1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  inode_wb_list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    inode_wb_list_lock	(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    inode_wb_list_lock	(zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  (code doesn't rely on that order, so you could switch it around)
108  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
109  *    ->i_mmap_lock
110  */
111 
112 /*
113  * Delete a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold the mapping's tree_lock.
116  */
__delete_from_page_cache(struct page * page)117 void __delete_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	radix_tree_delete(&mapping->page_tree, page->index);
122 	page->mapping = NULL;
123 	mapping->nrpages--;
124 	__dec_zone_page_state(page, NR_FILE_PAGES);
125 	if (PageSwapBacked(page))
126 		__dec_zone_page_state(page, NR_SHMEM);
127 	BUG_ON(page_mapped(page));
128 
129 	/*
130 	 * Some filesystems seem to re-dirty the page even after
131 	 * the VM has canceled the dirty bit (eg ext3 journaling).
132 	 *
133 	 * Fix it up by doing a final dirty accounting check after
134 	 * having removed the page entirely.
135 	 */
136 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137 		dec_zone_page_state(page, NR_FILE_DIRTY);
138 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 	}
140 }
141 
142 /**
143  * delete_from_page_cache - delete page from page cache
144  * @page: the page which the kernel is trying to remove from page cache
145  *
146  * This must be called only on pages that have been verified to be in the page
147  * cache and locked.  It will never put the page into the free list, the caller
148  * has a reference on the page.
149  */
delete_from_page_cache(struct page * page)150 void delete_from_page_cache(struct page *page)
151 {
152 	struct address_space *mapping = page->mapping;
153 	void (*freepage)(struct page *);
154 
155 	BUG_ON(!PageLocked(page));
156 
157 	freepage = mapping->a_ops->freepage;
158 	spin_lock_irq(&mapping->tree_lock);
159 	__delete_from_page_cache(page);
160 	spin_unlock_irq(&mapping->tree_lock);
161 	mem_cgroup_uncharge_cache_page(page);
162 
163 	if (freepage)
164 		freepage(page);
165 	page_cache_release(page);
166 }
167 EXPORT_SYMBOL(delete_from_page_cache);
168 
sleep_on_page(void * word)169 static int sleep_on_page(void *word)
170 {
171 	io_schedule();
172 	return 0;
173 }
174 
sleep_on_page_killable(void * word)175 static int sleep_on_page_killable(void *word)
176 {
177 	sleep_on_page(word);
178 	return fatal_signal_pending(current) ? -EINTR : 0;
179 }
180 
181 /**
182  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
183  * @mapping:	address space structure to write
184  * @start:	offset in bytes where the range starts
185  * @end:	offset in bytes where the range ends (inclusive)
186  * @sync_mode:	enable synchronous operation
187  *
188  * Start writeback against all of a mapping's dirty pages that lie
189  * within the byte offsets <start, end> inclusive.
190  *
191  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
192  * opposed to a regular memory cleansing writeback.  The difference between
193  * these two operations is that if a dirty page/buffer is encountered, it must
194  * be waited upon, and not just skipped over.
195  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)196 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
197 				loff_t end, int sync_mode)
198 {
199 	int ret;
200 	struct writeback_control wbc = {
201 		.sync_mode = sync_mode,
202 		.nr_to_write = LONG_MAX,
203 		.range_start = start,
204 		.range_end = end,
205 	};
206 
207 	if (!mapping_cap_writeback_dirty(mapping))
208 		return 0;
209 
210 	ret = do_writepages(mapping, &wbc);
211 	return ret;
212 }
213 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)214 static inline int __filemap_fdatawrite(struct address_space *mapping,
215 	int sync_mode)
216 {
217 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
218 }
219 
filemap_fdatawrite(struct address_space * mapping)220 int filemap_fdatawrite(struct address_space *mapping)
221 {
222 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
223 }
224 EXPORT_SYMBOL(filemap_fdatawrite);
225 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)226 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
227 				loff_t end)
228 {
229 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
230 }
231 EXPORT_SYMBOL(filemap_fdatawrite_range);
232 
233 /**
234  * filemap_flush - mostly a non-blocking flush
235  * @mapping:	target address_space
236  *
237  * This is a mostly non-blocking flush.  Not suitable for data-integrity
238  * purposes - I/O may not be started against all dirty pages.
239  */
filemap_flush(struct address_space * mapping)240 int filemap_flush(struct address_space *mapping)
241 {
242 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
243 }
244 EXPORT_SYMBOL(filemap_flush);
245 
246 /**
247  * filemap_fdatawait_range - wait for writeback to complete
248  * @mapping:		address space structure to wait for
249  * @start_byte:		offset in bytes where the range starts
250  * @end_byte:		offset in bytes where the range ends (inclusive)
251  *
252  * Walk the list of under-writeback pages of the given address space
253  * in the given range and wait for all of them.
254  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)255 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
256 			    loff_t end_byte)
257 {
258 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
259 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
260 	struct pagevec pvec;
261 	int nr_pages;
262 	int ret = 0;
263 
264 	if (end_byte < start_byte)
265 		return 0;
266 
267 	pagevec_init(&pvec, 0);
268 	while ((index <= end) &&
269 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
270 			PAGECACHE_TAG_WRITEBACK,
271 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
272 		unsigned i;
273 
274 		for (i = 0; i < nr_pages; i++) {
275 			struct page *page = pvec.pages[i];
276 
277 			/* until radix tree lookup accepts end_index */
278 			if (page->index > end)
279 				continue;
280 
281 			wait_on_page_writeback(page);
282 			if (TestClearPageError(page))
283 				ret = -EIO;
284 		}
285 		pagevec_release(&pvec);
286 		cond_resched();
287 	}
288 
289 	/* Check for outstanding write errors */
290 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
291 		ret = -ENOSPC;
292 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
293 		ret = -EIO;
294 
295 	return ret;
296 }
297 EXPORT_SYMBOL(filemap_fdatawait_range);
298 
299 /**
300  * filemap_fdatawait - wait for all under-writeback pages to complete
301  * @mapping: address space structure to wait for
302  *
303  * Walk the list of under-writeback pages of the given address space
304  * and wait for all of them.
305  */
filemap_fdatawait(struct address_space * mapping)306 int filemap_fdatawait(struct address_space *mapping)
307 {
308 	loff_t i_size = i_size_read(mapping->host);
309 
310 	if (i_size == 0)
311 		return 0;
312 
313 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
314 }
315 EXPORT_SYMBOL(filemap_fdatawait);
316 
filemap_write_and_wait(struct address_space * mapping)317 int filemap_write_and_wait(struct address_space *mapping)
318 {
319 	int err = 0;
320 
321 	if (mapping->nrpages) {
322 		err = filemap_fdatawrite(mapping);
323 		/*
324 		 * Even if the above returned error, the pages may be
325 		 * written partially (e.g. -ENOSPC), so we wait for it.
326 		 * But the -EIO is special case, it may indicate the worst
327 		 * thing (e.g. bug) happened, so we avoid waiting for it.
328 		 */
329 		if (err != -EIO) {
330 			int err2 = filemap_fdatawait(mapping);
331 			if (!err)
332 				err = err2;
333 		}
334 	}
335 	return err;
336 }
337 EXPORT_SYMBOL(filemap_write_and_wait);
338 
339 /**
340  * filemap_write_and_wait_range - write out & wait on a file range
341  * @mapping:	the address_space for the pages
342  * @lstart:	offset in bytes where the range starts
343  * @lend:	offset in bytes where the range ends (inclusive)
344  *
345  * Write out and wait upon file offsets lstart->lend, inclusive.
346  *
347  * Note that `lend' is inclusive (describes the last byte to be written) so
348  * that this function can be used to write to the very end-of-file (end = -1).
349  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)350 int filemap_write_and_wait_range(struct address_space *mapping,
351 				 loff_t lstart, loff_t lend)
352 {
353 	int err = 0;
354 
355 	if (mapping->nrpages) {
356 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
357 						 WB_SYNC_ALL);
358 		/* See comment of filemap_write_and_wait() */
359 		if (err != -EIO) {
360 			int err2 = filemap_fdatawait_range(mapping,
361 						lstart, lend);
362 			if (!err)
363 				err = err2;
364 		}
365 	}
366 	return err;
367 }
368 EXPORT_SYMBOL(filemap_write_and_wait_range);
369 
370 /**
371  * replace_page_cache_page - replace a pagecache page with a new one
372  * @old:	page to be replaced
373  * @new:	page to replace with
374  * @gfp_mask:	allocation mode
375  *
376  * This function replaces a page in the pagecache with a new one.  On
377  * success it acquires the pagecache reference for the new page and
378  * drops it for the old page.  Both the old and new pages must be
379  * locked.  This function does not add the new page to the LRU, the
380  * caller must do that.
381  *
382  * The remove + add is atomic.  The only way this function can fail is
383  * memory allocation failure.
384  */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)385 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
386 {
387 	int error;
388 	struct mem_cgroup *memcg = NULL;
389 
390 	VM_BUG_ON(!PageLocked(old));
391 	VM_BUG_ON(!PageLocked(new));
392 	VM_BUG_ON(new->mapping);
393 
394 	/*
395 	 * This is not page migration, but prepare_migration and
396 	 * end_migration does enough work for charge replacement.
397 	 *
398 	 * In the longer term we probably want a specialized function
399 	 * for moving the charge from old to new in a more efficient
400 	 * manner.
