1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
49
50
51 #define AVFS_EN_MSB 1568
52 #define AVFS_EN_LSB 1568
53
54 #define FIJI_SMC_SIZE 0x20000
55
56 #define POWERTUNE_DEFAULT_SET_MAX 1
57 #define VDDC_VDDCI_DELTA 300
58 #define MC_CG_ARB_FREQ_F1 0x0b
59
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62 */
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
65
66 /* [FF, SS] type, [] 4 voltage ranges, and
67 * [Floor Freq, Boundary Freq, VID min , VID max]
68 */
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75 */
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 {1, 0xF, 0xFD,
82 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 0x19, 5, 45}
84 };
85
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
88 /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
90 { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
91 { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
92 { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
93 { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
94 { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
95 { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
96 { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
97 };
98
fiji_start_smu_in_protection_mode(struct pp_hwmgr * hwmgr)99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 {
101 int result = 0;
102
103 /* Wait for smc boot up */
104 /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 RCU_UC_EVENTS, boot_seq_done, 0); */
106
107 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109
110 result = smu7_upload_smu_firmware_image(hwmgr);
111 if (result)
112 return result;
113
114 /* Clear status */
115 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 ixSMU_STATUS, 0);
117
118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120
121 /* De-assert reset */
122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124
125 /* Wait for ROM firmware to initialize interrupt hendler */
126 /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128
129 /* Set SMU Auto Start */
130 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 SMU_INPUT_DATA, AUTO_START, 1);
132
133 /* Clear firmware interrupt enable flag */
134 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 ixFIRMWARE_FLAGS, 0);
136
137 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 INTERRUPTS_ENABLED, 1);
139
140 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
141
142 /* Wait for done bit to be set */
143 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
144 SMU_STATUS, SMU_DONE, 0);
145
146 /* Check pass/failed indicator */
147 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
148 SMU_STATUS, SMU_PASS) != 1) {
149 PP_ASSERT_WITH_CODE(false,
150 "SMU Firmware start failed!", return -1);
151 }
152
153 /* Wait for firmware to initialize */
154 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
155 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156
157 return result;
158 }
159
fiji_start_smu_in_non_protection_mode(struct pp_hwmgr * hwmgr)160 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 {
162 int result = 0;
163
164 /* wait for smc boot up */
165 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
166 RCU_UC_EVENTS, boot_seq_done, 0);
167
168 /* Clear firmware interrupt enable flag */
169 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 ixFIRMWARE_FLAGS, 0);
171
172 /* Assert reset */
173 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
174 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
175
176 result = smu7_upload_smu_firmware_image(hwmgr);
177 if (result)
178 return result;
179
180 /* Set smc instruct start point at 0x0 */
181 smu7_program_jump_on_start(hwmgr);
182
183 /* Enable clock */
184 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
186
187 /* De-assert reset */
188 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
189 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
190
191 /* Wait for firmware to initialize */
192 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
193 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
194
195 return result;
196 }
197
fiji_start_avfs_btc(struct pp_hwmgr * hwmgr)198 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
199 {
200 int result = 0;
201 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
202
203 if (0 != smu_data->avfs_btc_param) {
204 if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
205 PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
206 NULL)) {
207 pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
208 result = -EINVAL;
209 }
210 }
211 /* Soft-Reset to reset the engine before loading uCode */
212 /* halt */
213 cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
214 /* reset everything */
215 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
216 /* clear reset */
217 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
218
219 return result;
220 }
221
fiji_setup_graphics_level_structure(struct pp_hwmgr * hwmgr)222 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
223 {
224 int32_t vr_config;
225 uint32_t table_start;
226 uint32_t level_addr, vr_config_addr;
227 uint32_t level_size = sizeof(avfs_graphics_level);
228
229 PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
230 SMU7_FIRMWARE_HEADER_LOCATION +
231 offsetof(SMU73_Firmware_Header, DpmTable),
232 &table_start, 0x40000),
233 "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
234 "communicate starting address of DPM table",
235 return -1;);
236
237 /* Default value for vr_config =
238 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
239 vr_config = 0x01000500; /* Real value:0x50001 */
240
241 vr_config_addr = table_start +
242 offsetof(SMU73_Discrete_DpmTable, VRConfig);
243
244 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
245 (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
246 "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
247 "vr_config value over to SMC",
248 return -1;);
249
250 level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
251
252 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
253 (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
254 "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
255 return -1;);
256
257 return 0;
258 }
259
fiji_avfs_event_mgr(struct pp_hwmgr * hwmgr)260 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
261 {
262 if (!hwmgr->avfs_supported)
263 return 0;
264
265 PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
266 "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
267 " table over to SMU",
268 return -EINVAL);
269 PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
270 "[AVFS][fiji_avfs_event_mgr] Could not setup "
271 "Pwr Virus for AVFS ",
272 return -EINVAL);
273 PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
274 "[AVFS][fiji_avfs_event_mgr] Failure at "
275 "fiji_start_avfs_btc. AVFS Disabled",
276 return -EINVAL);
277
278 return 0;
279 }
280
fiji_start_smu(struct pp_hwmgr * hwmgr)281 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
282 {
283 int result = 0;
284 struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
285
286 /* Only start SMC if SMC RAM is not running */
287 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
288 /* Check if SMU is running in protected mode */
289 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
290 CGS_IND_REG__SMC,
291 SMU_FIRMWARE, SMU_MODE)) {
292 result = fiji_start_smu_in_non_protection_mode(hwmgr);
293 if (result)
294 return result;
295 } else {
296 result = fiji_start_smu_in_protection_mode(hwmgr);
297 if (result)
298 return result;
299 }
300 if (fiji_avfs_event_mgr(hwmgr))
301 hwmgr->avfs_supported = false;
302 }
303
304 /* Setup SoftRegsStart here for register lookup in case
305 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
306 */
307 smu7_read_smc_sram_dword(hwmgr,
308 SMU7_FIRMWARE_HEADER_LOCATION +
309 offsetof(SMU73_Firmware_Header, SoftRegisters),
310 &(priv->smu7_data.soft_regs_start), 0x40000);
311
312 result = smu7_request_smu_load_fw(hwmgr);
313
314 return result;
315 }
316
fiji_is_hw_avfs_present(struct pp_hwmgr * hwmgr)317 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
318 {
319
320 uint32_t efuse = 0;
321
322 if (!hwmgr->not_vf)
323 return false;
324
325 if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
326 &efuse)) {
327 if (efuse)
328 return true;
329 }
330 return false;
331 }
332
fiji_smu_init(struct pp_hwmgr * hwmgr)333 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
334 {
335 struct fiji_smumgr *fiji_priv = NULL;
336
337 fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
338
339 if (fiji_priv == NULL)
340 return -ENOMEM;
341
342 hwmgr->smu_backend = fiji_priv;
343
344 if (smu7_init(hwmgr)) {
345 kfree(fiji_priv);
346 return -EINVAL;
347 }
348
349 return 0;
350 }
351
fiji_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_clock_voltage_dependency_table * dep_table,uint32_t clock,uint32_t * voltage,uint32_t * mvdd)352 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
353 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
354 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
355 {
356 uint32_t i;
357 uint16_t vddci;
358 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
359 *voltage = *mvdd = 0;
360
361
362 /* clock - voltage dependency table is empty table */
363 if (dep_table->count == 0)
364 return -EINVAL;
365
366 for (i = 0; i < dep_table->count; i++) {
367 /* find first sclk bigger than request */
368 if (dep_table->entries[i].clk >= clock) {
369 *voltage |= (dep_table->entries[i].vddc *
370 VOLTAGE_SCALE) << VDDC_SHIFT;
371 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
372 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
373 VOLTAGE_SCALE) << VDDCI_SHIFT;
374 else if (dep_table->entries[i].vddci)
375 *voltage |= (dep_table->entries[i].vddci *
376 VOLTAGE_SCALE) << VDDCI_SHIFT;
377 else {
378 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
379 (dep_table->entries[i].vddc -
380 VDDC_VDDCI_DELTA));
381 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
382 }
383
384 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
385 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
386 VOLTAGE_SCALE;
387 else if (dep_table->entries[i].mvdd)
388 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
389 VOLTAGE_SCALE;
390
391 *voltage |= 1 << PHASES_SHIFT;
392 return 0;
393 }
394 }
395
396 /* sclk is bigger than max sclk in the dependence table */
397 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
398
399 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
400 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
401 VOLTAGE_SCALE) << VDDCI_SHIFT;
402 else if (dep_table->entries[i-1].vddci) {
403 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
404 (dep_table->entries[i].vddc -
405 VDDC_VDDCI_DELTA));
406 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
407 }
408
409 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
410 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
411 else if (dep_table->entries[i].mvdd)
412 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
413
414 return 0;
415 }
416
417
scale_fan_gain_settings(uint16_t raw_setting)418 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
419 {
420 uint32_t tmp;
421 tmp = raw_setting * 4096 / 100;
422 return (uint16_t)tmp;
423 }
424
get_scl_sda_value(uint8_t line,uint8_t * scl,uint8_t * sda)425 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
426 {
427 switch (line) {
428 case SMU7_I2CLineID_DDC1:
429 *scl = SMU7_I2C_DDC1CLK;
430 *sda = SMU7_I2C_DDC1DATA;
431 break;
432 case SMU7_I2CLineID_DDC2:
433 *scl = SMU7_I2C_DDC2CLK;
434 *sda = SMU7_I2C_DDC2DATA;
435 break;
436 case SMU7_I2CLineID_DDC3:
437 *scl = SMU7_I2C_DDC3CLK;
438 *sda = SMU7_I2C_DDC3DATA;
439 break;
440 case SMU7_I2CLineID_DDC4:
441 *scl = SMU7_I2C_DDC4CLK;
442 *sda = SMU7_I2C_DDC4DATA;
443 break;
