1 /*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56 const char *uname, int depth, void *data)
57 {
58 __be32 *sections;
59 int i, num_sections;
60 unsigned long size;
61 const int *token;
62
63 if (depth != 1 || strcmp(uname, "rtas") != 0)
64 return 0;
65
66 /*
67 * Check if Firmware Assisted dump is supported. if yes, check
68 * if dump has been initiated on last reboot.
69 */
70 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71 if (!token)
72 return 0;
73
74 fw_dump.fadump_supported = 1;
75 fw_dump.ibm_configure_kernel_dump = *token;
76
77 /*
78 * The 'ibm,kernel-dump' rtas node is present only if there is
79 * dump data waiting for us.
80 */
81 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82 if (fdm_active)
83 fw_dump.dump_active = 1;
84
85 /* Get the sizes required to store dump data for the firmware provided
86 * dump sections.
87 * For each dump section type supported, a 32bit cell which defines
88 * the ID of a supported section followed by two 32 bit cells which
89 * gives teh size of the section in bytes.
90 */
91 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92 &size);
93
94 if (!sections)
95 return 0;
96
97 num_sections = size / (3 * sizeof(u32));
98
99 for (i = 0; i < num_sections; i++, sections += 3) {
100 u32 type = (u32)of_read_number(sections, 1);
101
102 switch (type) {
103 case FADUMP_CPU_STATE_DATA:
104 fw_dump.cpu_state_data_size =
105 of_read_ulong(§ions[1], 2);
106 break;
107 case FADUMP_HPTE_REGION:
108 fw_dump.hpte_region_size =
109 of_read_ulong(§ions[1], 2);
110 break;
111 }
112 }
113 return 1;
114 }
115
is_fadump_active(void)116 int is_fadump_active(void)
117 {
118 return fw_dump.dump_active;
119 }
120
121 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)122 static void fadump_show_config(void)
123 {
124 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
125 (fw_dump.fadump_supported ? "present" : "no support"));
126
127 if (!fw_dump.fadump_supported)
128 return;
129
130 pr_debug("Fadump enabled : %s\n",
131 (fw_dump.fadump_enabled ? "yes" : "no"));
132 pr_debug("Dump Active : %s\n",
133 (fw_dump.dump_active ? "yes" : "no"));
134 pr_debug("Dump section sizes:\n");
135 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
136 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
137 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
138 }
139
init_fadump_mem_struct(struct fadump_mem_struct * fdm,unsigned long addr)140 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
141 unsigned long addr)
142 {
143 if (!fdm)
144 return 0;
145
146 memset(fdm, 0, sizeof(struct fadump_mem_struct));
147 addr = addr & PAGE_MASK;
148
149 fdm->header.dump_format_version = 0x00000001;
150 fdm->header.dump_num_sections = 3;
151 fdm->header.dump_status_flag = 0;
152 fdm->header.offset_first_dump_section =
153 (u32)offsetof(struct fadump_mem_struct, cpu_state_data);
154
155 /*
156 * Fields for disk dump option.
157 * We are not using disk dump option, hence set these fields to 0.
158 */
159 fdm->header.dd_block_size = 0;
160 fdm->header.dd_block_offset = 0;
161 fdm->header.dd_num_blocks = 0;
162 fdm->header.dd_offset_disk_path = 0;
163
164 /* set 0 to disable an automatic dump-reboot. */
165 fdm->header.max_time_auto = 0;
166
167 /* Kernel dump sections */
168 /* cpu state data section. */
169 fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
170 fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
171 fdm->cpu_state_data.source_address = 0;
172 fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
173 fdm->cpu_state_data.destination_address = addr;
174 addr += fw_dump.cpu_state_data_size;
175
176 /* hpte region section */
177 fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
178 fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
179 fdm->hpte_region.source_address = 0;
180 fdm->hpte_region.source_len = fw_dump.hpte_region_size;
181 fdm->hpte_region.destination_address = addr;
182 addr += fw_dump.hpte_region_size;
183
184 /* RMA region section */
185 fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
186 fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
187 fdm->rmr_region.source_address = RMA_START;
188 fdm->rmr_region.source_len = fw_dump.boot_memory_size;
189 fdm->rmr_region.destination_address = addr;
190 addr += fw_dump.boot_memory_size;
191
192 return addr;
193 }
194
195 /**
196 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
197 *
198 * Function to find the largest memory size we need to reserve during early
199 * boot process. This will be the size of the memory that is required for a
200 * kernel to boot successfully.
201 *
202 * This function has been taken from phyp-assisted dump feature implementation.
203 *
204 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
205 *
206 * TODO: Come up with better approach to find out more accurate memory size
207 * that is required for a kernel to boot successfully.
208 *
209 */
fadump_calculate_reserve_size(void)210 static inline unsigned long fadump_calculate_reserve_size(void)
211 {
212 unsigned long size;
213
214 /*
215 * Check if the size is specified through fadump_reserve_mem= cmdline
216 * option. If yes, then use that.