401 	 */
402 	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
403 	if (error)
404 		return error;
405 
406 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
407 	if (!error) {
408 		struct address_space *mapping = old->mapping;
409 		void (*freepage)(struct page *);
410 
411 		pgoff_t offset = old->index;
412 		freepage = mapping->a_ops->freepage;
413 
414 		page_cache_get(new);
415 		new->mapping = mapping;
416 		new->index = offset;
417 
418 		spin_lock_irq(&mapping->tree_lock);
419 		__delete_from_page_cache(old);
420 		error = radix_tree_insert(&mapping->page_tree, offset, new);
421 		BUG_ON(error);
422 		mapping->nrpages++;
423 		__inc_zone_page_state(new, NR_FILE_PAGES);
424 		if (PageSwapBacked(new))
425 			__inc_zone_page_state(new, NR_SHMEM);
426 		spin_unlock_irq(&mapping->tree_lock);
427 		radix_tree_preload_end();
428 		if (freepage)
429 			freepage(old);
430 		page_cache_release(old);
431 		mem_cgroup_end_migration(memcg, old, new, true);
432 	} else {
433 		mem_cgroup_end_migration(memcg, old, new, false);
434 	}
435 
436 	return error;
437 }
438 EXPORT_SYMBOL_GPL(replace_page_cache_page);
439 
440 /**
441  * add_to_page_cache_locked - add a locked page to the pagecache
442  * @page:	page to add
443  * @mapping:	the page's address_space
444  * @offset:	page index
445  * @gfp_mask:	page allocation mode
446  *
447  * This function is used to add a page to the pagecache. It must be locked.
448  * This function does not add the page to the LRU.  The caller must do that.
449  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)450 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
451 		pgoff_t offset, gfp_t gfp_mask)
452 {
453 	int error;
454 
455 	VM_BUG_ON(!PageLocked(page));
456 
457 	error = mem_cgroup_cache_charge(page, current->mm,
458 					gfp_mask & GFP_RECLAIM_MASK);
459 	if (error)
460 		goto out;
461 
462 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
463 	if (error == 0) {
464 		page_cache_get(page);
465 		page->mapping = mapping;
466 		page->index = offset;
467 
468 		spin_lock_irq(&mapping->tree_lock);
469 		error = radix_tree_insert(&mapping->page_tree, offset, page);
470 		if (likely(!error)) {
471 			mapping->nrpages++;
472 			__inc_zone_page_state(page, NR_FILE_PAGES);
473 			if (PageSwapBacked(page))
474 				__inc_zone_page_state(page, NR_SHMEM);
475 			spin_unlock_irq(&mapping->tree_lock);
476 		} else {
477 			page->mapping = NULL;
478 			spin_unlock_irq(&mapping->tree_lock);
479 			mem_cgroup_uncharge_cache_page(page);
480 			page_cache_release(page);
481 		}
482 		radix_tree_preload_end();
483 	} else
484 		mem_cgroup_uncharge_cache_page(page);
485 out:
486 	return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache_locked);
489 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 				pgoff_t offset, gfp_t gfp_mask)
492 {
493 	int ret;
494 
495 	/*
496 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
497 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
498 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
499 	 * (called in add_to_page_cache) needs to know where they're going too.
500 	 */
501 	if (mapping_cap_swap_backed(mapping))
502 		SetPageSwapBacked(page);
503 
504 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
505 	if (ret == 0) {
506 		if (page_is_file_cache(page))
507 			lru_cache_add_file(page);
508 		else
509 			lru_cache_add_anon(page);
510 	}
511 	return ret;
512 }
513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
514 
515 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)516 struct page *__page_cache_alloc(gfp_t gfp)
517 {
518 	int n;
519 	struct page *page;
520 
521 	if (cpuset_do_page_mem_spread()) {
522 		get_mems_allowed();
523 		n = cpuset_mem_spread_node();
524 		page = alloc_pages_exact_node(n, gfp, 0);
525 		put_mems_allowed();
526 		return page;
527 	}
528 	return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532 
533 /*
534  * In order to wait for pages to become available there must be
535  * waitqueues associated with pages. By using a hash table of
536  * waitqueues where the bucket discipline is to maintain all
537  * waiters on the same queue and wake all when any of the pages
538  * become available, and for the woken contexts to check to be
539  * sure the appropriate page became available, this saves space
540  * at a cost of "thundering herd" phenomena during rare hash
541  * collisions.
542  */
page_waitqueue(struct page * page)543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 	const struct zone *zone = page_zone(page);
546 
547 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549 
wake_up_page(struct page * page,int bit)550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554 
wait_on_page_bit(struct page * page,int bit_nr)555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558 
559 	if (test_bit(bit_nr, &page->flags))
560 		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 							TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564 
565 /**
566  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
567  * @page: Page defining the wait queue of interest
568  * @waiter: Waiter to add to the queue
569  *
570  * Add an arbitrary @waiter to the wait queue for the nominated @page.
571  */
add_page_wait_queue(struct page * page,wait_queue_t * waiter)572 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
573 {
574 	wait_queue_head_t *q = page_waitqueue(page);
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(&q->lock, flags);
578 	__add_wait_queue(q, waiter);
579 	spin_unlock_irqrestore(&q->lock, flags);
580 }
581 EXPORT_SYMBOL_GPL(add_page_wait_queue);
582 
583 /**
584  * unlock_page - unlock a locked page
585  * @page: the page
586  *
587  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
588  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
589  * mechananism between PageLocked pages and PageWriteback pages is shared.
590  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
591  *
592  * The mb is necessary to enforce ordering between the clear_bit and the read
593  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
594  */
unlock_page(struct page * page)595 void unlock_page(struct page *page)
596 {
597 	VM_BUG_ON(!PageLocked(page));
598 	clear_bit_unlock(PG_locked, &page->flags);
599 	smp_mb__after_clear_bit();
600 	wake_up_page(page, PG_locked);
601 }
602 EXPORT_SYMBOL(unlock_page);
603 
604 /**
605  * end_page_writeback - end writeback against a page
606  * @page: the page
607  */
end_page_writeback(struct page * page)608 void end_page_writeback(struct page *page)
609 {
610 	if (TestClearPageReclaim(page))
611 		rotate_reclaimable_page(page);
612 
613 	if (!test_clear_page_writeback(page))
614 		BUG();
615 
616 	smp_mb__after_clear_bit();
617 	wake_up_page(page, PG_writeback);
618 }
619 EXPORT_SYMBOL(end_page_writeback);
620 
621 /**
622  * __lock_page - get a lock on the page, assuming we need to sleep to get it
623  * @page: the page to lock
624  */
__lock_page(struct page * page)625 void __lock_page(struct page *page)
626 {
627 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628 
629 	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
630 							TASK_UNINTERRUPTIBLE);
631 }
632 EXPORT_SYMBOL(__lock_page);
633 
__lock_page_killable(struct page * page)634 int __lock_page_killable(struct page *page)
635 {
636 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637 
638 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
639 					sleep_on_page_killable, TASK_KILLABLE);
640 }
641 EXPORT_SYMBOL_GPL(__lock_page_killable);
642 
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)643 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
644 			 unsigned int flags)
645 {
646 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
647 		__lock_page(page);
648 		return 1;
649 	} else {
650 		if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
651 			up_read(&mm->mmap_sem);
652 			wait_on_page_locked(page);
653 		}
654 		return 0;
655 	}
656 }
657 
658 /**
659  * find_get_page - find and get a page reference
660  * @mapping: the address_space to search
661  * @offset: the page index
662  *
663  * Is there a pagecache struct page at the given (mapping, offset) tuple?
664  * If yes, increment its refcount and return it; if no, return NULL.
665  */
find_get_page(struct address_space * mapping,pgoff_t offset)666 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
667 {
668 	void **pagep;
669 	struct page *page;
670 
671 	rcu_read_lock();
672 repeat:
673 	page = NULL;
674 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
675 	if (pagep) {
676 		page = radix_tree_deref_slot(pagep);
677 		if (unlikely(!page))
678 			goto out;
679 		if (radix_tree_deref_retry(page))
680 			goto repeat;
681 
682 		if (!page_cache_get_speculative(page))
683 			goto repeat;
684 
685 		/*
686 		 * Has the page moved?
687 		 * This is part of the lockless pagecache protocol. See
688 		 * include/linux/pagemap.h for details.
689 		 */
690 		if (unlikely(page != *pagep)) {
691 			page_cache_release(page);
692 			goto repeat;
693 		}
694 	}
695 out:
696 	rcu_read_unlock();
697 
698 	return page;
699 }
700 EXPORT_SYMBOL(find_get_page);
701 
702 /**
703  * find_lock_page - locate, pin and lock a pagecache page
704  * @mapping: the address_space to search
705  * @offset: the page index
706  *
707  * Locates the desired pagecache page, locks it, increments its reference
708  * count and returns its address.
709  *
710  * Returns zero if the page was not present. find_lock_page() may sleep.
711  */
find_lock_page(struct address_space * mapping,pgoff_t offset)712 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
713 {
714 	struct page *page;
715 
716 repeat:
717 	page = find_get_page(mapping, offset);
718 	if (page) {
719 		lock_page(page);
720 		/* Has the page been truncated? */
721 		if (unlikely(page->mapping != mapping)) {
722 			unlock_page(page);
723 			page_cache_release(page);
724 			goto repeat;
725 		}
726 		VM_BUG_ON(page->index != offset);
727 	}
728 	return page;
729 }
730 EXPORT_SYMBOL(find_lock_page);
731 
732 /**
733  * find_or_create_page - locate or add a pagecache page
734  * @mapping: the page's address_space
735  * @index: the page's index into the mapping
736  * @gfp_mask: page allocation mode
737  *
738  * Locates a page in the pagecache.  If the page is not present, a new page
739  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
740  * LRU list.  The returned page is locked and has its reference count
741  * incremented.
742  *
743  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
744  * allocation!
745  *
746  * find_or_create_page() returns the desired page's address, or zero on
747  * memory exhaustion.
748  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)749 struct page *find_or_create_page(struct address_space *mapping,
750 		pgoff_t index, gfp_t gfp_mask)
751 {
752 	struct page *page;
753 	int err;
754 repeat:
755 	page = find_lock_page(mapping, index);
756 	if (!page) {
757 		page = __page_cache_alloc(gfp_mask);
758 		if (!page)
759 			return NULL;
760 		/*
761 		 * We want a regular kernel memory (not highmem or DMA etc)
762 		 * allocation for the radix tree nodes, but we need to honour
763 		 * the context-specific requirements the caller has asked for.
