1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #ifdef 	CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34 
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 #define RT6_DEBUG 2
43 
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
49 
50 static struct kmem_cache * fib6_node_kmem __read_mostly;
51 
52 enum fib_walk_state_t
53 {
54 #ifdef CONFIG_IPV6_SUBTREES
55 	FWS_S,
56 #endif
57 	FWS_L,
58 	FWS_R,
59 	FWS_C,
60 	FWS_U
61 };
62 
63 struct fib6_cleaner_t
64 {
65 	struct fib6_walker_t w;
66 	struct net *net;
67 	int (*func)(struct rt6_info *, void *arg);
68 	void *arg;
69 };
70 
71 static DEFINE_RWLOCK(fib6_walker_lock);
72 
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
75 #else
76 #define FWS_INIT FWS_L
77 #endif
78 
79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80 			      struct rt6_info *rt);
81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83 static int fib6_walk(struct fib6_walker_t *w);
84 static int fib6_walk_continue(struct fib6_walker_t *w);
85 
86 /*
87  *	A routing update causes an increase of the serial number on the
88  *	affected subtree. This allows for cached routes to be asynchronously
89  *	tested when modifications are made to the destination cache as a
90  *	result of redirects, path MTU changes, etc.
91  */
92 
93 static __u32 rt_sernum;
94 
95 static void fib6_gc_timer_cb(unsigned long arg);
96 
97 static LIST_HEAD(fib6_walkers);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99 
fib6_walker_link(struct fib6_walker_t * w)100 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 {
102 	write_lock_bh(&fib6_walker_lock);
103 	list_add(&w->lh, &fib6_walkers);
104 	write_unlock_bh(&fib6_walker_lock);
105 }
106 
fib6_walker_unlink(struct fib6_walker_t * w)107 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 {
109 	write_lock_bh(&fib6_walker_lock);
110 	list_del(&w->lh);
111 	write_unlock_bh(&fib6_walker_lock);
112 }
fib6_new_sernum(void)113 static __inline__ u32 fib6_new_sernum(void)
114 {
115 	u32 n = ++rt_sernum;
116 	if ((__s32)n <= 0)
117 		rt_sernum = n = 1;
118 	return n;
119 }
120 
121 /*
122  *	Auxiliary address test functions for the radix tree.
123  *
124  *	These assume a 32bit processor (although it will work on
125  *	64bit processors)
126  */
127 
128 /*
129  *	test bit
130  */
131 #if defined(__LITTLE_ENDIAN)
132 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
133 #else
134 # define BITOP_BE32_SWIZZLE	0
135 #endif
136 
addr_bit_set(void * token,int fn_bit)137 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
138 {
139 	__be32 *addr = token;
140 	/*
141 	 * Here,
142 	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143 	 * is optimized version of
144 	 *	htonl(1 << ((~fn_bit)&0x1F))
145 	 * See include/asm-generic/bitops/le.h.
146 	 */
147 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148 	       addr[fn_bit >> 5];
149 }
150 
node_alloc(void)151 static __inline__ struct fib6_node * node_alloc(void)
152 {
153 	struct fib6_node *fn;
154 
155 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156 
157 	return fn;
158 }
159 
node_free(struct fib6_node * fn)160 static __inline__ void node_free(struct fib6_node * fn)
161 {
162 	kmem_cache_free(fib6_node_kmem, fn);
163 }
164 
rt6_release(struct rt6_info * rt)165 static __inline__ void rt6_release(struct rt6_info *rt)
166 {
167 	if (atomic_dec_and_test(&rt->rt6i_ref))
168 		dst_free(&rt->dst);
169 }
170 
fib6_link_table(struct net * net,struct fib6_table * tb)171 static void fib6_link_table(struct net *net, struct fib6_table *tb)
172 {
173 	unsigned int h;
174 
175 	/*
176 	 * Initialize table lock at a single place to give lockdep a key,
177 	 * tables aren't visible prior to being linked to the list.
178 	 */
179 	rwlock_init(&tb->tb6_lock);
180 
181 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182 
183 	/*
184 	 * No protection necessary, this is the only list mutatation
185 	 * operation, tables never disappear once they exist.