217 */
218 if (fw_dump.reserve_bootvar)
219 return fw_dump.reserve_bootvar;
220
221 /* divide by 20 to get 5% of value */
222 size = memblock_end_of_DRAM() / 20;
223
224 /* round it down in multiples of 256 */
225 size = size & ~0x0FFFFFFFUL;
226
227 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
228 if (memory_limit && size > memory_limit)
229 size = memory_limit;
230
231 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
232 }
233
234 /*
235 * Calculate the total memory size required to be reserved for
236 * firmware-assisted dump registration.
237 */
get_fadump_area_size(void)238 static unsigned long get_fadump_area_size(void)
239 {
240 unsigned long size = 0;
241
242 size += fw_dump.cpu_state_data_size;
243 size += fw_dump.hpte_region_size;
244 size += fw_dump.boot_memory_size;
245 size += sizeof(struct fadump_crash_info_header);
246 size += sizeof(struct elfhdr); /* ELF core header.*/
247 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
248 /* Program headers for crash memory regions. */
249 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
250
251 size = PAGE_ALIGN(size);
252 return size;
253 }
254
fadump_reserve_mem(void)255 int __init fadump_reserve_mem(void)
256 {
257 unsigned long base, size, memory_boundary;
258
259 if (!fw_dump.fadump_enabled)
260 return 0;
261
262 if (!fw_dump.fadump_supported) {
263 printk(KERN_INFO "Firmware-assisted dump is not supported on"
264 " this hardware\n");
265 fw_dump.fadump_enabled = 0;
266 return 0;
267 }
268 /*
269 * Initialize boot memory size
270 * If dump is active then we have already calculated the size during
271 * first kernel.
272 */
273 if (fdm_active)
274 fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
275 else
276 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
277
278 /*
279 * Calculate the memory boundary.
280 * If memory_limit is less than actual memory boundary then reserve
281 * the memory for fadump beyond the memory_limit and adjust the
282 * memory_limit accordingly, so that the running kernel can run with
283 * specified memory_limit.
284 */
285 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
286 size = get_fadump_area_size();
287 if ((memory_limit + size) < memblock_end_of_DRAM())
288 memory_limit += size;
289 else
290 memory_limit = memblock_end_of_DRAM();
291 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
292 " dump, now %#016llx\n",
293 (unsigned long long)memory_limit);
294 }
295 if (memory_limit)
296 memory_boundary = memory_limit;
297 else
298 memory_boundary = memblock_end_of_DRAM();
299
300 if (fw_dump.dump_active) {
301 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302 /*
303 * If last boot has crashed then reserve all the memory
304 * above boot_memory_size so that we don't touch it until
305 * dump is written to disk by userspace tool. This memory
306 * will be released for general use once the dump is saved.
307 */
308 base = fw_dump.boot_memory_size;
309 size = memory_boundary - base;
310 memblock_reserve(base, size);
311 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312 "for saving crash dump\n",
313 (unsigned long)(size >> 20),
314 (unsigned long)(base >> 20));
315
316 fw_dump.fadumphdr_addr =
317 fdm_active->rmr_region.destination_address +
318 fdm_active->rmr_region.source_len;
319 pr_debug("fadumphdr_addr = %p\n",
320 (void *) fw_dump.fadumphdr_addr);
321 } else {
322 /* Reserve the memory at the top of memory. */
323 size = get_fadump_area_size();
324 base = memory_boundary - size;
325 memblock_reserve(base, size);
326 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327 "for firmware-assisted dump\n",
328 (unsigned long)(size >> 20),
329 (unsigned long)(base >> 20));
330 }
331 fw_dump.reserve_dump_area_start = base;
332 fw_dump.reserve_dump_area_size = size;
333 return 1;
334 }
335
336 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)337 static int __init early_fadump_param(char *p)
338 {
339 if (!p)
340 return 1;
341
342 if (strncmp(p, "on", 2) == 0)
343 fw_dump.fadump_enabled = 1;
344 else if (strncmp(p, "off", 3) == 0)
345 fw_dump.fadump_enabled = 0;
346
347 return 0;
348 }
349 early_param("fadump", early_fadump_param);
350
351 /* Look for fadump_reserve_mem= cmdline option */
early_fadump_reserve_mem(char * p)352 static int __init early_fadump_reserve_mem(char *p)
353 {
354 if (p)
355 fw_dump.reserve_bootvar = memparse(p, &p);
356 return 0;
357 }
358 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
359