764 		 * GFP_RECLAIM_MASK collects those requirements.
765 		 */
766 		err = add_to_page_cache_lru(page, mapping, index,
767 			(gfp_mask & GFP_RECLAIM_MASK));
768 		if (unlikely(err)) {
769 			page_cache_release(page);
770 			page = NULL;
771 			if (err == -EEXIST)
772 				goto repeat;
773 		}
774 	}
775 	return page;
776 }
777 EXPORT_SYMBOL(find_or_create_page);
778 
779 /**
780  * find_get_pages - gang pagecache lookup
781  * @mapping:	The address_space to search
782  * @start:	The starting page index
783  * @nr_pages:	The maximum number of pages
784  * @pages:	Where the resulting pages are placed
785  *
786  * find_get_pages() will search for and return a group of up to
787  * @nr_pages pages in the mapping.  The pages are placed at @pages.
788  * find_get_pages() takes a reference against the returned pages.
789  *
790  * The search returns a group of mapping-contiguous pages with ascending
791  * indexes.  There may be holes in the indices due to not-present pages.
792  *
793  * find_get_pages() returns the number of pages which were found.
794  */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)795 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
796 			    unsigned int nr_pages, struct page **pages)
797 {
798 	unsigned int i;
799 	unsigned int ret;
800 	unsigned int nr_found;
801 
802 	rcu_read_lock();
803 restart:
804 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
805 				(void ***)pages, start, nr_pages);
806 	ret = 0;
807 	for (i = 0; i < nr_found; i++) {
808 		struct page *page;
809 repeat:
810 		page = radix_tree_deref_slot((void **)pages[i]);
811 		if (unlikely(!page))
812 			continue;
813 
814 		/*
815 		 * This can only trigger when the entry at index 0 moves out
816 		 * of or back to the root: none yet gotten, safe to restart.
817 		 */
818 		if (radix_tree_deref_retry(page)) {
819 			WARN_ON(start | i);
820 			goto restart;
821 		}
822 
823 		if (!page_cache_get_speculative(page))
824 			goto repeat;
825 
826 		/* Has the page moved? */
827 		if (unlikely(page != *((void **)pages[i]))) {
828 			page_cache_release(page);
829 			goto repeat;
830 		}
831 
832 		pages[ret] = page;
833 		ret++;
834 	}
835 
836 	/*
837 	 * If all entries were removed before we could secure them,
838 	 * try again, because callers stop trying once 0 is returned.
839 	 */
840 	if (unlikely(!ret && nr_found))
841 		goto restart;
842 	rcu_read_unlock();
843 	return ret;
844 }
845 
846 /**
847  * find_get_pages_contig - gang contiguous pagecache lookup
848  * @mapping:	The address_space to search
849  * @index:	The starting page index
850  * @nr_pages:	The maximum number of pages
851  * @pages:	Where the resulting pages are placed
852  *
853  * find_get_pages_contig() works exactly like find_get_pages(), except
854  * that the returned number of pages are guaranteed to be contiguous.
855  *
856  * find_get_pages_contig() returns the number of pages which were found.
857  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)858 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
859 			       unsigned int nr_pages, struct page **pages)
860 {
861 	unsigned int i;
862 	unsigned int ret;
863 	unsigned int nr_found;
864 
865 	rcu_read_lock();
866 restart:
867 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
868 				(void ***)pages, index, nr_pages);
869 	ret = 0;
870 	for (i = 0; i < nr_found; i++) {
871 		struct page *page;
872 repeat:
873 		page = radix_tree_deref_slot((void **)pages[i]);
874 		if (unlikely(!page))
875 			continue;
876 
877 		/*
878 		 * This can only trigger when the entry at index 0 moves out
879 		 * of or back to the root: none yet gotten, safe to restart.
880 		 */
881 		if (radix_tree_deref_retry(page))
882 			goto restart;
883 
884 		if (!page_cache_get_speculative(page))
885 			goto repeat;
886 
887 		/* Has the page moved? */
888 		if (unlikely(page != *((void **)pages[i]))) {
889 			page_cache_release(page);
890 			goto repeat;
891 		}
892 
893 		/*
894 		 * must check mapping and index after taking the ref.
895 		 * otherwise we can get both false positives and false
896 		 * negatives, which is just confusing to the caller.
897 		 */
898 		if (page->mapping == NULL || page->index != index) {
899 			page_cache_release(page);
900 			break;
901 		}
902 
903 		pages[ret] = page;
904 		ret++;
905 		index++;
906 	}
907 	rcu_read_unlock();
908 	return ret;
909 }
910 EXPORT_SYMBOL(find_get_pages_contig);
911 
912 /**
913  * find_get_pages_tag - find and return pages that match @tag
914  * @mapping:	the address_space to search
915  * @index:	the starting page index
916  * @tag:	the tag index
917  * @nr_pages:	the maximum number of pages
918  * @pages:	where the resulting pages are placed
919  *
920  * Like find_get_pages, except we only return pages which are tagged with
921  * @tag.   We update @index to index the next page for the traversal.
922  */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)923 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
924 			int tag, unsigned int nr_pages, struct page **pages)
925 {
926 	unsigned int i;
927 	unsigned int ret;
928 	unsigned int nr_found;
929 
930 	rcu_read_lock();
931 restart:
932 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
933 				(void ***)pages, *index, nr_pages, tag);
934 	ret = 0;
935 	for (i = 0; i < nr_found; i++) {
936 		struct page *page;
937 repeat:
938 		page = radix_tree_deref_slot((void **)pages[i]);
939 		if (unlikely(!page))
940 			continue;
941 
942 		/*
943 		 * This can only trigger when the entry at index 0 moves out
944 		 * of or back to the root: none yet gotten, safe to restart.
945 		 */
946 		if (radix_tree_deref_retry(page))
947 			goto restart;
948 
949 		if (!page_cache_get_speculative(page))
950 			goto repeat;
951 
952 		/* Has the page moved? */
953 		if (unlikely(page != *((void **)pages[i]))) {
954 			page_cache_release(page);
955 			goto repeat;
956 		}
957 
958 		pages[ret] = page;
959 		ret++;
960 	}
961 
962 	/*
963 	 * If all entries were removed before we could secure them,
964 	 * try again, because callers stop trying once 0 is returned.
965 	 */
966 	if (unlikely(!ret && nr_found))
967 		goto restart;
968 	rcu_read_unlock();
969 
970 	if (ret)
971 		*index = pages[ret - 1]->index + 1;
972 
973 	return ret;
974 }
975 EXPORT_SYMBOL(find_get_pages_tag);
976 
977 /**
978  * grab_cache_page_nowait - returns locked page at given index in given cache
979  * @mapping: target address_space
980  * @index: the page index
981  *
982  * Same as grab_cache_page(), but do not wait if the page is unavailable.
983  * This is intended for speculative data generators, where the data can
984  * be regenerated if the page couldn't be grabbed.  This routine should
985  * be safe to call while holding the lock for another page.
986  *
987  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
988  * and deadlock against the caller's locked page.
989  */
990 struct page *
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)991 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
992 {
993 	struct page *page = find_get_page(mapping, index);
994 
995 	if (page) {
996 		if (trylock_page(page))
997 			return page;
998 		page_cache_release(page);
999 		return NULL;
1000 	}
1001 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1002 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1003 		page_cache_release(page);
1004 		page = NULL;
1005 	}
1006 	return page;
1007 }
1008 EXPORT_SYMBOL(grab_cache_page_nowait);
1009 
1010 /*
1011  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1012  * a _large_ part of the i/o request. Imagine the worst scenario:
1013  *
1014  *      ---R__________________________________________B__________
1015  *         ^ reading here                             ^ bad block(assume 4k)
1016  *
1017  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1018  * => failing the whole request => read(R) => read(R+1) =>
1019  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1020  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1021  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1022  *
1023  * It is going insane. Fix it by quickly scaling down the readahead size.
1024  */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1025 static void shrink_readahead_size_eio(struct file *filp,
1026 					struct file_ra_state *ra)
1027 {
1028 	ra->ra_pages /= 4;
1029 }
1030 
1031 /**
1032  * do_generic_file_read - generic file read routine
1033  * @filp:	the file to read
1034  * @ppos:	current file position
1035  * @desc:	read_descriptor
1036  * @actor:	read method
1037  *
1038  * This is a generic file read routine, and uses the
1039  * mapping->a_ops->readpage() function for the actual low-level stuff.
1040  *
1041  * This is really ugly. But the goto's actually try to clarify some
1042  * of the logic when it comes to error handling etc.
1043  */
do_generic_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1044 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1045 		read_descriptor_t *desc, read_actor_t actor)
1046 {
1047 	struct address_space *mapping = filp->f_mapping;
1048 	struct inode *inode = mapping->host;
1049 	struct file_ra_state *ra = &filp->f_ra;
1050 	pgoff_t index;
1051 	pgoff_t last_index;
1052 	pgoff_t prev_index;
1053 	unsigned long offset;      /* offset into pagecache page */
1054 	unsigned int prev_offset;
1055 	int error;
1056 
1057 	index = *ppos >> PAGE_CACHE_SHIFT;
1058 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1059 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1060 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1061 	offset = *ppos & ~PAGE_CACHE_MASK;
1062 
1063 	for (;;) {
1064 		struct page *page;
1065 		pgoff_t end_index;
1066 		loff_t isize;
1067 		unsigned long nr, ret;
1068 
1069 		cond_resched();
1070 find_page:
1071 		page = find_get_page(mapping, index);
1072 		if (!page) {
1073 			page_cache_sync_readahead(mapping,
1074 					ra, filp,
1075 					index, last_index - index);
1076 			page = find_get_page(mapping, index);
1077 			if (unlikely(page == NULL))
1078 				goto no_cached_page;
1079 		}
1080 		if (PageReadahead(page)) {
1081 			page_cache_async_readahead(mapping,
1082 					ra, filp, page,
1083 					index, last_index - index);
1084 		}
1085 		if (!PageUptodate(page)) {
1086 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1087 					!mapping->a_ops->is_partially_uptodate)
1088 				goto page_not_up_to_date;
1089 			if (!trylock_page(page))
1090 				goto page_not_up_to_date;
1091 			/* Did it get truncated before we got the lock? */
1092 			if (!page->mapping)
1093 				goto page_not_up_to_date_locked;
1094 			if (!mapping->a_ops->is_partially_uptodate(page,
1095 								desc, offset))
1096 				goto page_not_up_to_date_locked;
1097 			unlock_page(page);
1098 		}
1099 page_ok:
1100 		/*
1101 		 * i_size must be checked after we know the page is Uptodate.