186 	 */
187 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188 }
189 
190 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191 
fib6_alloc_table(struct net * net,u32 id)192 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193 {
194 	struct fib6_table *table;
195 
196 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
197 	if (table != NULL) {
198 		table->tb6_id = id;
199 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201 	}
202 
203 	return table;
204 }
205 
fib6_new_table(struct net * net,u32 id)206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 	struct fib6_table *tb;
209 
210 	if (id == 0)
211 		id = RT6_TABLE_MAIN;
212 	tb = fib6_get_table(net, id);
213 	if (tb)
214 		return tb;
215 
216 	tb = fib6_alloc_table(net, id);
217 	if (tb != NULL)
218 		fib6_link_table(net, tb);
219 
220 	return tb;
221 }
222 
fib6_get_table(struct net * net,u32 id)223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 	struct fib6_table *tb;
226 	struct hlist_head *head;
227 	struct hlist_node *node;
228 	unsigned int h;
229 
230 	if (id == 0)
231 		id = RT6_TABLE_MAIN;
232 	h = id & (FIB6_TABLE_HASHSZ - 1);
233 	rcu_read_lock();
234 	head = &net->ipv6.fib_table_hash[h];
235 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 		if (tb->tb6_id == id) {
237 			rcu_read_unlock();
238 			return tb;
239 		}
240 	}
241 	rcu_read_unlock();
242 
243 	return NULL;
244 }
245 
fib6_tables_init(struct net * net)246 static void __net_init fib6_tables_init(struct net *net)
247 {
248 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252 
fib6_new_table(struct net * net,u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	return fib6_get_table(net, id);
256 }
257 
fib6_get_table(struct net * net,u32 id)258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260 	  return net->ipv6.fib6_main_tbl;
261 }
262 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,int flags,pol_lookup_t lookup)263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 				   int flags, pol_lookup_t lookup)
265 {
266 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268 
fib6_tables_init(struct net * net)269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273 
274 #endif
275 
fib6_dump_node(struct fib6_walker_t * w)276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278 	int res;
279 	struct rt6_info *rt;
280 
281 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 		res = rt6_dump_route(rt, w->args);
283 		if (res < 0) {
284 			/* Frame is full, suspend walking */
285 			w->leaf = rt;
286 			return 1;
287 		}
288 		WARN_ON(res == 0);
289 	}
290 	w->leaf = NULL;
291 	return 0;
292 }
293 
fib6_dump_end(struct netlink_callback * cb)294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296 	struct fib6_walker_t *w = (void*)cb->args[2];
297 
298 	if (w) {
299 		if (cb->args[4]) {
300 			cb->args[4] = 0;
301 			fib6_walker_unlink(w);
302 		}
303 		cb->args[2] = 0;
304 		kfree(w);
305 	}
306 	cb->done = (void*)cb->args[3];
307 	cb->args[1] = 3;
308 }
309 
fib6_dump_done(struct netlink_callback * cb)310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 	fib6_dump_end(cb);
313 	return cb->done ? cb->done(cb) : 0;
314 }
315 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 			   struct netlink_callback *cb)
318 {
319 	struct fib6_walker_t *w;
320 	int res;
321 
322 	w = (void *)cb->args[2];
323 	w->root = &table->tb6_root;
324 
325 	if (cb->args[4] == 0) {
326 		w->count = 0;
327 		w->skip = 0;
328 
329 		read_lock_bh(&table->tb6_lock);
330 		res = fib6_walk(w);
331 		read_unlock_bh(&table->tb6_lock);
332 		if (res > 0) {
333 			cb->args[4] = 1;
334 			cb->args[5] = w->root->fn_sernum;
335 		}
336 	} else {
337 		if (cb->args[5] != w->root->fn_sernum) {
338 			/* Begin at the root if the tree changed */
339 			cb->args[5] = w->root->fn_sernum;
340 			w->state = FWS_INIT;
341 			w->node = w->root;
342 			w->skip = w->count;
343 		} else
344 			w->skip = 0;
345 
346 		read_lock_bh(&table->tb6_lock);
347 		res = fib6_walk_continue(w);
348 		read_unlock_bh(&table->tb6_lock);
349 		if (res <= 0) {
350 			fib6_walker_unlink(w);
351 			cb->args[4] = 0;
352 		}
353 	}
354 
355 	return res;
356 }
357 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360 	struct net *net = sock_net(skb->sk);
361 	unsigned int h, s_h;
362 	unsigned int e = 0, s_e;
363 	struct rt6_rtnl_dump_arg arg;
364 	struct fib6_walker_t *w;
365 	struct fib6_table *tb;
366 	struct hlist_node *node;
367 	struct hlist_head *head;
368 	int res = 0;
369 
370 	s_h = cb->args[0];
371 	s_e = cb->args[1];
372 
373 	w = (void *)cb->args[2];
374 	if (w == NULL) {
375 		/* New dump:
376 		 *
377 		 * 1. hook callback destructor.
378 		 */
379 		cb->args[3] = (long)cb->done;
380 		cb->done = fib6_dump_done;
381 
382 		/*
383 		 * 2. allocate and initialize walker.
384 		 */
385 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 		if (w == NULL)
387 			return -ENOMEM;
388 		w->func = fib6_dump_node;
389 		cb->args[2] = (long)w;
390 	}
391 
392 	arg.skb = skb;
393 	arg.cb = cb;
394 	arg.net = net;
395 	w->args = &arg;
396 
397 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
398 		e = 0;
399 		head = &net->ipv6.fib_table_hash[h];
400 		hlist_for_each_entry(tb, node, head, tb6_hlist) {
401 			if (e < s_e)
402 				goto next;
403 			res = fib6_dump_table(tb, skb, cb);
404 			if (res != 0)
405 				goto out;
406 next:
407 			e++;
408 		}
409 	}
410 out:
411 	cb->args[1] = e;
412 	cb->args[0] = h;
413 
414 	res = res < 0 ? res : skb->len;
415 	if (res <= 0)
416 		fib6_dump_end(cb);
417 	return res;
418 }
419 
420 /*
421  *	Routing Table
422  *
423  *	return the appropriate node for a routing tree "add" operation
424  *	by either creating and inserting or by returning an existing
425  *	node.
426  */
427 
fib6_add_1(struct fib6_node * root,void * addr,int addrlen,int plen,int offset)428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429 				     int addrlen, int plen,
430 				     int offset)
431 {
432 	struct fib6_node *fn, *in, *ln;
433 	struct fib6_node *pn = NULL;
434 	struct rt6key *key;
435 	int	bit;
436 	__be32	dir = 0;
437 	__u32	sernum = fib6_new_sernum();
438 
439 	RT6_TRACE("fib6_add_1\n");
440 
441 	/* insert node in tree */
442 
443 	fn = root;
444 
445 	do {
446 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
447 
448 		/*
449 		 *	Prefix match
450 		 */
451 		if (plen < fn->fn_bit ||
452 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
453 			goto insert_above;
454 
455 		/*
456 		 *	Exact match ?