register_fw_dump(struct fadump_mem_struct * fdm)360 static void register_fw_dump(struct fadump_mem_struct *fdm)
361 {
362 int rc;
363 unsigned int wait_time;
364
365 pr_debug("Registering for firmware-assisted kernel dump...\n");
366
367 /* TODO: Add upper time limit for the delay */
368 do {
369 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
370 FADUMP_REGISTER, fdm,
371 sizeof(struct fadump_mem_struct));
372
373 wait_time = rtas_busy_delay_time(rc);
374 if (wait_time)
375 mdelay(wait_time);
376
377 } while (wait_time);
378
379 switch (rc) {
380 case -1:
381 printk(KERN_ERR "Failed to register firmware-assisted kernel"
382 " dump. Hardware Error(%d).\n", rc);
383 break;
384 case -3:
385 printk(KERN_ERR "Failed to register firmware-assisted kernel"
386 " dump. Parameter Error(%d).\n", rc);
387 break;
388 case -9:
389 printk(KERN_ERR "firmware-assisted kernel dump is already "
390 " registered.");
391 fw_dump.dump_registered = 1;
392 break;
393 case 0:
394 printk(KERN_INFO "firmware-assisted kernel dump registration"
395 " is successful\n");
396 fw_dump.dump_registered = 1;
397 break;
398 }
399 }
400
crash_fadump(struct pt_regs * regs,const char * str)401 void crash_fadump(struct pt_regs *regs, const char *str)
402 {
403 struct fadump_crash_info_header *fdh = NULL;
404
405 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
406 return;
407
408 fdh = __va(fw_dump.fadumphdr_addr);
409 crashing_cpu = smp_processor_id();
410 fdh->crashing_cpu = crashing_cpu;
411 crash_save_vmcoreinfo();
412
413 if (regs)
414 fdh->regs = *regs;
415 else
416 ppc_save_regs(&fdh->regs);
417
418 fdh->cpu_online_mask = *cpu_online_mask;
419
420 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
421 rtas_os_term((char *)str);
422 }
423
424 #define GPR_MASK 0xffffff0000000000
fadump_gpr_index(u64 id)425 static inline int fadump_gpr_index(u64 id)
426 {
427 int i = -1;
428 char str[3];
429
430 if ((id & GPR_MASK) == REG_ID("GPR")) {
431 /* get the digits at the end */
432 id &= ~GPR_MASK;
433 id >>= 24;
434 str[2] = '\0';
435 str[1] = id & 0xff;
436 str[0] = (id >> 8) & 0xff;
437 sscanf(str, "%d", &i);
438 if (i > 31)
439 i = -1;
440 }
441 return i;
442 }
443
fadump_set_regval(struct pt_regs * regs,u64 reg_id,u64 reg_val)444 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
445 u64 reg_val)
446 {
447 int i;
448
449 i = fadump_gpr_index(reg_id);
450 if (i >= 0)
451 regs->gpr[i] = (unsigned long)reg_val;
452 else if (reg_id == REG_ID("NIA"))
453 regs->nip = (unsigned long)reg_val;
454 else if (reg_id == REG_ID("MSR"))
455 regs->msr = (unsigned long)reg_val;
456 else if (reg_id == REG_ID("CTR"))
457 regs->ctr = (unsigned long)reg_val;
458 else if (reg_id == REG_ID("LR"))
459 regs->link = (unsigned long)reg_val;
460 else if (reg_id == REG_ID("XER"))
461 regs->xer = (unsigned long)reg_val;
462 else if (reg_id == REG_ID("CR"))
463 regs->ccr = (unsigned long)reg_val;
464 else if (reg_id == REG_ID("DAR"))
465 regs->dar = (unsigned long)reg_val;
466 else if (reg_id == REG_ID("DSISR"))
467 regs->dsisr = (unsigned long)reg_val;
468 }
469
470 static struct fadump_reg_entry*
fadump_read_registers(struct fadump_reg_entry * reg_entry,struct pt_regs * regs)471 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
472 {
473 memset(regs, 0, sizeof(struct pt_regs));
474
475 while (reg_entry->reg_id != REG_ID("CPUEND")) {
476 fadump_set_regval(regs, reg_entry->reg_id,
477 reg_entry->reg_value);
478 reg_entry++;
479 }
480 reg_entry++;
481 return reg_entry;
482 }
483
fadump_append_elf_note(u32 * buf,char * name,unsigned type,void * data,size_t data_len)484 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
485 void *data, size_t data_len)
486 {
487 struct elf_note note;
488
489 note.n_namesz = strlen(name) + 1;
490 note.n_descsz = data_len;
491 note.n_type = type;
492 memcpy(buf, ¬e, sizeof(note));
493 buf += (sizeof(note) + 3)/4;
494 memcpy(buf, name, note.n_namesz);
495 buf += (note.n_namesz + 3)/4;
496 memcpy(buf, data, note.n_descsz);
497 buf += (note.n_descsz + 3)/4;
498
499 return buf;
500 }
501
fadump_final_note(u32 * buf)502 static void fadump_final_note(u32 *buf)
503 {
504 struct elf_note note;
505
506 note.n_namesz = 0;
507 note.n_descsz = 0;
508 note.n_type = 0;
509 memcpy(buf, ¬e, sizeof(note));
510 }
511
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)512 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
513 {
514 struct elf_prstatus prstatus;
515
516 memset(&prstatus, 0, sizeof(prstatus));
517 /*
518 * FIXME: How do i get PID? Do I really need it?
519 * prstatus.pr_pid = ????
