return 0;
3541 }
3542
3543 if (prealloc)
3544 /* Has preallocated memory for subpage */
3545 attach_page_private(page, prealloc);
3546 else
3547 /* Do new allocation to attach subpage */
3548 ret = btrfs_attach_subpage(fs_info, page,
3549 BTRFS_SUBPAGE_METADATA);
3550 return ret;
3551 }
3552
set_page_extent_mapped(struct page * page)3553 int set_page_extent_mapped(struct page *page)
3554 {
3555 struct btrfs_fs_info *fs_info;
3556
3557 ASSERT(page->mapping);
3558
3559 if (PagePrivate(page))
3560 return 0;
3561
3562 fs_info = btrfs_sb(page->mapping->host->i_sb);
3563
3564 if (btrfs_is_subpage(fs_info, page))
3565 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3566
3567 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3568 return 0;
3569 }
3570
clear_page_extent_mapped(struct page * page)3571 void clear_page_extent_mapped(struct page *page)
3572 {
3573 struct btrfs_fs_info *fs_info;
3574
3575 ASSERT(page->mapping);
3576
3577 if (!PagePrivate(page))
3578 return;
3579
3580 fs_info = btrfs_sb(page->mapping->host->i_sb);
3581 if (btrfs_is_subpage(fs_info, page))
3582 return btrfs_detach_subpage(fs_info, page);
3583
3584 detach_page_private(page);
3585 }
3586
3587 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)3588 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3589 u64 start, u64 len, struct extent_map **em_cached)
3590 {
3591 struct extent_map *em;
3592
3593 if (em_cached && *em_cached) {
3594 em = *em_cached;
3595 if (extent_map_in_tree(em) && start >= em->start &&
3596 start < extent_map_end(em)) {
3597 refcount_inc(&em->refs);
3598 return em;
3599 }
3600
3601 free_extent_map(em);
3602 *em_cached = NULL;
3603 }
3604
3605 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3606 if (em_cached && !IS_ERR(em)) {
3607 BUG_ON(*em_cached);
3608 refcount_inc(&em->refs);
3609 *em_cached = em;
3610 }
3611 return em;
3612 }
3613 /*
3614 * basic readpage implementation. Locked extent state structs are inserted
3615 * into the tree that are removed when the IO is done (by the end_io
3616 * handlers)
3617 * XXX JDM: This needs looking at to ensure proper page locking
3618 * return 0 on success, otherwise return error
3619 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,unsigned int read_flags,u64 * prev_em_start)3620 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3621 struct btrfs_bio_ctrl *bio_ctrl,
3622 unsigned int read_flags, u64 *prev_em_start)
3623 {
3624 struct inode *inode = page->mapping->host;
3625 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3626 u64 start = page_offset(page);
3627 const u64 end = start + PAGE_SIZE - 1;
3628 u64 cur = start;
3629 u64 extent_offset;
3630 u64 last_byte = i_size_read(inode);
3631 u64 block_start;
3632 u64 cur_end;
3633 struct extent_map *em;
3634 int ret = 0;
3635 size_t pg_offset = 0;
3636 size_t iosize;
3637 size_t blocksize = inode->i_sb->s_blocksize;
3638 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3639
3640 ret = set_page_extent_mapped(page);
3641 if (ret < 0) {
3642 unlock_extent(tree, start, end);
3643 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3644 unlock_page(page);
3645 goto out;
3646 }
3647
3648 if (page->index == last_byte >> PAGE_SHIFT) {
3649 size_t zero_offset = offset_in_page(last_byte);
3650
3651 if (zero_offset) {
3652 iosize = PAGE_SIZE - zero_offset;
3653 memzero_page(page, zero_offset, iosize);
3654 flush_dcache_page(page);
3655 }
3656 }
3657 begin_page_read(fs_info, page);
3658 while (cur <= end) {
3659 unsigned long this_bio_flag = 0;
3660 bool force_bio_submit = false;
3661 u64 disk_bytenr;
3662
3663 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3664 if (cur >= last_byte) {
3665 struct extent_state *cached = NULL;
3666
3667 iosize = PAGE_SIZE - pg_offset;
3668 memzero_page(page, pg_offset, iosize);
3669 flush_dcache_page(page);
3670 set_extent_uptodate(tree, cur, cur + iosize - 1,
3671 &cached, GFP_NOFS);
3672 unlock_extent_cached(tree, cur,
3673 cur + iosize - 1, &cached);
3674 end_page_read(page, true, cur, iosize);
3675 break;
3676 }
3677 em = __get_extent_map(inode, page, pg_offset, cur,
3678 end - cur + 1, em_cached);
3679 if (IS_ERR(em)) {
3680 unlock_extent(tree, cur, end);
3681 end_page_read(page, false, cur, end + 1 - cur);
3682 ret = PTR_ERR(em);
3683 break;
3684 }
3685 extent_offset = cur - em->start;
3686 BUG_ON(extent_map_end(em) <= cur);
3687 BUG_ON(end < cur);
3688
3689 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3690 this_bio_flag = em->compress_type;
3691
3692 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3693 cur_end = min(extent_map_end(em) - 1, end);
3694 iosize = ALIGN(iosize, blocksize);
3695 if (this_bio_flag != BTRFS_COMPRESS_NONE)
3696 disk_bytenr = em->block_start;
3697 else
3698 disk_bytenr = em->block_start + extent_offset;
3699 block_start = em->block_start;
3700 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3701 block_start = EXTENT_MAP_HOLE;
3702
3703 /*
3704 * If we have a file range that points to a compressed extent
3705 * and it's followed by a consecutive file range that points
3706 * to the same compressed extent (possibly with a different
3707 * offset and/or length, so it either points to the whole extent
3708 * or only part of it), we must make sure we do not submit a
3709 * single bio to populate the pages for the 2 ranges because
3710 * this makes the compressed extent read zero out the pages
3711 * belonging to the 2nd range. Imagine the following scenario:
3712 *
3713 * File layout
3714 * [0 - 8K] [8K - 24K]
3715 * | |
3716 * | |
3717 * points to extent X, points to extent X,
3718 * offset 4K, length of 8K offset 0, length 16K
3719 *
3720 * [extent X, compressed length = 4K uncompressed length = 16K]
3721 *
3722 * If the bio to read the compressed extent covers both ranges,
3723 * it will decompress extent X into the pages belonging to the
3724 * first range and then it will stop, zeroing out the remaining
3725 * pages that belong to the other range that points to extent X.
3726 * So here we make sure we submit 2 bios, one for the first
3727 * range and another one for the third range. Both will target
3728 * the same physical extent from disk, but we can't currently
3729 * make the compressed bio endio callback populate the pages
3730 * for both ranges because each compressed bio is tightly
3731 * coupled with a single extent map, and each range can have
3732 * an extent map with a different offset value relative to the
3733 * uncompressed data of our extent and different lengths. This
3734 * is a corner case so we prioritize correctness over
3735 * non-optimal behavior (submitting 2 bios for the same extent).
3736 */
3737 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3738 prev_em_start && *prev_em_start != (u64)-1 &&
3739 *prev_em_start != em->start)
3740 force_bio_submit = true;
3741
3742 if (prev_em_start)
3743 *prev_em_start = em->start;
3744
3745 free_extent_map(em);
3746 em = NULL;
3747
3748 /* we've found a hole, just zero and go on */
3749 if (block_start == EXTENT_MAP_HOLE) {
3750 struct extent_state *cached = NULL;
3751
3752 memzero_page(page, pg_offset, iosize);
3753 flush_dcache_page(page);
3754
3755 set_extent_uptodate(tree, cur, cur + iosize - 1,
3756 &cached, GFP_NOFS);
3757 unlock_extent_cached(tree, cur,
3758 cur + iosize - 1, &cached);
3759 end_page_read(page, true, cur, iosize);
3760 cur = cur + iosize;
3761 pg_offset += iosize;
3762 continue;
3763 }
3764 /* the get_extent function already copied into the page */
3765 if (test_range_bit(tree, cur, cur_end,
3766 EXTENT_UPTODATE, 1, NULL)) {
3767 unlock_extent(tree, cur, cur + iosize - 1);
3768 end_page_read(page, true, cur, iosize);
3769 cur = cur + iosize;
3770 pg_offset += iosize;
3771 continue;
3772 }
3773 /* we have an inline extent but it didn't get marked up
3774 * to date. Error out
3775 */
3776 if (block_start == EXTENT_MAP_INLINE) {
3777 unlock_extent(tree, cur, cur + iosize - 1);
3778 end_page_read(page, false, cur, iosize);
3779 cur = cur + iosize;
3780 pg_offset += iosize;
3781 continue;
3782 }
3783
3784 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3785 bio_ctrl, page, disk_bytenr, iosize,
3786 pg_offset,
3787 end_bio_extent_readpage, 0,
3788 this_bio_flag,
3789 force_bio_submit);
3790 if (ret) {
3791 /*
3792 * We have to unlock the remaining range, or the page
3793 * will never be unlocked.
3794 */
3795 unlock_extent(tree, cur, end);
3796 end_page_read(page, false, cur, end + 1 - cur);
3797 goto out;
3798 }
3799 cur = cur + iosize;
3800 pg_offset += iosize;
3801 }
3802 out:
3803 return ret;
3804 }
3805
btrfs_read_folio(struct file * file,struct folio * folio)3806 int btrfs_read_folio(struct file *file, struct folio *folio)
3807 {
3808 struct page *page = &folio->page;
3809 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3810 u64 start = page_offset(page);
3811 u64 end = start + PAGE_SIZE - 1;
3812 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3813 int ret;
3814
3815 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3816
3817 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
3818 /*
3819 * If btrfs_do_readpage() failed we will want to submit the assembled
3820 * bio to do the cleanup.
3821 */
3822 if (bio_ctrl.bio)
3823 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type);
3824 return ret;
3825 }
3826
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)3827 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3828 u64 start, u64 end,
3829 struct extent_map **em_cached,
3830 struct btrfs_bio_ctrl *bio_ctrl,
3831 u64 *prev_em_start)
3832 {
3833 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3834 int index;
3835
3836 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3837
3838 for (index = 0; index < nr_pages; index++) {
3839 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3840 REQ_RAHEAD, prev_em_start);
3841 put_page(pages[index]);
3842 }
3843 }
3844
3845 /*
3846 * helper for __extent_writepage, doing all of the delayed allocation setup.
3847 *
3848 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3849 * to write the page (copy into inline extent). In this case the IO has
3850 * been started and the page is already unlocked.
3851 *
3852 * This returns 0 if all went well (page still locked)
3853 * This returns < 0 if there were errors (page still locked)
3854 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)3855 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3856 struct page *page, struct writeback_control *wbc)
3857 {
3858 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3859 u64 delalloc_start = page_offset(page);
3860 u64 delalloc_to_write = 0;
3861 /* How many pages are started by btrfs_run_delalloc_range() */
3862 unsigned long nr_written = 0;
3863 int ret;
3864 int page_started = 0;
3865
3866 while (delalloc_start < page_end) {
3867 u64 delalloc_end = page_end;
3868 bool found;
3869
3870 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3871 &delalloc_start,
3872 &delalloc_end);
3873 if (!found) {
3874 delalloc_start = delalloc_end + 1;
3875 continue;
3876 }
3877 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3878 delalloc_end, &page_started, &nr_written, wbc);
3879 if (ret) {
3880 btrfs_page_set_error(inode->root->fs_info, page,
3881 page_offset(page), PAGE_SIZE);
3882 return ret;
3883 }
3884 /*
3885 * delalloc_end is already one less than the total length, so
3886 * we don't subtract one from PAGE_SIZE
3887 */
3888 delalloc_to_write += (delalloc_end - delalloc_start +
3889 PAGE_SIZE) >> PAGE_SHIFT;
3890 delalloc_start = delalloc_end + 1;
3891 }
3892 if (wbc->nr_to_write < delalloc_to_write) {
3893 int thresh = 8192;
3894
3895 if (delalloc_to_write < thresh * 2)
3896 thresh = delalloc_to_write;
3897 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3898 thresh);
3899 }
3900
3901 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3902 if (page_started) {
3903 /*
3904 * We've unlocked the page, so we can't update the mapping's
3905 * writeback index, just update nr_to_write.
3906 */
3907 wbc->nr_to_write -= nr_written;
3908 return 1;
3909 }
3910
3911 return 0;
3912 }
3913
3914 /*
3915 * Find the first byte we need to write.
3916 *
3917 * For subpage, one page can contain several sectors, and
3918 * __extent_writepage_io() will just grab all extent maps in the page
3919 * range and try to submit all non-inline/non-compressed extents.
3920 *
3921 * This is a big problem for subpage, we shouldn't re-submit already written
3922 * data at all.
3923 * This function will lookup subpage dirty bit to find which range we really
3924 * need to submit.
3925 *
3926 * Return the next dirty range in [@start, @end).
3927 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3928 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)3929 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3930 struct page *page, u64 *start, u64 *end)
3931 {
3932 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3933 struct btrfs_subpage_info *spi = fs_info->subpage_info;
3934 u64 orig_start = *start;
3935 /* Declare as unsigned long so we can use bitmap ops */
3936 unsigned long flags;
3937 int range_start_bit;
3938 int range_end_bit;
3939
3940 /*
3941 * For regular sector size == page size case, since one page only
3942 * contains one sector, we return the page offset directly.
3943 */
3944 if (!btrfs_is_subpage(fs_info, page)) {
3945 *start = page_offset(page);
3946 *end = page_offset(page) + PAGE_SIZE;
3947 return;
3948 }
3949
3950 range_start_bit = spi->dirty_offset +
3951 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3952
3953 /* We should have the page locked, but just in case */
3954 spin_lock_irqsave(&subpage->lock, flags);
3955 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3956 spi->dirty_offset + spi->bitmap_nr_bits);
3957 spin_unlock_irqrestore(&subpage->lock, flags);
3958
3959 range_start_bit -= spi->dirty_offset;
3960 range_end_bit -= spi->dirty_offset;
3961
3962 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3963 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3964 }
3965
3966 /*
3967 * helper for __extent_writepage. This calls the writepage start hooks,
3968 * and does the loop to map the page into extents and bios.
3969 *
3970 * We return 1 if the IO is started and the page is unlocked,
3971 * 0 if all went well (page still locked)
3972 * < 0 if there were errors (page still locked)
3973 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,int * nr_ret)3974 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3975 struct page *page,
3976 struct writeback_control *wbc,
3977 struct extent_page_data *epd,
3978 loff_t i_size,
3979 int *nr_ret)
3980 {
3981 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3982 u64 cur = page_offset(page);
3983 u64 end = cur + PAGE_SIZE - 1;
3984 u64 extent_offset;
3985 u64 block_start;
3986 struct extent_map *em;
3987 int saved_ret = 0;
3988 int ret = 0;
3989 int nr = 0;
3990 u32 opf = REQ_OP_WRITE;
3991 const unsigned int write_flags = wbc_to_write_flags(wbc);
3992 bool has_error = false;
3993 bool compressed;
3994
3995 ret = btrfs_writepage_cow_fixup(page);
3996 if (ret) {
3997 /* Fixup worker will requeue */
3998 redirty_page_for_writepage(wbc, page);
3999 unlock_page(page);
4000 return 1;
4001 }
4002
4003 /*
4004 * we don't want to touch the inode after unlocking the page,
4005 * so we update the mapping writeback index now
4006 */
4007 wbc->nr_to_write--;
4008
4009 while (cur <= end) {
4010 u64 disk_bytenr;
4011 u64 em_end;
4012 u64 dirty_range_start = cur;
4013 u64 dirty_range_end;
4014 u32 iosize;
4015
4016 if (cur >= i_size) {
4017 btrfs_writepage_endio_finish_ordered(inode, page, cur,
4018 end, true);
4019 /*
4020 * This range is beyond i_size, thus we don't need to
4021 * bother writing back.