457 		 */
458 
459 		if (plen == fn->fn_bit) {
460 			/* clean up an intermediate node */
461 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
462 				rt6_release(fn->leaf);
463 				fn->leaf = NULL;
464 			}
465 
466 			fn->fn_sernum = sernum;
467 
468 			return fn;
469 		}
470 
471 		/*
472 		 *	We have more bits to go
473 		 */
474 
475 		/* Try to walk down on tree. */
476 		fn->fn_sernum = sernum;
477 		dir = addr_bit_set(addr, fn->fn_bit);
478 		pn = fn;
479 		fn = dir ? fn->right: fn->left;
480 	} while (fn);
481 
482 	/*
483 	 *	We walked to the bottom of tree.
484 	 *	Create new leaf node without children.
485 	 */
486 
487 	ln = node_alloc();
488 
489 	if (ln == NULL)
490 		return NULL;
491 	ln->fn_bit = plen;
492 
493 	ln->parent = pn;
494 	ln->fn_sernum = sernum;
495 
496 	if (dir)
497 		pn->right = ln;
498 	else
499 		pn->left  = ln;
500 
501 	return ln;
502 
503 
504 insert_above:
505 	/*
506 	 * split since we don't have a common prefix anymore or
507 	 * we have a less significant route.
508 	 * we've to insert an intermediate node on the list
509 	 * this new node will point to the one we need to create
510 	 * and the current
511 	 */
512 
513 	pn = fn->parent;
514 
515 	/* find 1st bit in difference between the 2 addrs.
516 
517 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
518 	   but if it is >= plen, the value is ignored in any case.
519 	 */
520 
521 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
522 
523 	/*
524 	 *		(intermediate)[in]
525 	 *	          /	   \
526 	 *	(new leaf node)[ln] (old node)[fn]
527 	 */
528 	if (plen > bit) {
529 		in = node_alloc();
530 		ln = node_alloc();
531 
532 		if (in == NULL || ln == NULL) {
533 			if (in)
534 				node_free(in);
535 			if (ln)
536 				node_free(ln);
537 			return NULL;
538 		}
539 
540 		/*
541 		 * new intermediate node.
542 		 * RTN_RTINFO will
543 		 * be off since that an address that chooses one of
544 		 * the branches would not match less specific routes
545 		 * in the other branch
546 		 */
547 
548 		in->fn_bit = bit;
549 
550 		in->parent = pn;
551 		in->leaf = fn->leaf;
552 		atomic_inc(&in->leaf->rt6i_ref);
553 
554 		in->fn_sernum = sernum;
555 
556 		/* update parent pointer */
557 		if (dir)
558 			pn->right = in;
559 		else
560 			pn->left  = in;
561 
562 		ln->fn_bit = plen;
563 
564 		ln->parent = in;
565 		fn->parent = in;
566 
567 		ln->fn_sernum = sernum;
568 
569 		if (addr_bit_set(addr, bit)) {
570 			in->right = ln;
571 			in->left  = fn;
572 		} else {
573 			in->left  = ln;
574 			in->right = fn;
575 		}
576 	} else { /* plen <= bit */
577 
578 		/*
579 		 *		(new leaf node)[ln]
580 		 *	          /	   \
581 		 *	     (old node)[fn] NULL
582 		 */
583 
584 		ln = node_alloc();
585 
586 		if (ln == NULL)
587 			return NULL;
588 
589 		ln->fn_bit = plen;
590 
591 		ln->parent = pn;
592 
593 		ln->fn_sernum = sernum;
594 
595 		if (dir)
596 			pn->right = ln;
597 		else
598 			pn->left  = ln;
599 
600 		if (addr_bit_set(&key->addr, plen))
601 			ln->right = fn;
602 		else
603 			ln->left  = fn;
604 
605 		fn->parent = ln;
606 	}
607 	return ln;
608 }
609 
610 /*
611  *	Insert routing information in a node.
612  */
613 
fib6_add_rt2node(struct fib6_node * fn,struct rt6_info * rt,struct nl_info * info)614 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
615 			    struct nl_info *info)
616 {
617 	struct rt6_info *iter = NULL;
618 	struct rt6_info **ins;
619 
620 	ins = &fn->leaf;
621 
622 	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
623 		/*
624 		 *	Search for duplicates
625 		 */
626 
627 		if (iter->rt6i_metric == rt->rt6i_metric) {
628 			/*
629 			 *	Same priority level
630 			 */
631 
632 			if (iter->rt6i_dev == rt->rt6i_dev &&
633 			    iter->rt6i_idev == rt->rt6i_idev &&
634 			    ipv6_addr_equal(&iter->rt6i_gateway,
635 					    &rt->rt6i_gateway)) {
636 				if (!(iter->rt6i_flags&RTF_EXPIRES))
637 					return -EEXIST;
638 				iter->rt6i_expires = rt->rt6i_expires;
639 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
640 					iter->rt6i_flags &= ~RTF_EXPIRES;
641 					iter->rt6i_expires = 0;
642 				}
643 				return -EEXIST;
644 			}
645 		}
646 
647 		if (iter->rt6i_metric > rt->rt6i_metric)
648 			break;
649 
650 		ins = &iter->dst.rt6_next;
651 	}
652 
653 	/* Reset round-robin state, if necessary */
654 	if (ins == &fn->leaf)
655 		fn->rr_ptr = NULL;
656 
657 	/*
658 	 *	insert node
659 	 */
660 
661 	rt->dst.rt6_next = iter;
662 	*ins = rt;
663 	rt->rt6i_node = fn;
664 	atomic_inc(&rt->rt6i_ref);
665 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
666 	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
667 
668 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
669 		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
670 		fn->fn_flags |= RTN_RTINFO;
671 	}
672 
673 	return 0;
674 }
675 
fib6_start_gc(struct net * net,struct rt6_info * rt)676 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
677 {
678 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
679 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
680 		mod_timer(&net->ipv6.ip6_fib_timer,
681 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
682 }
683 
fib6_force_start_gc(struct net * net)684 void fib6_force_start_gc(struct net *net)
685 {
686 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
687 		mod_timer(&net->ipv6.ip6_fib_timer,
688 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
689 }
690 
691 /*
692  *	Add routing information to the routing tree.