520 */
521 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
522 buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
523 &prstatus, sizeof(prstatus));
524 return buf;
525 }
526
fadump_update_elfcore_header(char * bufp)527 static void fadump_update_elfcore_header(char *bufp)
528 {
529 struct elfhdr *elf;
530 struct elf_phdr *phdr;
531
532 elf = (struct elfhdr *)bufp;
533 bufp += sizeof(struct elfhdr);
534
535 /* First note is a place holder for cpu notes info. */
536 phdr = (struct elf_phdr *)bufp;
537
538 if (phdr->p_type == PT_NOTE) {
539 phdr->p_paddr = fw_dump.cpu_notes_buf;
540 phdr->p_offset = phdr->p_paddr;
541 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
542 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
543 }
544 return;
545 }
546
fadump_cpu_notes_buf_alloc(unsigned long size)547 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
548 {
549 void *vaddr;
550 struct page *page;
551 unsigned long order, count, i;
552
553 order = get_order(size);
554 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
555 if (!vaddr)
556 return NULL;
557
558 count = 1 << order;
559 page = virt_to_page(vaddr);
560 for (i = 0; i < count; i++)
561 SetPageReserved(page + i);
562 return vaddr;
563 }
564
fadump_cpu_notes_buf_free(unsigned long vaddr,unsigned long size)565 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
566 {
567 struct page *page;
568 unsigned long order, count, i;
569
570 order = get_order(size);
571 count = 1 << order;
572 page = virt_to_page(vaddr);
573 for (i = 0; i < count; i++)
574 ClearPageReserved(page + i);
575 __free_pages(page, order);
576 }
577
578 /*
579 * Read CPU state dump data and convert it into ELF notes.
580 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
581 * used to access the data to allow for additional fields to be added without
582 * affecting compatibility. Each list of registers for a CPU starts with
583 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
584 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
585 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
586 * of register value. For more details refer to PAPR document.
587 *
588 * Only for the crashing cpu we ignore the CPU dump data and get exact
589 * state from fadump crash info structure populated by first kernel at the
590 * time of crash.
591 */
fadump_build_cpu_notes(const struct fadump_mem_struct * fdm)592 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
593 {
594 struct fadump_reg_save_area_header *reg_header;
595 struct fadump_reg_entry *reg_entry;
596 struct fadump_crash_info_header *fdh = NULL;
597 void *vaddr;
598 unsigned long addr;
599 u32 num_cpus, *note_buf;
600 struct pt_regs regs;
601 int i, rc = 0, cpu = 0;
602
603 if (!fdm->cpu_state_data.bytes_dumped)
604 return -EINVAL;
605
606 addr = fdm->cpu_state_data.destination_address;
607 vaddr = __va(addr);
608
609 reg_header = vaddr;
610 if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
611 printk(KERN_ERR "Unable to read register save area.\n");
612 return -ENOENT;
613 }
614 pr_debug("--------CPU State Data------------\n");
615 pr_debug("Magic Number: %llx\n", reg_header->magic_number);
616 pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
617
618 vaddr += reg_header->num_cpu_offset;
619 num_cpus = *((u32 *)(vaddr));
620 pr_debug("NumCpus : %u\n", num_cpus);
621 vaddr += sizeof(u32);
622 reg_entry = (struct fadump_reg_entry *)vaddr;
623
624 /* Allocate buffer to hold cpu crash notes. */
625 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
626 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
627 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
628 if (!note_buf) {
629 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
630 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
631 return -ENOMEM;
632 }
633 fw_dump.cpu_notes_buf = __pa(note_buf);
634
635 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
636 (num_cpus * sizeof(note_buf_t)), note_buf);
637
638 if (fw_dump.fadumphdr_addr)
639 fdh = __va(fw_dump.fadumphdr_addr);
640
641 for (i = 0; i < num_cpus; i++) {
642 if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
643 printk(KERN_ERR "Unable to read CPU state data\n");
644 rc = -ENOENT;
645 goto error_out;
646 }
647 /* Lower 4 bytes of reg_value contains logical cpu id */
648 cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
649 if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
650 SKIP_TO_NEXT_CPU(reg_entry);
651 continue;
652 }
653 pr_debug("Reading register data for cpu %d...\n", cpu);
654 if (fdh && fdh->crashing_cpu == cpu) {
655 regs = fdh->regs;
656 note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
657 SKIP_TO_NEXT_CPU(reg_entry);
658 } else {
659 reg_entry++;
660 reg_entry = fadump_read_registers(reg_entry, ®s);
661 note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
662 }
663 }
664 fadump_final_note(note_buf);
665
666 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
667 fdh->elfcorehdr_addr);
668 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
669 return 0;
670
671 error_out:
672 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
673 fw_dump.cpu_notes_buf_size);
674 fw_dump.cpu_notes_buf = 0;
675 fw_dump.cpu_notes_buf_size = 0;
676 return rc;
677
678 }
679
680 /*
681 * Validate and process the dump data stored by firmware before exporting
682 * it through '/proc/vmcore'.
683 */
process_fadump(const struct fadump_mem_struct * fdm_active)684 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
685 {
686 struct fadump_crash_info_header *fdh;
687 int rc = 0;
688
689 if (!fdm_active || !fw_dump.fadumphdr_addr)
690 return -EINVAL;
691
692 /* Check if the dump data is valid. */
693 if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
694 (fdm_active->cpu_state_data.error_flags != 0) ||
695 (fdm_active->rmr_region.error_flags != 0)) {
696 printk(KERN_ERR "Dump taken by platform is not valid\n");
697 return -EINVAL;
698 }
699 if ((fdm_active->rmr_region.bytes_dumped !=
700 fdm_active->rmr_region.source_len) ||
701 !fdm_active->cpu_state_data.bytes_dumped) {
702 printk(KERN_ERR "Dump taken by platform is incomplete\n");
703 return -EINVAL;
704 }
705
706 /* Validate the fadump crash info header */
707 fdh = __va(fw_dump.fadumphdr_addr);
708 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
709 printk(KERN_ERR "Crash info header is not valid.\n");
710 return -EINVAL;
711 }
712
713 rc = fadump_build_cpu_notes(fdm_active);
714 if (rc)
715 return rc;
716
717 /*
718 * We are done validating dump info and elfcore header is now ready
719 * to be exported. set elfcorehdr_addr so that vmcore module will
720 * export the elfcore header through '/proc/vmcore'.