4022 * But we still need to clear the dirty subpage bit, or
4023 * the next time the page gets dirtied, we will try to
4024 * writeback the sectors with subpage dirty bits,
4025 * causing writeback without ordered extent.
4026 */
4027 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
4028 break;
4029 }
4030
4031 find_next_dirty_byte(fs_info, page, &dirty_range_start,
4032 &dirty_range_end);
4033 if (cur < dirty_range_start) {
4034 cur = dirty_range_start;
4035 continue;
4036 }
4037
4038 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
4039 if (IS_ERR(em)) {
4040 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
4041 ret = PTR_ERR_OR_ZERO(em);
4042 has_error = true;
4043 if (!saved_ret)
4044 saved_ret = ret;
4045 break;
4046 }
4047
4048 extent_offset = cur - em->start;
4049 em_end = extent_map_end(em);
4050 ASSERT(cur <= em_end);
4051 ASSERT(cur < end);
4052 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
4053 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4054 block_start = em->block_start;
4055 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4056 disk_bytenr = em->block_start + extent_offset;
4057
4058 /*
4059 * Note that em_end from extent_map_end() and dirty_range_end from
4060 * find_next_dirty_byte() are all exclusive
4061 */
4062 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4063
4064 if (btrfs_use_zone_append(inode, em->block_start))
4065 opf = REQ_OP_ZONE_APPEND;
4066
4067 free_extent_map(em);
4068 em = NULL;
4069
4070 /*
4071 * compressed and inline extents are written through other
4072 * paths in the FS
4073 */
4074 if (compressed || block_start == EXTENT_MAP_HOLE ||
4075 block_start == EXTENT_MAP_INLINE) {
4076 if (compressed)
4077 nr++;
4078 else
4079 btrfs_writepage_endio_finish_ordered(inode,
4080 page, cur, cur + iosize - 1, true);
4081 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4082 cur += iosize;
4083 continue;
4084 }
4085
4086 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4087 if (!PageWriteback(page)) {
4088 btrfs_err(inode->root->fs_info,
4089 "page %lu not writeback, cur %llu end %llu",
4090 page->index, cur, end);
4091 }
4092
4093 /*
4094 * Although the PageDirty bit is cleared before entering this
4095 * function, subpage dirty bit is not cleared.
4096 * So clear subpage dirty bit here so next time we won't submit
4097 * page for range already written to disk.
4098 */
4099 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4100
4101 ret = submit_extent_page(opf | write_flags, wbc,
4102 &epd->bio_ctrl, page,
4103 disk_bytenr, iosize,
4104 cur - page_offset(page),
4105 end_bio_extent_writepage,
4106 0, 0, false);
4107 if (ret) {
4108 has_error = true;
4109 if (!saved_ret)
4110 saved_ret = ret;
4111
4112 btrfs_page_set_error(fs_info, page, cur, iosize);
4113 if (PageWriteback(page))
4114 btrfs_page_clear_writeback(fs_info, page, cur,
4115 iosize);
4116 }
4117
4118 cur += iosize;
4119 nr++;
4120 }
4121 /*
4122 * If we finish without problem, we should not only clear page dirty,
4123 * but also empty subpage dirty bits
4124 */
4125 if (!has_error)
4126 btrfs_page_assert_not_dirty(fs_info, page);
4127 else
4128 ret = saved_ret;
4129 *nr_ret = nr;
4130 return ret;
4131 }
4132
4133 /*
4134 * the writepage semantics are similar to regular writepage. extent
4135 * records are inserted to lock ranges in the tree, and as dirty areas
4136 * are found, they are marked writeback. Then the lock bits are removed
4137 * and the end_io handler clears the writeback ranges
4138 *
4139 * Return 0 if everything goes well.
4140 * Return <0 for error.
4141 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4142 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4143 struct extent_page_data *epd)
4144 {
4145 struct folio *folio = page_folio(page);
4146 struct inode *inode = page->mapping->host;
4147 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4148 const u64 page_start = page_offset(page);
4149 const u64 page_end = page_start + PAGE_SIZE - 1;
4150 int ret;
4151 int nr = 0;
4152 size_t pg_offset;
4153 loff_t i_size = i_size_read(inode);
4154 unsigned long end_index = i_size >> PAGE_SHIFT;
4155
4156 trace___extent_writepage(page, inode, wbc);
4157
4158 WARN_ON(!PageLocked(page));
4159
4160 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4161 page_offset(page), PAGE_SIZE);
4162
4163 pg_offset = offset_in_page(i_size);
4164 if (page->index > end_index ||
4165 (page->index == end_index && !pg_offset)) {
4166 folio_invalidate(folio, 0, folio_size(folio));
4167 folio_unlock(folio);
4168 return 0;
4169 }
4170
4171 if (page->index == end_index) {
4172 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4173 flush_dcache_page(page);
4174 }
4175
4176 ret = set_page_extent_mapped(page);
4177 if (ret < 0) {
4178 SetPageError(page);
4179 goto done;
4180 }
4181
4182 if (!epd->extent_locked) {
4183 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4184 if (ret == 1)
4185 return 0;
4186 if (ret)
4187 goto done;
4188 }
4189
4190 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4191 &nr);
4192 if (ret == 1)
4193 return 0;
4194
4195 done:
4196 if (nr == 0) {
4197 /* make sure the mapping tag for page dirty gets cleared */
4198 set_page_writeback(page);
4199 end_page_writeback(page);
4200 }
4201 /*
4202 * Here we used to have a check for PageError() and then set @ret and
4203 * call end_extent_writepage().
4204 *
4205 * But in fact setting @ret here will cause different error paths
4206 * between subpage and regular sectorsize.
4207 *
4208 * For regular page size, we never submit current page, but only add
4209 * current page to current bio.
4210 * The bio submission can only happen in next page.
4211 * Thus if we hit the PageError() branch, @ret is already set to
4212 * non-zero value and will not get updated for regular sectorsize.
4213 *
4214 * But for subpage case, it's possible we submit part of current page,
4215 * thus can get PageError() set by submitted bio of the same page,
4216 * while our @ret is still 0.
4217 *
4218 * So here we unify the behavior and don't set @ret.
4219 * Error can still be properly passed to higher layer as page will
4220 * be set error, here we just don't handle the IO failure.
4221 *
4222 * NOTE: This is just a hotfix for subpage.
4223 * The root fix will be properly ending ordered extent when we hit
4224 * an error during writeback.
4225 *
4226 * But that needs a bigger refactoring, as we not only need to grab the
4227 * submitted OE, but also need to know exactly at which bytenr we hit
4228 * the error.
4229 * Currently the full page based __extent_writepage_io() is not
4230 * capable of that.
4231 */
4232 if (PageError(page))
4233 end_extent_writepage(page, ret, page_start, page_end);
4234 if (epd->extent_locked) {
4235 /*
4236 * If epd->extent_locked, it's from extent_write_locked_range(),
4237 * the page can either be locked by lock_page() or
4238 * process_one_page().
4239 * Let btrfs_page_unlock_writer() handle both cases.
4240 */
4241 ASSERT(wbc);
4242 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4243 wbc->range_end + 1 - wbc->range_start);
4244 } else {
4245 unlock_page(page);
4246 }
4247 ASSERT(ret <= 0);
4248 return ret;
4249 }
4250
wait_on_extent_buffer_writeback(struct extent_buffer * eb)4251 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4252 {
4253 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4254 TASK_UNINTERRUPTIBLE);
4255 }
4256
end_extent_buffer_writeback(struct extent_buffer * eb)4257 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4258 {
4259 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4260 smp_mb__after_atomic();
4261 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4262 }
4263
4264 /*
4265 * Lock extent buffer status and pages for writeback.
4266 *
4267 * May try to flush write bio if we can't get the lock.
4268 *
4269 * Return 0 if the extent buffer doesn't need to be submitted.
4270 * (E.g. the extent buffer is not dirty)
4271 * Return >0 is the extent buffer is submitted to bio.
4272 * Return <0 if something went wrong, no page is locked.
4273 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)4274 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4275 struct extent_page_data *epd)
4276 {
4277 struct btrfs_fs_info *fs_info = eb->fs_info;
4278 int i, num_pages;
4279 int flush = 0;
4280 int ret = 0;
4281
4282 if (!btrfs_try_tree_write_lock(eb)) {
4283 flush_write_bio(epd);
4284 flush = 1;
4285 btrfs_tree_lock(eb);
4286 }
4287
4288 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4289 btrfs_tree_unlock(eb);
4290 if (!epd->sync_io)
4291 return 0;
4292 if (!flush) {
4293 flush_write_bio(epd);
4294 flush = 1;
4295 }
4296 while (1) {
4297 wait_on_extent_buffer_writeback(eb);
4298 btrfs_tree_lock(eb);
4299 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4300 break;
4301 btrfs_tree_unlock(eb);
4302 }
4303 }
4304
4305 /*
4306 * We need to do this to prevent races in people who check if the eb is
4307 * under IO since we can end up having no IO bits set for a short period
4308 * of time.
4309 */
4310 spin_lock(&eb->refs_lock);
4311 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4312 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4313 spin_unlock(&eb->refs_lock);
4314 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4315 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4316 -eb->len,
4317 fs_info->dirty_metadata_batch);
4318 ret = 1;
4319 } else {
4320 spin_unlock(&eb->refs_lock);
4321 }
4322
4323 btrfs_tree_unlock(eb);
4324
4325 /*
4326 * Either we don't need to submit any tree block, or we're submitting
4327 * subpage eb.
4328 * Subpage metadata doesn't use page locking at all, so we can skip
4329 * the page locking.
4330 */
4331 if (!ret || fs_info->nodesize < PAGE_SIZE)
4332 return ret;
4333
4334 num_pages = num_extent_pages(eb);
4335 for (i = 0; i < num_pages; i++) {
4336 struct page *p = eb->pages[i];
4337
4338 if (!trylock_page(p)) {
4339 if (!flush) {
4340 flush_write_bio(epd);
4341 flush = 1;
4342 }
4343 lock_page(p);
4344 }
4345 }
4346
4347 return ret;
4348 }
4349
set_btree_ioerr(struct page * page,struct extent_buffer * eb)4350 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4351 {
4352 struct btrfs_fs_info *fs_info = eb->fs_info;
4353
4354 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4355 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4356 return;
4357
4358 /*
4359 * A read may stumble upon this buffer later, make sure that it gets an
4360 * error and knows there was an error.
4361 */
4362 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4363
4364 /*
4365 * We need to set the mapping with the io error as well because a write
4366 * error will flip the file system readonly, and then syncfs() will
4367 * return a 0 because we are readonly if we don't modify the err seq for
4368 * the superblock.
4369 */
4370 mapping_set_error(page->mapping, -EIO);
4371
4372 /*
4373 * If we error out, we should add back the dirty_metadata_bytes
4374 * to make it consistent.
4375 */
4376 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4377 eb->len, fs_info->dirty_metadata_batch);
4378
4379 /*
4380 * If writeback for a btree extent that doesn't belong to a log tree
4381 * failed, increment the counter transaction->eb_write_errors.
4382 * We do this because while the transaction is running and before it's
4383 * committing (when we call filemap_fdata[write|wait]_range against
4384 * the btree inode), we might have
4385 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4386 * returns an error or an error happens during writeback, when we're
4387 * committing the transaction we wouldn't know about it, since the pages
4388 * can be no longer dirty nor marked anymore for writeback (if a
4389 * subsequent modification to the extent buffer didn't happen before the
4390 * transaction commit), which makes filemap_fdata[write|wait]_range not
4391 * able to find the pages tagged with SetPageError at transaction
4392 * commit time. So if this happens we must abort the transaction,
4393 * otherwise we commit a super block with btree roots that point to
4394 * btree nodes/leafs whose content on disk is invalid - either garbage
4395 * or the content of some node/leaf from a past generation that got
4396 * cowed or deleted and is no longer valid.
4397 *
4398 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4399 * not be enough - we need to distinguish between log tree extents vs
4400 * non-log tree extents, and the next filemap_fdatawait_range() call
4401 * will catch and clear such errors in the mapping - and that call might
4402 * be from a log sync and not from a transaction commit. Also, checking
4403 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4404 * not done and would not be reliable - the eb might have been released
4405 * from memory and reading it back again means that flag would not be
4406 * set (since it's a runtime flag, not persisted on disk).
4407 *
4408 * Using the flags below in the btree inode also makes us achieve the
4409 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4410 * writeback for all dirty pages and before filemap_fdatawait_range()
4411 * is called, the writeback for all dirty pages had already finished
4412 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4413 * filemap_fdatawait_range() would return success, as it could not know
4414 * that writeback errors happened (the pages were no longer tagged for
4415 * writeback).
4416 */
4417 switch (eb->log_index) {
4418 case -1:
4419 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4420 break;
4421 case 0:
4422 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4423 break;
4424 case 1:
4425 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4426 break;
4427 default:
4428 BUG(); /* unexpected, logic error */
4429 }
4430 }
4431
4432 /*
4433 * The endio specific version which won't touch any unsafe spinlock in endio
4434 * context.
4435 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)4436 static struct extent_buffer *find_extent_buffer_nolock(
4437 struct btrfs_fs_info *fs_info, u64 start)
4438 {
4439 struct extent_buffer *eb;
4440
4441 rcu_read_lock();
4442 eb = radix_tree_lookup(&fs_info->buffer_radix,
4443 start >> fs_info->sectorsize_bits);
4444 if (eb && atomic_inc_not_zero(&eb->refs)) {
4445 rcu_read_unlock();
4446 return eb;
4447 }
4448 rcu_read_unlock();
4449 return NULL;
4450 }
4451
4452 /*
4453 * The endio function for subpage extent buffer write.
4454 *
4455 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4456 * after all extent buffers in the page has finished their writeback.
4457 */
end_bio_subpage_eb_writepage(struct bio * bio)4458 static void end_bio_subpage_eb_writepage(struct bio *bio)
4459 {
4460 struct btrfs_fs_info *fs_info;
4461 struct bio_vec *bvec;
4462 struct bvec_iter_all iter_all;
4463
4464 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4465 ASSERT(fs_info->nodesize < PAGE_SIZE);
4466
4467 ASSERT(!bio_flagged(bio, BIO_CLONED));
4468 bio_for_each_segment_all(bvec, bio, iter_all) {
4469 struct page *page = bvec->bv_page;
4470 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4471 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4472 u64 cur_bytenr = bvec_start;
4473
4474 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4475
4476 /* Iterate through all extent buffers in the range */
4477 while (cur_bytenr <= bvec_end) {
4478 struct extent_buffer *eb;
4479 int done;
4480
4481 /*
4482 * Here we can't use find_extent_buffer(), as it may
4483 * try to lock eb->refs_lock, which is not safe in endio
4484 * context.
4485 */
4486 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4487 ASSERT(eb);
4488
4489 cur_bytenr = eb->start + eb->len;
4490
4491 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4492 done = atomic_dec_and_test(&eb->io_pages);
4493 ASSERT(done);
4494
4495 if (bio->bi_status ||
4496 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4497 ClearPageUptodate(page);
4498 set_btree_ioerr(page, eb);
4499 }
4500
4501 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4502 eb->len);
4503 end_extent_buffer_writeback(eb);
4504 /*
4505 * free_extent_buffer() will grab spinlock which is not
4506 * safe in endio context. Thus here we manually dec
4507 * the ref.