693  *	<destination addr>/<source addr>
694  *	with source addr info in sub-trees
695  */
696 
fib6_add(struct fib6_node * root,struct rt6_info * rt,struct nl_info * info)697 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
698 {
699 	struct fib6_node *fn, *pn = NULL;
700 	int err = -ENOMEM;
701 
702 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
703 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
704 
705 	if (fn == NULL)
706 		goto out;
707 
708 	pn = fn;
709 
710 #ifdef CONFIG_IPV6_SUBTREES
711 	if (rt->rt6i_src.plen) {
712 		struct fib6_node *sn;
713 
714 		if (fn->subtree == NULL) {
715 			struct fib6_node *sfn;
716 
717 			/*
718 			 * Create subtree.
719 			 *
720 			 *		fn[main tree]
721 			 *		|
722 			 *		sfn[subtree root]
723 			 *		   \
724 			 *		    sn[new leaf node]
725 			 */
726 
727 			/* Create subtree root node */
728 			sfn = node_alloc();
729 			if (sfn == NULL)
730 				goto st_failure;
731 
732 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
733 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
734 			sfn->fn_flags = RTN_ROOT;
735 			sfn->fn_sernum = fib6_new_sernum();
736 
737 			/* Now add the first leaf node to new subtree */
738 
739 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
740 					sizeof(struct in6_addr), rt->rt6i_src.plen,
741 					offsetof(struct rt6_info, rt6i_src));
742 
743 			if (sn == NULL) {
744 				/* If it is failed, discard just allocated
745 				   root, and then (in st_failure) stale node
746 				   in main tree.
747 				 */
748 				node_free(sfn);
749 				goto st_failure;
750 			}
751 
752 			/* Now link new subtree to main tree */
753 			sfn->parent = fn;
754 			fn->subtree = sfn;
755 		} else {
756 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
757 					sizeof(struct in6_addr), rt->rt6i_src.plen,
758 					offsetof(struct rt6_info, rt6i_src));
759 
760 			if (sn == NULL)
761 				goto st_failure;
762 		}
763 
764 		if (fn->leaf == NULL) {
765 			fn->leaf = rt;
766 			atomic_inc(&rt->rt6i_ref);
767 		}
768 		fn = sn;
769 	}
770 #endif
771 
772 	err = fib6_add_rt2node(fn, rt, info);
773 
774 	if (err == 0) {
775 		fib6_start_gc(info->nl_net, rt);
776 		if (!(rt->rt6i_flags&RTF_CACHE))
777 			fib6_prune_clones(info->nl_net, pn, rt);
778 	}
779 
780 out:
781 	if (err) {
782 #ifdef CONFIG_IPV6_SUBTREES
783 		/*
784 		 * If fib6_add_1 has cleared the old leaf pointer in the
785 		 * super-tree leaf node we have to find a new one for it.
786 		 */
787 		if (pn != fn && pn->leaf == rt) {
788 			pn->leaf = NULL;
789 			atomic_dec(&rt->rt6i_ref);
790 		}
791 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
792 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
793 #if RT6_DEBUG >= 2
794 			if (!pn->leaf) {
795 				WARN_ON(pn->leaf == NULL);
796 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
797 			}
798 #endif
799 			atomic_inc(&pn->leaf->rt6i_ref);
800 		}
801 #endif
802 		dst_free(&rt->dst);
803 	}
804 	return err;
805 
806 #ifdef CONFIG_IPV6_SUBTREES
807 	/* Subtree creation failed, probably main tree node
808 	   is orphan. If it is, shoot it.
809 	 */
810 st_failure:
811 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
812 		fib6_repair_tree(info->nl_net, fn);
813 	dst_free(&rt->dst);
814 	return err;
815 #endif
816 }
817 
818 /*
819  *	Routing tree lookup
820  *
821  */
822 
823 struct lookup_args {
824 	int		offset;		/* key offset on rt6_info	*/
825 	struct in6_addr	*addr;		/* search key			*/
826 };
827 
fib6_lookup_1(struct fib6_node * root,struct lookup_args * args)828 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
829 					struct lookup_args *args)
830 {
831 	struct fib6_node *fn;
832 	__be32 dir;
833 
834 	if (unlikely(args->offset == 0))
835 		return NULL;
836 
837 	/*
838 	 *	Descend on a tree
839 	 */
840 
841 	fn = root;
842 
843 	for (;;) {
844 		struct fib6_node *next;
845 
846 		dir = addr_bit_set(args->addr, fn->fn_bit);
847 
848 		next = dir ? fn->right : fn->left;
849 
850 		if (next) {
851 			fn = next;
852 			continue;
853 		}
854 
855 		break;
856 	}
857 
858 	while(fn) {
859 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
860 			struct rt6key *key;
861 
862 			key = (struct rt6key *) ((u8 *) fn->leaf +
863 						 args->offset);
864 
865 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
866 #ifdef CONFIG_IPV6_SUBTREES
867 				if (fn->subtree)
868 					fn = fib6_lookup_1(fn->subtree, args + 1);
869 #endif
870 				if (!fn || fn->fn_flags & RTN_RTINFO)
871 					return fn;
872 			}
873 		}
874 
875 		if (fn->fn_flags & RTN_ROOT)
876 			break;
877 
878 		fn = fn->parent;
879 	}
880 
881 	return NULL;
882 }
883 
fib6_lookup(struct fib6_node * root,struct in6_addr * daddr,struct in6_addr * saddr)884 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
885 			       struct in6_addr *saddr)
886 {
887 	struct fib6_node *fn;