721 */
722 elfcorehdr_addr = fdh->elfcorehdr_addr;
723
724 return 0;
725 }
726
fadump_add_crash_memory(unsigned long long base,unsigned long long end)727 static inline void fadump_add_crash_memory(unsigned long long base,
728 unsigned long long end)
729 {
730 if (base == end)
731 return;
732
733 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
734 crash_mem_ranges, base, end - 1, (end - base));
735 crash_memory_ranges[crash_mem_ranges].base = base;
736 crash_memory_ranges[crash_mem_ranges].size = end - base;
737 crash_mem_ranges++;
738 }
739
fadump_exclude_reserved_area(unsigned long long start,unsigned long long end)740 static void fadump_exclude_reserved_area(unsigned long long start,
741 unsigned long long end)
742 {
743 unsigned long long ra_start, ra_end;
744
745 ra_start = fw_dump.reserve_dump_area_start;
746 ra_end = ra_start + fw_dump.reserve_dump_area_size;
747
748 if ((ra_start < end) && (ra_end > start)) {
749 if ((start < ra_start) && (end > ra_end)) {
750 fadump_add_crash_memory(start, ra_start);
751 fadump_add_crash_memory(ra_end, end);
752 } else if (start < ra_start) {
753 fadump_add_crash_memory(start, ra_start);
754 } else if (ra_end < end) {
755 fadump_add_crash_memory(ra_end, end);
756 }
757 } else
758 fadump_add_crash_memory(start, end);
759 }
760
fadump_init_elfcore_header(char * bufp)761 static int fadump_init_elfcore_header(char *bufp)
762 {
763 struct elfhdr *elf;
764
765 elf = (struct elfhdr *) bufp;
766 bufp += sizeof(struct elfhdr);
767 memcpy(elf->e_ident, ELFMAG, SELFMAG);
768 elf->e_ident[EI_CLASS] = ELF_CLASS;
769 elf->e_ident[EI_DATA] = ELF_DATA;
770 elf->e_ident[EI_VERSION] = EV_CURRENT;
771 elf->e_ident[EI_OSABI] = ELF_OSABI;
772 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
773 elf->e_type = ET_CORE;
774 elf->e_machine = ELF_ARCH;
775 elf->e_version = EV_CURRENT;
776 elf->e_entry = 0;
777 elf->e_phoff = sizeof(struct elfhdr);
778 elf->e_shoff = 0;
779 elf->e_flags = ELF_CORE_EFLAGS;
780 elf->e_ehsize = sizeof(struct elfhdr);
781 elf->e_phentsize = sizeof(struct elf_phdr);
782 elf->e_phnum = 0;
783 elf->e_shentsize = 0;
784 elf->e_shnum = 0;
785 elf->e_shstrndx = 0;
786
787 return 0;
788 }
789
790 /*
791 * Traverse through memblock structure and setup crash memory ranges. These
792 * ranges will be used create PT_LOAD program headers in elfcore header.
793 */
fadump_setup_crash_memory_ranges(void)794 static void fadump_setup_crash_memory_ranges(void)
795 {
796 struct memblock_region *reg;
797 unsigned long long start, end;
798
799 pr_debug("Setup crash memory ranges.\n");
800 crash_mem_ranges = 0;
801 /*
802 * add the first memory chunk (RMA_START through boot_memory_size) as
803 * a separate memory chunk. The reason is, at the time crash firmware
804 * will move the content of this memory chunk to different location
805 * specified during fadump registration. We need to create a separate
806 * program header for this chunk with the correct offset.
807 */
808 fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
809
810 for_each_memblock(memory, reg) {
811 start = (unsigned long long)reg->base;
812 end = start + (unsigned long long)reg->size;
813 if (start == RMA_START && end >= fw_dump.boot_memory_size)
814 start = fw_dump.boot_memory_size;
815
816 /* add this range excluding the reserved dump area. */
817 fadump_exclude_reserved_area(start, end);
818 }
819 }
820
821 /*
822 * If the given physical address falls within the boot memory region then
823 * return the relocated address that points to the dump region reserved
824 * for saving initial boot memory contents.
825 */
fadump_relocate(unsigned long paddr)826 static inline unsigned long fadump_relocate(unsigned long paddr)
827 {
828 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
829 return fdm.rmr_region.destination_address + paddr;
830 else
831 return paddr;
832 }
833
fadump_create_elfcore_headers(char * bufp)834 static int fadump_create_elfcore_headers(char *bufp)
835 {
836 struct elfhdr *elf;
837 struct elf_phdr *phdr;
838 int i;
839
840 fadump_init_elfcore_header(bufp);
841 elf = (struct elfhdr *)bufp;
842 bufp += sizeof(struct elfhdr);
843
844 /*
845 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
846 * will be populated during second kernel boot after crash. Hence
847 * this PT_NOTE will always be the first elf note.