4508 */
4509 atomic_dec(&eb->refs);
4510 }
4511 }
4512 bio_put(bio);
4513 }
4514
end_bio_extent_buffer_writepage(struct bio * bio)4515 static void end_bio_extent_buffer_writepage(struct bio *bio)
4516 {
4517 struct bio_vec *bvec;
4518 struct extent_buffer *eb;
4519 int done;
4520 struct bvec_iter_all iter_all;
4521
4522 ASSERT(!bio_flagged(bio, BIO_CLONED));
4523 bio_for_each_segment_all(bvec, bio, iter_all) {
4524 struct page *page = bvec->bv_page;
4525
4526 eb = (struct extent_buffer *)page->private;
4527 BUG_ON(!eb);
4528 done = atomic_dec_and_test(&eb->io_pages);
4529
4530 if (bio->bi_status ||
4531 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4532 ClearPageUptodate(page);
4533 set_btree_ioerr(page, eb);
4534 }
4535
4536 end_page_writeback(page);
4537
4538 if (!done)
4539 continue;
4540
4541 end_extent_buffer_writeback(eb);
4542 }
4543
4544 bio_put(bio);
4545 }
4546
prepare_eb_write(struct extent_buffer * eb)4547 static void prepare_eb_write(struct extent_buffer *eb)
4548 {
4549 u32 nritems;
4550 unsigned long start;
4551 unsigned long end;
4552
4553 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4554 atomic_set(&eb->io_pages, num_extent_pages(eb));
4555
4556 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4557 nritems = btrfs_header_nritems(eb);
4558 if (btrfs_header_level(eb) > 0) {
4559 end = btrfs_node_key_ptr_offset(nritems);
4560 memzero_extent_buffer(eb, end, eb->len - end);
4561 } else {
4562 /*
4563 * Leaf:
4564 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4565 */
4566 start = btrfs_item_nr_offset(nritems);
4567 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4568 memzero_extent_buffer(eb, start, end - start);
4569 }
4570 }
4571
4572 /*
4573 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4574 * Page locking is only utilized at minimum to keep the VMM code happy.
4575 */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4576 static int write_one_subpage_eb(struct extent_buffer *eb,
4577 struct writeback_control *wbc,
4578 struct extent_page_data *epd)
4579 {
4580 struct btrfs_fs_info *fs_info = eb->fs_info;
4581 struct page *page = eb->pages[0];
4582 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4583 bool no_dirty_ebs = false;
4584 int ret;
4585
4586 prepare_eb_write(eb);
4587
4588 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4589 lock_page(page);
4590 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4591
4592 /* Check if this is the last dirty bit to update nr_written */
4593 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4594 eb->start, eb->len);
4595 if (no_dirty_ebs)
4596 clear_page_dirty_for_io(page);
4597
4598 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4599 &epd->bio_ctrl, page, eb->start, eb->len,
4600 eb->start - page_offset(page),
4601 end_bio_subpage_eb_writepage, 0, 0, false);
4602 if (ret) {
4603 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4604 set_btree_ioerr(page, eb);
4605 unlock_page(page);
4606
4607 if (atomic_dec_and_test(&eb->io_pages))
4608 end_extent_buffer_writeback(eb);
4609 return -EIO;
4610 }
4611 unlock_page(page);
4612 /*
4613 * Submission finished without problem, if no range of the page is
4614 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4615 */
4616 if (no_dirty_ebs)
4617 wbc->nr_to_write--;
4618 return ret;
4619 }
4620
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4621 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4622 struct writeback_control *wbc,
4623 struct extent_page_data *epd)
4624 {
4625 u64 disk_bytenr = eb->start;
4626 int i, num_pages;
4627 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4628 int ret = 0;
4629
4630 prepare_eb_write(eb);
4631
4632 num_pages = num_extent_pages(eb);
4633 for (i = 0; i < num_pages; i++) {
4634 struct page *p = eb->pages[i];
4635
4636 clear_page_dirty_for_io(p);
4637 set_page_writeback(p);
4638 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4639 &epd->bio_ctrl, p, disk_bytenr,
4640 PAGE_SIZE, 0,
4641 end_bio_extent_buffer_writepage,
4642 0, 0, false);
4643 if (ret) {
4644 set_btree_ioerr(p, eb);
4645 if (PageWriteback(p))
4646 end_page_writeback(p);
4647 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4648 end_extent_buffer_writeback(eb);
4649 ret = -EIO;
4650 break;
4651 }
4652 disk_bytenr += PAGE_SIZE;
4653 wbc->nr_to_write--;
4654 unlock_page(p);
4655 }
4656
4657 if (unlikely(ret)) {
4658 for (; i < num_pages; i++) {
4659 struct page *p = eb->pages[i];
4660 clear_page_dirty_for_io(p);
4661 unlock_page(p);
4662 }
4663 }
4664
4665 return ret;
4666 }
4667
4668 /*
4669 * Submit one subpage btree page.
4670 *
4671 * The main difference to submit_eb_page() is:
4672 * - Page locking
4673 * For subpage, we don't rely on page locking at all.
4674 *
4675 * - Flush write bio
4676 * We only flush bio if we may be unable to fit current extent buffers into
4677 * current bio.
4678 *
4679 * Return >=0 for the number of submitted extent buffers.
4680 * Return <0 for fatal error.
4681 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4682 static int submit_eb_subpage(struct page *page,
4683 struct writeback_control *wbc,
4684 struct extent_page_data *epd)
4685 {
4686 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4687 int submitted = 0;
4688 u64 page_start = page_offset(page);
4689 int bit_start = 0;
4690 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4691 int ret;
4692
4693 /* Lock and write each dirty extent buffers in the range */
4694 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4695 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4696 struct extent_buffer *eb;
4697 unsigned long flags;
4698 u64 start;
4699
4700 /*
4701 * Take private lock to ensure the subpage won't be detached
4702 * in the meantime.
4703 */
4704 spin_lock(&page->mapping->private_lock);
4705 if (!PagePrivate(page)) {
4706 spin_unlock(&page->mapping->private_lock);
4707 break;
4708 }
4709 spin_lock_irqsave(&subpage->lock, flags);
4710 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4711 subpage->bitmaps)) {
4712 spin_unlock_irqrestore(&subpage->lock, flags);
4713 spin_unlock(&page->mapping->private_lock);
4714 bit_start++;
4715 continue;
4716 }
4717
4718 start = page_start + bit_start * fs_info->sectorsize;
4719 bit_start += sectors_per_node;
4720
4721 /*
4722 * Here we just want to grab the eb without touching extra
4723 * spin locks, so call find_extent_buffer_nolock().
4724 */
4725 eb = find_extent_buffer_nolock(fs_info, start);
4726 spin_unlock_irqrestore(&subpage->lock, flags);
4727 spin_unlock(&page->mapping->private_lock);
4728
4729 /*
4730 * The eb has already reached 0 refs thus find_extent_buffer()
4731 * doesn't return it. We don't need to write back such eb
4732 * anyway.
4733 */
4734 if (!eb)
4735 continue;
4736
4737 ret = lock_extent_buffer_for_io(eb, epd);
4738 if (ret == 0) {
4739 free_extent_buffer(eb);
4740 continue;
4741 }
4742 if (ret < 0) {
4743 free_extent_buffer(eb);
4744 goto cleanup;
4745 }
4746 ret = write_one_subpage_eb(eb, wbc, epd);
4747 free_extent_buffer(eb);
4748 if (ret < 0)
4749 goto cleanup;
4750 submitted++;
4751 }
4752 return submitted;
4753
4754 cleanup:
4755 /* We hit error, end bio for the submitted extent buffers */
4756 end_write_bio(epd, ret);
4757 return ret;
4758 }
4759
4760 /*
4761 * Submit all page(s) of one extent buffer.
4762 *
4763 * @page: the page of one extent buffer
4764 * @eb_context: to determine if we need to submit this page, if current page
4765 * belongs to this eb, we don't need to submit
4766 *
4767 * The caller should pass each page in their bytenr order, and here we use
4768 * @eb_context to determine if we have submitted pages of one extent buffer.
4769 *
4770 * If we have, we just skip until we hit a new page that doesn't belong to
4771 * current @eb_context.
4772 *
4773 * If not, we submit all the page(s) of the extent buffer.
4774 *
4775 * Return >0 if we have submitted the extent buffer successfully.
4776 * Return 0 if we don't need to submit the page, as it's already submitted by
4777 * previous call.
4778 * Return <0 for fatal error.
4779 */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)4780 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4781 struct extent_page_data *epd,
4782 struct extent_buffer **eb_context)
4783 {
4784 struct address_space *mapping = page->mapping;
4785 struct btrfs_block_group *cache = NULL;
4786 struct extent_buffer *eb;
4787 int ret;
4788
4789 if (!PagePrivate(page))
4790 return 0;
4791
4792 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4793 return submit_eb_subpage(page, wbc, epd);
4794
4795 spin_lock(&mapping->private_lock);
4796 if (!PagePrivate(page)) {
4797 spin_unlock(&mapping->private_lock);
4798 return 0;
4799 }
4800
4801 eb = (struct extent_buffer *)page->private;
4802
4803 /*
4804 * Shouldn't happen and normally this would be a BUG_ON but no point
4805 * crashing the machine for something we can survive anyway.
4806 */
4807 if (WARN_ON(!eb)) {
4808 spin_unlock(&mapping->private_lock);
4809 return 0;
4810 }
4811
4812 if (eb == *eb_context) {
4813 spin_unlock(&mapping->private_lock);
4814 return 0;
4815 }
4816 ret = atomic_inc_not_zero(&eb->refs);
4817 spin_unlock(&mapping->private_lock);
4818 if (!ret)
4819 return 0;
4820
4821 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4822 /*
4823 * If for_sync, this hole will be filled with
4824 * trasnsaction commit.
4825 */
4826 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4827 ret = -EAGAIN;
4828 else
4829 ret = 0;
4830 free_extent_buffer(eb);
4831 return ret;
4832 }
4833
4834 *eb_context = eb;
4835
4836 ret = lock_extent_buffer_for_io(eb, epd);
4837 if (ret <= 0) {
4838 btrfs_revert_meta_write_pointer(cache, eb);
4839 if (cache)
4840 btrfs_put_block_group(cache);
4841 free_extent_buffer(eb);
4842 return ret;
4843 }
4844 if (cache) {
4845 /*
4846 * Implies write in zoned mode. Mark the last eb in a block group.
4847 */
4848 btrfs_schedule_zone_finish_bg(cache, eb);
4849 btrfs_put_block_group(cache);
4850 }
4851 ret = write_one_eb(eb, wbc, epd);
4852 free_extent_buffer(eb);
4853 if (ret < 0)
4854 return ret;
4855 return 1;
4856 }
4857
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)4858 int btree_write_cache_pages(struct address_space *mapping,
4859 struct writeback_control *wbc)
4860 {
4861 struct extent_buffer *eb_context = NULL;
4862 struct extent_page_data epd = {
4863 .bio_ctrl = { 0 },
4864 .extent_locked = 0,
4865 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4866 };
4867 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4868 int ret = 0;
4869 int done = 0;
4870 int nr_to_write_done = 0;
4871 struct pagevec pvec;
4872 int nr_pages;
4873 pgoff_t index;
4874 pgoff_t end; /* Inclusive */
4875 int scanned = 0;
4876 xa_mark_t tag;
4877
4878 pagevec_init(&pvec);
4879 if (wbc->range_cyclic) {
4880 index = mapping->writeback_index; /* Start from prev offset */
4881 end = -1;
4882 /*
4883 * Start from the beginning does not need to cycle over the
4884 * range, mark it as scanned.
4885 */
4886 scanned = (index == 0);
4887 } else {
4888 index = wbc->range_start >> PAGE_SHIFT;
4889 end = wbc->range_end >> PAGE_SHIFT;
4890 scanned = 1;
4891 }
4892 if (wbc->sync_mode == WB_SYNC_ALL)
4893 tag = PAGECACHE_TAG_TOWRITE;
4894 else
4895 tag = PAGECACHE_TAG_DIRTY;
4896 btrfs_zoned_meta_io_lock(fs_info);
4897 retry:
4898 if (wbc->sync_mode == WB_SYNC_ALL)
4899 tag_pages_for_writeback(mapping, index, end);
4900 while (!done && !nr_to_write_done && (index <= end) &&
4901 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4902 tag))) {
4903 unsigned i;
4904
4905 for (i = 0; i < nr_pages; i++) {
4906 struct page *page = pvec.pages[i];
4907
4908 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4909 if (ret == 0)
4910 continue;
4911 if (ret < 0) {
4912 done = 1;
4913 break;
4914 }
4915
4916 /*
4917 * the filesystem may choose to bump up nr_to_write.
4918 * We have to make sure to honor the new nr_to_write
4919 * at any time
4920 */
4921 nr_to_write_done = wbc->nr_to_write <= 0;
4922 }
4923 pagevec_release(&pvec);
4924 cond_resched();
4925 }
4926 if (!scanned && !done) {
4927 /*
4928 * We hit the last page and there is more work to be done: wrap
4929 * back to the start of the file
4930 */
4931 scanned = 1;
4932 index = 0;
4933 goto retry;
4934 }
4935 if (ret < 0) {
4936 end_write_bio(&epd, ret);
4937 goto out;
4938 }
4939 /*
4940 * If something went wrong, don't allow any metadata write bio to be
4941 * submitted.
4942 *
4943 * This would prevent use-after-free if we had dirty pages not
4944 * cleaned up, which can still happen by fuzzed images.
4945 *
4946 * - Bad extent tree
4947 * Allowing existing tree block to be allocated for other trees.
4948 *
4949 * - Log tree operations
4950 * Exiting tree blocks get allocated to log tree, bumps its
4951 * generation, then get cleaned in tree re-balance.
4952 * Such tree block will not be written back, since it's clean,
4953 * thus no WRITTEN flag set.
4954 * And after log writes back, this tree block is not traced by
4955 * any dirty extent_io_tree.
4956 *
4957 * - Offending tree block gets re-dirtied from its original owner
4958 * Since it has bumped generation, no WRITTEN flag, it can be
4959 * reused without COWing. This tree block will not be traced
4960 * by btrfs_transaction::dirty_pages.
4961 *
4962 * Now such dirty tree block will not be cleaned by any dirty
4963 * extent io tree. Thus we don't want to submit such wild eb
4964 * if the fs already has error.
4965 */
4966 if (!BTRFS_FS_ERROR(fs_info)) {
4967 flush_write_bio(&epd);
4968 } else {
4969 ret = -EROFS;
4970 end_write_bio(&epd, ret);
4971 }
4972 out:
4973 btrfs_zoned_meta_io_unlock(fs_info);
4974 /*
4975 * We can get ret > 0 from submit_extent_page() indicating how many ebs
4976 * were submitted. Reset it to 0 to avoid false alerts for the caller.
4977 */
4978 if (ret > 0)
4979 ret = 0;
4980 return ret;
4981 }
4982
4983 /**
4984 * Walk the list of dirty pages of the given address space and write all of them.
4985 *
4986 * @mapping: address space structure to write
4987 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4988 * @epd: holds context for the write, namely the bio
4989 *
4990 * If a page is already under I/O, write_cache_pages() skips it, even
4991 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4992 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4993 * and msync() need to guarantee that all the data which was dirty at the time
4994 * the call was made get new I/O started against them. If wbc->sync_mode is
4995 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4996 * existing IO to complete.
