1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == EXTENT_CACHE) {
89 mem_size = (atomic_read(&sbi->total_ext_tree) *
90 sizeof(struct extent_tree) +
91 atomic_read(&sbi->total_ext_node) *
92 sizeof(struct extent_node)) >> PAGE_SHIFT;
93 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
94 } else if (type == DISCARD_CACHE) {
95 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
96 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
97 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
98 } else if (type == COMPRESS_PAGE) {
99 #ifdef CONFIG_F2FS_FS_COMPRESSION
100 unsigned long free_ram = val.freeram;
101
102 /*
103 * free memory is lower than watermark or cached page count
104 * exceed threshold, deny caching compress page.
105 */
106 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
107 (COMPRESS_MAPPING(sbi)->nrpages <
108 free_ram * sbi->compress_percent / 100);
109 #else
110 res = false;
111 #endif
112 } else {
113 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
114 return true;
115 }
116 return res;
117 }
118
clear_node_page_dirty(struct page * page)119 static void clear_node_page_dirty(struct page *page)
120 {
121 if (PageDirty(page)) {
122 f2fs_clear_page_cache_dirty_tag(page);
123 clear_page_dirty_for_io(page);
124 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
125 }
126 ClearPageUptodate(page);
127 }
128
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
130 {
131 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
132 }
133
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 {
136 struct page *src_page;
137 struct page *dst_page;
138 pgoff_t dst_off;
139 void *src_addr;
140 void *dst_addr;
141 struct f2fs_nm_info *nm_i = NM_I(sbi);
142
143 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
144
145 /* get current nat block page with lock */
146 src_page = get_current_nat_page(sbi, nid);
147 if (IS_ERR(src_page))
148 return src_page;
149 dst_page = f2fs_grab_meta_page(sbi, dst_off);
150 f2fs_bug_on(sbi, PageDirty(src_page));
151
152 src_addr = page_address(src_page);
153 dst_addr = page_address(dst_page);
154 memcpy(dst_addr, src_addr, PAGE_SIZE);
155 set_page_dirty(dst_page);
156 f2fs_put_page(src_page, 1);
157
158 set_to_next_nat(nm_i, nid);
159
160 return dst_page;
161 }
162
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
164 nid_t nid, bool no_fail)
165 {
166 struct nat_entry *new;
167
168 new = f2fs_kmem_cache_alloc(nat_entry_slab,
169 GFP_F2FS_ZERO, no_fail, sbi);
170 if (new) {
171 nat_set_nid(new, nid);
172 nat_reset_flag(new);
173 }
174 return new;
175 }
176
__free_nat_entry(struct nat_entry * e)177 static void __free_nat_entry(struct nat_entry *e)
178 {
179 kmem_cache_free(nat_entry_slab, e);
180 }
181
182 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
184 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
185 {
186 if (no_fail)
187 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
188 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
189 return NULL;
190
191 if (raw_ne)
192 node_info_from_raw_nat(&ne->ni, raw_ne);
193
194 spin_lock(&nm_i->nat_list_lock);
195 list_add_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197
198 nm_i->nat_cnt[TOTAL_NAT]++;
199 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
200 return ne;
201 }
202
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
204 {
205 struct nat_entry *ne;
206
207 ne = radix_tree_lookup(&nm_i->nat_root, n);
208
209 /* for recent accessed nat entry, move it to tail of lru list */
210 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
211 spin_lock(&nm_i->nat_list_lock);
212 if (!list_empty(&ne->list))
213 list_move_tail(&ne->list, &nm_i->nat_entries);
214 spin_unlock(&nm_i->nat_list_lock);
215 }
216
217 return ne;
218 }
219
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
221 nid_t start, unsigned int nr, struct nat_entry **ep)
222 {
223 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
224 }
225
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
227 {
228 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
229 nm_i->nat_cnt[TOTAL_NAT]--;
230 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
231 __free_nat_entry(e);
232 }
233
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
235 struct nat_entry *ne)
236 {
237 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
238 struct nat_entry_set *head;
239
240 head = radix_tree_lookup(&nm_i->nat_set_root, set);
241 if (!head) {
242 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
243 GFP_NOFS, true, NULL);
244
245 INIT_LIST_HEAD(&head->entry_list);
246 INIT_LIST_HEAD(&head->set_list);
247 head->set = set;
248 head->entry_cnt = 0;
249 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
250 }
251 return head;
252 }
253
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
255 struct nat_entry *ne)
256 {
257 struct nat_entry_set *head;
258 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
259
260 if (!new_ne)
261 head = __grab_nat_entry_set(nm_i, ne);
262
263 /*
264 * update entry_cnt in below condition:
265 * 1. update NEW_ADDR to valid block address;
266 * 2. update old block address to new one;
267 */
268 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
269 !get_nat_flag(ne, IS_DIRTY)))
270 head->entry_cnt++;
271
272 set_nat_flag(ne, IS_PREALLOC, new_ne);
273
274 if (get_nat_flag(ne, IS_DIRTY))
275 goto refresh_list;
276
277 nm_i->nat_cnt[DIRTY_NAT]++;