888 	struct lookup_args args[] = {
889 		{
890 			.offset = offsetof(struct rt6_info, rt6i_dst),
891 			.addr = daddr,
892 		},
893 #ifdef CONFIG_IPV6_SUBTREES
894 		{
895 			.offset = offsetof(struct rt6_info, rt6i_src),
896 			.addr = saddr,
897 		},
898 #endif
899 		{
900 			.offset = 0,	/* sentinel */
901 		}
902 	};
903 
904 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
905 
906 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
907 		fn = root;
908 
909 	return fn;
910 }
911 
912 /*
913  *	Get node with specified destination prefix (and source prefix,
914  *	if subtrees are used)
915  */
916 
917 
fib6_locate_1(struct fib6_node * root,struct in6_addr * addr,int plen,int offset)918 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
919 					struct in6_addr *addr,
920 					int plen, int offset)
921 {
922 	struct fib6_node *fn;
923 
924 	for (fn = root; fn ; ) {
925 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
926 
927 		/*
928 		 *	Prefix match
929 		 */
930 		if (plen < fn->fn_bit ||
931 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
932 			return NULL;
933 
934 		if (plen == fn->fn_bit)
935 			return fn;
936 
937 		/*
938 		 *	We have more bits to go
939 		 */
940 		if (addr_bit_set(addr, fn->fn_bit))
941 			fn = fn->right;
942 		else
943 			fn = fn->left;
944 	}
945 	return NULL;
946 }
947 
fib6_locate(struct fib6_node * root,struct in6_addr * daddr,int dst_len,struct in6_addr * saddr,int src_len)948 struct fib6_node * fib6_locate(struct fib6_node *root,
949 			       struct in6_addr *daddr, int dst_len,
950 			       struct in6_addr *saddr, int src_len)
951 {
952 	struct fib6_node *fn;
953 
954 	fn = fib6_locate_1(root, daddr, dst_len,
955 			   offsetof(struct rt6_info, rt6i_dst));
956 
957 #ifdef CONFIG_IPV6_SUBTREES
958 	if (src_len) {
959 		WARN_ON(saddr == NULL);
960 		if (fn && fn->subtree)
961 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
962 					   offsetof(struct rt6_info, rt6i_src));
963 	}
964 #endif
965 
966 	if (fn && fn->fn_flags&RTN_RTINFO)
967 		return fn;
968 
969 	return NULL;
970 }
971 
972 
973 /*
974  *	Deletion
975  *
976  */
977 
fib6_find_prefix(struct net * net,struct fib6_node * fn)978 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
979 {
980 	if (fn->fn_flags&RTN_ROOT)
981 		return net->ipv6.ip6_null_entry;
982 
983 	while(fn) {
984 		if(fn->left)
985 			return fn->left->leaf;
986 
987 		if(fn->right)
988 			return fn->right->leaf;
989 
990 		fn = FIB6_SUBTREE(fn);
991 	}
992 	return NULL;
993 }
994 
995 /*
996  *	Called to trim the tree of intermediate nodes when possible. "fn"
997  *	is the node we want to try and remove.
998  */
999 
fib6_repair_tree(struct net * net,struct fib6_node * fn)1000 static struct fib6_node *fib6_repair_tree(struct net *net,
1001 					   struct fib6_node *fn)
1002 {
1003 	int children;
1004 	int nstate;
1005 	struct fib6_node *child, *pn;
1006 	struct fib6_walker_t *w;
1007 	int iter = 0;
1008 
1009 	for (;;) {
1010 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1011 		iter++;
1012 
1013 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1014 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1015 		WARN_ON(fn->leaf != NULL);
1016 
1017 		children = 0;
1018 		child = NULL;
1019 		if (fn->right) child = fn->right, children |= 1;
1020 		if (fn->left) child = fn->left, children |= 2;
1021 
1022 		if (children == 3 || FIB6_SUBTREE(fn)
1023 #ifdef CONFIG_IPV6_SUBTREES
1024 		    /* Subtree root (i.e. fn) may have one child */
1025 		    || (children && fn->fn_flags&RTN_ROOT)
1026 #endif
1027 		    ) {
1028 			fn->leaf = fib6_find_prefix(net, fn);
1029 #if RT6_DEBUG >= 2
1030 			if (fn->leaf==NULL) {
1031 				WARN_ON(!fn->leaf);
1032 				fn->leaf = net->ipv6.ip6_null_entry;
1033 			}
1034 #endif
1035 			atomic_inc(&fn->leaf->rt6i_ref);
1036 			return fn->parent;
1037 		}
1038 
1039 		pn = fn->parent;
1040 #ifdef CONFIG_IPV6_SUBTREES
1041 		if (FIB6_SUBTREE(pn) == fn) {
1042 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1043 			FIB6_SUBTREE(pn) = NULL;
1044 			nstate = FWS_L;
1045 		} else {
1046 			WARN_ON(fn->fn_flags & RTN_ROOT);
1047 #endif
1048 			if (pn->right == fn) pn->right = child;
1049 			else if (pn->left == fn) pn->left = child;
1050 #if RT6_DEBUG >= 2
1051 			else
1052 				WARN_ON(1);
1053 #endif
1054 			if (child)
1055 				child->parent = pn;
1056 			nstate = FWS_R;
1057 #ifdef CONFIG_IPV6_SUBTREES
1058 		}
1059 #endif
1060 
1061 		read_lock(&fib6_walker_lock);
1062 		FOR_WALKERS(w) {
1063 			if (child == NULL) {
1064 				if (w->root == fn) {
1065 					w->root = w->node = NULL;
1066 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1067 				} else if (w->node == fn) {
1068 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1069 					w->node = pn;
1070 					w->state = nstate;
1071 				}
1072 			} else {
1073 				if (w->root == fn) {