4997 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4998 static int extent_write_cache_pages(struct address_space *mapping,
4999 struct writeback_control *wbc,
5000 struct extent_page_data *epd)
5001 {
5002 struct inode *inode = mapping->host;
5003 int ret = 0;
5004 int done = 0;
5005 int nr_to_write_done = 0;
5006 struct pagevec pvec;
5007 int nr_pages;
5008 pgoff_t index;
5009 pgoff_t end; /* Inclusive */
5010 pgoff_t done_index;
5011 int range_whole = 0;
5012 int scanned = 0;
5013 xa_mark_t tag;
5014
5015 /*
5016 * We have to hold onto the inode so that ordered extents can do their
5017 * work when the IO finishes. The alternative to this is failing to add
5018 * an ordered extent if the igrab() fails there and that is a huge pain
5019 * to deal with, so instead just hold onto the inode throughout the
5020 * writepages operation. If it fails here we are freeing up the inode
5021 * anyway and we'd rather not waste our time writing out stuff that is
5022 * going to be truncated anyway.
5023 */
5024 if (!igrab(inode))
5025 return 0;
5026
5027 pagevec_init(&pvec);
5028 if (wbc->range_cyclic) {
5029 index = mapping->writeback_index; /* Start from prev offset */
5030 end = -1;
5031 /*
5032 * Start from the beginning does not need to cycle over the
5033 * range, mark it as scanned.
5034 */
5035 scanned = (index == 0);
5036 } else {
5037 index = wbc->range_start >> PAGE_SHIFT;
5038 end = wbc->range_end >> PAGE_SHIFT;
5039 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
5040 range_whole = 1;
5041 scanned = 1;
5042 }
5043
5044 /*
5045 * We do the tagged writepage as long as the snapshot flush bit is set
5046 * and we are the first one who do the filemap_flush() on this inode.
5047 *
5048 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
5049 * not race in and drop the bit.
5050 */
5051 if (range_whole && wbc->nr_to_write == LONG_MAX &&
5052 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
5053 &BTRFS_I(inode)->runtime_flags))
5054 wbc->tagged_writepages = 1;
5055
5056 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5057 tag = PAGECACHE_TAG_TOWRITE;
5058 else
5059 tag = PAGECACHE_TAG_DIRTY;
5060 retry:
5061 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5062 tag_pages_for_writeback(mapping, index, end);
5063 done_index = index;
5064 while (!done && !nr_to_write_done && (index <= end) &&
5065 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5066 &index, end, tag))) {
5067 unsigned i;
5068
5069 for (i = 0; i < nr_pages; i++) {
5070 struct page *page = pvec.pages[i];
5071
5072 done_index = page->index + 1;
5073 /*
5074 * At this point we hold neither the i_pages lock nor
5075 * the page lock: the page may be truncated or
5076 * invalidated (changing page->mapping to NULL),
5077 * or even swizzled back from swapper_space to
5078 * tmpfs file mapping
5079 */
5080 if (!trylock_page(page)) {
5081 flush_write_bio(epd);
5082 lock_page(page);
5083 }
5084
5085 if (unlikely(page->mapping != mapping)) {
5086 unlock_page(page);
5087 continue;
5088 }
5089
5090 if (wbc->sync_mode != WB_SYNC_NONE) {
5091 if (PageWriteback(page))
5092 flush_write_bio(epd);
5093 wait_on_page_writeback(page);
5094 }
5095
5096 if (PageWriteback(page) ||
5097 !clear_page_dirty_for_io(page)) {
5098 unlock_page(page);
5099 continue;
5100 }
5101
5102 ret = __extent_writepage(page, wbc, epd);
5103 if (ret < 0) {
5104 done = 1;
5105 break;
5106 }
5107
5108 /*
5109 * the filesystem may choose to bump up nr_to_write.
5110 * We have to make sure to honor the new nr_to_write
5111 * at any time
5112 */
5113 nr_to_write_done = wbc->nr_to_write <= 0;
5114 }
5115 pagevec_release(&pvec);
5116 cond_resched();
5117 }
5118 if (!scanned && !done) {
5119 /*
5120 * We hit the last page and there is more work to be done: wrap
5121 * back to the start of the file
5122 */
5123 scanned = 1;
5124 index = 0;
5125
5126 /*
5127 * If we're looping we could run into a page that is locked by a
5128 * writer and that writer could be waiting on writeback for a
5129 * page in our current bio, and thus deadlock, so flush the
5130 * write bio here.
5131 */
5132 flush_write_bio(epd);
5133 goto retry;
5134 }
5135
5136 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5137 mapping->writeback_index = done_index;
5138
5139 btrfs_add_delayed_iput(inode);
5140 return ret;
5141 }
5142
extent_write_full_page(struct page * page,struct writeback_control * wbc)5143 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5144 {
5145 int ret;
5146 struct extent_page_data epd = {
5147 .bio_ctrl = { 0 },
5148 .extent_locked = 0,
5149 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5150 };
5151
5152 ret = __extent_writepage(page, wbc, &epd);
5153 ASSERT(ret <= 0);
5154 if (ret < 0) {
5155 end_write_bio(&epd, ret);
5156 return ret;
5157 }
5158
5159 flush_write_bio(&epd);
5160 return ret;
5161 }
5162
5163 /*
5164 * Submit the pages in the range to bio for call sites which delalloc range has
5165 * already been ran (aka, ordered extent inserted) and all pages are still
5166 * locked.
5167 */
extent_write_locked_range(struct inode * inode,u64 start,u64 end)5168 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5169 {
5170 bool found_error = false;
5171 int first_error = 0;
5172 int ret = 0;
5173 struct address_space *mapping = inode->i_mapping;
5174 struct page *page;
5175 u64 cur = start;
5176 unsigned long nr_pages;
5177 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5178 struct extent_page_data epd = {
5179 .bio_ctrl = { 0 },
5180 .extent_locked = 1,
5181 .sync_io = 1,
5182 };
5183 struct writeback_control wbc_writepages = {
5184 .sync_mode = WB_SYNC_ALL,
5185 .range_start = start,
5186 .range_end = end + 1,
5187 /* We're called from an async helper function */
5188 .punt_to_cgroup = 1,
5189 .no_cgroup_owner = 1,
5190 };
5191
5192 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5193 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5194 PAGE_SHIFT;
5195 wbc_writepages.nr_to_write = nr_pages * 2;
5196
5197 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5198 while (cur <= end) {
5199 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5200
5201 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5202 /*
5203 * All pages in the range are locked since
5204 * btrfs_run_delalloc_range(), thus there is no way to clear
5205 * the page dirty flag.
5206 */
5207 ASSERT(PageLocked(page));
5208 ASSERT(PageDirty(page));
5209 clear_page_dirty_for_io(page);
5210 ret = __extent_writepage(page, &wbc_writepages, &epd);
5211 ASSERT(ret <= 0);
5212 if (ret < 0) {
5213 found_error = true;
5214 first_error = ret;
5215 }
5216 put_page(page);
5217 cur = cur_end + 1;
5218 }
5219
5220 if (!found_error)
5221 flush_write_bio(&epd);
5222 else
5223 end_write_bio(&epd, ret);
5224
5225 wbc_detach_inode(&wbc_writepages);
5226 if (found_error)
5227 return first_error;
5228 return ret;
5229 }
5230
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)5231 int extent_writepages(struct address_space *mapping,
5232 struct writeback_control *wbc)
5233 {
5234 struct inode *inode = mapping->host;
5235 int ret = 0;
5236 struct extent_page_data epd = {
5237 .bio_ctrl = { 0 },
5238 .extent_locked = 0,
5239 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5240 };
5241
5242 /*
5243 * Allow only a single thread to do the reloc work in zoned mode to
5244 * protect the write pointer updates.
5245 */
5246 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5247 ret = extent_write_cache_pages(mapping, wbc, &epd);
5248 ASSERT(ret <= 0);
5249 if (ret < 0) {
5250 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5251 end_write_bio(&epd, ret);
5252 return ret;
5253 }
5254 flush_write_bio(&epd);
5255 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5256 return ret;
5257 }
5258
extent_readahead(struct readahead_control * rac)5259 void extent_readahead(struct readahead_control *rac)
5260 {
5261 struct btrfs_bio_ctrl bio_ctrl = { 0 };
5262 struct page *pagepool[16];
5263 struct extent_map *em_cached = NULL;
5264 u64 prev_em_start = (u64)-1;
5265 int nr;
5266
5267 while ((nr = readahead_page_batch(rac, pagepool))) {
5268 u64 contig_start = readahead_pos(rac);
5269 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5270
5271 contiguous_readpages(pagepool, nr, contig_start, contig_end,
5272 &em_cached, &bio_ctrl, &prev_em_start);
5273 }
5274
5275 if (em_cached)
5276 free_extent_map(em_cached);
5277
5278 if (bio_ctrl.bio)
5279 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type);
5280 }
5281
5282 /*
5283 * basic invalidate_folio code, this waits on any locked or writeback
5284 * ranges corresponding to the folio, and then deletes any extent state
5285 * records from the tree
5286 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)5287 int extent_invalidate_folio(struct extent_io_tree *tree,
5288 struct folio *folio, size_t offset)
5289 {
5290 struct extent_state *cached_state = NULL;
5291 u64 start = folio_pos(folio);
5292 u64 end = start + folio_size(folio) - 1;
5293 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5294
5295 /* This function is only called for the btree inode */
5296 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5297
5298 start += ALIGN(offset, blocksize);
5299 if (start > end)
5300 return 0;
5301
5302 lock_extent_bits(tree, start, end, &cached_state);
5303 folio_wait_writeback(folio);
5304
5305 /*
5306 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5307 * so here we only need to unlock the extent range to free any
5308 * existing extent state.
5309 */
5310 unlock_extent_cached(tree, start, end, &cached_state);
5311 return 0;
5312 }
5313
5314 /*
5315 * a helper for release_folio, this tests for areas of the page that
5316 * are locked or under IO and drops the related state bits if it is safe
5317 * to drop the page.
5318 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)5319 static int try_release_extent_state(struct extent_io_tree *tree,
5320 struct page *page, gfp_t mask)
5321 {
5322 u64 start = page_offset(page);
5323 u64 end = start + PAGE_SIZE - 1;
5324 int ret = 1;
5325
5326 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5327 ret = 0;
5328 } else {
5329 /*
5330 * At this point we can safely clear everything except the
5331 * locked bit, the nodatasum bit and the delalloc new bit.
5332 * The delalloc new bit will be cleared by ordered extent
5333 * completion.
5334 */
5335 ret = __clear_extent_bit(tree, start, end,
5336 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5337 0, 0, NULL, mask, NULL);
5338
5339 /* if clear_extent_bit failed for enomem reasons,
5340 * we can't allow the release to continue.
5341 */
5342 if (ret < 0)
5343 ret = 0;
5344 else
5345 ret = 1;
5346 }
5347 return ret;
5348 }
5349
5350 /*
5351 * a helper for release_folio. As long as there are no locked extents
5352 * in the range corresponding to the page, both state records and extent
5353 * map records are removed
5354 */
try_release_extent_mapping(struct page * page,gfp_t mask)5355 int try_release_extent_mapping(struct page *page, gfp_t mask)
5356 {
5357 struct extent_map *em;
5358 u64 start = page_offset(page);
5359 u64 end = start + PAGE_SIZE - 1;
5360 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5361 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5362 struct extent_map_tree *map = &btrfs_inode->extent_tree;
5363
5364 if (gfpflags_allow_blocking(mask) &&
5365 page->mapping->host->i_size > SZ_16M) {
5366 u64 len;
5367 while (start <= end) {
5368 struct btrfs_fs_info *fs_info;
5369 u64 cur_gen;
5370
5371 len = end - start + 1;
5372 write_lock(&map->lock);
5373 em = lookup_extent_mapping(map, start, len);
5374 if (!em) {
5375 write_unlock(&map->lock);
5376 break;
5377 }
5378 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5379 em->start != start) {
5380 write_unlock(&map->lock);
5381 free_extent_map(em);
5382 break;
5383 }
5384 if (test_range_bit(tree, em->start,
5385 extent_map_end(em) - 1,
5386 EXTENT_LOCKED, 0, NULL))
5387 goto next;
5388 /*
5389 * If it's not in the list of modified extents, used
5390 * by a fast fsync, we can remove it. If it's being
5391 * logged we can safely remove it since fsync took an
5392 * extra reference on the em.
5393 */
5394 if (list_empty(&em->list) ||
5395 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5396 goto remove_em;
5397 /*
5398 * If it's in the list of modified extents, remove it
5399 * only if its generation is older then the current one,
5400 * in which case we don't need it for a fast fsync.
5401 * Otherwise don't remove it, we could be racing with an
5402 * ongoing fast fsync that could miss the new extent.
5403 */
5404 fs_info = btrfs_inode->root->fs_info;
5405 spin_lock(&fs_info->trans_lock);
5406 cur_gen = fs_info->generation;
5407 spin_unlock(&fs_info->trans_lock);
5408 if (em->generation >= cur_gen)
5409 goto next;
5410 remove_em:
5411 /*
5412 * We only remove extent maps that are not in the list of
5413 * modified extents or that are in the list but with a
5414 * generation lower then the current generation, so there
5415 * is no need to set the full fsync flag on the inode (it
5416 * hurts the fsync performance for workloads with a data
5417 * size that exceeds or is close to the system's memory).
5418 */
5419 remove_extent_mapping(map, em);
5420 /* once for the rb tree */
5421 free_extent_map(em);
5422 next:
5423 start = extent_map_end(em);
5424 write_unlock(&map->lock);
5425
5426 /* once for us */
5427 free_extent_map(em);
5428
5429 cond_resched(); /* Allow large-extent preemption. */
5430 }
5431 }
5432 return try_release_extent_state(tree, page, mask);
5433 }
5434
5435 /*
5436 * helper function for fiemap, which doesn't want to see any holes.
5437 * This maps until we find something past 'last'
5438 */
get_extent_skip_holes(struct btrfs_inode * inode,u64 offset,u64 last)5439 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5440 u64 offset, u64 last)
5441 {
5442 u64 sectorsize = btrfs_inode_sectorsize(inode);
5443 struct extent_map *em;
5444 u64 len;
5445
5446 if (offset >= last)
5447 return NULL;
5448
5449 while (1) {
5450 len = last - offset;
5451 if (len == 0)
5452 break;
5453 len = ALIGN(len, sectorsize);
5454 em = btrfs_get_extent_fiemap(inode, offset, len);
5455 if (IS_ERR(em))
5456 return em;
5457
5458 /* if this isn't a hole return it */
5459 if (em->block_start != EXTENT_MAP_HOLE)
5460 return em;
5461
5462 /* this is a hole, advance to the next extent */
5463 offset = extent_map_end(em);
5464 free_extent_map(em);
5465 if (offset >= last)
5466 break;
5467 }
5468 return NULL;
5469 }
5470
5471 /*
5472 * To cache previous fiemap extent
5473 *
5474 * Will be used for merging fiemap extent
5475 */
5476 struct fiemap_cache {
5477 u64 offset;
5478 u64 phys;
5479 u64 len;
5480 u32 flags;
5481 bool cached;
5482 };
5483
5484 /*
5485 * Helper to submit fiemap extent.
5486 *
5487 * Will try to merge current fiemap extent specified by @offset, @phys,
5488 * @len and @flags with cached one.
5489 * And only when we fails to merge, cached one will be submitted as
5490 * fiemap extent.