444 case SMU7_I2CLineID_DDC5:
445 *scl = SMU7_I2C_DDC5CLK;
446 *sda = SMU7_I2C_DDC5DATA;
447 break;
448 case SMU7_I2CLineID_DDC6:
449 *scl = SMU7_I2C_DDC6CLK;
450 *sda = SMU7_I2C_DDC6DATA;
451 break;
452 case SMU7_I2CLineID_SCLSDA:
453 *scl = SMU7_I2C_SCL;
454 *sda = SMU7_I2C_SDA;
455 break;
456 case SMU7_I2CLineID_DDCVGA:
457 *scl = SMU7_I2C_DDCVGACLK;
458 *sda = SMU7_I2C_DDCVGADATA;
459 break;
460 default:
461 *scl = 0;
462 *sda = 0;
463 break;
464 }
465 }
466
fiji_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)467 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
468 {
469 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
470 struct phm_ppt_v1_information *table_info =
471 (struct phm_ppt_v1_information *)(hwmgr->pptable);
472
473 if (table_info &&
474 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
475 table_info->cac_dtp_table->usPowerTuneDataSetID)
476 smu_data->power_tune_defaults =
477 &fiji_power_tune_data_set_array
478 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
479 else
480 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
481
482 }
483
fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)484 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
485 {
486
487 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
488 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
489
490 SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
491
492 struct phm_ppt_v1_information *table_info =
493 (struct phm_ppt_v1_information *)(hwmgr->pptable);
494 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
495 struct pp_advance_fan_control_parameters *fan_table =
496 &hwmgr->thermal_controller.advanceFanControlParameters;
497 uint8_t uc_scl, uc_sda;
498
499 /* TDP number of fraction bits are changed from 8 to 7 for Fiji
500 * as requested by SMC team
501 */
502 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
503 (uint16_t)(cac_dtp_table->usTDP * 128));
504 dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
505 (uint16_t)(cac_dtp_table->usTDP * 128));
506
507 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
508 "Target Operating Temp is out of Range!",
509 );
510
511 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
512 dpm_table->GpuTjHyst = 8;
513
514 dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
515
516 /* The following are for new Fiji Multi-input fan/thermal control */
517 dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
518 cac_dtp_table->usTargetOperatingTemp * 256);
519 dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
520 cac_dtp_table->usTemperatureLimitHotspot * 256);
521 dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
522 cac_dtp_table->usTemperatureLimitLiquid1 * 256);
523 dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
524 cac_dtp_table->usTemperatureLimitLiquid2 * 256);
525 dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
526 cac_dtp_table->usTemperatureLimitVrVddc * 256);
527 dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
528 cac_dtp_table->usTemperatureLimitVrMvdd * 256);
529 dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
530 cac_dtp_table->usTemperatureLimitPlx * 256);
531
532 dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
533 scale_fan_gain_settings(fan_table->usFanGainEdge));
534 dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
535 scale_fan_gain_settings(fan_table->usFanGainHotspot));
536 dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
537 scale_fan_gain_settings(fan_table->usFanGainLiquid));
538 dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
539 scale_fan_gain_settings(fan_table->usFanGainVrVddc));
540 dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
541 scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
542 dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
543 scale_fan_gain_settings(fan_table->usFanGainPlx));
544 dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
545 scale_fan_gain_settings(fan_table->usFanGainHbm));
546
547 dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
548 dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
549 dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
550 dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
551
552 get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
553 dpm_table->Liquid_I2C_LineSCL = uc_scl;
554 dpm_table->Liquid_I2C_LineSDA = uc_sda;
555
556 get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
557 dpm_table->Vr_I2C_LineSCL = uc_scl;
558 dpm_table->Vr_I2C_LineSDA = uc_sda;
559
560 get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
561 dpm_table->Plx_I2C_LineSCL = uc_scl;
562 dpm_table->Plx_I2C_LineSDA = uc_sda;
563
564 return 0;
565 }
566
567
fiji_populate_svi_load_line(struct pp_hwmgr * hwmgr)568 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
569 {
570 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
571 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
572
573 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
574 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
575 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
576 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
577
578 return 0;
579 }
580
581
fiji_populate_tdc_limit(struct pp_hwmgr * hwmgr)582 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
583 {
584 uint16_t tdc_limit;
585 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
586 struct phm_ppt_v1_information *table_info =
587 (struct phm_ppt_v1_information *)(hwmgr->pptable);
588 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
589
590 /* TDC number of fraction bits are changed from 8 to 7
591 * for Fiji as requested by SMC team
592 */
593 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
594 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
595 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
596 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
597 defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
598 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
599
600 return 0;
601 }
602
fiji_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)603 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
604 {
605 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
606 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
607 uint32_t temp;
608
609 if (smu7_read_smc_sram_dword(hwmgr,
610 fuse_table_offset +
611 offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
612 (uint32_t *)&temp, SMC_RAM_END))
613 PP_ASSERT_WITH_CODE(false,
614 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
615 return -EINVAL);
616 else {
617 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
618 smu_data->power_tune_table.LPMLTemperatureMin =
619 (uint8_t)((temp >> 16) & 0xff);
620 smu_data->power_tune_table.LPMLTemperatureMax =
621 (uint8_t)((temp >> 8) & 0xff);
622 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
623 }
624 return 0;
625 }
626
fiji_populate_temperature_scaler(struct pp_hwmgr * hwmgr)627 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
628 {
629 int i;
630 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
631
632 /* Currently not used. Set all to zero. */
633 for (i = 0; i < 16; i++)
634 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
635
636 return 0;
637 }
638
fiji_populate_fuzzy_fan(struct pp_hwmgr * hwmgr)639 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
640 {
641 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
642
643 if ((hwmgr->thermal_controller.advanceFanControlParameters.
644 usFanOutputSensitivity & (1 << 15)) ||
645 0 == hwmgr->thermal_controller.advanceFanControlParameters.
646 usFanOutputSensitivity)
647 hwmgr->thermal_controller.advanceFanControlParameters.
648 usFanOutputSensitivity = hwmgr->thermal_controller.
649 advanceFanControlParameters.usDefaultFanOutputSensitivity;
650
651 smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
652 PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
653 advanceFanControlParameters.usFanOutputSensitivity);
654 return 0;
655 }
656
fiji_populate_gnb_lpml(struct pp_hwmgr * hwmgr)657 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
658 {
659 int i;
660 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
661
662 /* Currently not used. Set all to zero. */
663 for (i = 0; i < 16; i++)
664 smu_data->power_tune_table.GnbLPML[i] = 0;
665
666 return 0;
667 }
668
fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)669 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
670 {
671 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
672 struct phm_ppt_v1_information *table_info =
673 (struct phm_ppt_v1_information *)(hwmgr->pptable);
674 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
675 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
676 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
677
678 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
679 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
680
681 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
682 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
683 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
684 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
685
686 return 0;
687 }
688
fiji_populate_pm_fuses(struct pp_hwmgr * hwmgr)689 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
690 {
691 uint32_t pm_fuse_table_offset;
692 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
693
694 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
695 PHM_PlatformCaps_PowerContainment)) {
696 if (smu7_read_smc_sram_dword(hwmgr,
697 SMU7_FIRMWARE_HEADER_LOCATION +
698 offsetof(SMU73_Firmware_Header, PmFuseTable),
699 &pm_fuse_table_offset, SMC_RAM_END))
700 PP_ASSERT_WITH_CODE(false,
701 "Attempt to get pm_fuse_table_offset Failed!",
702 return -EINVAL);
703
704 /* DW6 */
705 if (fiji_populate_svi_load_line(hwmgr))
706 PP_ASSERT_WITH_CODE(false,
707 "Attempt to populate SviLoadLine Failed!",
708 return -EINVAL);
709 /* DW7 */
710 if (fiji_populate_tdc_limit(hwmgr))
711 PP_ASSERT_WITH_CODE(false,
712 "Attempt to populate TDCLimit Failed!", return -EINVAL);
713 /* DW8 */
714 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
715 PP_ASSERT_WITH_CODE(false,
716 "Attempt to populate TdcWaterfallCtl, "
717 "LPMLTemperature Min and Max Failed!",
718 return -EINVAL);
719
720 /* DW9-DW12 */
721 if (0 != fiji_populate_temperature_scaler(hwmgr))
722 PP_ASSERT_WITH_CODE(false,
723 "Attempt to populate LPMLTemperatureScaler Failed!",
724 return -EINVAL);
725
726 /* DW13-DW14 */
727 if (fiji_populate_fuzzy_fan(hwmgr))
728 PP_ASSERT_WITH_CODE(false,
729 "Attempt to populate Fuzzy Fan Control parameters Failed!",
730 return -EINVAL);
731
732 /* DW15-DW18 */
733 if (fiji_populate_gnb_lpml(hwmgr))
734 PP_ASSERT_WITH_CODE(false,
735 "Attempt to populate GnbLPML Failed!",
736 return -EINVAL);
737
738 /* DW20 */
739 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
740 PP_ASSERT_WITH_CODE(false,
741 "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
742 "Sidd Failed!", return -EINVAL);
743
744 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
745 (uint8_t *)&smu_data->power_tune_table,
746 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
747 PP_ASSERT_WITH_CODE(false,
748 "Attempt to download PmFuseTable Failed!",
749 return -EINVAL);
750 }
751 return 0;
752 }
753
fiji_populate_cac_table(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)754 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
755 struct SMU73_Discrete_DpmTable *table)
756 {
757 uint32_t count;
758 uint8_t index;
759 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
760 struct phm_ppt_v1_information *table_info =
761 (struct phm_ppt_v1_information *)(hwmgr->pptable);
762 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
763 table_info->vddc_lookup_table;
764 /* tables is already swapped, so in order to use the value from it,
765 * we need to swap it back.