1074 					w->root = child;
1075 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1076 				}
1077 				if (w->node == fn) {
1078 					w->node = child;
1079 					if (children&2) {
1080 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1081 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1082 					} else {
1083 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1084 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1085 					}
1086 				}
1087 			}
1088 		}
1089 		read_unlock(&fib6_walker_lock);
1090 
1091 		node_free(fn);
1092 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1093 			return pn;
1094 
1095 		rt6_release(pn->leaf);
1096 		pn->leaf = NULL;
1097 		fn = pn;
1098 	}
1099 }
1100 
fib6_del_route(struct fib6_node * fn,struct rt6_info ** rtp,struct nl_info * info)1101 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1102 			   struct nl_info *info)
1103 {
1104 	struct fib6_walker_t *w;
1105 	struct rt6_info *rt = *rtp;
1106 	struct net *net = info->nl_net;
1107 
1108 	RT6_TRACE("fib6_del_route\n");
1109 
1110 	/* Unlink it */
1111 	*rtp = rt->dst.rt6_next;
1112 	rt->rt6i_node = NULL;
1113 	net->ipv6.rt6_stats->fib_rt_entries--;
1114 	net->ipv6.rt6_stats->fib_discarded_routes++;
1115 
1116 	/* Reset round-robin state, if necessary */
1117 	if (fn->rr_ptr == rt)
1118 		fn->rr_ptr = NULL;
1119 
1120 	/* Adjust walkers */
1121 	read_lock(&fib6_walker_lock);
1122 	FOR_WALKERS(w) {
1123 		if (w->state == FWS_C && w->leaf == rt) {
1124 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1125 			w->leaf = rt->dst.rt6_next;
1126 			if (w->leaf == NULL)
1127 				w->state = FWS_U;
1128 		}
1129 	}
1130 	read_unlock(&fib6_walker_lock);
1131 
1132 	rt->dst.rt6_next = NULL;
1133 
1134 	/* If it was last route, expunge its radix tree node */
1135 	if (fn->leaf == NULL) {
1136 		fn->fn_flags &= ~RTN_RTINFO;
1137 		net->ipv6.rt6_stats->fib_route_nodes--;
1138 		fn = fib6_repair_tree(net, fn);
1139 	}
1140 
1141 	if (atomic_read(&rt->rt6i_ref) != 1) {
1142 		/* This route is used as dummy address holder in some split
1143 		 * nodes. It is not leaked, but it still holds other resources,
1144 		 * which must be released in time. So, scan ascendant nodes
1145 		 * and replace dummy references to this route with references
1146 		 * to still alive ones.
1147 		 */
1148 		while (fn) {
1149 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1150 				fn->leaf = fib6_find_prefix(net, fn);
1151 				atomic_inc(&fn->leaf->rt6i_ref);
1152 				rt6_release(rt);
1153 			}
1154 			fn = fn->parent;
1155 		}
1156 		/* No more references are possible at this point. */
1157 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1158 	}
1159 
1160 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1161 	rt6_release(rt);
1162 }
1163 
fib6_del(struct rt6_info * rt,struct nl_info * info)1164 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1165 {
1166 	struct net *net = info->nl_net;
1167 	struct fib6_node *fn = rt->rt6i_node;
1168 	struct rt6_info **rtp;
1169 
1170 #if RT6_DEBUG >= 2
1171 	if (rt->dst.obsolete>0) {
1172 		WARN_ON(fn != NULL);
1173 		return -ENOENT;
1174 	}
1175 #endif
1176 	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1177 		return -ENOENT;
1178 
1179 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1180 
1181 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1182 		struct fib6_node *pn = fn;
1183 #ifdef CONFIG_IPV6_SUBTREES
1184 		/* clones of this route might be in another subtree */
1185 		if (rt->rt6i_src.plen) {
1186 			while (!(pn->fn_flags&RTN_ROOT))
1187 				pn = pn->parent;
1188 			pn = pn->parent;
1189 		}
1190 #endif
1191 		fib6_prune_clones(info->nl_net, pn, rt);
1192 	}
1193 
1194 	/*
1195 	 *	Walk the leaf entries looking for ourself
1196 	 */
1197 
1198 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1199 		if (*rtp == rt) {
1200 			fib6_del_route(fn, rtp, info);
1201 			return 0;
1202 		}
1203 	}
1204 	return -ENOENT;
1205 }
1206 
1207 /*
1208  *	Tree traversal function.
1209  *
1210  *	Certainly, it is not interrupt safe.
1211  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1212  *	It means, that we can modify tree during walking
1213  *	and use this function for garbage collection, clone pruning,
1214  *	cleaning tree when a device goes down etc. etc.
1215  *
1216  *	It guarantees that every node will be traversed,
1217  *	and that it will be traversed only once.
1218  *
1219  *	Callback function w->func may return:
1220  *	0 -> continue walking.
1221  *	positive value -> walking is suspended (used by tree dumps,
1222  *	and probably by gc, if it will be split to several slices)
1223  *	negative value -> terminate walking.
1224  *
1225  *	The function itself returns:
1226  *	0   -> walk is complete.
1227  *	>0  -> walk is incomplete (i.e. suspended)
1228  *	<0  -> walk is terminated by an error.