5491 *
5492 * Return value is the same as fiemap_fill_next_extent().
5493 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)5494 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5495 struct fiemap_cache *cache,
5496 u64 offset, u64 phys, u64 len, u32 flags)
5497 {
5498 int ret = 0;
5499
5500 if (!cache->cached)
5501 goto assign;
5502
5503 /*
5504 * Sanity check, extent_fiemap() should have ensured that new
5505 * fiemap extent won't overlap with cached one.
5506 * Not recoverable.
5507 *
5508 * NOTE: Physical address can overlap, due to compression
5509 */
5510 if (cache->offset + cache->len > offset) {
5511 WARN_ON(1);
5512 return -EINVAL;
5513 }
5514
5515 /*
5516 * Only merges fiemap extents if
5517 * 1) Their logical addresses are continuous
5518 *
5519 * 2) Their physical addresses are continuous
5520 * So truly compressed (physical size smaller than logical size)
5521 * extents won't get merged with each other
5522 *
5523 * 3) Share same flags except FIEMAP_EXTENT_LAST
5524 * So regular extent won't get merged with prealloc extent
5525 */
5526 if (cache->offset + cache->len == offset &&
5527 cache->phys + cache->len == phys &&
5528 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5529 (flags & ~FIEMAP_EXTENT_LAST)) {
5530 cache->len += len;
5531 cache->flags |= flags;
5532 goto try_submit_last;
5533 }
5534
5535 /* Not mergeable, need to submit cached one */
5536 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5537 cache->len, cache->flags);
5538 cache->cached = false;
5539 if (ret)
5540 return ret;
5541 assign:
5542 cache->cached = true;
5543 cache->offset = offset;
5544 cache->phys = phys;
5545 cache->len = len;
5546 cache->flags = flags;
5547 try_submit_last:
5548 if (cache->flags & FIEMAP_EXTENT_LAST) {
5549 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5550 cache->phys, cache->len, cache->flags);
5551 cache->cached = false;
5552 }
5553 return ret;
5554 }
5555
5556 /*
5557 * Emit last fiemap cache
5558 *
5559 * The last fiemap cache may still be cached in the following case:
5560 * 0 4k 8k
5561 * |<- Fiemap range ->|
5562 * |<------------ First extent ----------->|
5563 *
5564 * In this case, the first extent range will be cached but not emitted.
5565 * So we must emit it before ending extent_fiemap().
5566 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)5567 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5568 struct fiemap_cache *cache)
5569 {
5570 int ret;
5571
5572 if (!cache->cached)
5573 return 0;
5574
5575 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5576 cache->len, cache->flags);
5577 cache->cached = false;
5578 if (ret > 0)
5579 ret = 0;
5580 return ret;
5581 }
5582
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)5583 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5584 u64 start, u64 len)
5585 {
5586 int ret = 0;
5587 u64 off;
5588 u64 max = start + len;
5589 u32 flags = 0;
5590 u32 found_type;
5591 u64 last;
5592 u64 last_for_get_extent = 0;
5593 u64 disko = 0;
5594 u64 isize = i_size_read(&inode->vfs_inode);
5595 struct btrfs_key found_key;
5596 struct extent_map *em = NULL;
5597 struct extent_state *cached_state = NULL;
5598 struct btrfs_path *path;
5599 struct btrfs_root *root = inode->root;
5600 struct fiemap_cache cache = { 0 };
5601 struct ulist *roots;
5602 struct ulist *tmp_ulist;
5603 int end = 0;
5604 u64 em_start = 0;
5605 u64 em_len = 0;
5606 u64 em_end = 0;
5607
5608 if (len == 0)
5609 return -EINVAL;
5610
5611 path = btrfs_alloc_path();
5612 if (!path)
5613 return -ENOMEM;
5614
5615 roots = ulist_alloc(GFP_KERNEL);
5616 tmp_ulist = ulist_alloc(GFP_KERNEL);
5617 if (!roots || !tmp_ulist) {
5618 ret = -ENOMEM;
5619 goto out_free_ulist;
5620 }
5621
5622 /*
5623 * We can't initialize that to 'start' as this could miss extents due
5624 * to extent item merging
5625 */
5626 off = 0;
5627 start = round_down(start, btrfs_inode_sectorsize(inode));
5628 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5629
5630 /*
5631 * lookup the last file extent. We're not using i_size here
5632 * because there might be preallocation past i_size
5633 */
5634 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5635 0);
5636 if (ret < 0) {
5637 goto out_free_ulist;
5638 } else {
5639 WARN_ON(!ret);
5640 if (ret == 1)
5641 ret = 0;
5642 }
5643
5644 path->slots[0]--;
5645 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5646 found_type = found_key.type;
5647
5648 /* No extents, but there might be delalloc bits */
5649 if (found_key.objectid != btrfs_ino(inode) ||
5650 found_type != BTRFS_EXTENT_DATA_KEY) {
5651 /* have to trust i_size as the end */
5652 last = (u64)-1;
5653 last_for_get_extent = isize;
5654 } else {
5655 /*
5656 * remember the start of the last extent. There are a
5657 * bunch of different factors that go into the length of the
5658 * extent, so its much less complex to remember where it started
5659 */
5660 last = found_key.offset;
5661 last_for_get_extent = last + 1;
5662 }
5663 btrfs_release_path(path);
5664
5665 /*
5666 * we might have some extents allocated but more delalloc past those
5667 * extents. so, we trust isize unless the start of the last extent is
5668 * beyond isize
5669 */
5670 if (last < isize) {
5671 last = (u64)-1;
5672 last_for_get_extent = isize;
5673 }
5674
5675 lock_extent_bits(&inode->io_tree, start, start + len - 1,
5676 &cached_state);
5677
5678 em = get_extent_skip_holes(inode, start, last_for_get_extent);
5679 if (!em)
5680 goto out;
5681 if (IS_ERR(em)) {
5682 ret = PTR_ERR(em);
5683 goto out;
5684 }
5685
5686 while (!end) {
5687 u64 offset_in_extent = 0;
5688
5689 /* break if the extent we found is outside the range */
5690 if (em->start >= max || extent_map_end(em) < off)
5691 break;
5692
5693 /*
5694 * get_extent may return an extent that starts before our
5695 * requested range. We have to make sure the ranges
5696 * we return to fiemap always move forward and don't
5697 * overlap, so adjust the offsets here
5698 */
5699 em_start = max(em->start, off);
5700
5701 /*
5702 * record the offset from the start of the extent
5703 * for adjusting the disk offset below. Only do this if the
5704 * extent isn't compressed since our in ram offset may be past
5705 * what we have actually allocated on disk.
5706 */
5707 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5708 offset_in_extent = em_start - em->start;
5709 em_end = extent_map_end(em);
5710 em_len = em_end - em_start;
5711 flags = 0;
5712 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5713 disko = em->block_start + offset_in_extent;
5714 else
5715 disko = 0;
5716
5717 /*
5718 * bump off for our next call to get_extent
5719 */
5720 off = extent_map_end(em);
5721 if (off >= max)
5722 end = 1;
5723
5724 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5725 end = 1;
5726 flags |= FIEMAP_EXTENT_LAST;
5727 } else if (em->block_start == EXTENT_MAP_INLINE) {
5728 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5729 FIEMAP_EXTENT_NOT_ALIGNED);
5730 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5731 flags |= (FIEMAP_EXTENT_DELALLOC |
5732 FIEMAP_EXTENT_UNKNOWN);
5733 } else if (fieinfo->fi_extents_max) {
5734 u64 bytenr = em->block_start -
5735 (em->start - em->orig_start);
5736
5737 /*
5738 * As btrfs supports shared space, this information
5739 * can be exported to userspace tools via
5740 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5741 * then we're just getting a count and we can skip the
5742 * lookup stuff.
5743 */
5744 ret = btrfs_check_shared(root, btrfs_ino(inode),
5745 bytenr, roots, tmp_ulist);
5746 if (ret < 0)
5747 goto out_free;
5748 if (ret)
5749 flags |= FIEMAP_EXTENT_SHARED;
5750 ret = 0;
5751 }
5752 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5753 flags |= FIEMAP_EXTENT_ENCODED;
5754 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5755 flags |= FIEMAP_EXTENT_UNWRITTEN;
5756
5757 free_extent_map(em);
5758 em = NULL;
5759 if ((em_start >= last) || em_len == (u64)-1 ||
5760 (last == (u64)-1 && isize <= em_end)) {
5761 flags |= FIEMAP_EXTENT_LAST;
5762 end = 1;
5763 }
5764
5765 /* now scan forward to see if this is really the last extent. */
5766 em = get_extent_skip_holes(inode, off, last_for_get_extent);
5767 if (IS_ERR(em)) {
5768 ret = PTR_ERR(em);
5769 goto out;
5770 }
5771 if (!em) {
5772 flags |= FIEMAP_EXTENT_LAST;
5773 end = 1;
5774 }
5775 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5776 em_len, flags);
5777 if (ret) {
5778 if (ret == 1)
5779 ret = 0;
5780 goto out_free;
5781 }
5782 }
5783 out_free:
5784 if (!ret)
5785 ret = emit_last_fiemap_cache(fieinfo, &cache);
5786 free_extent_map(em);
5787 out:
5788 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5789 &cached_state);
5790
5791 out_free_ulist:
5792 btrfs_free_path(path);
5793 ulist_free(roots);
5794 ulist_free(tmp_ulist);
5795 return ret;
5796 }
5797
__free_extent_buffer(struct extent_buffer * eb)5798 static void __free_extent_buffer(struct extent_buffer *eb)
5799 {
5800 kmem_cache_free(extent_buffer_cache, eb);
5801 }
5802
extent_buffer_under_io(const struct extent_buffer * eb)5803 int extent_buffer_under_io(const struct extent_buffer *eb)
5804 {
5805 return (atomic_read(&eb->io_pages) ||
5806 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5807 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5808 }
5809
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)5810 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5811 {
5812 struct btrfs_subpage *subpage;
5813
5814 lockdep_assert_held(&page->mapping->private_lock);
5815
5816 if (PagePrivate(page)) {
5817 subpage = (struct btrfs_subpage *)page->private;
5818 if (atomic_read(&subpage->eb_refs))
5819 return true;
5820 /*
5821 * Even there is no eb refs here, we may still have
5822 * end_page_read() call relying on page::private.
5823 */
5824 if (atomic_read(&subpage->readers))
5825 return true;
5826 }
5827 return false;
5828 }
5829
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)5830 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5831 {
5832 struct btrfs_fs_info *fs_info = eb->fs_info;
5833 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5834
5835 /*
5836 * For mapped eb, we're going to change the page private, which should
5837 * be done under the private_lock.
5838 */
5839 if (mapped)
5840 spin_lock(&page->mapping->private_lock);
5841
5842 if (!PagePrivate(page)) {
5843 if (mapped)
5844 spin_unlock(&page->mapping->private_lock);
5845 return;
5846 }
5847
5848 if (fs_info->nodesize >= PAGE_SIZE) {
5849 /*
5850 * We do this since we'll remove the pages after we've
5851 * removed the eb from the radix tree, so we could race
5852 * and have this page now attached to the new eb. So
5853 * only clear page_private if it's still connected to
5854 * this eb.
5855 */
5856 if (PagePrivate(page) &&
5857 page->private == (unsigned long)eb) {
5858 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5859 BUG_ON(PageDirty(page));
5860 BUG_ON(PageWriteback(page));
5861 /*
5862 * We need to make sure we haven't be attached
5863 * to a new eb.
5864 */
5865 detach_page_private(page);
5866 }
5867 if (mapped)
5868 spin_unlock(&page->mapping->private_lock);
5869 return;
5870 }
5871
5872 /*
5873 * For subpage, we can have dummy eb with page private. In this case,
5874 * we can directly detach the private as such page is only attached to
5875 * one dummy eb, no sharing.
5876 */
5877 if (!mapped) {
5878 btrfs_detach_subpage(fs_info, page);
5879 return;
5880 }
5881
5882 btrfs_page_dec_eb_refs(fs_info, page);
5883
5884 /*
5885 * We can only detach the page private if there are no other ebs in the
5886 * page range and no unfinished IO.
5887 */
5888 if (!page_range_has_eb(fs_info, page))
5889 btrfs_detach_subpage(fs_info, page);
5890
5891 spin_unlock(&page->mapping->private_lock);
5892 }
5893
5894 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)5895 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5896 {
5897 int i;
5898 int num_pages;
5899
5900 ASSERT(!extent_buffer_under_io(eb));
5901
5902 num_pages = num_extent_pages(eb);
5903 for (i = 0; i < num_pages; i++) {
5904 struct page *page = eb->pages[i];
5905
5906 if (!page)
5907 continue;
5908
5909 detach_extent_buffer_page(eb, page);
5910
5911 /* One for when we allocated the page */
5912 put_page(page);
5913 }
5914 }
5915
5916 /*
5917 * Helper for releasing the extent buffer.
5918 */
btrfs_release_extent_buffer(struct extent_buffer * eb)5919 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5920 {
5921 btrfs_release_extent_buffer_pages(eb);
5922 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5923 __free_extent_buffer(eb);
5924 }
5925
5926 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5927 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5928 unsigned long len)
5929 {
5930 struct extent_buffer *eb = NULL;
5931
5932 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5933 eb->start = start;
5934 eb->len = len;
5935 eb->fs_info = fs_info;
5936 eb->bflags = 0;
5937 init_rwsem(&eb->lock);
5938
5939 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5940 &fs_info->allocated_ebs);
5941 INIT_LIST_HEAD(&eb->release_list);
5942
5943 spin_lock_init(&eb->refs_lock);
5944 atomic_set(&eb->refs, 1);
5945 atomic_set(&eb->io_pages, 0);
5946
5947 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5948
5949 return eb;
5950 }
5951
btrfs_clone_extent_buffer(const struct extent_buffer * src)5952 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5953 {
5954 int i;
5955 struct extent_buffer *new;
5956 int num_pages = num_extent_pages(src);
5957 int ret;
5958
5959 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5960 if (new == NULL)
5961 return NULL;
5962
5963 /*
5964 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5965 * btrfs_release_extent_buffer() have different behavior for
5966 * UNMAPPED subpage extent buffer.
5967 */
5968 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5969
5970 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
5971 ret = btrfs_alloc_page_array(num_pages, new->pages);
5972 if (ret) {
5973 btrfs_release_extent_buffer(new);
5974 return NULL;
5975 }
5976
5977 for (i = 0; i < num_pages; i++) {
5978 int ret;
5979 struct page *p = new->pages[i];
5980
5981 ret = attach_extent_buffer_page(new, p, NULL);
5982 if (ret < 0) {
5983 btrfs_release_extent_buffer(new);
5984 return NULL;
5985 }
5986 WARN_ON(PageDirty(p));
5987 copy_page(page_address(p), page_address(src->pages[i]));
5988 }
5989 set_extent_buffer_uptodate(new);
5990
5991 return new;
5992 }
5993
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5994 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5995 u64 start, unsigned long len)
5996 {
5997 struct extent_buffer *eb;
5998 int num_pages;
5999 int i;
6000 int ret;
6001
6002 eb = __alloc_extent_buffer(fs_info, start, len);
6003 if (!eb)
6004 return NULL;
6005
6006 num_pages = num_extent_pages(eb);
6007 ret = btrfs_alloc_page_array(num_pages, eb->pages);
6008 if (ret)
6009 goto err;
6010
6011 for (i = 0; i < num_pages; i++) {
6012 struct page *p = eb->pages[i];
6013
6014 ret = attach_extent_buffer_page(eb, p, NULL);
6015 if (ret < 0)
6016 goto err;
6017 }
6018
6019 set_extent_buffer_uptodate(eb);
6020 btrfs_set_header_nritems(eb, 0);
6021 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
6022
6023 return eb;
6024 err:
6025 for (i = 0; i < num_pages; i++) {
6026 if (eb->pages[i]) {
6027 detach_extent_buffer_page(eb, eb->pages[i]);
6028 __free_page(eb->pages[i]);
6029 }
6030 }
6031 __free_extent_buffer(eb);
6032 return NULL;
6033 }
6034
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6035 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
6036 u64 start)
6037 {
6038 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
6039 }
6040
check_buffer_tree_ref(struct extent_buffer * eb)6041 static void check_buffer_tree_ref(struct extent_buffer *eb)
6042 {
6043 int refs;
6044 /*
6045 * The TREE_REF bit is first set when the extent_buffer is added
6046 * to the radix tree. It is also reset, if unset, when a new reference
6047 * is created by find_extent_buffer.