766 * We are populating vddc CAC data to BapmVddc table
767 * in split and merged mode
768 */
769
770 for (count = 0; count < lookup_table->count; count++) {
771 index = phm_get_voltage_index(lookup_table,
772 data->vddc_voltage_table.entries[count].value);
773 table->BapmVddcVidLoSidd[count] =
774 convert_to_vid(lookup_table->entries[index].us_cac_low);
775 table->BapmVddcVidHiSidd[count] =
776 convert_to_vid(lookup_table->entries[index].us_cac_high);
777 }
778
779 return 0;
780 }
781
fiji_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)782 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
783 struct SMU73_Discrete_DpmTable *table)
784 {
785 int result;
786
787 result = fiji_populate_cac_table(hwmgr, table);
788 PP_ASSERT_WITH_CODE(0 == result,
789 "can not populate CAC voltage tables to SMC",
790 return -EINVAL);
791
792 return 0;
793 }
794
fiji_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_Ulv * state)795 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
796 struct SMU73_Discrete_Ulv *state)
797 {
798 int result = 0;
799
800 struct phm_ppt_v1_information *table_info =
801 (struct phm_ppt_v1_information *)(hwmgr->pptable);
802
803 state->CcPwrDynRm = 0;
804 state->CcPwrDynRm1 = 0;
805
806 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
807 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
808 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
809
810 state->VddcPhase = 1;
811
812 if (!result) {
813 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
814 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
815 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
816 }
817 return result;
818 }
819
fiji_populate_ulv_state(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)820 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
821 struct SMU73_Discrete_DpmTable *table)
822 {
823 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
824 }
825
fiji_populate_smc_link_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)826 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
827 struct SMU73_Discrete_DpmTable *table)
828 {
829 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
830 struct smu7_dpm_table *dpm_table = &data->dpm_table;
831 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
832 int i;
833
834 /* Index (dpm_table->pcie_speed_table.count)
835 * is reserved for PCIE boot level. */
836 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
837 table->LinkLevel[i].PcieGenSpeed =
838 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
839 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
840 dpm_table->pcie_speed_table.dpm_levels[i].param1);
841 table->LinkLevel[i].EnabledForActivity = 1;
842 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
843 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
844 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
845 }
846
847 smu_data->smc_state_table.LinkLevelCount =
848 (uint8_t)dpm_table->pcie_speed_table.count;
849 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
850 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
851
852 return 0;
853 }
854
fiji_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_GraphicsLevel * sclk)855 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
856 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
857 {
858 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
859 struct pp_atomctrl_clock_dividers_vi dividers;
860 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
861 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
862 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
863 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
864 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
865 uint32_t ref_clock;
866 uint32_t ref_divider;
867 uint32_t fbdiv;
868 int result;
869
870 /* get the engine clock dividers for this clock value */
871 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
872
873 PP_ASSERT_WITH_CODE(result == 0,
874 "Error retrieving Engine Clock dividers from VBIOS.",
875 return result);
876
877 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
878 ref_clock = atomctrl_get_reference_clock(hwmgr);
879 ref_divider = 1 + dividers.uc_pll_ref_div;
880
881 /* low 14 bits is fraction and high 12 bits is divider */
882 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
883
884 /* SPLL_FUNC_CNTL setup */
885 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
886 SPLL_REF_DIV, dividers.uc_pll_ref_div);
887 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
888 SPLL_PDIV_A, dividers.uc_pll_post_div);
889
890 /* SPLL_FUNC_CNTL_3 setup*/
891 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
892 SPLL_FB_DIV, fbdiv);
893
894 /* set to use fractional accumulation*/
895 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
896 SPLL_DITHEN, 1);
897
898 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
899 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
900 struct pp_atomctrl_internal_ss_info ssInfo;
901
902 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
903 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
904 vco_freq, &ssInfo)) {
905 /*
906 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
907 * ss_info.speed_spectrum_rate -- in unit of khz
908 *
909 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
910 */
911 uint32_t clk_s = ref_clock * 5 /
912 (ref_divider * ssInfo.speed_spectrum_rate);
913 /* clkv = 2 * D * fbdiv / NS */
914 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
915 fbdiv / (clk_s * 10000);
916
917 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
918 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
919 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
920 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
921 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
922 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
923 }
924 }
925
926 sclk->SclkFrequency = clock;
927 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
928 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
929 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
930 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
931 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
932
933 return 0;
934 }
935
fiji_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_GraphicsLevel * level)936 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
937 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
938 {
939 int result;
940 /* PP_Clocks minClocks; */
941 uint32_t mvdd;
942 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
943 struct phm_ppt_v1_information *table_info =
944 (struct phm_ppt_v1_information *)(hwmgr->pptable);
945 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
946
947 result = fiji_calculate_sclk_params(hwmgr, clock, level);
948
949 if (hwmgr->od_enabled)
950 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
951 else
952 vdd_dep_table = table_info->vdd_dep_on_sclk;
953
954 /* populate graphics levels */
955 result = fiji_get_dependency_volt_by_clk(hwmgr,
956 vdd_dep_table, clock,
957 (uint32_t *)(&level->MinVoltage), &mvdd);
958 PP_ASSERT_WITH_CODE((0 == result),
959 "can not find VDDC voltage value for "
960 "VDDC engine clock dependency table",
961 return result);
962
963 level->SclkFrequency = clock;
964 level->ActivityLevel = data->current_profile_setting.sclk_activity;
965 level->CcPwrDynRm = 0;
966 level->CcPwrDynRm1 = 0;
967 level->EnabledForActivity = 0;
968 level->EnabledForThrottle = 1;
969 level->UpHyst = data->current_profile_setting.sclk_up_hyst;
970 level->DownHyst = data->current_profile_setting.sclk_down_hyst;
971 level->VoltageDownHyst = 0;
972 level->PowerThrottle = 0;
973
974 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
975
976 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
977 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
978 hwmgr->display_config->min_core_set_clock_in_sr);
979
980
981 /* Default to slow, highest DPM level will be
982 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
983 */
984 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
985
986 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
987 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
988 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
989 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
990 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
991 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
992 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
993 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
994 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
995
996 return 0;
997 }
998
fiji_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)999 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1000 {
1001 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1002 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1003
1004 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1005 struct phm_ppt_v1_information *table_info =
1006 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1007 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1008 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1009 int result = 0;
1010 uint32_t array = smu_data->smu7_data.dpm_table_start +
1011 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1012 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1013 SMU73_MAX_LEVELS_GRAPHICS;
1014 struct SMU73_Discrete_GraphicsLevel *levels =
1015 smu_data->smc_state_table.GraphicsLevel;
1016 uint32_t i, max_entry;
1017 uint8_t hightest_pcie_level_enabled = 0,
1018 lowest_pcie_level_enabled = 0,
1019 mid_pcie_level_enabled = 0,
1020 count = 0;
1021
1022 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1023 result = fiji_populate_single_graphic_level(hwmgr,
1024 dpm_table->sclk_table.dpm_levels[i].value,
1025 &levels[i]);
1026 if (result)
1027 return result;
1028
1029 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1030 if (i > 1)
1031 levels[i].DeepSleepDivId = 0;
1032 }
1033
1034 /* Only enable level 0 for now.*/
1035 levels[0].EnabledForActivity = 1;
1036
1037 /* set highest level watermark to high */
1038 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1039 PPSMC_DISPLAY_WATERMARK_HIGH;
1040
1041 smu_data->smc_state_table.GraphicsDpmLevelCount =
1042 (uint8_t)dpm_table->sclk_table.count;
1043 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1044 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1045
1046 if (pcie_table != NULL) {
1047 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1048 "There must be 1 or more PCIE levels defined in PPTable.",
1049 return -EINVAL);
1050 max_entry = pcie_entry_cnt - 1;
1051 for (i = 0; i < dpm_table->sclk_table.count; i++)
1052 levels[i].pcieDpmLevel =
1053 (uint8_t) ((i < max_entry) ? i : max_entry);
1054 } else {
1055 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1056 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1057 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1058 hightest_pcie_level_enabled++;
1059
1060 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1061 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1062 (1 << lowest_pcie_level_enabled)) == 0))
1063 lowest_pcie_level_enabled++;
1064
1065 while ((count < hightest_pcie_level_enabled) &&
1066 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1067 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1068 count++;
1069
1070 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1071 hightest_pcie_level_enabled ?