1102 		 *
1103 		 * Checking i_size after the check allows us to calculate
1104 		 * the correct value for "nr", which means the zero-filled
1105 		 * part of the page is not copied back to userspace (unless
1106 		 * another truncate extends the file - this is desired though).
1107 		 */
1108 
1109 		isize = i_size_read(inode);
1110 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1111 		if (unlikely(!isize || index > end_index)) {
1112 			page_cache_release(page);
1113 			goto out;
1114 		}
1115 
1116 		/* nr is the maximum number of bytes to copy from this page */
1117 		nr = PAGE_CACHE_SIZE;
1118 		if (index == end_index) {
1119 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1120 			if (nr <= offset) {
1121 				page_cache_release(page);
1122 				goto out;
1123 			}
1124 		}
1125 		nr = nr - offset;
1126 
1127 		/* If users can be writing to this page using arbitrary
1128 		 * virtual addresses, take care about potential aliasing
1129 		 * before reading the page on the kernel side.
1130 		 */
1131 		if (mapping_writably_mapped(mapping))
1132 			flush_dcache_page(page);
1133 
1134 		/*
1135 		 * When a sequential read accesses a page several times,
1136 		 * only mark it as accessed the first time.
1137 		 */
1138 		if (prev_index != index || offset != prev_offset)
1139 			mark_page_accessed(page);
1140 		prev_index = index;
1141 
1142 		/*
1143 		 * Ok, we have the page, and it's up-to-date, so
1144 		 * now we can copy it to user space...
1145 		 *
1146 		 * The actor routine returns how many bytes were actually used..
1147 		 * NOTE! This may not be the same as how much of a user buffer
1148 		 * we filled up (we may be padding etc), so we can only update
1149 		 * "pos" here (the actor routine has to update the user buffer
1150 		 * pointers and the remaining count).
1151 		 */
1152 		ret = actor(desc, page, offset, nr);
1153 		offset += ret;
1154 		index += offset >> PAGE_CACHE_SHIFT;
1155 		offset &= ~PAGE_CACHE_MASK;
1156 		prev_offset = offset;
1157 
1158 		page_cache_release(page);
1159 		if (ret == nr && desc->count)
1160 			continue;
1161 		goto out;
1162 
1163 page_not_up_to_date:
1164 		/* Get exclusive access to the page ... */
1165 		error = lock_page_killable(page);
1166 		if (unlikely(error))
1167 			goto readpage_error;
1168 
1169 page_not_up_to_date_locked:
1170 		/* Did it get truncated before we got the lock? */
1171 		if (!page->mapping) {
1172 			unlock_page(page);
1173 			page_cache_release(page);
1174 			continue;
1175 		}
1176 
1177 		/* Did somebody else fill it already? */
1178 		if (PageUptodate(page)) {
1179 			unlock_page(page);
1180 			goto page_ok;
1181 		}
1182 
1183 readpage:
1184 		/*
1185 		 * A previous I/O error may have been due to temporary
1186 		 * failures, eg. multipath errors.
1187 		 * PG_error will be set again if readpage fails.
1188 		 */
1189 		ClearPageError(page);
1190 		/* Start the actual read. The read will unlock the page. */
1191 		error = mapping->a_ops->readpage(filp, page);
1192 
1193 		if (unlikely(error)) {
1194 			if (error == AOP_TRUNCATED_PAGE) {
1195 				page_cache_release(page);
1196 				goto find_page;
1197 			}
1198 			goto readpage_error;
1199 		}
1200 
1201 		if (!PageUptodate(page)) {
1202 			error = lock_page_killable(page);
1203 			if (unlikely(error))
1204 				goto readpage_error;
1205 			if (!PageUptodate(page)) {
1206 				if (page->mapping == NULL) {
1207 					/*
1208 					 * invalidate_mapping_pages got it
1209 					 */
1210 					unlock_page(page);
1211 					page_cache_release(page);
1212 					goto find_page;
1213 				}
1214 				unlock_page(page);
1215 				shrink_readahead_size_eio(filp, ra);
1216 				error = -EIO;
1217 				goto readpage_error;
1218 			}
1219 			unlock_page(page);
1220 		}
1221 
1222 		goto page_ok;
1223 
1224 readpage_error:
1225 		/* UHHUH! A synchronous read error occurred. Report it */
1226 		desc->error = error;
1227 		page_cache_release(page);
1228 		goto out;
1229 
1230 no_cached_page:
1231 		/*
1232 		 * Ok, it wasn't cached, so we need to create a new
1233 		 * page..
1234 		 */
1235 		page = page_cache_alloc_cold(mapping);
1236 		if (!page) {
1237 			desc->error = -ENOMEM;
1238 			goto out;
1239 		}
1240 		error = add_to_page_cache_lru(page, mapping,
1241 						index, GFP_KERNEL);
1242 		if (error) {
1243 			page_cache_release(page);
1244 			if (error == -EEXIST)
1245 				goto find_page;
1246 			desc->error = error;
1247 			goto out;
1248 		}
1249 		goto readpage;
1250 	}
1251 
1252 out:
1253 	ra->prev_pos = prev_index;
1254 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1255 	ra->prev_pos |= prev_offset;
1256 
1257 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1258 	file_accessed(filp);
1259 }
1260 
file_read_actor(read_descriptor_t * desc,struct page * page,unsigned long offset,unsigned long size)1261 int file_read_actor(read_descriptor_t *desc, struct page *page,
1262 			unsigned long offset, unsigned long size)
1263 {
1264 	char *kaddr;
1265 	unsigned long left, count = desc->count;
1266 
1267 	if (size > count)
1268 		size = count;
1269 
1270 	/*
1271 	 * Faults on the destination of a read are common, so do it before
1272 	 * taking the kmap.
1273 	 */
1274 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1275 		kaddr = kmap_atomic(page, KM_USER0);
1276 		left = __copy_to_user_inatomic(desc->arg.buf,
1277 						kaddr + offset, size);
1278 		kunmap_atomic(kaddr, KM_USER0);
1279 		if (left == 0)
1280 			goto success;
1281 	}
1282 
1283 	/* Do it the slow way */
1284 	kaddr = kmap(page);
1285 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1286 	kunmap(page);
1287 
1288 	if (left) {
1289 		size -= left;
1290 		desc->error = -EFAULT;
1291 	}
1292 success:
1293 	desc->count = count - size;
1294 	desc->written += size;
1295 	desc->arg.buf += size;
1296 	return size;
1297 }
1298 
1299 /*
1300  * Performs necessary checks before doing a write
1301  * @iov:	io vector request
1302  * @nr_segs:	number of segments in the iovec
1303  * @count:	number of bytes to write
1304  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1305  *
1306  * Adjust number of segments and amount of bytes to write (nr_segs should be
1307  * properly initialized first). Returns appropriate error code that caller
1308  * should return or zero in case that write should be allowed.
1309  */
generic_segment_checks(const struct iovec * iov,unsigned long * nr_segs,size_t * count,int access_flags)1310 int generic_segment_checks(const struct iovec *iov,
1311 			unsigned long *nr_segs, size_t *count, int access_flags)
1312 {
1313 	unsigned long   seg;
1314 	size_t cnt = 0;
1315 	for (seg = 0; seg < *nr_segs; seg++) {
1316 		const struct iovec *iv = &iov[seg];
1317 
1318 		/*
1319 		 * If any segment has a negative length, or the cumulative
1320 		 * length ever wraps negative then return -EINVAL.
1321 		 */
1322 		cnt += iv->iov_len;
1323 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1324 			return -EINVAL;
1325 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1326 			continue;
1327 		if (seg == 0)
1328 			return -EFAULT;
1329 		*nr_segs = seg;
1330 		cnt -= iv->iov_len;	/* This segment is no good */
1331 		break;
1332 	}
1333 	*count = cnt;
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL(generic_segment_checks);
1337 
1338 /**
1339  * generic_file_aio_read - generic filesystem read routine
1340  * @iocb:	kernel I/O control block
1341  * @iov:	io vector request
1342  * @nr_segs:	number of segments in the iovec
1343  * @pos:	current file position
1344  *
1345  * This is the "read()" routine for all filesystems
1346  * that can use the page cache directly.
1347  */
1348 ssize_t
generic_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1349 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1350 		unsigned long nr_segs, loff_t pos)
1351 {
1352 	struct file *filp = iocb->ki_filp;
1353 	ssize_t retval;
1354 	unsigned long seg = 0;
1355 	size_t count;
1356 	loff_t *ppos = &iocb->ki_pos;
1357 	struct blk_plug plug;
1358 
1359 	count = 0;
1360 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1361 	if (retval)
1362 		return retval;
1363 
1364 	blk_start_plug(&plug);
1365 
1366 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1367 	if (filp->f_flags & O_DIRECT) {
1368 		loff_t size;
1369 		struct address_space *mapping;
1370 		struct inode *inode;
1371 
1372 		mapping = filp->f_mapping;
1373 		inode = mapping->host;
1374 		if (!count)
1375 			goto out; /* skip atime */
1376 		size = i_size_read(inode);
1377 		if (pos < size) {
1378 			retval = filemap_write_and_wait_range(mapping, pos,
1379 					pos + iov_length(iov, nr_segs) - 1);
1380 			if (!retval) {
1381 				retval = mapping->a_ops->direct_IO(READ, iocb,
1382 							iov, pos, nr_segs);
1383 			}
1384 			if (retval > 0) {
1385 				*ppos = pos + retval;
1386 				count -= retval;
1387 			}
1388 
1389 			/*
1390 			 * Btrfs can have a short DIO read if we encounter
1391 			 * compressed extents, so if there was an error, or if
1392 			 * we've already read everything we wanted to, or if
1393 			 * there was a short read because we hit EOF, go ahead
1394 			 * and return.  Otherwise fallthrough to buffered io for
1395 			 * the rest of the read.