6048 *
6049 * It is only cleared in two cases: freeing the last non-tree
6050 * reference to the extent_buffer when its STALE bit is set or
6051 * calling release_folio when the tree reference is the only reference.
6052 *
6053 * In both cases, care is taken to ensure that the extent_buffer's
6054 * pages are not under io. However, release_folio can be concurrently
6055 * called with creating new references, which is prone to race
6056 * conditions between the calls to check_buffer_tree_ref in those
6057 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6058 *
6059 * The actual lifetime of the extent_buffer in the radix tree is
6060 * adequately protected by the refcount, but the TREE_REF bit and
6061 * its corresponding reference are not. To protect against this
6062 * class of races, we call check_buffer_tree_ref from the codepaths
6063 * which trigger io after they set eb->io_pages. Note that once io is
6064 * initiated, TREE_REF can no longer be cleared, so that is the
6065 * moment at which any such race is best fixed.
6066 */
6067 refs = atomic_read(&eb->refs);
6068 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6069 return;
6070
6071 spin_lock(&eb->refs_lock);
6072 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6073 atomic_inc(&eb->refs);
6074 spin_unlock(&eb->refs_lock);
6075 }
6076
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)6077 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6078 struct page *accessed)
6079 {
6080 int num_pages, i;
6081
6082 check_buffer_tree_ref(eb);
6083
6084 num_pages = num_extent_pages(eb);
6085 for (i = 0; i < num_pages; i++) {
6086 struct page *p = eb->pages[i];
6087
6088 if (p != accessed)
6089 mark_page_accessed(p);
6090 }
6091 }
6092
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6093 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6094 u64 start)
6095 {
6096 struct extent_buffer *eb;
6097
6098 eb = find_extent_buffer_nolock(fs_info, start);
6099 if (!eb)
6100 return NULL;
6101 /*
6102 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6103 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6104 * another task running free_extent_buffer() might have seen that flag
6105 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6106 * writeback flags not set) and it's still in the tree (flag
6107 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6108 * decrementing the extent buffer's reference count twice. So here we
6109 * could race and increment the eb's reference count, clear its stale
6110 * flag, mark it as dirty and drop our reference before the other task
6111 * finishes executing free_extent_buffer, which would later result in
6112 * an attempt to free an extent buffer that is dirty.
6113 */
6114 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6115 spin_lock(&eb->refs_lock);
6116 spin_unlock(&eb->refs_lock);
6117 }
6118 mark_extent_buffer_accessed(eb, NULL);
6119 return eb;
6120 }
6121
6122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6123 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6124 u64 start)
6125 {
6126 struct extent_buffer *eb, *exists = NULL;
6127 int ret;
6128
6129 eb = find_extent_buffer(fs_info, start);
6130 if (eb)
6131 return eb;
6132 eb = alloc_dummy_extent_buffer(fs_info, start);
6133 if (!eb)
6134 return ERR_PTR(-ENOMEM);
6135 eb->fs_info = fs_info;
6136 again:
6137 ret = radix_tree_preload(GFP_NOFS);
6138 if (ret) {
6139 exists = ERR_PTR(ret);
6140 goto free_eb;
6141 }
6142 spin_lock(&fs_info->buffer_lock);
6143 ret = radix_tree_insert(&fs_info->buffer_radix,
6144 start >> fs_info->sectorsize_bits, eb);
6145 spin_unlock(&fs_info->buffer_lock);
6146 radix_tree_preload_end();
6147 if (ret == -EEXIST) {
6148 exists = find_extent_buffer(fs_info, start);
6149 if (exists)
6150 goto free_eb;
6151 else
6152 goto again;
6153 }
6154 check_buffer_tree_ref(eb);
6155 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6156
6157 return eb;
6158 free_eb:
6159 btrfs_release_extent_buffer(eb);
6160 return exists;
6161 }
6162 #endif
6163
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)6164 static struct extent_buffer *grab_extent_buffer(
6165 struct btrfs_fs_info *fs_info, struct page *page)
6166 {
6167 struct extent_buffer *exists;
6168
6169 /*
6170 * For subpage case, we completely rely on radix tree to ensure we
6171 * don't try to insert two ebs for the same bytenr. So here we always
6172 * return NULL and just continue.
6173 */
6174 if (fs_info->nodesize < PAGE_SIZE)
6175 return NULL;
6176
6177 /* Page not yet attached to an extent buffer */
6178 if (!PagePrivate(page))
6179 return NULL;
6180
6181 /*
6182 * We could have already allocated an eb for this page and attached one
6183 * so lets see if we can get a ref on the existing eb, and if we can we
6184 * know it's good and we can just return that one, else we know we can
6185 * just overwrite page->private.
6186 */
6187 exists = (struct extent_buffer *)page->private;
6188 if (atomic_inc_not_zero(&exists->refs))
6189 return exists;
6190
6191 WARN_ON(PageDirty(page));
6192 detach_page_private(page);
6193 return NULL;
6194 }
6195
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)6196 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
6197 {
6198 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6199 btrfs_err(fs_info, "bad tree block start %llu", start);
6200 return -EINVAL;
6201 }
6202
6203 if (fs_info->nodesize < PAGE_SIZE &&
6204 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
6205 btrfs_err(fs_info,
6206 "tree block crosses page boundary, start %llu nodesize %u",
6207 start, fs_info->nodesize);
6208 return -EINVAL;
6209 }
6210 if (fs_info->nodesize >= PAGE_SIZE &&
6211 !IS_ALIGNED(start, PAGE_SIZE)) {
6212 btrfs_err(fs_info,
6213 "tree block is not page aligned, start %llu nodesize %u",
6214 start, fs_info->nodesize);
6215 return -EINVAL;
6216 }
6217 return 0;
6218 }
6219
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)6220 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6221 u64 start, u64 owner_root, int level)
6222 {
6223 unsigned long len = fs_info->nodesize;
6224 int num_pages;
6225 int i;
6226 unsigned long index = start >> PAGE_SHIFT;
6227 struct extent_buffer *eb;
6228 struct extent_buffer *exists = NULL;
6229 struct page *p;
6230 struct address_space *mapping = fs_info->btree_inode->i_mapping;
6231 u64 lockdep_owner = owner_root;
6232 int uptodate = 1;
6233 int ret;
6234
6235 if (check_eb_alignment(fs_info, start))
6236 return ERR_PTR(-EINVAL);
6237
6238 #if BITS_PER_LONG == 32
6239 if (start >= MAX_LFS_FILESIZE) {
6240 btrfs_err_rl(fs_info,
6241 "extent buffer %llu is beyond 32bit page cache limit", start);
6242 btrfs_err_32bit_limit(fs_info);
6243 return ERR_PTR(-EOVERFLOW);
6244 }
6245 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6246 btrfs_warn_32bit_limit(fs_info);
6247 #endif
6248
6249 eb = find_extent_buffer(fs_info, start);
6250 if (eb)
6251 return eb;
6252
6253 eb = __alloc_extent_buffer(fs_info, start, len);
6254 if (!eb)
6255 return ERR_PTR(-ENOMEM);
6256
6257 /*
6258 * The reloc trees are just snapshots, so we need them to appear to be
6259 * just like any other fs tree WRT lockdep.
6260 */
6261 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
6262 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
6263
6264 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6265
6266 num_pages = num_extent_pages(eb);
6267 for (i = 0; i < num_pages; i++, index++) {
6268 struct btrfs_subpage *prealloc = NULL;
6269
6270 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6271 if (!p) {
6272 exists = ERR_PTR(-ENOMEM);
6273 goto free_eb;
6274 }
6275
6276 /*
6277 * Preallocate page->private for subpage case, so that we won't
6278 * allocate memory with private_lock hold. The memory will be
6279 * freed by attach_extent_buffer_page() or freed manually if
6280 * we exit earlier.
6281 *
6282 * Although we have ensured one subpage eb can only have one
6283 * page, but it may change in the future for 16K page size
6284 * support, so we still preallocate the memory in the loop.
6285 */
6286 if (fs_info->nodesize < PAGE_SIZE) {
6287 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6288 if (IS_ERR(prealloc)) {
6289 ret = PTR_ERR(prealloc);
6290 unlock_page(p);
6291 put_page(p);
6292 exists = ERR_PTR(ret);
6293 goto free_eb;
6294 }
6295 }
6296
6297 spin_lock(&mapping->private_lock);
6298 exists = grab_extent_buffer(fs_info, p);
6299 if (exists) {
6300 spin_unlock(&mapping->private_lock);
6301 unlock_page(p);
6302 put_page(p);
6303 mark_extent_buffer_accessed(exists, p);
6304 btrfs_free_subpage(prealloc);
6305 goto free_eb;
6306 }
6307 /* Should not fail, as we have preallocated the memory */
6308 ret = attach_extent_buffer_page(eb, p, prealloc);
6309 ASSERT(!ret);
6310 /*
6311 * To inform we have extra eb under allocation, so that
6312 * detach_extent_buffer_page() won't release the page private
6313 * when the eb hasn't yet been inserted into radix tree.
6314 *
6315 * The ref will be decreased when the eb released the page, in
6316 * detach_extent_buffer_page().
6317 * Thus needs no special handling in error path.
6318 */
6319 btrfs_page_inc_eb_refs(fs_info, p);
6320 spin_unlock(&mapping->private_lock);
6321
6322 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6323 eb->pages[i] = p;
6324 if (!PageUptodate(p))
6325 uptodate = 0;
6326
6327 /*
6328 * We can't unlock the pages just yet since the extent buffer
6329 * hasn't been properly inserted in the radix tree, this
6330 * opens a race with btree_release_folio which can free a page
6331 * while we are still filling in all pages for the buffer and
6332 * we could crash.
6333 */
6334 }
6335 if (uptodate)
6336 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6337 again:
6338 ret = radix_tree_preload(GFP_NOFS);
6339 if (ret) {
6340 exists = ERR_PTR(ret);
6341 goto free_eb;
6342 }
6343
6344 spin_lock(&fs_info->buffer_lock);
6345 ret = radix_tree_insert(&fs_info->buffer_radix,
6346 start >> fs_info->sectorsize_bits, eb);
6347 spin_unlock(&fs_info->buffer_lock);
6348 radix_tree_preload_end();
6349 if (ret == -EEXIST) {
6350 exists = find_extent_buffer(fs_info, start);
6351 if (exists)
6352 goto free_eb;
6353 else
6354 goto again;
6355 }
6356 /* add one reference for the tree */
6357 check_buffer_tree_ref(eb);
6358 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6359
6360 /*
6361 * Now it's safe to unlock the pages because any calls to
6362 * btree_release_folio will correctly detect that a page belongs to a
6363 * live buffer and won't free them prematurely.
6364 */
6365 for (i = 0; i < num_pages; i++)
6366 unlock_page(eb->pages[i]);
6367 return eb;
6368
6369 free_eb:
6370 WARN_ON(!atomic_dec_and_test(&eb->refs));
6371 for (i = 0; i < num_pages; i++) {
6372 if (eb->pages[i])
6373 unlock_page(eb->pages[i]);
6374 }
6375
6376 btrfs_release_extent_buffer(eb);
6377 return exists;
6378 }
6379
btrfs_release_extent_buffer_rcu(struct rcu_head * head)6380 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6381 {
6382 struct extent_buffer *eb =
6383 container_of(head, struct extent_buffer, rcu_head);
6384
6385 __free_extent_buffer(eb);
6386 }
6387
release_extent_buffer(struct extent_buffer * eb)6388 static int release_extent_buffer(struct extent_buffer *eb)
6389 __releases(&eb->refs_lock)
6390 {
6391 lockdep_assert_held(&eb->refs_lock);
6392
6393 WARN_ON(atomic_read(&eb->refs) == 0);
6394 if (atomic_dec_and_test(&eb->refs)) {
6395 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6396 struct btrfs_fs_info *fs_info = eb->fs_info;
6397
6398 spin_unlock(&eb->refs_lock);
6399
6400 spin_lock(&fs_info->buffer_lock);
6401 radix_tree_delete(&fs_info->buffer_radix,
6402 eb->start >> fs_info->sectorsize_bits);
6403 spin_unlock(&fs_info->buffer_lock);
6404 } else {
6405 spin_unlock(&eb->refs_lock);
6406 }
6407
6408 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6409 /* Should be safe to release our pages at this point */
6410 btrfs_release_extent_buffer_pages(eb);
6411 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6412 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6413 __free_extent_buffer(eb);
6414 return 1;
6415 }
6416 #endif
6417 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6418 return 1;
6419 }
6420 spin_unlock(&eb->refs_lock);
6421
6422 return 0;
6423 }
6424
free_extent_buffer(struct extent_buffer * eb)6425 void free_extent_buffer(struct extent_buffer *eb)
6426 {
6427 int refs;
6428 int old;
6429 if (!eb)
6430 return;
6431
6432 while (1) {
6433 refs = atomic_read(&eb->refs);
6434 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6435 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6436 refs == 1))
6437 break;
6438 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6439 if (old == refs)
6440 return;
6441 }
6442
6443 spin_lock(&eb->refs_lock);
6444 if (atomic_read(&eb->refs) == 2 &&
6445 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6446 !extent_buffer_under_io(eb) &&
6447 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6448 atomic_dec(&eb->refs);
6449
6450 /*
6451 * I know this is terrible, but it's temporary until we stop tracking
6452 * the uptodate bits and such for the extent buffers.