1229  */
1230 
fib6_walk_continue(struct fib6_walker_t * w)1231 static int fib6_walk_continue(struct fib6_walker_t *w)
1232 {
1233 	struct fib6_node *fn, *pn;
1234 
1235 	for (;;) {
1236 		fn = w->node;
1237 		if (fn == NULL)
1238 			return 0;
1239 
1240 		if (w->prune && fn != w->root &&
1241 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1242 			w->state = FWS_C;
1243 			w->leaf = fn->leaf;
1244 		}
1245 		switch (w->state) {
1246 #ifdef CONFIG_IPV6_SUBTREES
1247 		case FWS_S:
1248 			if (FIB6_SUBTREE(fn)) {
1249 				w->node = FIB6_SUBTREE(fn);
1250 				continue;
1251 			}
1252 			w->state = FWS_L;
1253 #endif
1254 		case FWS_L:
1255 			if (fn->left) {
1256 				w->node = fn->left;
1257 				w->state = FWS_INIT;
1258 				continue;
1259 			}
1260 			w->state = FWS_R;
1261 		case FWS_R:
1262 			if (fn->right) {
1263 				w->node = fn->right;
1264 				w->state = FWS_INIT;
1265 				continue;
1266 			}
1267 			w->state = FWS_C;
1268 			w->leaf = fn->leaf;
1269 		case FWS_C:
1270 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1271 				int err;
1272 
1273 				if (w->count < w->skip) {
1274 					w->count++;
1275 					continue;
1276 				}
1277 
1278 				err = w->func(w);
1279 				if (err)
1280 					return err;
1281 
1282 				w->count++;
1283 				continue;
1284 			}
1285 			w->state = FWS_U;
1286 		case FWS_U:
1287 			if (fn == w->root)
1288 				return 0;
1289 			pn = fn->parent;
1290 			w->node = pn;
1291 #ifdef CONFIG_IPV6_SUBTREES
1292 			if (FIB6_SUBTREE(pn) == fn) {
1293 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1294 				w->state = FWS_L;
1295 				continue;
1296 			}
1297 #endif
1298 			if (pn->left == fn) {
1299 				w->state = FWS_R;
1300 				continue;
1301 			}
1302 			if (pn->right == fn) {
1303 				w->state = FWS_C;
1304 				w->leaf = w->node->leaf;
1305 				continue;
1306 			}
1307 #if RT6_DEBUG >= 2
1308 			WARN_ON(1);
1309 #endif
1310 		}
1311 	}
1312 }
1313 
fib6_walk(struct fib6_walker_t * w)1314 static int fib6_walk(struct fib6_walker_t *w)
1315 {
1316 	int res;
1317 
1318 	w->state = FWS_INIT;
1319 	w->node = w->root;
1320 
1321 	fib6_walker_link(w);
1322 	res = fib6_walk_continue(w);
1323 	if (res <= 0)
1324 		fib6_walker_unlink(w);
1325 	return res;
1326 }
1327 
fib6_clean_node(struct fib6_walker_t * w)1328 static int fib6_clean_node(struct fib6_walker_t *w)
1329 {
1330 	int res;
1331 	struct rt6_info *rt;
1332 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1333 	struct nl_info info = {
1334 		.nl_net = c->net,
1335 	};
1336 
1337 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1338 		res = c->func(rt, c->arg);
1339 		if (res < 0) {
1340 			w->leaf = rt;
1341 			res = fib6_del(rt, &info);
1342 			if (res) {
1343 #if RT6_DEBUG >= 2
1344 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1345 #endif
1346 				continue;
1347 			}
1348 			return 0;
1349 		}
1350 		WARN_ON(res != 0);
1351 	}
1352 	w->leaf = rt;
1353 	return 0;
1354 }
1355 
1356 /*
1357  *	Convenient frontend to tree walker.
1358  *
1359  *	func is called on each route.
1360  *		It may return -1 -> delete this route.
1361  *		              0  -> continue walking
1362  *
1363  *	prune==1 -> only immediate children of node (certainly,
1364  *	ignoring pure split nodes) will be scanned.
1365  */
1366 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct rt6_info *,void * arg),int prune,void * arg)1367 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1368 			    int (*func)(struct rt6_info *, void *arg),
1369 			    int prune, void *arg)
1370 {
1371 	struct fib6_cleaner_t c;
1372 
1373 	c.w.root = root;
1374 	c.w.func = fib6_clean_node;
1375 	c.w.prune = prune;
1376 	c.w.count = 0;
1377 	c.w.skip = 0;
1378 	c.func = func;
1379 	c.arg = arg;
1380 	c.net = net;
1381 
1382 	fib6_walk(&c.w);
1383 }
1384 
fib6_clean_all(struct net * net,int (* func)(struct rt6_info *,void * arg),int prune,void * arg)1385 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1386 		    int prune, void *arg)
1387 {
1388 	struct fib6_table *table;
1389 	struct hlist_node *node;
1390 	struct hlist_head *head;
1391 	unsigned int h;
1392 
1393 	rcu_read_lock();
1394 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1395 		head = &net->ipv6.fib_table_hash[h];
1396 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1397 			write_lock_bh(&table->tb6_lock);
1398 			fib6_clean_tree(net, &table->tb6_root,
1399 					func, prune, arg);
1400 			write_unlock_bh(&table->tb6_lock);
1401 		}
1402 	}
1403 	rcu_read_unlock();
1404 }
1405 
fib6_prune_clone(struct rt6_info * rt,void * arg)1406 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1407 {
1408 	if (rt->rt6i_flags & RTF_CACHE) {
1409 		RT6_TRACE("pruning clone %p\n", rt);
1410 		return -1;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
fib6_prune_clones(struct net * net,struct fib6_node * fn,struct rt6_info * rt)1416 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1417 			      struct rt6_info *rt)
1418 {
1419 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1420 }
1421 
1422 /*
1423  *	Garbage collection
1424  */
1425 
1426 static struct fib6_gc_args
1427 {
1428 	int			timeout;
1429 	int			more;
1430 } gc_args;
1431 
fib6_age(struct rt6_info * rt,void * arg)1432 static int fib6_age(struct rt6_info *rt, void *arg)
1433 {
1434 	unsigned long now = jiffies;
1435 
1436 	/*
1437 	 *	check addrconf expiration here.