1396 			 */
1397 			if (retval < 0 || !count || *ppos >= size) {
1398 				file_accessed(filp);
1399 				goto out;
1400 			}
1401 		}
1402 	}
1403 
1404 	count = retval;
1405 	for (seg = 0; seg < nr_segs; seg++) {
1406 		read_descriptor_t desc;
1407 		loff_t offset = 0;
1408 
1409 		/*
1410 		 * If we did a short DIO read we need to skip the section of the
1411 		 * iov that we've already read data into.
1412 		 */
1413 		if (count) {
1414 			if (count > iov[seg].iov_len) {
1415 				count -= iov[seg].iov_len;
1416 				continue;
1417 			}
1418 			offset = count;
1419 			count = 0;
1420 		}
1421 
1422 		desc.written = 0;
1423 		desc.arg.buf = iov[seg].iov_base + offset;
1424 		desc.count = iov[seg].iov_len - offset;
1425 		if (desc.count == 0)
1426 			continue;
1427 		desc.error = 0;
1428 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1429 		retval += desc.written;
1430 		if (desc.error) {
1431 			retval = retval ?: desc.error;
1432 			break;
1433 		}
1434 		if (desc.count > 0)
1435 			break;
1436 	}
1437 out:
1438 	blk_finish_plug(&plug);
1439 	return retval;
1440 }
1441 EXPORT_SYMBOL(generic_file_aio_read);
1442 
1443 static ssize_t
do_readahead(struct address_space * mapping,struct file * filp,pgoff_t index,unsigned long nr)1444 do_readahead(struct address_space *mapping, struct file *filp,
1445 	     pgoff_t index, unsigned long nr)
1446 {
1447 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1448 		return -EINVAL;
1449 
1450 	force_page_cache_readahead(mapping, filp, index, nr);
1451 	return 0;
1452 }
1453 
SYSCALL_DEFINE(readahead)1454 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1455 {
1456 	ssize_t ret;
1457 	struct file *file;
1458 
1459 	ret = -EBADF;
1460 	file = fget(fd);
1461 	if (file) {
1462 		if (file->f_mode & FMODE_READ) {
1463 			struct address_space *mapping = file->f_mapping;
1464 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1465 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1466 			unsigned long len = end - start + 1;
1467 			ret = do_readahead(mapping, file, start, len);
1468 		}
1469 		fput(file);
1470 	}
1471 	return ret;
1472 }
1473 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
SyS_readahead(long fd,loff_t offset,long count)1474 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1475 {
1476 	return SYSC_readahead((int) fd, offset, (size_t) count);
1477 }
1478 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1479 #endif
1480 
1481 #ifdef CONFIG_MMU
1482 /**
1483  * page_cache_read - adds requested page to the page cache if not already there
1484  * @file:	file to read
1485  * @offset:	page index
1486  *
1487  * This adds the requested page to the page cache if it isn't already there,
1488  * and schedules an I/O to read in its contents from disk.
1489  */
page_cache_read(struct file * file,pgoff_t offset)1490 static int page_cache_read(struct file *file, pgoff_t offset)
1491 {
1492 	struct address_space *mapping = file->f_mapping;
1493 	struct page *page;
1494 	int ret;
1495 
1496 	do {
1497 		page = page_cache_alloc_cold(mapping);
1498 		if (!page)
1499 			return -ENOMEM;
1500 
1501 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1502 		if (ret == 0)
1503 			ret = mapping->a_ops->readpage(file, page);
1504 		else if (ret == -EEXIST)
1505 			ret = 0; /* losing race to add is OK */
1506 
1507 		page_cache_release(page);
1508 
1509 	} while (ret == AOP_TRUNCATED_PAGE);
1510 
1511 	return ret;
1512 }
1513 
1514 #define MMAP_LOTSAMISS  (100)
1515 
1516 /*
1517  * Synchronous readahead happens when we don't even find
1518  * a page in the page cache at all.
1519  */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)1520 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1521 				   struct file_ra_state *ra,
1522 				   struct file *file,
1523 				   pgoff_t offset)
1524 {
1525 	unsigned long ra_pages;
1526 	struct address_space *mapping = file->f_mapping;
1527 
1528 	/* If we don't want any read-ahead, don't bother */
1529 	if (VM_RandomReadHint(vma))
1530 		return;
1531 
1532 	if (VM_SequentialReadHint(vma) ||
1533 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1534 		page_cache_sync_readahead(mapping, ra, file, offset,
1535 					  ra->ra_pages);
1536 		return;
1537 	}
1538 
1539 	if (ra->mmap_miss < INT_MAX)
1540 		ra->mmap_miss++;
1541 
1542 	/*
1543 	 * Do we miss much more than hit in this file? If so,
1544 	 * stop bothering with read-ahead. It will only hurt.
1545 	 */
1546 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1547 		return;
1548 
1549 	/*
1550 	 * mmap read-around
1551 	 */
1552 	ra_pages = max_sane_readahead(ra->ra_pages);
1553 	if (ra_pages) {
1554 		ra->start = max_t(long, 0, offset - ra_pages/2);
1555 		ra->size = ra_pages;
1556 		ra->async_size = 0;
1557 		ra_submit(ra, mapping, file);
1558 	}
1559 }
1560 
1561 /*
1562  * Asynchronous readahead happens when we find the page and PG_readahead,
1563  * so we want to possibly extend the readahead further..
1564  */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)1565 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1566 				    struct file_ra_state *ra,
1567 				    struct file *file,
1568 				    struct page *page,
1569 				    pgoff_t offset)
1570 {
1571 	struct address_space *mapping = file->f_mapping;
1572 
1573 	/* If we don't want any read-ahead, don't bother */
1574 	if (VM_RandomReadHint(vma))
1575 		return;
1576 	if (ra->mmap_miss > 0)
1577 		ra->mmap_miss--;
1578 	if (PageReadahead(page))
1579 		page_cache_async_readahead(mapping, ra, file,
1580 					   page, offset, ra->ra_pages);
1581 }
1582 
1583 /**
1584  * filemap_fault - read in file data for page fault handling
1585  * @vma:	vma in which the fault was taken
1586  * @vmf:	struct vm_fault containing details of the fault
1587  *
1588  * filemap_fault() is invoked via the vma operations vector for a
1589  * mapped memory region to read in file data during a page fault.
1590  *
1591  * The goto's are kind of ugly, but this streamlines the normal case of having
1592  * it in the page cache, and handles the special cases reasonably without
1593  * having a lot of duplicated code.
1594  */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1595 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1596 {
1597 	int error;
1598 	struct file *file = vma->vm_file;
1599 	struct address_space *mapping = file->f_mapping;
1600 	struct file_ra_state *ra = &file->f_ra;
1601 	struct inode *inode = mapping->host;
1602 	pgoff_t offset = vmf->pgoff;
1603 	struct page *page;
1604 	pgoff_t size;
1605 	int ret = 0;
1606 
1607 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1608 	if (offset >= size)
1609 		return VM_FAULT_SIGBUS;
1610 
1611 	/*
1612 	 * Do we have something in the page cache already?
1613 	 */
1614 	page = find_get_page(mapping, offset);
1615 	if (likely(page)) {
1616 		/*
1617 		 * We found the page, so try async readahead before
1618 		 * waiting for the lock.
1619 		 */
1620 		do_async_mmap_readahead(vma, ra, file, page, offset);
1621 	} else {
1622 		/* No page in the page cache at all */
1623 		do_sync_mmap_readahead(vma, ra, file, offset);
1624 		count_vm_event(PGMAJFAULT);
1625 		ret = VM_FAULT_MAJOR;
1626 retry_find:
1627 		page = find_get_page(mapping, offset);
1628 		if (!page)
1629 			goto no_cached_page;
1630 	}
1631 
1632 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1633 		page_cache_release(page);
1634 		return ret | VM_FAULT_RETRY;
1635 	}
1636 
1637 	/* Did it get truncated? */
1638 	if (unlikely(page->mapping != mapping)) {
1639 		unlock_page(page);
1640 		put_page(page);
1641 		goto retry_find;
1642 	}
1643 	VM_BUG_ON(page->index != offset);
1644 
1645 	/*
1646 	 * We have a locked page in the page cache, now we need to check
1647 	 * that it's up-to-date. If not, it is going to be due to an error.
1648 	 */
1649 	if (unlikely(!PageUptodate(page)))
1650 		goto page_not_uptodate;
1651 
1652 	/*
1653 	 * Found the page and have a reference on it.
1654 	 * We must recheck i_size under page lock.
1655 	 */
1656 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 	if (unlikely(offset >= size)) {
1658 		unlock_page(page);
1659 		page_cache_release(page);
1660 		return VM_FAULT_SIGBUS;
1661 	}
1662 
1663 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1664 	vmf->page = page;
1665 	return ret | VM_FAULT_LOCKED;
1666 
1667 no_cached_page:
1668 	/*
1669 	 * We're only likely to ever get here if MADV_RANDOM is in
1670 	 * effect.
1671 	 */
1672 	error = page_cache_read(file, offset);
1673 
1674 	/*
1675 	 * The page we want has now been added to the page cache.
1676 	 * In the unlikely event that someone removed it in the
1677 	 * meantime, we'll just come back here and read it again.
1678 	 */
1679 	if (error >= 0)
1680 		goto retry_find;
1681 
1682 	/*
1683 	 * An error return from page_cache_read can result if the
1684 	 * system is low on memory, or a problem occurs while trying
1685 	 * to schedule I/O.