6453 */
6454 release_extent_buffer(eb);
6455 }
6456
free_extent_buffer_stale(struct extent_buffer * eb)6457 void free_extent_buffer_stale(struct extent_buffer *eb)
6458 {
6459 if (!eb)
6460 return;
6461
6462 spin_lock(&eb->refs_lock);
6463 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6464
6465 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6466 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6467 atomic_dec(&eb->refs);
6468 release_extent_buffer(eb);
6469 }
6470
btree_clear_page_dirty(struct page * page)6471 static void btree_clear_page_dirty(struct page *page)
6472 {
6473 ASSERT(PageDirty(page));
6474 ASSERT(PageLocked(page));
6475 clear_page_dirty_for_io(page);
6476 xa_lock_irq(&page->mapping->i_pages);
6477 if (!PageDirty(page))
6478 __xa_clear_mark(&page->mapping->i_pages,
6479 page_index(page), PAGECACHE_TAG_DIRTY);
6480 xa_unlock_irq(&page->mapping->i_pages);
6481 }
6482
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)6483 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6484 {
6485 struct btrfs_fs_info *fs_info = eb->fs_info;
6486 struct page *page = eb->pages[0];
6487 bool last;
6488
6489 /* btree_clear_page_dirty() needs page locked */
6490 lock_page(page);
6491 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6492 eb->len);
6493 if (last)
6494 btree_clear_page_dirty(page);
6495 unlock_page(page);
6496 WARN_ON(atomic_read(&eb->refs) == 0);
6497 }
6498
clear_extent_buffer_dirty(const struct extent_buffer * eb)6499 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6500 {
6501 int i;
6502 int num_pages;
6503 struct page *page;
6504
6505 if (eb->fs_info->nodesize < PAGE_SIZE)
6506 return clear_subpage_extent_buffer_dirty(eb);
6507
6508 num_pages = num_extent_pages(eb);
6509
6510 for (i = 0; i < num_pages; i++) {
6511 page = eb->pages[i];
6512 if (!PageDirty(page))
6513 continue;
6514 lock_page(page);
6515 btree_clear_page_dirty(page);
6516 ClearPageError(page);
6517 unlock_page(page);
6518 }
6519 WARN_ON(atomic_read(&eb->refs) == 0);
6520 }
6521
set_extent_buffer_dirty(struct extent_buffer * eb)6522 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6523 {
6524 int i;
6525 int num_pages;
6526 bool was_dirty;
6527
6528 check_buffer_tree_ref(eb);
6529
6530 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6531
6532 num_pages = num_extent_pages(eb);
6533 WARN_ON(atomic_read(&eb->refs) == 0);
6534 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6535
6536 if (!was_dirty) {
6537 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6538
6539 /*
6540 * For subpage case, we can have other extent buffers in the
6541 * same page, and in clear_subpage_extent_buffer_dirty() we
6542 * have to clear page dirty without subpage lock held.
6543 * This can cause race where our page gets dirty cleared after
6544 * we just set it.
6545 *
6546 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6547 * its page for other reasons, we can use page lock to prevent
6548 * the above race.
6549 */
6550 if (subpage)
6551 lock_page(eb->pages[0]);
6552 for (i = 0; i < num_pages; i++)
6553 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6554 eb->start, eb->len);
6555 if (subpage)
6556 unlock_page(eb->pages[0]);
6557 }
6558 #ifdef CONFIG_BTRFS_DEBUG
6559 for (i = 0; i < num_pages; i++)
6560 ASSERT(PageDirty(eb->pages[i]));
6561 #endif
6562
6563 return was_dirty;
6564 }
6565
clear_extent_buffer_uptodate(struct extent_buffer * eb)6566 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6567 {
6568 struct btrfs_fs_info *fs_info = eb->fs_info;
6569 struct page *page;
6570 int num_pages;
6571 int i;
6572
6573 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6574 num_pages = num_extent_pages(eb);
6575 for (i = 0; i < num_pages; i++) {
6576 page = eb->pages[i];
6577 if (!page)
6578 continue;
6579
6580 /*
6581 * This is special handling for metadata subpage, as regular
6582 * btrfs_is_subpage() can not handle cloned/dummy metadata.
6583 */
6584 if (fs_info->nodesize >= PAGE_SIZE)
6585 ClearPageUptodate(page);
6586 else
6587 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
6588 eb->len);
6589 }
6590 }
6591
set_extent_buffer_uptodate(struct extent_buffer * eb)6592 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6593 {
6594 struct btrfs_fs_info *fs_info = eb->fs_info;
6595 struct page *page;
6596 int num_pages;
6597 int i;
6598
6599 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6600 num_pages = num_extent_pages(eb);
6601 for (i = 0; i < num_pages; i++) {
6602 page = eb->pages[i];
6603
6604 /*
6605 * This is special handling for metadata subpage, as regular
6606 * btrfs_is_subpage() can not handle cloned/dummy metadata.
6607 */
6608 if (fs_info->nodesize >= PAGE_SIZE)
6609 SetPageUptodate(page);
6610 else
6611 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
6612 eb->len);
6613 }
6614 }
6615
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)6616 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6617 int mirror_num)
6618 {
6619 struct btrfs_fs_info *fs_info = eb->fs_info;
6620 struct extent_io_tree *io_tree;
6621 struct page *page = eb->pages[0];
6622 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6623 int ret = 0;
6624
6625 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6626 ASSERT(PagePrivate(page));
6627 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6628
6629 if (wait == WAIT_NONE) {
6630 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6631 return -EAGAIN;
6632 } else {
6633 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6634 if (ret < 0)
6635 return ret;
6636 }
6637
6638 ret = 0;
6639 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6640 PageUptodate(page) ||
6641 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6642 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6643 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6644 return ret;
6645 }
6646
6647 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6648 eb->read_mirror = 0;
6649 atomic_set(&eb->io_pages, 1);
6650 check_buffer_tree_ref(eb);
6651 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6652
6653 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6654 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6655 page, eb->start, eb->len,
6656 eb->start - page_offset(page),
6657 end_bio_extent_readpage, mirror_num, 0,
6658 true);
6659 if (ret) {
6660 /*
6661 * In the endio function, if we hit something wrong we will
6662 * increase the io_pages, so here we need to decrease it for
6663 * error path.
6664 */
6665 atomic_dec(&eb->io_pages);
6666 }
6667 if (bio_ctrl.bio) {
6668 submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6669 bio_ctrl.bio = NULL;
6670 }
6671 if (ret || wait != WAIT_COMPLETE)
6672 return ret;
6673
6674 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6675 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6676 ret = -EIO;
6677 return ret;
6678 }
6679
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)6680 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6681 {
6682 int i;
6683 struct page *page;
6684 int err;
6685 int ret = 0;
6686 int locked_pages = 0;
6687 int all_uptodate = 1;
6688 int num_pages;
6689 unsigned long num_reads = 0;
6690 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6691
6692 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6693 return 0;
6694
6695 /*
6696 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6697 * operation, which could potentially still be in flight. In this case
6698 * we simply want to return an error.
6699 */
6700 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6701 return -EIO;
6702
6703 if (eb->fs_info->nodesize < PAGE_SIZE)
6704 return read_extent_buffer_subpage(eb, wait, mirror_num);
6705
6706 num_pages = num_extent_pages(eb);
6707 for (i = 0; i < num_pages; i++) {
6708 page = eb->pages[i];
6709 if (wait == WAIT_NONE) {
6710 /*
6711 * WAIT_NONE is only utilized by readahead. If we can't
6712 * acquire the lock atomically it means either the eb
6713 * is being read out or under modification.
6714 * Either way the eb will be or has been cached,
6715 * readahead can exit safely.
6716 */
6717 if (!trylock_page(page))
6718 goto unlock_exit;
6719 } else {
6720 lock_page(page);
6721 }
6722 locked_pages++;
6723 }
6724 /*
6725 * We need to firstly lock all pages to make sure that
6726 * the uptodate bit of our pages won't be affected by
6727 * clear_extent_buffer_uptodate().
6728 */
6729 for (i = 0; i < num_pages; i++) {
6730 page = eb->pages[i];
6731 if (!PageUptodate(page)) {
6732 num_reads++;
6733 all_uptodate = 0;
6734 }
6735 }
6736
6737 if (all_uptodate) {
6738 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6739 goto unlock_exit;
6740 }
6741
6742 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6743 eb->read_mirror = 0;
6744 atomic_set(&eb->io_pages, num_reads);
6745 /*
6746 * It is possible for release_folio to clear the TREE_REF bit before we
6747 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6748 */
6749 check_buffer_tree_ref(eb);
6750 for (i = 0; i < num_pages; i++) {
6751 page = eb->pages[i];
6752
6753 if (!PageUptodate(page)) {
6754 if (ret) {
6755 atomic_dec(&eb->io_pages);
6756 unlock_page(page);
6757 continue;
6758 }
6759
6760 ClearPageError(page);
6761 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6762 &bio_ctrl, page, page_offset(page),
6763 PAGE_SIZE, 0, end_bio_extent_readpage,
6764 mirror_num, 0, false);
6765 if (err) {
6766 /*
6767 * We failed to submit the bio so it's the
6768 * caller's responsibility to perform cleanup
6769 * i.e unlock page/set error bit.
6770 */
6771 ret = err;
6772 SetPageError(page);
6773 unlock_page(page);
6774 atomic_dec(&eb->io_pages);
6775 }
6776 } else {
6777 unlock_page(page);
6778 }
6779 }
6780
6781 if (bio_ctrl.bio) {
6782 submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.compress_type);
6783 bio_ctrl.bio = NULL;
6784 }
6785
6786 if (ret || wait != WAIT_COMPLETE)
6787 return ret;
6788
6789 for (i = 0; i < num_pages; i++) {
6790 page = eb->pages[i];
6791 wait_on_page_locked(page);
6792 if (!PageUptodate(page))
6793 ret = -EIO;
6794 }
6795
6796 return ret;
6797
6798 unlock_exit:
6799 while (locked_pages > 0) {
6800 locked_pages--;
6801 page = eb->pages[locked_pages];
6802 unlock_page(page);
6803 }
6804 return ret;
6805 }
6806
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6807 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6808 unsigned long len)
6809 {
6810 btrfs_warn(eb->fs_info,
6811 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6812 eb->start, eb->len, start, len);
6813 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6814
6815 return true;
6816 }
6817
6818 /*
6819 * Check if the [start, start + len) range is valid before reading/writing
6820 * the eb.
6821 * NOTE: @start and @len are offset inside the eb, not logical address.
6822 *
6823 * Caller should not touch the dst/src memory if this function returns error.
6824 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6825 static inline int check_eb_range(const struct extent_buffer *eb,
6826 unsigned long start, unsigned long len)
6827 {
6828 unsigned long offset;
6829
6830 /* start, start + len should not go beyond eb->len nor overflow */
6831 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6832 return report_eb_range(eb, start, len);
6833
6834 return false;
6835 }
6836
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)6837 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6838 unsigned long start, unsigned long len)
6839 {
6840 size_t cur;
6841 size_t offset;
6842 struct page *page;
6843 char *kaddr;
6844 char *dst = (char *)dstv;
6845 unsigned long i = get_eb_page_index(start);
6846
6847 if (check_eb_range(eb, start, len))
6848 return;
6849
6850 offset = get_eb_offset_in_page(eb, start);
6851
6852 while (len > 0) {
6853 page = eb->pages[i];
6854
6855 cur = min(len, (PAGE_SIZE - offset));
6856 kaddr = page_address(page);
6857 memcpy(dst, kaddr + offset, cur);
6858
6859 dst += cur;
6860 len -= cur;
6861 offset = 0;
6862 i++;
6863 }
6864 }
6865
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)6866 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6867 void __user *dstv,
6868 unsigned long start, unsigned long len)
6869 {
6870 size_t cur;
6871 size_t offset;
6872 struct page *page;
6873 char *kaddr;
6874 char __user *dst = (char __user *)dstv;
6875 unsigned long i = get_eb_page_index(start);
6876 int ret = 0;
6877
6878 WARN_ON(start > eb->len);
6879 WARN_ON(start + len > eb->start + eb->len);
6880
6881 offset = get_eb_offset_in_page(eb, start);
6882
6883 while (len > 0) {
6884 page = eb->pages[i];
6885
6886 cur = min(len, (PAGE_SIZE - offset));
6887 kaddr = page_address(page);
6888 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6889 ret = -EFAULT;
6890 break;
6891 }
6892
6893 dst += cur;
6894 len -= cur;
6895 offset = 0;
6896 i++;
6897 }
6898
6899 return ret;
6900 }
6901
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)6902 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6903 unsigned long start, unsigned long len)
6904 {
6905 size_t cur;
6906 size_t offset;
6907 struct page *page;
6908 char *kaddr;
6909 char *ptr = (char *)ptrv;
6910 unsigned long i = get_eb_page_index(start);
6911 int ret = 0;
6912
6913 if (check_eb_range(eb, start, len))
6914 return -EINVAL;
6915
6916 offset = get_eb_offset_in_page(eb, start);
6917
6918 while (len > 0) {
6919 page = eb->pages[i];
6920
6921 cur = min(len, (PAGE_SIZE - offset));
6922
6923 kaddr = page_address(page);
6924 ret = memcmp(ptr, kaddr + offset, cur);
6925 if (ret)
6926 break;
6927
6928 ptr += cur;
6929 len -= cur;
6930 offset = 0;
6931 i++;
6932 }
6933 return ret;
6934 }
6935
6936 /*
6937 * Check that the extent buffer is uptodate.
6938 *
6939 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6940 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6941 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)6942 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6943 struct page *page)
6944 {
6945 struct btrfs_fs_info *fs_info = eb->fs_info;
6946
6947 /*
6948 * If we are using the commit root we could potentially clear a page
6949 * Uptodate while we're using the extent buffer that we've previously
6950 * looked up. We don't want to complain in this case, as the page was
6951 * valid before, we just didn't write it out. Instead we want to catch
6952 * the case where we didn't actually read the block properly, which
6953 * would have !PageUptodate && !PageError, as we clear PageError before
6954 * reading.
6955 */
6956 if (fs_info->nodesize < PAGE_SIZE) {
6957 bool uptodate, error;
6958
6959 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6960 eb->start, eb->len);
6961 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6962 WARN_ON(!uptodate && !error);
6963 } else {
6964 WARN_ON(!PageUptodate(page) && !PageError(page));
6965 }
6966 }
6967
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)6968 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6969 const void *srcv)
6970 {
6971 char *kaddr;
6972
6973 assert_eb_page_uptodate(eb, eb->pages[0]);
6974 kaddr = page_address(eb->pages[0]) +
6975 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6976 chunk_tree_uuid));
6977 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6978 }
6979
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)6980 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6981 {
6982 char *kaddr;
6983
6984 assert_eb_page_uptodate(eb, eb->pages[0]);
6985 kaddr = page_address(eb->pages[0]) +
6986 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6987 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6988 }
6989
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)6990 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6991 unsigned long start, unsigned long len)
6992 {
6993 size_t cur;
6994 size_t offset;
6995 struct page *page;
6996 char *kaddr;
6997 char *src = (char *)srcv;
6998 unsigned long i = get_eb_page_index(start);
6999
7000 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
7001
7002 if (check_eb_range(eb, start, len))
7003 return;
7004
7005 offset = get_eb_offset_in_page(eb, start);
7006
7007 while (len > 0) {
7008 page = eb->pages[i];
7009 assert_eb_page_uptodate(eb, page);
7010
7011 cur = min(len, PAGE_SIZE - offset);
7012 kaddr = page_address(page);
7013 memcpy(kaddr + offset, src, cur);
7014
7015 src += cur;
7016 len -= cur;
7017 offset = 0;
7018 i++;
7019 }
7020 }
7021
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)7022 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
7023 unsigned long len)
7024 {
7025 size_t cur;
7026 size_t offset;
7027 struct page *page;
7028 char *kaddr;
7029 unsigned long i = get_eb_page_index(start);
7030
7031 if (check_eb_range(eb, start, len))
7032 return;
7033
7034 offset = get_eb_offset_in_page(eb, start);
7035
7036 while (len > 0) {
7037 page = eb->pages[i];
7038 assert_eb_page_uptodate(eb, page);
7039
7040 cur = min(len, PAGE_SIZE - offset);
7041 kaddr = page_address(page);
7042 memset(kaddr + offset, 0, cur);
7043
7044 len -= cur;
7045 offset = 0;
7046 i++;
7047 }
7048 }
7049
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)7050 void copy_extent_buffer_full(const struct extent_buffer *dst,
7051 const struct extent_buffer *src)
7052 {
7053 int i;
7054 int num_pages;
7055
7056 ASSERT(dst->len == src->len);
7057
7058 if (dst->fs_info->nodesize >= PAGE_SIZE) {
7059 num_pages = num_extent_pages(dst);
7060 for (i = 0; i < num_pages; i++)
7061 copy_page(page_address(dst->pages[i]),
7062 page_address(src->pages[i]));
7063 } else {
7064 size_t src_offset = get_eb_offset_in_page(src, 0);
7065 size_t dst_offset = get_eb_offset_in_page(dst, 0);
7066
7067 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
7068 memcpy(page_address(dst->pages[0]) + dst_offset,
7069 page_address(src->pages[0]) + src_offset,
7070 src->len);
7071 }
7072 }
7073
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7074 void copy_extent_buffer(const struct extent_buffer *dst,
7075 const struct extent_buffer *src,
7076 unsigned long dst_offset, unsigned long src_offset,
7077 unsigned long len)
7078 {
7079 u64 dst_len = dst->len;
7080 size_t cur;
7081 size_t offset;
7082 struct page *page;
7083 char *kaddr;
7084 unsigned long i = get_eb_page_index(dst_offset);
7085
7086 if (check_eb_range(dst, dst_offset, len) ||
7087 check_eb_range(src, src_offset, len))
7088 return;
7089
7090 WARN_ON(src->len != dst_len);
7091
7092 offset = get_eb_offset_in_page(dst, dst_offset);
7093
7094 while (len > 0) {
7095 page = dst->pages[i];
7096 assert_eb_page_uptodate(dst, page);
7097
7098 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7099
7100 kaddr = page_address(page);
7101 read_extent_buffer(src, kaddr + offset, src_offset, cur);
7102
7103 src_offset += cur;
7104 len -= cur;
7105 offset = 0;
7106 i++;
7107 }
7108 }
7109
7110 /*
7111 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7112 * given bit number
7113 * @eb: the extent buffer
7114 * @start: offset of the bitmap item in the extent buffer
7115 * @nr: bit number
7116 * @page_index: return index of the page in the extent buffer that contains the
7117 * given bit number
7118 * @page_offset: return offset into the page given by page_index
7119 *
7120 * This helper hides the ugliness of finding the byte in an extent buffer which
7121 * contains a given bit.