1438 	 *	Routes are expired even if they are in use.
1439 	 *
1440 	 *	Also age clones. Note, that clones are aged out
1441 	 *	only if they are not in use now.
1442 	 */
1443 
1444 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1445 		if (time_after(now, rt->rt6i_expires)) {
1446 			RT6_TRACE("expiring %p\n", rt);
1447 			return -1;
1448 		}
1449 		gc_args.more++;
1450 	} else if (rt->rt6i_flags & RTF_CACHE) {
1451 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1452 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1453 			RT6_TRACE("aging clone %p\n", rt);
1454 			return -1;
1455 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1456 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1457 			RT6_TRACE("purging route %p via non-router but gateway\n",
1458 				  rt);
1459 			return -1;
1460 		}
1461 		gc_args.more++;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static DEFINE_SPINLOCK(fib6_gc_lock);
1468 
fib6_run_gc(unsigned long expires,struct net * net)1469 void fib6_run_gc(unsigned long expires, struct net *net)
1470 {
1471 	if (expires != ~0UL) {
1472 		spin_lock_bh(&fib6_gc_lock);
1473 		gc_args.timeout = expires ? (int)expires :
1474 			net->ipv6.sysctl.ip6_rt_gc_interval;
1475 	} else {
1476 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1477 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1478 			return;
1479 		}
1480 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1481 	}
1482 
1483 	gc_args.more = icmp6_dst_gc();
1484 
1485 	fib6_clean_all(net, fib6_age, 0, NULL);
1486 
1487 	if (gc_args.more)
1488 		mod_timer(&net->ipv6.ip6_fib_timer,
1489 			  round_jiffies(jiffies
1490 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1491 	else
1492 		del_timer(&net->ipv6.ip6_fib_timer);
1493 	spin_unlock_bh(&fib6_gc_lock);
1494 }
1495 
fib6_gc_timer_cb(unsigned long arg)1496 static void fib6_gc_timer_cb(unsigned long arg)
1497 {
1498 	fib6_run_gc(0, (struct net *)arg);
1499 }
1500 
fib6_net_init(struct net * net)1501 static int __net_init fib6_net_init(struct net *net)
1502 {
1503 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1504 
1505 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1506 
1507 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1508 	if (!net->ipv6.rt6_stats)
1509 		goto out_timer;
1510 
1511 	/* Avoid false sharing : Use at least a full cache line */
1512 	size = max_t(size_t, size, L1_CACHE_BYTES);
1513 
1514 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1515 	if (!net->ipv6.fib_table_hash)
1516 		goto out_rt6_stats;
1517 
1518 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1519 					  GFP_KERNEL);
1520 	if (!net->ipv6.fib6_main_tbl)
1521 		goto out_fib_table_hash;
1522 
1523 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1524 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1525 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1526 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1527 
1528 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1529 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1530 					   GFP_KERNEL);
1531 	if (!net->ipv6.fib6_local_tbl)
1532 		goto out_fib6_main_tbl;
1533 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1534 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1535 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1536 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1537 #endif
1538 	fib6_tables_init(net);
1539 
1540 	return 0;
1541 
1542 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1543 out_fib6_main_tbl:
1544 	kfree(net->ipv6.fib6_main_tbl);
1545 #endif
1546 out_fib_table_hash:
1547 	kfree(net->ipv6.fib_table_hash);
1548 out_rt6_stats:
1549 	kfree(net->ipv6.rt6_stats);
1550 out_timer:
1551 	return -ENOMEM;
1552  }
1553 
fib6_net_exit(struct net * net)1554 static void fib6_net_exit(struct net *net)
1555 {
1556 	rt6_ifdown(net, NULL);
1557 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1558 
1559 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1560 	kfree(net->ipv6.fib6_local_tbl);
1561 #endif
1562 	kfree(net->ipv6.fib6_main_tbl);
1563 	kfree(net->ipv6.fib_table_hash);
1564 	kfree(net->ipv6.rt6_stats);
1565 }
1566 
1567 static struct pernet_operations fib6_net_ops = {
1568 	.init = fib6_net_init,
1569 	.exit = fib6_net_exit,
1570 };
1571 
fib6_init(void)1572 int __init fib6_init(void)
1573 {
1574 	int ret = -ENOMEM;
1575 
1576 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1577 					   sizeof(struct fib6_node),
1578 					   0, SLAB_HWCACHE_ALIGN,
1579 					   NULL);
1580 	if (!fib6_node_kmem)
1581 		goto out;
1582 
1583 	ret = register_pernet_subsys(&fib6_net_ops);
1584 	if (ret)
1585 		goto out_kmem_cache_create;
1586 
1587 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1588 	if (ret)
1589 		goto out_unregister_subsys;
1590 out:
1591 	return ret;
1592 
1593 out_unregister_subsys:
1594 	unregister_pernet_subsys(&fib6_net_ops);
1595 out_kmem_cache_create:
1596 	kmem_cache_destroy(fib6_node_kmem);
1597 	goto out;
1598 }
1599 
fib6_gc_cleanup(void)1600 void fib6_gc_cleanup(void)
1601 {
1602 	unregister_pernet_subsys(&fib6_net_ops);
1603 	kmem_cache_destroy(fib6_node_kmem);
1604 }
1605