278 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
279 set_nat_flag(ne, IS_DIRTY, true);
280 refresh_list:
281 spin_lock(&nm_i->nat_list_lock);
282 if (new_ne)
283 list_del_init(&ne->list);
284 else
285 list_move_tail(&ne->list, &head->entry_list);
286 spin_unlock(&nm_i->nat_list_lock);
287 }
288
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
290 struct nat_entry_set *set, struct nat_entry *ne)
291 {
292 spin_lock(&nm_i->nat_list_lock);
293 list_move_tail(&ne->list, &nm_i->nat_entries);
294 spin_unlock(&nm_i->nat_list_lock);
295
296 set_nat_flag(ne, IS_DIRTY, false);
297 set->entry_cnt--;
298 nm_i->nat_cnt[DIRTY_NAT]--;
299 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
300 }
301
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
303 nid_t start, unsigned int nr, struct nat_entry_set **ep)
304 {
305 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
306 start, nr);
307 }
308
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
310 {
311 return NODE_MAPPING(sbi) == page->mapping &&
312 IS_DNODE(page) && is_cold_node(page);
313 }
314
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
316 {
317 spin_lock_init(&sbi->fsync_node_lock);
318 INIT_LIST_HEAD(&sbi->fsync_node_list);
319 sbi->fsync_seg_id = 0;
320 sbi->fsync_node_num = 0;
321 }
322
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
324 struct page *page)
325 {
326 struct fsync_node_entry *fn;
327 unsigned long flags;
328 unsigned int seq_id;
329
330 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
331 GFP_NOFS, true, NULL);
332
333 get_page(page);
334 fn->page = page;
335 INIT_LIST_HEAD(&fn->list);
336
337 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
338 list_add_tail(&fn->list, &sbi->fsync_node_list);
339 fn->seq_id = sbi->fsync_seg_id++;
340 seq_id = fn->seq_id;
341 sbi->fsync_node_num++;
342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343
344 return seq_id;
345 }
346
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
348 {
349 struct fsync_node_entry *fn;
350 unsigned long flags;
351
352 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
353 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
354 if (fn->page == page) {
355 list_del(&fn->list);
356 sbi->fsync_node_num--;
357 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
358 kmem_cache_free(fsync_node_entry_slab, fn);
359 put_page(page);
360 return;
361 }
362 }
363 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
364 f2fs_bug_on(sbi, 1);
365 }
366
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
368 {
369 unsigned long flags;
370
371 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
372 sbi->fsync_seg_id = 0;
373 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
374 }
375
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
377 {
378 struct f2fs_nm_info *nm_i = NM_I(sbi);
379 struct nat_entry *e;
380 bool need = false;
381
382 f2fs_down_read(&nm_i->nat_tree_lock);
383 e = __lookup_nat_cache(nm_i, nid);
384 if (e) {
385 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
386 !get_nat_flag(e, HAS_FSYNCED_INODE))
387 need = true;
388 }
389 f2fs_up_read(&nm_i->nat_tree_lock);
390 return need;
391 }
392
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
394 {
395 struct f2fs_nm_info *nm_i = NM_I(sbi);
396 struct nat_entry *e;
397 bool is_cp = true;
398
399 f2fs_down_read(&nm_i->nat_tree_lock);
400 e = __lookup_nat_cache(nm_i, nid);
401 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
402 is_cp = false;
403 f2fs_up_read(&nm_i->nat_tree_lock);
404 return is_cp;
405 }
406
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
408 {
409 struct f2fs_nm_info *nm_i = NM_I(sbi);
410 struct nat_entry *e;
411 bool need_update = true;
412
413 f2fs_down_read(&nm_i->nat_tree_lock);
414 e = __lookup_nat_cache(nm_i, ino);
415 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
416 (get_nat_flag(e, IS_CHECKPOINTED) ||
417 get_nat_flag(e, HAS_FSYNCED_INODE)))
418 need_update = false;
419 f2fs_up_read(&nm_i->nat_tree_lock);
420 return need_update;
421 }
422
423 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
425 struct f2fs_nat_entry *ne)
426 {
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *new, *e;
429
430 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
431 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
432 return;
433
434 new = __alloc_nat_entry(sbi, nid, false);
435 if (!new)
436 return;
437
438 f2fs_down_write(&nm_i->nat_tree_lock);
439 e = __lookup_nat_cache(nm_i, nid);
440 if (!e)
441 e = __init_nat_entry(nm_i, new, ne, false);
442 else
443 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
444 nat_get_blkaddr(e) !=
445 le32_to_cpu(ne->block_addr) ||
446 nat_get_version(e) != ne->version);
447 f2fs_up_write(&nm_i->nat_tree_lock);
448 if (e != new)
449 __free_nat_entry(new);
450 }
451
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
453 block_t new_blkaddr, bool fsync_done)
454 {
455 struct f2fs_nm_info *nm_i = NM_I(sbi);
456 struct nat_entry *e;
457 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
458
459 f2fs_down_write(&nm_i->nat_tree_lock);
460 e = __lookup_nat_cache(nm_i, ni->nid);
461 if (!e) {
462 e = __init_nat_entry(nm_i, new, NULL, true);
463 copy_node_info(&e->ni, ni);
464 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
465 } else if (new_blkaddr == NEW_ADDR) {
466 /*
467 * when nid is reallocated,
468 * previous nat entry can be remained in nat cache.