848 *
849 * NOTE: Any new ELF note addition should be placed after this note.
850 */
851 phdr = (struct elf_phdr *)bufp;
852 bufp += sizeof(struct elf_phdr);
853 phdr->p_type = PT_NOTE;
854 phdr->p_flags = 0;
855 phdr->p_vaddr = 0;
856 phdr->p_align = 0;
857
858 phdr->p_offset = 0;
859 phdr->p_paddr = 0;
860 phdr->p_filesz = 0;
861 phdr->p_memsz = 0;
862
863 (elf->e_phnum)++;
864
865 /* setup ELF PT_NOTE for vmcoreinfo */
866 phdr = (struct elf_phdr *)bufp;
867 bufp += sizeof(struct elf_phdr);
868 phdr->p_type = PT_NOTE;
869 phdr->p_flags = 0;
870 phdr->p_vaddr = 0;
871 phdr->p_align = 0;
872
873 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
874 phdr->p_offset = phdr->p_paddr;
875 phdr->p_memsz = vmcoreinfo_max_size;
876 phdr->p_filesz = vmcoreinfo_max_size;
877
878 /* Increment number of program headers. */
879 (elf->e_phnum)++;
880
881 /* setup PT_LOAD sections. */
882
883 for (i = 0; i < crash_mem_ranges; i++) {
884 unsigned long long mbase, msize;
885 mbase = crash_memory_ranges[i].base;
886 msize = crash_memory_ranges[i].size;
887
888 if (!msize)
889 continue;
890
891 phdr = (struct elf_phdr *)bufp;
892 bufp += sizeof(struct elf_phdr);
893 phdr->p_type = PT_LOAD;
894 phdr->p_flags = PF_R|PF_W|PF_X;
895 phdr->p_offset = mbase;
896
897 if (mbase == RMA_START) {
898 /*
899 * The entire RMA region will be moved by firmware
900 * to the specified destination_address. Hence set
901 * the correct offset.
902 */
903 phdr->p_offset = fdm.rmr_region.destination_address;
904 }
905
906 phdr->p_paddr = mbase;
907 phdr->p_vaddr = (unsigned long)__va(mbase);
908 phdr->p_filesz = msize;
909 phdr->p_memsz = msize;
910 phdr->p_align = 0;
911
912 /* Increment number of program headers. */
913 (elf->e_phnum)++;
914 }
915 return 0;
916 }
917
init_fadump_header(unsigned long addr)918 static unsigned long init_fadump_header(unsigned long addr)
919 {
920 struct fadump_crash_info_header *fdh;
921
922 if (!addr)
923 return 0;
924
925 fw_dump.fadumphdr_addr = addr;
926 fdh = __va(addr);
927 addr += sizeof(struct fadump_crash_info_header);
928
929 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
930 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
931 fdh->elfcorehdr_addr = addr;
932 /* We will set the crashing cpu id in crash_fadump() during crash. */
933 fdh->crashing_cpu = CPU_UNKNOWN;
934
935 return addr;
936 }
937
register_fadump(void)938 static void register_fadump(void)
939 {
940 unsigned long addr;
941 void *vaddr;
942
943 /*
944 * If no memory is reserved then we can not register for firmware-
945 * assisted dump.
946 */
947 if (!fw_dump.reserve_dump_area_size)
948 return;
949
950 fadump_setup_crash_memory_ranges();
951
952 addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
953 /* Initialize fadump crash info header. */
954 addr = init_fadump_header(addr);
955 vaddr = __va(addr);
956
957 pr_debug("Creating ELF core headers at %#016lx\n", addr);
958 fadump_create_elfcore_headers(vaddr);
959
960 /* register the future kernel dump with firmware. */
961 register_fw_dump(&fdm);
962 }
963
fadump_unregister_dump(struct fadump_mem_struct * fdm)964 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
965 {
966 int rc = 0;
967 unsigned int wait_time;
968
969 pr_debug("Un-register firmware-assisted dump\n");
970
971 /* TODO: Add upper time limit for the delay */
972 do {
973 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
974 FADUMP_UNREGISTER, fdm,
975 sizeof(struct fadump_mem_struct));
976
977 wait_time = rtas_busy_delay_time(rc);
978 if (wait_time)
979 mdelay(wait_time);
980 } while (wait_time);
981
982 if (rc) {
983 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
984 " unexpected error(%d).\n", rc);
985 return rc;
986 }
987 fw_dump.dump_registered = 0;
988 return 0;
989 }
990
fadump_invalidate_dump(struct fadump_mem_struct * fdm)991 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
992 {
993 int rc = 0;
994 unsigned int wait_time;
995
996 pr_debug("Invalidating firmware-assisted dump registration\n");
997
998 /* TODO: Add upper time limit for the delay */
999 do {
1000 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1001 FADUMP_INVALIDATE, fdm,
1002 sizeof(struct fadump_mem_struct));
1003
1004 wait_time = rtas_busy_delay_time(rc);
1005 if (wait_time)
1006 mdelay(wait_time);
1007 } while (wait_time);
1008
1009 if (rc) {
1010 printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1011 "rgistration. unexpected error(%d).\n", rc);
1012 return rc;
1013 }
1014 fw_dump.dump_active = 0;
1015 fdm_active = NULL;
1016 return 0;
1017 }
1018
fadump_cleanup(void)1019 void fadump_cleanup(void)
1020 {
1021 /* Invalidate the registration only if dump is active. */
1022 if (fw_dump.dump_active) {
1023 init_fadump_mem_struct(&fdm,
1024 fdm_active->cpu_state_data.destination_address);
1025 fadump_invalidate_dump(&fdm);
1026 }
1027 }
1028
1029 /*
1030 * Release the memory that was reserved in early boot to preserve the memory
1031 * contents. The released memory will be available for general use.