1072 (lowest_pcie_level_enabled + 1 + count) :
1073 hightest_pcie_level_enabled;
1074
1075 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1076 for (i = 2; i < dpm_table->sclk_table.count; i++)
1077 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1078
1079 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1080 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1081
1082 /* set pcieDpmLevel to mid_pcie_level_enabled */
1083 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1084 }
1085 /* level count will send to smc once at init smc table and never change */
1086 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1087 (uint32_t)array_size, SMC_RAM_END);
1088
1089 return result;
1090 }
1091
1092
1093 /*
1094 * MCLK Frequency Ratio
1095 * SEQ_CG_RESP Bit[31:24] - 0x0
1096 * Bit[27:24] \96 DDR3 Frequency ratio
1097 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
1098 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
1099 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
1100 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
1101 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
1102 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
1103 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
1104 * 400 < 0x7 <= 450MHz, 800 < 0xF
1105 */
fiji_get_mclk_frequency_ratio(uint32_t mem_clock)1106 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1107 {
1108 if (mem_clock <= 10000)
1109 return 0x0;
1110 if (mem_clock <= 15000)
1111 return 0x1;
1112 if (mem_clock <= 20000)
1113 return 0x2;
1114 if (mem_clock <= 25000)
1115 return 0x3;
1116 if (mem_clock <= 30000)
1117 return 0x4;
1118 if (mem_clock <= 35000)
1119 return 0x5;
1120 if (mem_clock <= 40000)
1121 return 0x6;
1122 if (mem_clock <= 45000)
1123 return 0x7;
1124 if (mem_clock <= 50000)
1125 return 0x8;
1126 if (mem_clock <= 55000)
1127 return 0x9;
1128 if (mem_clock <= 60000)
1129 return 0xa;
1130 if (mem_clock <= 65000)
1131 return 0xb;
1132 if (mem_clock <= 70000)
1133 return 0xc;
1134 if (mem_clock <= 75000)
1135 return 0xd;
1136 if (mem_clock <= 80000)
1137 return 0xe;
1138 /* mem_clock > 800MHz */
1139 return 0xf;
1140 }
1141
fiji_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_MemoryLevel * mclk)1142 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1143 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1144 {
1145 struct pp_atomctrl_memory_clock_param mem_param;
1146 int result;
1147
1148 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1149 PP_ASSERT_WITH_CODE((0 == result),
1150 "Failed to get Memory PLL Dividers.",
1151 );
1152
1153 /* Save the result data to outpupt memory level structure */
1154 mclk->MclkFrequency = clock;
1155 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
1156 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
1157
1158 return result;
1159 }
1160
fiji_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_MemoryLevel * mem_level)1161 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1162 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1163 {
1164 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1165 struct phm_ppt_v1_information *table_info =
1166 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1167 int result = 0;
1168 uint32_t mclk_stutter_mode_threshold = 60000;
1169 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1170
1171 if (hwmgr->od_enabled)
1172 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1173 else
1174 vdd_dep_table = table_info->vdd_dep_on_mclk;
1175
1176 if (vdd_dep_table) {
1177 result = fiji_get_dependency_volt_by_clk(hwmgr,
1178 vdd_dep_table, clock,
1179 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1180 PP_ASSERT_WITH_CODE((0 == result),
1181 "can not find MinVddc voltage value from memory "
1182 "VDDC voltage dependency table", return result);
1183 }
1184
1185 mem_level->EnabledForThrottle = 1;
1186 mem_level->EnabledForActivity = 0;
1187 mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1188 mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1189 mem_level->VoltageDownHyst = 0;
1190 mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1191 mem_level->StutterEnable = false;
1192
1193 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1194
1195 /* enable stutter mode if all the follow condition applied
1196 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1197 * &(data->DisplayTiming.numExistingDisplays));
1198 */
1199 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1200 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1201
1202 if (mclk_stutter_mode_threshold &&
1203 (clock <= mclk_stutter_mode_threshold) &&
1204 (!data->is_uvd_enabled) &&
1205 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1206 STUTTER_ENABLE) & 0x1))
1207 mem_level->StutterEnable = true;
1208
1209 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1210 if (!result) {
1211 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1212 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1213 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1214 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1215 }
1216 return result;
1217 }
1218
fiji_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1219 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1220 {
1221 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1222 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1223 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1224 int result;
1225 /* populate MCLK dpm table to SMU7 */
1226 uint32_t array = smu_data->smu7_data.dpm_table_start +
1227 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1228 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1229 SMU73_MAX_LEVELS_MEMORY;
1230 struct SMU73_Discrete_MemoryLevel *levels =
1231 smu_data->smc_state_table.MemoryLevel;
1232 uint32_t i;
1233
1234 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1235 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1236 "can not populate memory level as memory clock is zero",
1237 return -EINVAL);
1238 result = fiji_populate_single_memory_level(hwmgr,
1239 dpm_table->mclk_table.dpm_levels[i].value,
1240 &levels[i]);
1241 if (result)
1242 return result;
1243 }
1244
1245 /* Only enable level 0 for now. */
1246 levels[0].EnabledForActivity = 1;
1247
1248 /* in order to prevent MC activity from stutter mode to push DPM up.
1249 * the UVD change complements this by putting the MCLK in
1250 * a higher state by default such that we are not effected by
1251 * up threshold or and MCLK DPM latency.
1252 */
1253 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1254 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1255
1256 smu_data->smc_state_table.MemoryDpmLevelCount =
1257 (uint8_t)dpm_table->mclk_table.count;
1258 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1259 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1260 /* set highest level watermark to high */
1261 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1262 PPSMC_DISPLAY_WATERMARK_HIGH;
1263
1264 /* level count will send to smc once at init smc table and never change */
1265 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1266 (uint32_t)array_size, SMC_RAM_END);
1267
1268 return result;
1269 }
1270
fiji_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMIO_Pattern * smio_pat)1271 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1272 uint32_t mclk, SMIO_Pattern *smio_pat)
1273 {
1274 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1275 struct phm_ppt_v1_information *table_info =
1276 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1277 uint32_t i = 0;
1278
1279 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1280 /* find mvdd value which clock is more than request */
1281 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1282 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1283 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1284 break;
1285 }
1286 }
1287 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1288 "MVDD Voltage is outside the supported range.",
1289 return -EINVAL);
1290 } else
1291 return -EINVAL;
1292
1293 return 0;
1294 }
1295
fiji_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1296 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1297 SMU73_Discrete_DpmTable *table)
1298 {
1299 int result = 0;
1300 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1301 struct phm_ppt_v1_information *table_info =
1302 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1303 struct pp_atomctrl_clock_dividers_vi dividers;
1304 SMIO_Pattern vol_level;
1305 uint32_t mvdd;
1306 uint16_t us_mvdd;
1307 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1308 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1309
1310 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1311
1312 if (!data->sclk_dpm_key_disabled) {
1313 /* Get MinVoltage and Frequency from DPM0,
1314 * already converted to SMC_UL */
1315 table->ACPILevel.SclkFrequency =
1316 data->dpm_table.sclk_table.dpm_levels[0].value;
1317 result = fiji_get_dependency_volt_by_clk(hwmgr,
1318 table_info->vdd_dep_on_sclk,
1319 table->ACPILevel.SclkFrequency,
1320 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1321 PP_ASSERT_WITH_CODE((0 == result),
1322 "Cannot find ACPI VDDC voltage value " \
1323 "in Clock Dependency Table",
1324 );
1325 } else {
1326 table->ACPILevel.SclkFrequency =
1327 data->vbios_boot_state.sclk_bootup_value;
1328 table->ACPILevel.MinVoltage =
1329 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1330 }
1331
1332 /* get the engine clock dividers for this clock value */
1333 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1334 table->ACPILevel.SclkFrequency, ÷rs);
1335 PP_ASSERT_WITH_CODE(result == 0,
1336 "Error retrieving Engine Clock dividers from VBIOS.",
1337 return result);
1338
1339 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1340 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1341 table->ACPILevel.DeepSleepDivId = 0;
1342
1343 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1344 SPLL_PWRON, 0);
1345 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1346 SPLL_RESET, 1);
1347 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1348 SCLK_MUX_SEL, 4);
1349
1350 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1351 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1352 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1353 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1354 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1355 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1356 table->ACPILevel.CcPwrDynRm = 0;
1357 table->ACPILevel.CcPwrDynRm1 = 0;
1358
1359 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1360 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1361 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1362 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1363 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1364 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1365 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1366 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1367 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1368 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1369 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1370
1371 if (!data->mclk_dpm_key_disabled) {
1372 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1373 table->MemoryACPILevel.MclkFrequency =
1374 data->dpm_table.mclk_table.dpm_levels[0].value;
1375 result = fiji_get_dependency_volt_by_clk(hwmgr,
1376 table_info->vdd_dep_on_mclk,
1377 table->MemoryACPILevel.MclkFrequency,
1378 (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1379 PP_ASSERT_WITH_CODE((0 == result),
1380 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1381 );
1382 } else {
1383 table->MemoryACPILevel.MclkFrequency =
1384 data->vbios_boot_state.mclk_bootup_value;
1385 table->MemoryACPILevel.MinVoltage =
1386 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1387 }
1388
1389 us_mvdd = 0;
1390 if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1391 (data->mclk_dpm_key_disabled))
1392 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1393 else {
1394 if (!fiji_populate_mvdd_value(hwmgr,
1395 data->dpm_table.mclk_table.dpm_levels[0].value,
1396 &vol_level))
1397 us_mvdd = vol_level.Voltage;
1398 }
1399
1400 table->MemoryACPILevel.MinMvdd =
1401 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1402
1403 table->MemoryACPILevel.EnabledForThrottle = 0;
1404 table->MemoryACPILevel.EnabledForActivity = 0;
1405 table->MemoryACPILevel.UpHyst = 0;
1406 table->MemoryACPILevel.DownHyst = 100;
1407 table->MemoryACPILevel.VoltageDownHyst = 0;
1408 table->MemoryACPILevel.ActivityLevel =
1409 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1410
1411 table->MemoryACPILevel.StutterEnable = false;
1412 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1413 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1414
1415 return result;
1416 }
1417
fiji_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1418 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1419 SMU73_Discrete_DpmTable *table)
1420 {
1421 int result = -EINVAL;
1422 uint8_t count;
1423 struct pp_atomctrl_clock_dividers_vi dividers;
1424 struct phm_ppt_v1_information *table_info =