1686 	 */
1687 	if (error == -ENOMEM)
1688 		return VM_FAULT_OOM;
1689 	return VM_FAULT_SIGBUS;
1690 
1691 page_not_uptodate:
1692 	/*
1693 	 * Umm, take care of errors if the page isn't up-to-date.
1694 	 * Try to re-read it _once_. We do this synchronously,
1695 	 * because there really aren't any performance issues here
1696 	 * and we need to check for errors.
1697 	 */
1698 	ClearPageError(page);
1699 	error = mapping->a_ops->readpage(file, page);
1700 	if (!error) {
1701 		wait_on_page_locked(page);
1702 		if (!PageUptodate(page))
1703 			error = -EIO;
1704 	}
1705 	page_cache_release(page);
1706 
1707 	if (!error || error == AOP_TRUNCATED_PAGE)
1708 		goto retry_find;
1709 
1710 	/* Things didn't work out. Return zero to tell the mm layer so. */
1711 	shrink_readahead_size_eio(file, ra);
1712 	return VM_FAULT_SIGBUS;
1713 }
1714 EXPORT_SYMBOL(filemap_fault);
1715 
1716 const struct vm_operations_struct generic_file_vm_ops = {
1717 	.fault		= filemap_fault,
1718 };
1719 
1720 /* This is used for a general mmap of a disk file */
1721 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1722 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1723 {
1724 	struct address_space *mapping = file->f_mapping;
1725 
1726 	if (!mapping->a_ops->readpage)
1727 		return -ENOEXEC;
1728 	file_accessed(file);
1729 	vma->vm_ops = &generic_file_vm_ops;
1730 	vma->vm_flags |= VM_CAN_NONLINEAR;
1731 	return 0;
1732 }
1733 
1734 /*
1735  * This is for filesystems which do not implement ->writepage.
1736  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1737 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1738 {
1739 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1740 		return -EINVAL;
1741 	return generic_file_mmap(file, vma);
1742 }
1743 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1744 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1745 {
1746 	return -ENOSYS;
1747 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1748 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1749 {
1750 	return -ENOSYS;
1751 }
1752 #endif /* CONFIG_MMU */
1753 
1754 EXPORT_SYMBOL(generic_file_mmap);
1755 EXPORT_SYMBOL(generic_file_readonly_mmap);
1756 
__read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1757 static struct page *__read_cache_page(struct address_space *mapping,
1758 				pgoff_t index,
1759 				int (*filler)(void *,struct page*),
1760 				void *data,
1761 				gfp_t gfp)
1762 {
1763 	struct page *page;
1764 	int err;
1765 repeat:
1766 	page = find_get_page(mapping, index);
1767 	if (!page) {
1768 		page = __page_cache_alloc(gfp | __GFP_COLD);
1769 		if (!page)
1770 			return ERR_PTR(-ENOMEM);
1771 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1772 		if (unlikely(err)) {
1773 			page_cache_release(page);
1774 			if (err == -EEXIST)
1775 				goto repeat;
1776 			/* Presumably ENOMEM for radix tree node */
1777 			return ERR_PTR(err);
1778 		}
1779 		err = filler(data, page);
1780 		if (err < 0) {
1781 			page_cache_release(page);
1782 			page = ERR_PTR(err);
1783 		}
1784 	}
1785 	return page;
1786 }
1787 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)1788 static struct page *do_read_cache_page(struct address_space *mapping,
1789 				pgoff_t index,
1790 				int (*filler)(void *,struct page*),
1791 				void *data,
1792 				gfp_t gfp)
1793 
1794 {
1795 	struct page *page;
1796 	int err;
1797 
1798 retry:
1799 	page = __read_cache_page(mapping, index, filler, data, gfp);
1800 	if (IS_ERR(page))
1801 		return page;
1802 	if (PageUptodate(page))
1803 		goto out;
1804 
1805 	lock_page(page);
1806 	if (!page->mapping) {
1807 		unlock_page(page);
1808 		page_cache_release(page);
1809 		goto retry;
1810 	}
1811 	if (PageUptodate(page)) {
1812 		unlock_page(page);
1813 		goto out;
1814 	}
1815 	err = filler(data, page);
1816 	if (err < 0) {
1817 		page_cache_release(page);
1818 		return ERR_PTR(err);
1819 	}
1820 out:
1821 	mark_page_accessed(page);
1822 	return page;
1823 }
1824 
1825 /**
1826  * read_cache_page_async - read into page cache, fill it if needed
1827  * @mapping:	the page's address_space
1828  * @index:	the page index
1829  * @filler:	function to perform the read
1830  * @data:	destination for read data
1831  *
1832  * Same as read_cache_page, but don't wait for page to become unlocked
1833  * after submitting it to the filler.
1834  *
1835  * Read into the page cache. If a page already exists, and PageUptodate() is
1836  * not set, try to fill the page but don't wait for it to become unlocked.
1837  *
1838  * If the page does not get brought uptodate, return -EIO.
1839  */
read_cache_page_async(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1840 struct page *read_cache_page_async(struct address_space *mapping,
1841 				pgoff_t index,
1842 				int (*filler)(void *,struct page*),
1843 				void *data)
1844 {
1845 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1846 }
1847 EXPORT_SYMBOL(read_cache_page_async);
1848 
wait_on_page_read(struct page * page)1849 static struct page *wait_on_page_read(struct page *page)
1850 {
1851 	if (!IS_ERR(page)) {
1852 		wait_on_page_locked(page);
1853 		if (!PageUptodate(page)) {
1854 			page_cache_release(page);
1855 			page = ERR_PTR(-EIO);
1856 		}
1857 	}
1858 	return page;
1859 }
1860 
1861 /**
1862  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1863  * @mapping:	the page's address_space
1864  * @index:	the page index
1865  * @gfp:	the page allocator flags to use if allocating
1866  *
1867  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1868  * any new page allocations done using the specified allocation flags. Note
1869  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1870  * expect to do this atomically or anything like that - but you can pass in
1871  * other page requirements.
1872  *
1873  * If the page does not get brought uptodate, return -EIO.
1874  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)1875 struct page *read_cache_page_gfp(struct address_space *mapping,
1876 				pgoff_t index,
1877 				gfp_t gfp)
1878 {
1879 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1880 
1881 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1882 }
1883 EXPORT_SYMBOL(read_cache_page_gfp);
1884 
1885 /**
1886  * read_cache_page - read into page cache, fill it if needed
1887  * @mapping:	the page's address_space
1888  * @index:	the page index
1889  * @filler:	function to perform the read
1890  * @data:	destination for read data
1891  *
1892  * Read into the page cache. If a page already exists, and PageUptodate() is
1893  * not set, try to fill the page then wait for it to become unlocked.
1894  *
1895  * If the page does not get brought uptodate, return -EIO.
1896  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1897 struct page *read_cache_page(struct address_space *mapping,
1898 				pgoff_t index,
1899 				int (*filler)(void *,struct page*),
1900 				void *data)
1901 {
1902 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1903 }
1904 EXPORT_SYMBOL(read_cache_page);
1905 
1906 /*
1907  * The logic we want is
1908  *
1909  *	if suid or (sgid and xgrp)
1910  *		remove privs
1911  */
should_remove_suid(struct dentry * dentry)1912 int should_remove_suid(struct dentry *dentry)
1913 {
1914 	mode_t mode = dentry->d_inode->i_mode;
1915 	int kill = 0;
1916 
1917 	/* suid always must be killed */
1918 	if (unlikely(mode & S_ISUID))
1919 		kill = ATTR_KILL_SUID;
1920 
1921 	/*
1922 	 * sgid without any exec bits is just a mandatory locking mark; leave
1923 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1924 	 */
1925 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1926 		kill |= ATTR_KILL_SGID;
1927 
1928 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1929 		return kill;
1930 
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL(should_remove_suid);
1934 
__remove_suid(struct dentry * dentry,int kill)1935 static int __remove_suid(struct dentry *dentry, int kill)
1936 {
1937 	struct iattr newattrs;
1938 
1939 	newattrs.ia_valid = ATTR_FORCE | kill;
1940 	return notify_change(dentry, &newattrs);
1941 }
1942 
file_remove_suid(struct file * file)1943 int file_remove_suid(struct file *file)
1944 {
1945 	struct dentry *dentry = file->f_path.dentry;
1946 	int killsuid = should_remove_suid(dentry);
1947 	int killpriv = security_inode_need_killpriv(dentry);
1948 	int error = 0;
1949 
1950 	if (killpriv < 0)
1951 		return killpriv;
1952 	if (killpriv)
1953 		error = security_inode_killpriv(dentry);
1954 	if (!error && killsuid)
1955 		error = __remove_suid(dentry, killsuid);
1956 
1957 	return error;
1958 }
1959 EXPORT_SYMBOL(file_remove_suid);
1960 
__iovec_copy_from_user_inatomic(char * vaddr,const struct iovec * iov,size_t base,size_t bytes)1961 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1962 			const struct iovec *iov, size_t base, size_t bytes)
1963 {
1964 	size_t copied = 0, left = 0;
1965 
1966 	while (bytes) {
1967 		char __user *buf = iov->iov_base + base;
1968 		int copy = min(bytes, iov->iov_len - base);
1969 
1970 		base = 0;
1971 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1972 		copied += copy;
1973 		bytes -= copy;
1974 		vaddr += copy;
1975 		iov++;
1976 
1977 		if (unlikely(left))
1978 			break;
1979 	}
1980 	return copied - left;
1981 }
1982 
1983 /*
1984  * Copy as much as we can into the page and return the number of bytes which
1985  * were successfully copied.  If a fault is encountered then return the number of
1986  * bytes which were copied.