1032 */
fadump_release_memory(unsigned long begin,unsigned long end)1033 static void fadump_release_memory(unsigned long begin, unsigned long end)
1034 {
1035 unsigned long addr;
1036 unsigned long ra_start, ra_end;
1037
1038 ra_start = fw_dump.reserve_dump_area_start;
1039 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1040
1041 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1042 /*
1043 * exclude the dump reserve area. Will reuse it for next
1044 * fadump registration.
1045 */
1046 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1047 continue;
1048
1049 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1050 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1051 free_page((unsigned long)__va(addr));
1052 totalram_pages++;
1053 }
1054 }
1055
fadump_invalidate_release_mem(void)1056 static void fadump_invalidate_release_mem(void)
1057 {
1058 unsigned long reserved_area_start, reserved_area_end;
1059 unsigned long destination_address;
1060
1061 mutex_lock(&fadump_mutex);
1062 if (!fw_dump.dump_active) {
1063 mutex_unlock(&fadump_mutex);
1064 return;
1065 }
1066
1067 destination_address = fdm_active->cpu_state_data.destination_address;
1068 fadump_cleanup();
1069 mutex_unlock(&fadump_mutex);
1070
1071 /*
1072 * Save the current reserved memory bounds we will require them
1073 * later for releasing the memory for general use.
1074 */
1075 reserved_area_start = fw_dump.reserve_dump_area_start;
1076 reserved_area_end = reserved_area_start +
1077 fw_dump.reserve_dump_area_size;
1078 /*
1079 * Setup reserve_dump_area_start and its size so that we can
1080 * reuse this reserved memory for Re-registration.
1081 */
1082 fw_dump.reserve_dump_area_start = destination_address;
1083 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1084
1085 fadump_release_memory(reserved_area_start, reserved_area_end);
1086 if (fw_dump.cpu_notes_buf) {
1087 fadump_cpu_notes_buf_free(
1088 (unsigned long)__va(fw_dump.cpu_notes_buf),
1089 fw_dump.cpu_notes_buf_size);
1090 fw_dump.cpu_notes_buf = 0;
1091 fw_dump.cpu_notes_buf_size = 0;
1092 }
1093 /* Initialize the kernel dump memory structure for FAD registration. */
1094 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1095 }
1096
fadump_release_memory_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1097 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1098 struct kobj_attribute *attr,
1099 const char *buf, size_t count)
1100 {
1101 if (!fw_dump.dump_active)
1102 return -EPERM;
1103
1104 if (buf[0] == '1') {
1105 /*
1106 * Take away the '/proc/vmcore'. We are releasing the dump
1107 * memory, hence it will not be valid anymore.
1108 */
1109 vmcore_cleanup();
1110 fadump_invalidate_release_mem();
1111
1112 } else
1113 return -EINVAL;
1114 return count;
1115 }
1116
fadump_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1117 static ssize_t fadump_enabled_show(struct kobject *kobj,
1118 struct kobj_attribute *attr,
1119 char *buf)
1120 {
1121 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1122 }
1123
fadump_register_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1124 static ssize_t fadump_register_show(struct kobject *kobj,
1125 struct kobj_attribute *attr,
1126 char *buf)
1127 {
1128 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1129 }
1130
fadump_register_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1131 static ssize_t fadump_register_store(struct kobject *kobj,
1132 struct kobj_attribute *attr,
1133 const char *buf, size_t count)
1134 {
1135 int ret = 0;
1136
1137 if (!fw_dump.fadump_enabled || fdm_active)
1138 return -EPERM;
1139
1140 mutex_lock(&fadump_mutex);
1141
1142 switch (buf[0]) {
1143 case '0':
1144 if (fw_dump.dump_registered == 0) {
1145 ret = -EINVAL;
1146 goto unlock_out;
1147 }
1148 /* Un-register Firmware-assisted dump */
1149 fadump_unregister_dump(&fdm);
1150 break;
1151 case '1':
1152 if (fw_dump.dump_registered == 1) {
1153 ret = -EINVAL;
1154 goto unlock_out;
1155 }
1156 /* Register Firmware-assisted dump */
1157 register_fadump();
1158 break;
1159 default:
1160 ret = -EINVAL;
1161 break;
1162 }
1163
1164 unlock_out:
1165 mutex_unlock(&fadump_mutex);
1166 return ret < 0 ? ret : count;
1167 }
1168
fadump_region_show(struct seq_file * m,void * private)1169 static int fadump_region_show(struct seq_file *m, void *private)
1170 {
1171 const struct fadump_mem_struct *fdm_ptr;
1172
1173 if (!fw_dump.fadump_enabled)
1174 return 0;
1175
1176 mutex_lock(&fadump_mutex);