1425 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1426 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1427 table_info->mm_dep_table;
1428
1429 table->VceLevelCount = (uint8_t)(mm_table->count);
1430 table->VceBootLevel = 0;
1431
1432 for (count = 0; count < table->VceLevelCount; count++) {
1433 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1434 table->VceLevel[count].MinVoltage = 0;
1435 table->VceLevel[count].MinVoltage |=
1436 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1437 table->VceLevel[count].MinVoltage |=
1438 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1439 VOLTAGE_SCALE) << VDDCI_SHIFT;
1440 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1441
1442 /*retrieve divider value for VBIOS */
1443 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1444 table->VceLevel[count].Frequency, ÷rs);
1445 PP_ASSERT_WITH_CODE((0 == result),
1446 "can not find divide id for VCE engine clock",
1447 return result);
1448
1449 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450
1451 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1452 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1453 }
1454 return result;
1455 }
1456
fiji_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1457 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1458 SMU73_Discrete_DpmTable *table)
1459 {
1460 int result = -EINVAL;
1461 uint8_t count;
1462 struct pp_atomctrl_clock_dividers_vi dividers;
1463 struct phm_ppt_v1_information *table_info =
1464 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1465 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1466 table_info->mm_dep_table;
1467
1468 table->AcpLevelCount = (uint8_t)(mm_table->count);
1469 table->AcpBootLevel = 0;
1470
1471 for (count = 0; count < table->AcpLevelCount; count++) {
1472 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1473 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1474 VOLTAGE_SCALE) << VDDC_SHIFT;
1475 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1476 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1477 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1478
1479 /* retrieve divider value for VBIOS */
1480 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1481 table->AcpLevel[count].Frequency, ÷rs);
1482 PP_ASSERT_WITH_CODE((0 == result),
1483 "can not find divide id for engine clock", return result);
1484
1485 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1486
1487 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1488 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1489 }
1490 return result;
1491 }
1492
fiji_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,int32_t eng_clock,int32_t mem_clock,struct SMU73_Discrete_MCArbDramTimingTableEntry * arb_regs)1493 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1494 int32_t eng_clock, int32_t mem_clock,
1495 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1496 {
1497 uint32_t dram_timing;
1498 uint32_t dram_timing2;
1499 uint32_t burstTime;
1500 ULONG trrds, trrdl;
1501 int result;
1502
1503 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1504 eng_clock, mem_clock);
1505 PP_ASSERT_WITH_CODE(result == 0,
1506 "Error calling VBIOS to set DRAM_TIMING.", return result);
1507
1508 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1509 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1510 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1511
1512 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1513 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1514
1515 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1516 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1517 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1518 arb_regs->TRRDS = (uint8_t)trrds;
1519 arb_regs->TRRDL = (uint8_t)trrdl;
1520
1521 return 0;
1522 }
1523
fiji_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1524 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1525 {
1526 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1528 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1529 uint32_t i, j;
1530 int result = 0;
1531
1532 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1533 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1534 result = fiji_populate_memory_timing_parameters(hwmgr,
1535 data->dpm_table.sclk_table.dpm_levels[i].value,
1536 data->dpm_table.mclk_table.dpm_levels[j].value,
1537 &arb_regs.entries[i][j]);
1538 if (result)
1539 break;
1540 }
1541 }
1542
1543 if (!result)
1544 result = smu7_copy_bytes_to_smc(
1545 hwmgr,
1546 smu_data->smu7_data.arb_table_start,
1547 (uint8_t *)&arb_regs,
1548 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1549 SMC_RAM_END);
1550 return result;
1551 }
1552
fiji_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1553 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1554 struct SMU73_Discrete_DpmTable *table)
1555 {
1556 int result = -EINVAL;
1557 uint8_t count;
1558 struct pp_atomctrl_clock_dividers_vi dividers;
1559 struct phm_ppt_v1_information *table_info =
1560 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1561 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1562 table_info->mm_dep_table;
1563
1564 table->UvdLevelCount = (uint8_t)(mm_table->count);
1565 table->UvdBootLevel = 0;
1566
1567 for (count = 0; count < table->UvdLevelCount; count++) {
1568 table->UvdLevel[count].MinVoltage = 0;
1569 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1570 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1571 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1572 VOLTAGE_SCALE) << VDDC_SHIFT;
1573 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1574 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1575 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1576
1577 /* retrieve divider value for VBIOS */
1578 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1579 table->UvdLevel[count].VclkFrequency, ÷rs);
1580 PP_ASSERT_WITH_CODE((0 == result),
1581 "can not find divide id for Vclk clock", return result);
1582
1583 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1584
1585 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1586 table->UvdLevel[count].DclkFrequency, ÷rs);
1587 PP_ASSERT_WITH_CODE((0 == result),
1588 "can not find divide id for Dclk clock", return result);
1589
1590 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1591
1592 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1593 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1594 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1595
1596 }
1597 return result;
1598 }
1599
fiji_populate_smc_boot_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1600 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1601 struct SMU73_Discrete_DpmTable *table)
1602 {
1603 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1604
1605 table->GraphicsBootLevel = 0;
1606 table->MemoryBootLevel = 0;
1607
1608 /* find boot level from dpm table */
1609 phm_find_boot_level(&(data->dpm_table.sclk_table),
1610 data->vbios_boot_state.sclk_bootup_value,
1611 (uint32_t *)&(table->GraphicsBootLevel));
1612
1613 phm_find_boot_level(&(data->dpm_table.mclk_table),
1614 data->vbios_boot_state.mclk_bootup_value,
1615 (uint32_t *)&(table->MemoryBootLevel));
1616
1617 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1618 VOLTAGE_SCALE;
1619 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1620 VOLTAGE_SCALE;
1621 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1622 VOLTAGE_SCALE;
1623
1624 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1625 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1626 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1627
1628 return 0;
1629 }
1630
fiji_populate_smc_initailial_state(struct pp_hwmgr * hwmgr)1631 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1632 {
1633 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1634 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1635 struct phm_ppt_v1_information *table_info =
1636 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1637 uint8_t count, level;
1638
1639 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1640 for (level = 0; level < count; level++) {
1641 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1642 data->vbios_boot_state.sclk_bootup_value) {
1643 smu_data->smc_state_table.GraphicsBootLevel = level;
1644 break;
1645 }
1646 }
1647
1648 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1649 for (level = 0; level < count; level++) {
1650 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1651 data->vbios_boot_state.mclk_bootup_value) {
1652 smu_data->smc_state_table.MemoryBootLevel = level;
1653 break;
1654 }
1655 }
1656
1657 return 0;
1658 }
1659
fiji_populate_clock_stretcher_data_table(struct pp_hwmgr * hwmgr)1660 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1661 {
1662 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1663 volt_with_cks, value;
1664 uint16_t clock_freq_u16;
1665 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1666 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1667 volt_offset = 0;
1668 struct phm_ppt_v1_information *table_info =
1669 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1670 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1671 table_info->vdd_dep_on_sclk;
1672
1673 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1674
1675 /* Read SMU_Eefuse to read and calculate RO and determine
1676 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1677 */
1678 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1679 ixSMU_EFUSE_0 + (146 * 4));
1680 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1681 ixSMU_EFUSE_0 + (148 * 4));
1682 efuse &= 0xFF000000;
1683 efuse = efuse >> 24;
1684 efuse2 &= 0xF;
1685
1686 if (efuse2 == 1)
1687 ro = (2300 - 1350) * efuse / 255 + 1350;
1688 else
1689 ro = (2500 - 1000) * efuse / 255 + 1000;
1690
1691 if (ro >= 1660)
1692 type = 0;
1693 else
1694 type = 1;
1695
1696 /* Populate Stretch amount */
1697 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1698
1699 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1700 for (i = 0; i < sclk_table->count; i++) {
1701 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1702 sclk_table->entries[i].cks_enable << i;
1703 volt_without_cks = (uint32_t)((14041 *
1704 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1705 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1706 volt_with_cks = (uint32_t)((13946 *
1707 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1708 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1709 if (volt_without_cks >= volt_with_cks)
1710 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1711 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1712 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1713 }
1714
1715 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1716 STRETCH_ENABLE, 0x0);
1717 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1718 masterReset, 0x1);
1719 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1720 staticEnable, 0x1);
1721 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722 masterReset, 0x0);
1723
1724 /* Populate CKS Lookup Table */
1725 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1726 stretch_amount2 = 0;
1727 else if (stretch_amount == 3 || stretch_amount == 4)
1728 stretch_amount2 = 1;
1729 else {
1730 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1731 PHM_PlatformCaps_ClockStretcher);
1732 PP_ASSERT_WITH_CODE(false,
1733 "Stretch Amount in PPTable not supported",
1734 return -EINVAL);
1735 }
1736
1737 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738 ixPWR_CKS_CNTL);
1739 value &= 0xFFC2FF87;
1740 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1741 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1742 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1743 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1744 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1745 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1746 SclkFrequency) / 100);
1747 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1748 clock_freq_u16 &&
1749 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1750 clock_freq_u16) {
1751 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1752 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1753 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1754 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1755 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1756 value |= (fiji_clock_stretch_amount_conversion
1757 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1758 [stretch_amount]) << 3;
1759 }
1760 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1761 CKS_LOOKUPTableEntry[0].minFreq);
1762 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1763 CKS_LOOKUPTableEntry[0].maxFreq);
1764 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1765 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1766 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1767 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1768
1769 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1770 ixPWR_CKS_CNTL, value);
1771
1772 /* Populate DDT Lookup Table */
1773 for (i = 0; i < 4; i++) {
1774 /* Assign the minimum and maximum VID stored
1775 * in the last row of Clock Stretcher Voltage Table.