1987  */
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)1988 size_t iov_iter_copy_from_user_atomic(struct page *page,
1989 		struct iov_iter *i, unsigned long offset, size_t bytes)
1990 {
1991 	char *kaddr;
1992 	size_t copied;
1993 
1994 	BUG_ON(!in_atomic());
1995 	kaddr = kmap_atomic(page, KM_USER0);
1996 	if (likely(i->nr_segs == 1)) {
1997 		int left;
1998 		char __user *buf = i->iov->iov_base + i->iov_offset;
1999 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2000 		copied = bytes - left;
2001 	} else {
2002 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2003 						i->iov, i->iov_offset, bytes);
2004 	}
2005 	kunmap_atomic(kaddr, KM_USER0);
2006 
2007 	return copied;
2008 }
2009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2010 
2011 /*
2012  * This has the same sideeffects and return value as
2013  * iov_iter_copy_from_user_atomic().
2014  * The difference is that it attempts to resolve faults.
2015  * Page must not be locked.
2016  */
iov_iter_copy_from_user(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)2017 size_t iov_iter_copy_from_user(struct page *page,
2018 		struct iov_iter *i, unsigned long offset, size_t bytes)
2019 {
2020 	char *kaddr;
2021 	size_t copied;
2022 
2023 	kaddr = kmap(page);
2024 	if (likely(i->nr_segs == 1)) {
2025 		int left;
2026 		char __user *buf = i->iov->iov_base + i->iov_offset;
2027 		left = __copy_from_user(kaddr + offset, buf, bytes);
2028 		copied = bytes - left;
2029 	} else {
2030 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2031 						i->iov, i->iov_offset, bytes);
2032 	}
2033 	kunmap(page);
2034 	return copied;
2035 }
2036 EXPORT_SYMBOL(iov_iter_copy_from_user);
2037 
iov_iter_advance(struct iov_iter * i,size_t bytes)2038 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2039 {
2040 	BUG_ON(i->count < bytes);
2041 
2042 	if (likely(i->nr_segs == 1)) {
2043 		i->iov_offset += bytes;
2044 		i->count -= bytes;
2045 	} else {
2046 		const struct iovec *iov = i->iov;
2047 		size_t base = i->iov_offset;
2048 
2049 		/*
2050 		 * The !iov->iov_len check ensures we skip over unlikely
2051 		 * zero-length segments (without overruning the iovec).
2052 		 */
2053 		while (bytes || unlikely(i->count && !iov->iov_len)) {
2054 			int copy;
2055 
2056 			copy = min(bytes, iov->iov_len - base);
2057 			BUG_ON(!i->count || i->count < copy);
2058 			i->count -= copy;
2059 			bytes -= copy;
2060 			base += copy;
2061 			if (iov->iov_len == base) {
2062 				iov++;
2063 				base = 0;
2064 			}
2065 		}
2066 		i->iov = iov;
2067 		i->iov_offset = base;
2068 	}
2069 }
2070 EXPORT_SYMBOL(iov_iter_advance);
2071 
2072 /*
2073  * Fault in the first iovec of the given iov_iter, to a maximum length
2074  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2075  * accessed (ie. because it is an invalid address).
2076  *
2077  * writev-intensive code may want this to prefault several iovecs -- that
2078  * would be possible (callers must not rely on the fact that _only_ the
2079  * first iovec will be faulted with the current implementation).
2080  */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)2081 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2082 {
2083 	char __user *buf = i->iov->iov_base + i->iov_offset;
2084 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2085 	return fault_in_pages_readable(buf, bytes);
2086 }
2087 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2088 
2089 /*
2090  * Return the count of just the current iov_iter segment.
2091  */
iov_iter_single_seg_count(struct iov_iter * i)2092 size_t iov_iter_single_seg_count(struct iov_iter *i)
2093 {
2094 	const struct iovec *iov = i->iov;
2095 	if (i->nr_segs == 1)
2096 		return i->count;
2097 	else
2098 		return min(i->count, iov->iov_len - i->iov_offset);
2099 }
2100 EXPORT_SYMBOL(iov_iter_single_seg_count);
2101 
2102 /*
2103  * Performs necessary checks before doing a write
2104  *
2105  * Can adjust writing position or amount of bytes to write.
2106  * Returns appropriate error code that caller should return or
2107  * zero in case that write should be allowed.
2108  */
generic_write_checks(struct file * file,loff_t * pos,size_t * count,int isblk)2109 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2110 {
2111 	struct inode *inode = file->f_mapping->host;
2112 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2113 
2114         if (unlikely(*pos < 0))
2115                 return -EINVAL;
2116 
2117 	if (!isblk) {
2118 		/* FIXME: this is for backwards compatibility with 2.4 */
2119 		if (file->f_flags & O_APPEND)
2120                         *pos = i_size_read(inode);
2121 
2122 		if (limit != RLIM_INFINITY) {
2123 			if (*pos >= limit) {
2124 				send_sig(SIGXFSZ, current, 0);
2125 				return -EFBIG;
2126 			}
2127 			if (*count > limit - (typeof(limit))*pos) {
2128 				*count = limit - (typeof(limit))*pos;
2129 			}
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * LFS rule
2135 	 */
2136 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2137 				!(file->f_flags & O_LARGEFILE))) {
2138 		if (*pos >= MAX_NON_LFS) {
2139 			return -EFBIG;
2140 		}
2141 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2142 			*count = MAX_NON_LFS - (unsigned long)*pos;
2143 		}
2144 	}
2145 
2146 	/*
2147 	 * Are we about to exceed the fs block limit ?
2148 	 *
2149 	 * If we have written data it becomes a short write.  If we have
2150 	 * exceeded without writing data we send a signal and return EFBIG.
2151 	 * Linus frestrict idea will clean these up nicely..
2152 	 */
2153 	if (likely(!isblk)) {
2154 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2155 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2156 				return -EFBIG;
2157 			}
2158 			/* zero-length writes at ->s_maxbytes are OK */
2159 		}
2160 
2161 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2162 			*count = inode->i_sb->s_maxbytes - *pos;
2163 	} else {
2164 #ifdef CONFIG_BLOCK
2165 		loff_t isize;
2166 		if (bdev_read_only(I_BDEV(inode)))
2167 			return -EPERM;
2168 		isize = i_size_read(inode);
2169 		if (*pos >= isize) {
2170 			if (*count || *pos > isize)
2171 				return -ENOSPC;
2172 		}
2173 
2174 		if (*pos + *count > isize)
2175 			*count = isize - *pos;
2176 #else
2177 		return -EPERM;
2178 #endif
2179 	}
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL(generic_write_checks);
2183 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2184 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2185 				loff_t pos, unsigned len, unsigned flags,
2186 				struct page **pagep, void **fsdata)
2187 {
2188 	const struct address_space_operations *aops = mapping->a_ops;
2189 
2190 	return aops->write_begin(file, mapping, pos, len, flags,
2191 							pagep, fsdata);
2192 }
2193 EXPORT_SYMBOL(pagecache_write_begin);
2194 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2195 int pagecache_write_end(struct file *file, struct address_space *mapping,
2196 				loff_t pos, unsigned len, unsigned copied,
2197 				struct page *page, void *fsdata)
2198 {
2199 	const struct address_space_operations *aops = mapping->a_ops;
2200 
2201 	mark_page_accessed(page);
2202 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2203 }
2204 EXPORT_SYMBOL(pagecache_write_end);
2205 
2206 ssize_t
generic_file_direct_write(struct kiocb * iocb,const struct iovec * iov,unsigned long * nr_segs,loff_t pos,loff_t * ppos,size_t count,size_t ocount)2207 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2208 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2209 		size_t count, size_t ocount)
2210 {
2211 	struct file	*file = iocb->ki_filp;
2212 	struct address_space *mapping = file->f_mapping;
2213 	struct inode	*inode = mapping->host;
2214 	ssize_t		written;
2215 	size_t		write_len;
2216 	pgoff_t		end;
2217 
2218 	if (count != ocount)
2219 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2220 
2221 	write_len = iov_length(iov, *nr_segs);
2222 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2223 
2224 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2225 	if (written)
2226 		goto out;
2227 
2228 	/*
2229 	 * After a write we want buffered reads to be sure to go to disk to get
2230 	 * the new data.  We invalidate clean cached page from the region we're
2231 	 * about to write.  We do this *before* the write so that we can return
2232 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2233 	 */
2234 	if (mapping->nrpages) {
2235 		written = invalidate_inode_pages2_range(mapping,
2236 					pos >> PAGE_CACHE_SHIFT, end);
2237 		/*
2238 		 * If a page can not be invalidated, return 0 to fall back
2239 		 * to buffered write.
2240 		 */
2241 		if (written) {
2242 			if (written == -EBUSY)
2243 				return 0;
2244 			goto out;
2245 		}
2246 	}
2247 
2248 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2249 
2250 	/*
2251 	 * Finally, try again to invalidate clean pages which might have been
2252 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2253 	 * if the source of the write was an mmap'ed region of the file
2254 	 * we're writing.  Either one is a pretty crazy thing to do,
2255 	 * so we don't support it 100%.  If this invalidation
2256 	 * fails, tough, the write still worked...
2257 	 */
2258 	if (mapping->nrpages) {
2259 		invalidate_inode_pages2_range(mapping,
2260 					      pos >> PAGE_CACHE_SHIFT, end);
2261 	}
2262 
2263 	if (written > 0) {
2264 		pos += written;
2265 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2266 			i_size_write(inode, pos);
2267 			mark_inode_dirty(inode);
2268 		}
2269 		*ppos = pos;
2270 	}
2271 out:
2272 	return written;
2273 }
2274 EXPORT_SYMBOL(generic_file_direct_write);
2275 
2276 /*
2277  * Find or create a page at the given pagecache position. Return the locked
2278  * page. This function is specifically for buffered writes.