1177 if (fdm_active)
1178 fdm_ptr = fdm_active;
1179 else {
1180 mutex_unlock(&fadump_mutex);
1181 fdm_ptr = &fdm;
1182 }
1183
1184 seq_printf(m,
1185 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1186 "Dumped: %#llx\n",
1187 fdm_ptr->cpu_state_data.destination_address,
1188 fdm_ptr->cpu_state_data.destination_address +
1189 fdm_ptr->cpu_state_data.source_len - 1,
1190 fdm_ptr->cpu_state_data.source_len,
1191 fdm_ptr->cpu_state_data.bytes_dumped);
1192 seq_printf(m,
1193 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1194 "Dumped: %#llx\n",
1195 fdm_ptr->hpte_region.destination_address,
1196 fdm_ptr->hpte_region.destination_address +
1197 fdm_ptr->hpte_region.source_len - 1,
1198 fdm_ptr->hpte_region.source_len,
1199 fdm_ptr->hpte_region.bytes_dumped);
1200 seq_printf(m,
1201 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1202 "Dumped: %#llx\n",
1203 fdm_ptr->rmr_region.destination_address,
1204 fdm_ptr->rmr_region.destination_address +
1205 fdm_ptr->rmr_region.source_len - 1,
1206 fdm_ptr->rmr_region.source_len,
1207 fdm_ptr->rmr_region.bytes_dumped);
1208
1209 if (!fdm_active ||
1210 (fw_dump.reserve_dump_area_start ==
1211 fdm_ptr->cpu_state_data.destination_address))
1212 goto out;
1213
1214 /* Dump is active. Show reserved memory region. */
1215 seq_printf(m,
1216 " : [%#016llx-%#016llx] %#llx bytes, "
1217 "Dumped: %#llx\n",
1218 (unsigned long long)fw_dump.reserve_dump_area_start,
1219 fdm_ptr->cpu_state_data.destination_address - 1,
1220 fdm_ptr->cpu_state_data.destination_address -
1221 fw_dump.reserve_dump_area_start,
1222 fdm_ptr->cpu_state_data.destination_address -
1223 fw_dump.reserve_dump_area_start);
1224 out:
1225 if (fdm_active)
1226 mutex_unlock(&fadump_mutex);
1227 return 0;
1228 }
1229
1230 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1231 0200, NULL,
1232 fadump_release_memory_store);
1233 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1234 0444, fadump_enabled_show,
1235 NULL);
1236 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1237 0644, fadump_register_show,
1238 fadump_register_store);
1239
fadump_region_open(struct inode * inode,struct file * file)1240 static int fadump_region_open(struct inode *inode, struct file *file)
1241 {
1242 return single_open(file, fadump_region_show, inode->i_private);
1243 }
1244
1245 static const struct file_operations fadump_region_fops = {
1246 .open = fadump_region_open,
1247 .read = seq_read,
1248 .llseek = seq_lseek,
1249 .release = single_release,
1250 };
1251
fadump_init_files(void)1252 static void fadump_init_files(void)
1253 {
1254 struct dentry *debugfs_file;
1255 int rc = 0;
1256
1257 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1258 if (rc)
1259 printk(KERN_ERR "fadump: unable to create sysfs file"
1260 " fadump_enabled (%d)\n", rc);
1261
1262 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1263 if (rc)
1264 printk(KERN_ERR "fadump: unable to create sysfs file"
1265 " fadump_registered (%d)\n", rc);
1266
1267 debugfs_file = debugfs_create_file("fadump_region", 0444,
1268 powerpc_debugfs_root, NULL,
1269 &fadump_region_fops);
1270 if (!debugfs_file)
1271 printk(KERN_ERR "fadump: unable to create debugfs file"
1272 " fadump_region\n");
1273
1274 if (fw_dump.dump_active) {
1275 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1276 if (rc)
1277 printk(KERN_ERR "fadump: unable to create sysfs file"
1278 " fadump_release_mem (%d)\n", rc);
1279 }
1280 return;
1281 }
1282
1283 /*
1284 * Prepare for firmware-assisted dump.
1285 */
setup_fadump(void)1286 int __init setup_fadump(void)
1287 {
1288 if (!fw_dump.fadump_enabled)
1289 return 0;
1290
1291 if (!fw_dump.fadump_supported) {
1292 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1293 " this hardware\n");
1294 return 0;
1295 }
1296
1297 fadump_show_config();
1298 /*
1299 * If dump data is available then see if it is valid and prepare for
1300 * saving it to the disk.
1301 */
1302 if (fw_dump.dump_active) {
1303 /*
1304 * if dump process fails then invalidate the registration
1305 * and release memory before proceeding for re-registration.
1306 */
1307 if (process_fadump(fdm_active) < 0)
1308 fadump_invalidate_release_mem();
1309 }
1310 /* Initialize the kernel dump memory structure for FAD registration. */
1311 else if (fw_dump.reserve_dump_area_size)
1312 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1313 fadump_init_files();
1314
1315 return 1;
1316 }
1317 subsys_initcall(setup_fadump);
1318