1776 */
1777 smu_data->smc_state_table.ClockStretcherDataTable.
1778 ClockStretcherDataTableEntry[i].minVID =
1779 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1780 smu_data->smc_state_table.ClockStretcherDataTable.
1781 ClockStretcherDataTableEntry[i].maxVID =
1782 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1783 /* Loop through each SCLK and check the frequency
1784 * to see if it lies within the frequency for clock stretcher.
1785 */
1786 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1787 cks_setting = 0;
1788 clock_freq = PP_SMC_TO_HOST_UL(
1789 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1790 /* Check the allowed frequency against the sclk level[j].
1791 * Sclk's endianness has already been converted,
1792 * and it's in 10Khz unit,
1793 * as opposed to Data table, which is in Mhz unit.
1794 */
1795 if (clock_freq >=
1796 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1797 cks_setting |= 0x2;
1798 if (clock_freq <
1799 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1800 cks_setting |= 0x1;
1801 }
1802 smu_data->smc_state_table.ClockStretcherDataTable.
1803 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1804 }
1805 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1806 ClockStretcherDataTable.
1807 ClockStretcherDataTableEntry[i].setting);
1808 }
1809
1810 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1811 value &= 0xFFFFFFFE;
1812 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1813
1814 return 0;
1815 }
1816
fiji_populate_vr_config(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1817 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1818 struct SMU73_Discrete_DpmTable *table)
1819 {
1820 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1821 uint16_t config;
1822
1823 config = VR_MERGED_WITH_VDDC;
1824 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1825
1826 /* Set Vddc Voltage Controller */
1827 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1828 config = VR_SVI2_PLANE_1;
1829 table->VRConfig |= config;
1830 } else {
1831 PP_ASSERT_WITH_CODE(false,
1832 "VDDC should be on SVI2 control in merged mode!",
1833 );
1834 }
1835 /* Set Vddci Voltage Controller */
1836 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1837 config = VR_SVI2_PLANE_2; /* only in merged mode */
1838 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1839 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1840 config = VR_SMIO_PATTERN_1;
1841 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1842 } else {
1843 config = VR_STATIC_VOLTAGE;
1844 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1845 }
1846 /* Set Mvdd Voltage Controller */
1847 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1848 config = VR_SVI2_PLANE_2;
1849 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1850 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1851 config = VR_SMIO_PATTERN_2;
1852 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1853 } else {
1854 config = VR_STATIC_VOLTAGE;
1855 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1856 }
1857
1858 return 0;
1859 }
1860
fiji_init_arb_table_index(struct pp_hwmgr * hwmgr)1861 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1862 {
1863 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1864 uint32_t tmp;
1865 int result;
1866
1867 /* This is a read-modify-write on the first byte of the ARB table.
1868 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1869 * is the field 'current'.
1870 * This solution is ugly, but we never write the whole table only
1871 * individual fields in it.
1872 * In reality this field should not be in that structure
1873 * but in a soft register.
1874 */
1875 result = smu7_read_smc_sram_dword(hwmgr,
1876 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1877
1878 if (result)
1879 return result;
1880
1881 tmp &= 0x00FFFFFF;
1882 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1883
1884 return smu7_write_smc_sram_dword(hwmgr,
1885 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1886 }
1887
fiji_setup_dpm_led_config(struct pp_hwmgr * hwmgr)1888 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1889 {
1890 pp_atomctrl_voltage_table param_led_dpm;
1891 int result = 0;
1892 u32 mask = 0;
1893
1894 result = atomctrl_get_voltage_table_v3(hwmgr,
1895 VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1896 ¶m_led_dpm);
1897 if (result == 0) {
1898 int i, j;
1899 u32 tmp = param_led_dpm.mask_low;
1900
1901 for (i = 0, j = 0; i < 32; i++) {
1902 if (tmp & 1) {
1903 mask |= (i << (8 * j));
1904 if (++j >= 3)
1905 break;
1906 }
1907 tmp >>= 1;
1908 }
1909 }
1910 if (mask)
1911 smum_send_msg_to_smc_with_parameter(hwmgr,
1912 PPSMC_MSG_LedConfig,
1913 mask,
1914 NULL);
1915 return 0;
1916 }
1917
fiji_init_smc_table(struct pp_hwmgr * hwmgr)1918 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1919 {
1920 int result;
1921 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1922 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1923 struct phm_ppt_v1_information *table_info =
1924 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1925 struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1926 uint8_t i;
1927 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1928
1929 fiji_initialize_power_tune_defaults(hwmgr);
1930
1931 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1932 fiji_populate_smc_voltage_tables(hwmgr, table);
1933
1934 table->SystemFlags = 0;
1935
1936 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1937 PHM_PlatformCaps_AutomaticDCTransition))
1938 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1939
1940 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1941 PHM_PlatformCaps_StepVddc))
1942 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1943
1944 if (data->is_memory_gddr5)
1945 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1946
1947 if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1948 result = fiji_populate_ulv_state(hwmgr, table);
1949 PP_ASSERT_WITH_CODE(0 == result,
1950 "Failed to initialize ULV state!", return result);
1951 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1952 ixCG_ULV_PARAMETER, 0x40035);
1953 }
1954
1955 result = fiji_populate_smc_link_level(hwmgr, table);
1956 PP_ASSERT_WITH_CODE(0 == result,
1957 "Failed to initialize Link Level!", return result);
1958
1959 result = fiji_populate_all_graphic_levels(hwmgr);
1960 PP_ASSERT_WITH_CODE(0 == result,
1961 "Failed to initialize Graphics Level!", return result);
1962
1963 result = fiji_populate_all_memory_levels(hwmgr);
1964 PP_ASSERT_WITH_CODE(0 == result,
1965 "Failed to initialize Memory Level!", return result);
1966
1967 result = fiji_populate_smc_acpi_level(hwmgr, table);
1968 PP_ASSERT_WITH_CODE(0 == result,
1969 "Failed to initialize ACPI Level!", return result);
1970
1971 result = fiji_populate_smc_vce_level(hwmgr, table);
1972 PP_ASSERT_WITH_CODE(0 == result,
1973 "Failed to initialize VCE Level!", return result);
1974
1975 result = fiji_populate_smc_acp_level(hwmgr, table);
1976 PP_ASSERT_WITH_CODE(0 == result,
1977 "Failed to initialize ACP Level!", return result);
1978
1979 /* Since only the initial state is completely set up at this point
1980 * (the other states are just copies of the boot state) we only
1981 * need to populate the ARB settings for the initial state.