7122 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)7123 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7124 unsigned long start, unsigned long nr,
7125 unsigned long *page_index,
7126 size_t *page_offset)
7127 {
7128 size_t byte_offset = BIT_BYTE(nr);
7129 size_t offset;
7130
7131 /*
7132 * The byte we want is the offset of the extent buffer + the offset of
7133 * the bitmap item in the extent buffer + the offset of the byte in the
7134 * bitmap item.
7135 */
7136 offset = start + offset_in_page(eb->start) + byte_offset;
7137
7138 *page_index = offset >> PAGE_SHIFT;
7139 *page_offset = offset_in_page(offset);
7140 }
7141
7142 /**
7143 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7144 * @eb: the extent buffer
7145 * @start: offset of the bitmap item in the extent buffer
7146 * @nr: bit number to test
7147 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)7148 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7149 unsigned long nr)
7150 {
7151 u8 *kaddr;
7152 struct page *page;
7153 unsigned long i;
7154 size_t offset;
7155
7156 eb_bitmap_offset(eb, start, nr, &i, &offset);
7157 page = eb->pages[i];
7158 assert_eb_page_uptodate(eb, page);
7159 kaddr = page_address(page);
7160 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7161 }
7162
7163 /**
7164 * extent_buffer_bitmap_set - set an area of a bitmap
7165 * @eb: the extent buffer
7166 * @start: offset of the bitmap item in the extent buffer
7167 * @pos: bit number of the first bit
7168 * @len: number of bits to set
7169 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7170 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7171 unsigned long pos, unsigned long len)
7172 {
7173 u8 *kaddr;
7174 struct page *page;
7175 unsigned long i;
7176 size_t offset;
7177 const unsigned int size = pos + len;
7178 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7179 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7180
7181 eb_bitmap_offset(eb, start, pos, &i, &offset);
7182 page = eb->pages[i];
7183 assert_eb_page_uptodate(eb, page);
7184 kaddr = page_address(page);
7185
7186 while (len >= bits_to_set) {
7187 kaddr[offset] |= mask_to_set;
7188 len -= bits_to_set;
7189 bits_to_set = BITS_PER_BYTE;
7190 mask_to_set = ~0;
7191 if (++offset >= PAGE_SIZE && len > 0) {
7192 offset = 0;
7193 page = eb->pages[++i];
7194 assert_eb_page_uptodate(eb, page);
7195 kaddr = page_address(page);
7196 }
7197 }
7198 if (len) {
7199 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7200 kaddr[offset] |= mask_to_set;
7201 }
7202 }
7203
7204
7205 /**
7206 * extent_buffer_bitmap_clear - clear an area of a bitmap
7207 * @eb: the extent buffer
7208 * @start: offset of the bitmap item in the extent buffer
7209 * @pos: bit number of the first bit
7210 * @len: number of bits to clear
7211 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7212 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7213 unsigned long start, unsigned long pos,
7214 unsigned long len)
7215 {
7216 u8 *kaddr;
7217 struct page *page;
7218 unsigned long i;
7219 size_t offset;
7220 const unsigned int size = pos + len;
7221 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7222 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7223
7224 eb_bitmap_offset(eb, start, pos, &i, &offset);
7225 page = eb->pages[i];
7226 assert_eb_page_uptodate(eb, page);
7227 kaddr = page_address(page);
7228
7229 while (len >= bits_to_clear) {
7230 kaddr[offset] &= ~mask_to_clear;
7231 len -= bits_to_clear;
7232 bits_to_clear = BITS_PER_BYTE;
7233 mask_to_clear = ~0;
7234 if (++offset >= PAGE_SIZE && len > 0) {
7235 offset = 0;
7236 page = eb->pages[++i];
7237 assert_eb_page_uptodate(eb, page);
7238 kaddr = page_address(page);
7239 }
7240 }
7241 if (len) {
7242 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7243 kaddr[offset] &= ~mask_to_clear;
7244 }
7245 }
7246
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)7247 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7248 {
7249 unsigned long distance = (src > dst) ? src - dst : dst - src;
7250 return distance < len;
7251 }
7252
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)7253 static void copy_pages(struct page *dst_page, struct page *src_page,
7254 unsigned long dst_off, unsigned long src_off,
7255 unsigned long len)
7256 {
7257 char *dst_kaddr = page_address(dst_page);
7258 char *src_kaddr;
7259 int must_memmove = 0;
7260
7261 if (dst_page != src_page) {
7262 src_kaddr = page_address(src_page);
7263 } else {
7264 src_kaddr = dst_kaddr;
7265 if (areas_overlap(src_off, dst_off, len))
7266 must_memmove = 1;
7267 }
7268
7269 if (must_memmove)
7270 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7271 else
7272 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7273 }
7274
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7275 void memcpy_extent_buffer(const struct extent_buffer *dst,
7276 unsigned long dst_offset, unsigned long src_offset,
7277 unsigned long len)
7278 {
7279 size_t cur;
7280 size_t dst_off_in_page;
7281 size_t src_off_in_page;
7282 unsigned long dst_i;
7283 unsigned long src_i;
7284
7285 if (check_eb_range(dst, dst_offset, len) ||
7286 check_eb_range(dst, src_offset, len))
7287 return;
7288
7289 while (len > 0) {
7290 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7291 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7292
7293 dst_i = get_eb_page_index(dst_offset);
7294 src_i = get_eb_page_index(src_offset);
7295
7296 cur = min(len, (unsigned long)(PAGE_SIZE -
7297 src_off_in_page));
7298 cur = min_t(unsigned long, cur,
7299 (unsigned long)(PAGE_SIZE - dst_off_in_page));
7300
7301 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7302 dst_off_in_page, src_off_in_page, cur);
7303
7304 src_offset += cur;
7305 dst_offset += cur;
7306 len -= cur;
7307 }
7308 }
7309
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7310 void memmove_extent_buffer(const struct extent_buffer *dst,
7311 unsigned long dst_offset, unsigned long src_offset,
7312 unsigned long len)
7313 {
7314 size_t cur;
7315 size_t dst_off_in_page;
7316 size_t src_off_in_page;
7317 unsigned long dst_end = dst_offset + len - 1;
7318 unsigned long src_end = src_offset + len - 1;
7319 unsigned long dst_i;
7320 unsigned long src_i;
7321
7322 if (check_eb_range(dst, dst_offset, len) ||
7323 check_eb_range(dst, src_offset, len))
7324 return;
7325 if (dst_offset < src_offset) {
7326 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7327 return;
7328 }
7329 while (len > 0) {
7330 dst_i = get_eb_page_index(dst_end);
7331 src_i = get_eb_page_index(src_end);
7332
7333 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7334 src_off_in_page = get_eb_offset_in_page(dst, src_end);
7335
7336 cur = min_t(unsigned long, len, src_off_in_page + 1);
7337 cur = min(cur, dst_off_in_page + 1);
7338 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7339 dst_off_in_page - cur + 1,
7340 src_off_in_page - cur + 1, cur);
7341
7342 dst_end -= cur;
7343 src_end -= cur;
7344 len -= cur;
7345 }
7346 }
7347
7348 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)7349 static struct extent_buffer *get_next_extent_buffer(
7350 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7351 {
7352 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7353 struct extent_buffer *found = NULL;
7354 u64 page_start = page_offset(page);
7355 u64 cur = page_start;
7356
7357 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7358 lockdep_assert_held(&fs_info->buffer_lock);
7359
7360 while (cur < page_start + PAGE_SIZE) {
7361 int ret;
7362 int i;
7363
7364 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7365 (void **)gang, cur >> fs_info->sectorsize_bits,
7366 min_t(unsigned int, GANG_LOOKUP_SIZE,
7367 PAGE_SIZE / fs_info->nodesize));
7368 if (ret == 0)
7369 goto out;
7370 for (i = 0; i < ret; i++) {
7371 /* Already beyond page end */
7372 if (gang[i]->start >= page_start + PAGE_SIZE)
7373 goto out;
7374 /* Found one */
7375 if (gang[i]->start >= bytenr) {
7376 found = gang[i];
7377 goto out;
7378 }
7379 }
7380 cur = gang[ret - 1]->start + gang[ret - 1]->len;
7381 }
7382 out:
7383 return found;
7384 }
7385
try_release_subpage_extent_buffer(struct page * page)7386 static int try_release_subpage_extent_buffer(struct page *page)
7387 {
7388 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7389 u64 cur = page_offset(page);
7390 const u64 end = page_offset(page) + PAGE_SIZE;
7391 int ret;
7392
7393 while (cur < end) {
7394 struct extent_buffer *eb = NULL;
7395
7396 /*
7397 * Unlike try_release_extent_buffer() which uses page->private
7398 * to grab buffer, for subpage case we rely on radix tree, thus
7399 * we need to ensure radix tree consistency.
7400 *
7401 * We also want an atomic snapshot of the radix tree, thus go
7402 * with spinlock rather than RCU.
7403 */
7404 spin_lock(&fs_info->buffer_lock);
7405 eb = get_next_extent_buffer(fs_info, page, cur);
7406 if (!eb) {
7407 /* No more eb in the page range after or at cur */
7408 spin_unlock(&fs_info->buffer_lock);
7409 break;
7410 }
7411 cur = eb->start + eb->len;
7412
7413 /*
7414 * The same as try_release_extent_buffer(), to ensure the eb
7415 * won't disappear out from under us.
7416 */
7417 spin_lock(&eb->refs_lock);
7418 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7419 spin_unlock(&eb->refs_lock);
7420 spin_unlock(&fs_info->buffer_lock);
7421 break;
7422 }
7423 spin_unlock(&fs_info->buffer_lock);
7424
7425 /*
7426 * If tree ref isn't set then we know the ref on this eb is a
7427 * real ref, so just return, this eb will likely be freed soon
7428 * anyway.
7429 */
7430 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7431 spin_unlock(&eb->refs_lock);
7432 break;
7433 }
7434
7435 /*
7436 * Here we don't care about the return value, we will always
7437 * check the page private at the end. And
7438 * release_extent_buffer() will release the refs_lock.
7439 */
7440 release_extent_buffer(eb);
7441 }
7442 /*
7443 * Finally to check if we have cleared page private, as if we have
7444 * released all ebs in the page, the page private should be cleared now.
7445 */
7446 spin_lock(&page->mapping->private_lock);
7447 if (!PagePrivate(page))
7448 ret = 1;
7449 else
7450 ret = 0;
7451 spin_unlock(&page->mapping->private_lock);
7452 return ret;
7453
7454 }
7455
try_release_extent_buffer(struct page * page)7456 int try_release_extent_buffer(struct page *page)
7457 {
7458 struct extent_buffer *eb;
7459
7460 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7461 return try_release_subpage_extent_buffer(page);
7462
7463 /*
7464 * We need to make sure nobody is changing page->private, as we rely on
7465 * page->private as the pointer to extent buffer.
7466 */
7467 spin_lock(&page->mapping->private_lock);
7468 if (!PagePrivate(page)) {
7469 spin_unlock(&page->mapping->private_lock);
7470 return 1;
7471 }
7472
7473 eb = (struct extent_buffer *)page->private;
7474 BUG_ON(!eb);
7475
7476 /*
7477 * This is a little awful but should be ok, we need to make sure that
7478 * the eb doesn't disappear out from under us while we're looking at
7479 * this page.
7480 */
7481 spin_lock(&eb->refs_lock);
7482 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7483 spin_unlock(&eb->refs_lock);
7484 spin_unlock(&page->mapping->private_lock);
7485 return 0;
7486 }
7487 spin_unlock(&page->mapping->private_lock);
7488
7489 /*
7490 * If tree ref isn't set then we know the ref on this eb is a real ref,
7491 * so just return, this page will likely be freed soon anyway.
7492 */
7493 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7494 spin_unlock(&eb->refs_lock);
7495 return 0;
7496 }
7497
7498 return release_extent_buffer(eb);
7499 }
7500
7501 /*
7502 * btrfs_readahead_tree_block - attempt to readahead a child block
7503 * @fs_info: the fs_info
7504 * @bytenr: bytenr to read
7505 * @owner_root: objectid of the root that owns this eb
7506 * @gen: generation for the uptodate check, can be 0
7507 * @level: level for the eb
7508 *
7509 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7510 * normal uptodate check of the eb, without checking the generation. If we have
7511 * to read the block we will not block on anything.
7512 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)7513 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7514 u64 bytenr, u64 owner_root, u64 gen, int level)
7515 {
7516 struct extent_buffer *eb;
7517 int ret;
7518
7519 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7520 if (IS_ERR(eb))
7521 return;
7522
7523 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7524 free_extent_buffer(eb);
7525 return;
7526 }
7527
7528 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7529 if (ret < 0)
7530 free_extent_buffer_stale(eb);
7531 else
7532 free_extent_buffer(eb);
7533 }
7534
7535 /*
7536 * btrfs_readahead_node_child - readahead a node's child block
7537 * @node: parent node we're reading from
7538 * @slot: slot in the parent node for the child we want to read
7539 *
7540 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7541 * the slot in the node provided.
7542 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)7543 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7544 {
7545 btrfs_readahead_tree_block(node->fs_info,
7546 btrfs_node_blockptr(node, slot),
7547 btrfs_header_owner(node),
7548 btrfs_node_ptr_generation(node, slot),
7549 btrfs_header_level(node) - 1);
7550 }
7551