2279  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2280 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2281 					pgoff_t index, unsigned flags)
2282 {
2283 	int status;
2284 	struct page *page;
2285 	gfp_t gfp_notmask = 0;
2286 	if (flags & AOP_FLAG_NOFS)
2287 		gfp_notmask = __GFP_FS;
2288 repeat:
2289 	page = find_lock_page(mapping, index);
2290 	if (page)
2291 		return page;
2292 
2293 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2294 	if (!page)
2295 		return NULL;
2296 	status = add_to_page_cache_lru(page, mapping, index,
2297 						GFP_KERNEL & ~gfp_notmask);
2298 	if (unlikely(status)) {
2299 		page_cache_release(page);
2300 		if (status == -EEXIST)
2301 			goto repeat;
2302 		return NULL;
2303 	}
2304 	return page;
2305 }
2306 EXPORT_SYMBOL(grab_cache_page_write_begin);
2307 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2308 static ssize_t generic_perform_write(struct file *file,
2309 				struct iov_iter *i, loff_t pos)
2310 {
2311 	struct address_space *mapping = file->f_mapping;
2312 	const struct address_space_operations *a_ops = mapping->a_ops;
2313 	long status = 0;
2314 	ssize_t written = 0;
2315 	unsigned int flags = 0;
2316 
2317 	/*
2318 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2319 	 */
2320 	if (segment_eq(get_fs(), KERNEL_DS))
2321 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2322 
2323 	do {
2324 		struct page *page;
2325 		unsigned long offset;	/* Offset into pagecache page */
2326 		unsigned long bytes;	/* Bytes to write to page */
2327 		size_t copied;		/* Bytes copied from user */
2328 		void *fsdata;
2329 
2330 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2331 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2332 						iov_iter_count(i));
2333 
2334 again:
2335 
2336 		/*
2337 		 * Bring in the user page that we will copy from _first_.
2338 		 * Otherwise there's a nasty deadlock on copying from the
2339 		 * same page as we're writing to, without it being marked
2340 		 * up-to-date.
2341 		 *
2342 		 * Not only is this an optimisation, but it is also required
2343 		 * to check that the address is actually valid, when atomic
2344 		 * usercopies are used, below.
2345 		 */
2346 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2347 			status = -EFAULT;
2348 			break;
2349 		}
2350 
2351 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2352 						&page, &fsdata);
2353 		if (unlikely(status))
2354 			break;
2355 
2356 		if (mapping_writably_mapped(mapping))
2357 			flush_dcache_page(page);
2358 
2359 		pagefault_disable();
2360 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2361 		pagefault_enable();
2362 		flush_dcache_page(page);
2363 
2364 		mark_page_accessed(page);
2365 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2366 						page, fsdata);
2367 		if (unlikely(status < 0))
2368 			break;
2369 		copied = status;
2370 
2371 		cond_resched();
2372 
2373 		iov_iter_advance(i, copied);
2374 		if (unlikely(copied == 0)) {
2375 			/*
2376 			 * If we were unable to copy any data at all, we must
2377 			 * fall back to a single segment length write.
2378 			 *
2379 			 * If we didn't fallback here, we could livelock
2380 			 * because not all segments in the iov can be copied at
2381 			 * once without a pagefault.
2382 			 */
2383 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2384 						iov_iter_single_seg_count(i));
2385 			goto again;
2386 		}
2387 		pos += copied;
2388 		written += copied;
2389 
2390 		balance_dirty_pages_ratelimited(mapping);
2391 
2392 	} while (iov_iter_count(i));
2393 
2394 	return written ? written : status;
2395 }
2396 
2397 ssize_t
generic_file_buffered_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos,loff_t * ppos,size_t count,ssize_t written)2398 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2399 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2400 		size_t count, ssize_t written)
2401 {
2402 	struct file *file = iocb->ki_filp;
2403 	ssize_t status;
2404 	struct iov_iter i;
2405 
2406 	iov_iter_init(&i, iov, nr_segs, count, written);
2407 	status = generic_perform_write(file, &i, pos);
2408 
2409 	if (likely(status >= 0)) {
2410 		written += status;
2411 		*ppos = pos + status;
2412   	}
2413 
2414 	return written ? written : status;
2415 }
2416 EXPORT_SYMBOL(generic_file_buffered_write);
2417 
2418 /**
2419  * __generic_file_aio_write - write data to a file
2420  * @iocb:	IO state structure (file, offset, etc.)
2421  * @iov:	vector with data to write
2422  * @nr_segs:	number of segments in the vector
2423  * @ppos:	position where to write
2424  *
2425  * This function does all the work needed for actually writing data to a
2426  * file. It does all basic checks, removes SUID from the file, updates
2427  * modification times and calls proper subroutines depending on whether we
2428  * do direct IO or a standard buffered write.
2429  *
2430  * It expects i_mutex to be grabbed unless we work on a block device or similar
2431  * object which does not need locking at all.
2432  *
2433  * This function does *not* take care of syncing data in case of O_SYNC write.
2434  * A caller has to handle it. This is mainly due to the fact that we want to
2435  * avoid syncing under i_mutex.
2436  */
__generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t * ppos)2437 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2438 				 unsigned long nr_segs, loff_t *ppos)
2439 {
2440 	struct file *file = iocb->ki_filp;
2441 	struct address_space * mapping = file->f_mapping;
2442 	size_t ocount;		/* original count */
2443 	size_t count;		/* after file limit checks */
2444 	struct inode 	*inode = mapping->host;
2445 	loff_t		pos;
2446 	ssize_t		written;
2447 	ssize_t		err;
2448 
2449 	ocount = 0;
2450 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2451 	if (err)
2452 		return err;
2453 
2454 	count = ocount;
2455 	pos = *ppos;
2456 
2457 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2458 
2459 	/* We can write back this queue in page reclaim */
2460 	current->backing_dev_info = mapping->backing_dev_info;
2461 	written = 0;
2462 
2463 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2464 	if (err)
2465 		goto out;
2466 
2467 	if (count == 0)
2468 		goto out;
2469 
2470 	err = file_remove_suid(file);
2471 	if (err)
2472 		goto out;
2473 
2474 	file_update_time(file);
2475 
2476 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2477 	if (unlikely(file->f_flags & O_DIRECT)) {
2478 		loff_t endbyte;
2479 		ssize_t written_buffered;
2480 
2481 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2482 							ppos, count, ocount);
2483 		if (written < 0 || written == count)
2484 			goto out;
2485 		/*
2486 		 * direct-io write to a hole: fall through to buffered I/O
2487 		 * for completing the rest of the request.
2488 		 */
2489 		pos += written;
2490 		count -= written;
2491 		written_buffered = generic_file_buffered_write(iocb, iov,
2492 						nr_segs, pos, ppos, count,
2493 						written);
2494 		/*
2495 		 * If generic_file_buffered_write() retuned a synchronous error
2496 		 * then we want to return the number of bytes which were
2497 		 * direct-written, or the error code if that was zero.  Note
2498 		 * that this differs from normal direct-io semantics, which
2499 		 * will return -EFOO even if some bytes were written.
2500 		 */
2501 		if (written_buffered < 0) {
2502 			err = written_buffered;
2503 			goto out;
2504 		}
2505 
2506 		/*
2507 		 * We need to ensure that the page cache pages are written to
2508 		 * disk and invalidated to preserve the expected O_DIRECT
2509 		 * semantics.
2510 		 */
2511 		endbyte = pos + written_buffered - written - 1;
2512 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2513 		if (err == 0) {
2514 			written = written_buffered;
2515 			invalidate_mapping_pages(mapping,
2516 						 pos >> PAGE_CACHE_SHIFT,
2517 						 endbyte >> PAGE_CACHE_SHIFT);
2518 		} else {
2519 			/*
2520 			 * We don't know how much we wrote, so just return
2521 			 * the number of bytes which were direct-written
2522 			 */
2523 		}
2524 	} else {
2525 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2526 				pos, ppos, count, written);
2527 	}
2528 out:
2529 	current->backing_dev_info = NULL;
2530 	return written ? written : err;
2531 }
2532 EXPORT_SYMBOL(__generic_file_aio_write);
2533 
2534 /**
2535  * generic_file_aio_write - write data to a file
2536  * @iocb:	IO state structure
2537  * @iov:	vector with data to write
2538  * @nr_segs:	number of segments in the vector
2539  * @pos:	position in file where to write
2540  *
2541  * This is a wrapper around __generic_file_aio_write() to be used by most
2542  * filesystems. It takes care of syncing the file in case of O_SYNC file
2543  * and acquires i_mutex as needed.
2544  */
generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2545 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2546 		unsigned long nr_segs, loff_t pos)
2547 {
2548 	struct file *file = iocb->ki_filp;
2549 	struct inode *inode = file->f_mapping->host;
2550 	struct blk_plug plug;
2551 	ssize_t ret;
2552 
2553 	BUG_ON(iocb->ki_pos != pos);
2554 
2555 	mutex_lock(&inode->i_mutex);
2556 	blk_start_plug(&plug);
2557 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2558 	mutex_unlock(&inode->i_mutex);
2559 
2560 	if (ret > 0 || ret == -EIOCBQUEUED) {
2561 		ssize_t err;
2562 
2563 		err = generic_write_sync(file, pos, ret);
2564 		if (err < 0 && ret > 0)
2565 			ret = err;
2566 	}
2567 	blk_finish_plug(&plug);
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(generic_file_aio_write);
2571 
2572 /**
2573  * try_to_release_page() - release old fs-specific metadata on a page
2574  *
2575  * @page: the page which the kernel is trying to free
2576  * @gfp_mask: memory allocation flags (and I/O mode)
2577  *
2578  * The address_space is to try to release any data against the page
2579  * (presumably at page->private).  If the release was successful, return `1'.
2580  * Otherwise return zero.
2581  *
2582  * This may also be called if PG_fscache is set on a page, indicating that the
2583  * page is known to the local caching routines.
2584  *
2585  * The @gfp_mask argument specifies whether I/O may be performed to release
2586  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2587  *
2588  */
try_to_release_page(struct page * page,gfp_t gfp_mask)2589 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2590 {
2591 	struct address_space * const mapping = page->mapping;
2592 
2593 	BUG_ON(!PageLocked(page));
2594 	if (PageWriteback(page))
2595 		return 0;
2596 
2597 	if (mapping && mapping->a_ops->releasepage)
2598 		return mapping->a_ops->releasepage(page, gfp_mask);
2599 	return try_to_free_buffers(page);
2600 }
2601 
2602 EXPORT_SYMBOL(try_to_release_page);
2603