1982 */
1983 result = fiji_program_memory_timing_parameters(hwmgr);
1984 PP_ASSERT_WITH_CODE(0 == result,
1985 "Failed to Write ARB settings for the initial state.", return result);
1986
1987 result = fiji_populate_smc_uvd_level(hwmgr, table);
1988 PP_ASSERT_WITH_CODE(0 == result,
1989 "Failed to initialize UVD Level!", return result);
1990
1991 result = fiji_populate_smc_boot_level(hwmgr, table);
1992 PP_ASSERT_WITH_CODE(0 == result,
1993 "Failed to initialize Boot Level!", return result);
1994
1995 result = fiji_populate_smc_initailial_state(hwmgr);
1996 PP_ASSERT_WITH_CODE(0 == result,
1997 "Failed to initialize Boot State!", return result);
1998
1999 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2000 PP_ASSERT_WITH_CODE(0 == result,
2001 "Failed to populate BAPM Parameters!", return result);
2002
2003 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2004 PHM_PlatformCaps_ClockStretcher)) {
2005 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2006 PP_ASSERT_WITH_CODE(0 == result,
2007 "Failed to populate Clock Stretcher Data Table!",
2008 return result);
2009 }
2010
2011 table->GraphicsVoltageChangeEnable = 1;
2012 table->GraphicsThermThrottleEnable = 1;
2013 table->GraphicsInterval = 1;
2014 table->VoltageInterval = 1;
2015 table->ThermalInterval = 1;
2016 table->TemperatureLimitHigh =
2017 table_info->cac_dtp_table->usTargetOperatingTemp *
2018 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2019 table->TemperatureLimitLow =
2020 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2021 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2022 table->MemoryVoltageChangeEnable = 1;
2023 table->MemoryInterval = 1;
2024 table->VoltageResponseTime = 0;
2025 table->PhaseResponseTime = 0;
2026 table->MemoryThermThrottleEnable = 1;
2027 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
2028 table->PCIeGenInterval = 1;
2029 table->VRConfig = 0;
2030
2031 result = fiji_populate_vr_config(hwmgr, table);
2032 PP_ASSERT_WITH_CODE(0 == result,
2033 "Failed to populate VRConfig setting!", return result);
2034 data->vr_config = table->VRConfig;
2035 table->ThermGpio = 17;
2036 table->SclkStepSize = 0x4000;
2037
2038 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2039 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2040 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2041 PHM_PlatformCaps_RegulatorHot);
2042 } else {
2043 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2044 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2045 PHM_PlatformCaps_RegulatorHot);
2046 }
2047
2048 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2049 &gpio_pin)) {
2050 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2051 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2052 PHM_PlatformCaps_AutomaticDCTransition);
2053 } else {
2054 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2055 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2056 PHM_PlatformCaps_AutomaticDCTransition);
2057 }
2058
2059 /* Thermal Output GPIO */
2060 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2061 &gpio_pin)) {
2062 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2063 PHM_PlatformCaps_ThermalOutGPIO);
2064
2065 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066
2067 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2068 * since VBIOS will program this register to set 'inactive state',
2069 * driver can then determine 'active state' from this and
2070 * program SMU with correct polarity
2071 */
2072 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2073 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2074 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2075
2076 /* if required, combine VRHot/PCC with thermal out GPIO */
2077 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2078 PHM_PlatformCaps_RegulatorHot) &&
2079 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2080 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2081 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2082 } else {
2083 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2084 PHM_PlatformCaps_ThermalOutGPIO);
2085 table->ThermOutGpio = 17;
2086 table->ThermOutPolarity = 1;
2087 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2088 }
2089
2090 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2091 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2092
2093 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2094 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2095 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2096 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2097 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2098 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2099 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2100 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2101 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2102
2103 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2104 result = smu7_copy_bytes_to_smc(hwmgr,
2105 smu_data->smu7_data.dpm_table_start +
2106 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2107 (uint8_t *)&(table->SystemFlags),
2108 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2109 SMC_RAM_END);
2110 PP_ASSERT_WITH_CODE(0 == result,
2111 "Failed to upload dpm data to SMC memory!", return result);
2112
2113 result = fiji_init_arb_table_index(hwmgr);
2114 PP_ASSERT_WITH_CODE(0 == result,
2115 "Failed to upload arb data to SMC memory!", return result);
2116
2117 result = fiji_populate_pm_fuses(hwmgr);
2118 PP_ASSERT_WITH_CODE(0 == result,
2119 "Failed to populate PM fuses to SMC memory!", return result);
2120
2121 result = fiji_setup_dpm_led_config(hwmgr);
2122 PP_ASSERT_WITH_CODE(0 == result,
2123 "Failed to setup dpm led config", return result);
2124
2125 return 0;
2126 }
2127
fiji_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2128 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2129 {
2130 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2131
2132 SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2133 uint32_t duty100;
2134 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2135 uint16_t fdo_min, slope1, slope2;
2136 uint32_t reference_clock;
2137 int res;
2138 uint64_t tmp64;
2139
2140 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2141 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2142 PHM_PlatformCaps_MicrocodeFanControl);
2143 return 0;
2144 }
2145
2146 if (smu_data->smu7_data.fan_table_start == 0) {
2147 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2148 PHM_PlatformCaps_MicrocodeFanControl);
2149 return 0;
2150 }
2151
2152 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2153 CG_FDO_CTRL1, FMAX_DUTY100);
2154
2155 if (duty100 == 0) {
2156 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2157 PHM_PlatformCaps_MicrocodeFanControl);
2158 return 0;
2159 }
2160
2161 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2162 usPWMMin * duty100;
2163 do_div(tmp64, 10000);
2164 fdo_min = (uint16_t)tmp64;
2165
2166 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2167 hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2168 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2169 hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2170
2171 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2172 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2173 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2174 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2175
2176 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2177 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2178
2179 fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2180 thermal_controller.advanceFanControlParameters.usTMin) / 100);
2181 fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2182 thermal_controller.advanceFanControlParameters.usTMed) / 100);
2183 fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2184 thermal_controller.advanceFanControlParameters.usTMax) / 100);
2185
2186 fan_table.Slope1 = cpu_to_be16(slope1);
2187 fan_table.Slope2 = cpu_to_be16(slope2);
2188
2189 fan_table.FdoMin = cpu_to_be16(fdo_min);
2190
2191 fan_table.HystDown = cpu_to_be16(hwmgr->
2192 thermal_controller.advanceFanControlParameters.ucTHyst);
2193
2194 fan_table.HystUp = cpu_to_be16(1);
2195
2196 fan_table.HystSlope = cpu_to_be16(1);
2197
2198 fan_table.TempRespLim = cpu_to_be16(5);
2199
2200 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2201
2202 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2203 thermal_controller.advanceFanControlParameters.ulCycleDelay *
2204 reference_clock) / 1600);
2205
2206 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2207
2208 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2209 hwmgr->device, CGS_IND_REG__SMC,
2210 CG_MULT_THERMAL_CTRL, TEMP_SEL);
2211
2212 res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2213 (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2214 SMC_RAM_END);
2215
2216 if (!res && hwmgr->thermal_controller.
2217 advanceFanControlParameters.ucMinimumPWMLimit)
2218 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2219 PPSMC_MSG_SetFanMinPwm,
2220 hwmgr->thermal_controller.
2221 advanceFanControlParameters.ucMinimumPWMLimit,
2222 NULL);
2223
2224 if (!res && hwmgr->thermal_controller.
2225 advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2226 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2227 PPSMC_MSG_SetFanSclkTarget,
2228 hwmgr->thermal_controller.
2229 advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
2230 NULL);
2231
2232 if (res)
2233 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2234 PHM_PlatformCaps_MicrocodeFanControl);
2235
2236 return 0;
2237 }
2238
2239
fiji_thermal_avfs_enable(struct pp_hwmgr * hwmgr)2240 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2241 {
2242 if (!hwmgr->avfs_supported)
2243 return 0;
2244
2245 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2246
2247 return 0;
2248 }
2249
fiji_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2250 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2251 {
2252 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253
2254 if (data->need_update_smu7_dpm_table &
2255 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2256 return fiji_program_memory_timing_parameters(hwmgr);
2257
2258 return 0;
2259 }
2260
fiji_update_sclk_threshold(struct pp_hwmgr * hwmgr)2261 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2262 {
2263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2264 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2265
2266 int result = 0;
2267 uint32_t low_sclk_interrupt_threshold = 0;
2268
2269 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2270 PHM_PlatformCaps_SclkThrottleLowNotification)
2271 && (data->low_sclk_interrupt_threshold != 0)) {
2272 low_sclk_interrupt_threshold =
2273 data->low_sclk_interrupt_threshold;
2274
2275 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2276
2277 result = smu7_copy_bytes_to_smc(
2278 hwmgr,
2279 smu_data->smu7_data.dpm_table_start +
2280 offsetof(SMU73_Discrete_DpmTable,
2281 LowSclkInterruptThreshold),
2282 (uint8_t *)&low_sclk_interrupt_threshold,
2283 sizeof(uint32_t),
2284 SMC_RAM_END);
2285 }
2286 result = fiji_program_mem_timing_parameters(hwmgr);
2287 PP_ASSERT_WITH_CODE((result == 0),
2288 "Failed to program memory timing parameters!",
2289 );
2290 return result;
2291 }
2292
fiji_get_offsetof(uint32_t type,uint32_t member)2293 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2294 {
2295 switch (type) {
2296 case SMU_SoftRegisters:
2297 switch (member) {
2298 case HandshakeDisables:
2299 return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2300 case VoltageChangeTimeout:
2301 return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2302 case AverageGraphicsActivity:
2303 return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2304 case AverageMemoryActivity:
2305 return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2306 case PreVBlankGap:
2307 return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2308 case VBlankTimeout:
2309 return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2310 case UcodeLoadStatus:
2311 return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2312 case DRAM_LOG_ADDR_H:
2313 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2314 case DRAM_LOG_ADDR_L:
2315 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2316 case DRAM_LOG_PHY_ADDR_H:
2317 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2318 case DRAM_LOG_PHY_ADDR_L:
2319 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2320 case DRAM_LOG_BUFF_SIZE:
2321 return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2322 }
2323 break;
2324 case SMU_Discrete_DpmTable:
2325 switch (member) {
2326 case UvdBootLevel:
2327 return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2328 case VceBootLevel:
2329 return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2330 case LowSclkInterruptThreshold:
2331 return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2332 }
2333 break;
2334 }
2335 pr_warn("can't get the offset of type %x member %x\n", type, member);
2336 return 0;
2337 }
2338
fiji_get_mac_definition(uint32_t value)2339 static uint32_t fiji_get_mac_definition(uint32_t value)
2340 {
2341 switch (value) {
2342 case SMU_MAX_LEVELS_GRAPHICS:
2343 return SMU73_MAX_LEVELS_GRAPHICS;
2344 case SMU_MAX_LEVELS_MEMORY:
2345 return SMU73_MAX_LEVELS_MEMORY;
2346 case SMU_MAX_LEVELS_LINK:
2347 return SMU73_MAX_LEVELS_LINK;
2348 case SMU_MAX_ENTRIES_SMIO:
2349 return SMU73_MAX_ENTRIES_SMIO;
2350 case SMU_MAX_LEVELS_VDDC:
2351 return SMU73_MAX_LEVELS_VDDC;
2352 case SMU_MAX_LEVELS_VDDGFX:
2353 return SMU73_MAX_LEVELS_VDDGFX;
2354 case SMU_MAX_LEVELS_VDDCI:
2355 return SMU73_MAX_LEVELS_VDDCI;
2356 case SMU_MAX_LEVELS_MVDD:
2357 return SMU73_MAX_LEVELS_MVDD;
2358 }
2359
2360 pr_warn("can't get the mac of %x\n", value);
2361 return 0;
2362 }
2363
2364
fiji_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2365 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2366 {
2367 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2368 uint32_t mm_boot_level_offset, mm_boot_level_value;
2369 struct phm_ppt_v1_information *table_info =
2370 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2371
2372 smu_data->smc_state_table.UvdBootLevel = 0;
2373 if (table_info->mm_dep_table->count > 0)
2374 smu_data->smc_state_table.UvdBootLevel =
2375 (uint8_t) (table_info->mm_dep_table->count - 1);
2376 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2377 UvdBootLevel);
2378 mm_boot_level_offset /= 4;
2379 mm_boot_level_offset *= 4;
2380 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2381 CGS_IND_REG__SMC, mm_boot_level_offset);
2382 mm_boot_level_value &= 0x00FFFFFF;
2383 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2384 cgs_write_ind_register(hwmgr->device,
2385 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2386
2387 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2388 PHM_PlatformCaps_UVDDPM) ||
2389 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2390 PHM_PlatformCaps_StablePState))
2391 smum_send_msg_to_smc_with_parameter(hwmgr,
2392 PPSMC_MSG_UVDDPM_SetEnabledMask,
2393 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2394 NULL);
2395 return 0;
2396 }
2397
fiji_update_vce_smc_table(struct pp_hwmgr * hwmgr)2398 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2399 {
2400 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2401 uint32_t mm_boot_level_offset, mm_boot_level_value;
2402 struct phm_ppt_v1_information *table_info =
2403 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2404
2405 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2406 PHM_PlatformCaps_StablePState))
2407 smu_data->smc_state_table.VceBootLevel =
2408 (uint8_t) (table_info->mm_dep_table->count - 1);
2409 else
2410 smu_data->smc_state_table.VceBootLevel = 0;
2411
2412 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2413 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2414 mm_boot_level_offset /= 4;
2415 mm_boot_level_offset *= 4;
2416 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2417 CGS_IND_REG__SMC, mm_boot_level_offset);
2418 mm_boot_level_value &= 0xFF00FFFF;
2419 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2420 cgs_write_ind_register(hwmgr->device,
2421 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2422
2423 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2424 smum_send_msg_to_smc_with_parameter(hwmgr,
2425 PPSMC_MSG_VCEDPM_SetEnabledMask,
2426 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2427 NULL);
2428 return 0;
2429 }
2430
fiji_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2431 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2432 {
2433 switch (type) {
2434 case SMU_UVD_TABLE:
2435 fiji_update_uvd_smc_table(hwmgr);
2436 break;
2437 case SMU_VCE_TABLE:
2438 fiji_update_vce_smc_table(hwmgr);
2439 break;
2440 default:
2441 break;
2442 }
2443 return 0;
2444 }
2445
fiji_process_firmware_header(struct pp_hwmgr * hwmgr)2446 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2447 {
2448 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2449 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2450 uint32_t tmp;
2451 int result;
2452 bool error = false;
2453
2454 result = smu7_read_smc_sram_dword(hwmgr,
2455 SMU7_FIRMWARE_HEADER_LOCATION +
2456 offsetof(SMU73_Firmware_Header, DpmTable),
2457 &tmp, SMC_RAM_END);
2458
2459 if (0 == result)
2460 smu_data->smu7_data.dpm_table_start = tmp;
2461
2462 error |= (0 != result);
2463
2464 result = smu7_read_smc_sram_dword(hwmgr,
2465 SMU7_FIRMWARE_HEADER_LOCATION +
2466 offsetof(SMU73_Firmware_Header, SoftRegisters),
2467 &tmp, SMC_RAM_END);
2468
2469 if (!result) {
2470 data->soft_regs_start = tmp;
2471 smu_data->smu7_data.soft_regs_start = tmp;
2472 }
2473
2474 error |= (0 != result);
2475
2476 result = smu7_read_smc_sram_dword(hwmgr,
2477 SMU7_FIRMWARE_HEADER_LOCATION +
2478 offsetof(SMU73_Firmware_Header, mcRegisterTable),
2479 &tmp, SMC_RAM_END);
2480
2481 if (!result)
2482 smu_data->smu7_data.mc_reg_table_start = tmp;
2483
2484 result = smu7_read_smc_sram_dword(hwmgr,
2485 SMU7_FIRMWARE_HEADER_LOCATION +
2486 offsetof(SMU73_Firmware_Header, FanTable),
2487 &tmp, SMC_RAM_END);
2488
2489 if (!result)
2490 smu_data->smu7_data.fan_table_start = tmp;
2491
2492 error |= (0 != result);
2493
2494 result = smu7_read_smc_sram_dword(hwmgr,
2495 SMU7_FIRMWARE_HEADER_LOCATION +
2496 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2497 &tmp, SMC_RAM_END);
2498
2499 if (!result)
2500 smu_data->smu7_data.arb_table_start = tmp;
2501
2502 error |= (0 != result);
2503
2504 result = smu7_read_smc_sram_dword(hwmgr,
2505 SMU7_FIRMWARE_HEADER_LOCATION +
2506 offsetof(SMU73_Firmware_Header, Version),
2507 &tmp, SMC_RAM_END);
2508
2509 if (!result)
2510 hwmgr->microcode_version_info.SMC = tmp;
2511
2512 error |= (0 != result);
2513
2514 return error ? -1 : 0;
2515 }
2516
fiji_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2517 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2518 {
2519
2520 /* Program additional LP registers
2521 * that are no longer programmed by VBIOS
2522 */
2523 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2524 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2525 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2526 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2527 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2528 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2529 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2530 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2531 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2532 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2533 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2534 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2535 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2536 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2537
2538 return 0;
2539 }
2540
fiji_is_dpm_running(struct pp_hwmgr * hwmgr)2541 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2542 {
2543 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2544 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2545 ? true : false;
2546 }
2547
fiji_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2548 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2549 void *profile_setting)
2550 {
2551 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2552 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2553 (hwmgr->smu_backend);
2554 struct profile_mode_setting *setting;
2555 struct SMU73_Discrete_GraphicsLevel *levels =
2556 smu_data->smc_state_table.GraphicsLevel;
2557 uint32_t array = smu_data->smu7_data.dpm_table_start +
2558 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2559
2560 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2561 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2562 struct SMU73_Discrete_MemoryLevel *mclk_levels =
2563 smu_data->smc_state_table.MemoryLevel;
2564 uint32_t i;
2565 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2566
2567 if (profile_setting == NULL)
2568 return -EINVAL;
2569
2570 setting = (struct profile_mode_setting *)profile_setting;
2571
2572 if (setting->bupdate_sclk) {
2573 if (!data->sclk_dpm_key_disabled)
2574 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2575 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2576 if (levels[i].ActivityLevel !=
2577 cpu_to_be16(setting->sclk_activity)) {
2578 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2579
2580 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2581 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2582 offset = clk_activity_offset & ~0x3;
2583 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2584 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2585 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2586
2587 }
2588 if (levels[i].UpHyst != setting->sclk_up_hyst ||
2589 levels[i].DownHyst != setting->sclk_down_hyst) {
2590 levels[i].UpHyst = setting->sclk_up_hyst;
2591 levels[i].DownHyst = setting->sclk_down_hyst;
2592 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2593 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2594 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2595 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2596 offset = up_hyst_offset & ~0x3;
2597 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2598 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2599 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2600 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2601 }
2602 }
2603 if (!data->sclk_dpm_key_disabled)
2604 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2605 }
2606
2607 if (setting->bupdate_mclk) {
2608 if (!data->mclk_dpm_key_disabled)
2609 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2610 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2611 if (mclk_levels[i].ActivityLevel !=
2612 cpu_to_be16(setting->mclk_activity)) {
2613 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2614
2615 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2616 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2617 offset = clk_activity_offset & ~0x3;
2618 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2619 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2620 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2621
2622 }
2623 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2624 mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2625 mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2626 mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2627 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2628 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2629 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2630 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2631 offset = up_hyst_offset & ~0x3;
2632 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2633 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2634 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2635 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2636 }
2637 }
2638 if (!data->mclk_dpm_key_disabled)
2639 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2640 }
2641 return 0;
2642 }
2643
2644 const struct pp_smumgr_func fiji_smu_funcs = {
2645 .name = "fiji_smu",
2646 .smu_init = &fiji_smu_init,
2647 .smu_fini = &smu7_smu_fini,
2648 .start_smu = &fiji_start_smu,
2649 .check_fw_load_finish = &smu7_check_fw_load_finish,
2650 .request_smu_load_fw = &smu7_reload_firmware,
2651 .request_smu_load_specific_fw = NULL,
2652 .send_msg_to_smc = &smu7_send_msg_to_smc,
2653 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2654 .get_argument = smu7_get_argument,
2655 .download_pptable_settings = NULL,
2656 .upload_pptable_settings = NULL,
2657 .update_smc_table = fiji_update_smc_table,
2658 .get_offsetof = fiji_get_offsetof,
2659 .process_firmware_header = fiji_process_firmware_header,
2660 .init_smc_table = fiji_init_smc_table,
2661 .update_sclk_threshold = fiji_update_sclk_threshold,
2662 .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2663 .thermal_avfs_enable = fiji_thermal_avfs_enable,
2664 .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2665 .populate_all_memory_levels = fiji_populate_all_memory_levels,
2666 .get_mac_definition = fiji_get_mac_definition,
2667 .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2668 .is_dpm_running = fiji_is_dpm_running,
2669 .is_hw_avfs_present = fiji_is_hw_avfs_present,
2670 .update_dpm_settings = fiji_update_dpm_settings,
2671 };
2672