469 * So, reinitialize it with new information.
470 */
471 copy_node_info(&e->ni, ni);
472 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
473 }
474 /* let's free early to reduce memory consumption */
475 if (e != new)
476 __free_nat_entry(new);
477
478 /* sanity check */
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
480 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
481 new_blkaddr == NULL_ADDR);
482 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
483 new_blkaddr == NEW_ADDR);
484 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
485 new_blkaddr == NEW_ADDR);
486
487 /* increment version no as node is removed */
488 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
489 unsigned char version = nat_get_version(e);
490
491 nat_set_version(e, inc_node_version(version));
492 }
493
494 /* change address */
495 nat_set_blkaddr(e, new_blkaddr);
496 if (!__is_valid_data_blkaddr(new_blkaddr))
497 set_nat_flag(e, IS_CHECKPOINTED, false);
498 __set_nat_cache_dirty(nm_i, e);
499
500 /* update fsync_mark if its inode nat entry is still alive */
501 if (ni->nid != ni->ino)
502 e = __lookup_nat_cache(nm_i, ni->ino);
503 if (e) {
504 if (fsync_done && ni->nid == ni->ino)
505 set_nat_flag(e, HAS_FSYNCED_INODE, true);
506 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
507 }
508 f2fs_up_write(&nm_i->nat_tree_lock);
509 }
510
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
512 {
513 struct f2fs_nm_info *nm_i = NM_I(sbi);
514 int nr = nr_shrink;
515
516 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
517 return 0;
518
519 spin_lock(&nm_i->nat_list_lock);
520 while (nr_shrink) {
521 struct nat_entry *ne;
522
523 if (list_empty(&nm_i->nat_entries))
524 break;
525
526 ne = list_first_entry(&nm_i->nat_entries,
527 struct nat_entry, list);
528 list_del(&ne->list);
529 spin_unlock(&nm_i->nat_list_lock);
530
531 __del_from_nat_cache(nm_i, ne);
532 nr_shrink--;
533
534 spin_lock(&nm_i->nat_list_lock);
535 }
536 spin_unlock(&nm_i->nat_list_lock);
537
538 f2fs_up_write(&nm_i->nat_tree_lock);
539 return nr - nr_shrink;
540 }
541
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
543 struct node_info *ni, bool checkpoint_context)
544 {
545 struct f2fs_nm_info *nm_i = NM_I(sbi);
546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
547 struct f2fs_journal *journal = curseg->journal;
548 nid_t start_nid = START_NID(nid);
549 struct f2fs_nat_block *nat_blk;
550 struct page *page = NULL;
551 struct f2fs_nat_entry ne;
552 struct nat_entry *e;
553 pgoff_t index;
554 block_t blkaddr;
555 int i;
556
557 ni->nid = nid;
558 retry:
559 /* Check nat cache */
560 f2fs_down_read(&nm_i->nat_tree_lock);
561 e = __lookup_nat_cache(nm_i, nid);
562 if (e) {
563 ni->ino = nat_get_ino(e);
564 ni->blk_addr = nat_get_blkaddr(e);
565 ni->version = nat_get_version(e);
566 f2fs_up_read(&nm_i->nat_tree_lock);
567 return 0;
568 }
569
570 /*
571 * Check current segment summary by trying to grab journal_rwsem first.
572 * This sem is on the critical path on the checkpoint requiring the above
573 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
574 * while not bothering checkpoint.
575 */
576 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
577 down_read(&curseg->journal_rwsem);
578 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
579 !down_read_trylock(&curseg->journal_rwsem)) {
580 f2fs_up_read(&nm_i->nat_tree_lock);
581 goto retry;
582 }
583
584 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
585 if (i >= 0) {
586 ne = nat_in_journal(journal, i);
587 node_info_from_raw_nat(ni, &ne);
588 }
589 up_read(&curseg->journal_rwsem);
590 if (i >= 0) {
591 f2fs_up_read(&nm_i->nat_tree_lock);
592 goto cache;
593 }
594
595 /* Fill node_info from nat page */
596 index = current_nat_addr(sbi, nid);
597 f2fs_up_read(&nm_i->nat_tree_lock);
598
599 page = f2fs_get_meta_page(sbi, index);
600 if (IS_ERR(page))
601 return PTR_ERR(page);
602
603 nat_blk = (struct f2fs_nat_block *)page_address(page);
604 ne = nat_blk->entries[nid - start_nid];
605 node_info_from_raw_nat(ni, &ne);
606 f2fs_put_page(page, 1);
607 cache:
608 blkaddr = le32_to_cpu(ne.block_addr);
609 if (__is_valid_data_blkaddr(blkaddr) &&
610 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
611 return -EFAULT;
612
613 /* cache nat entry */
614 cache_nat_entry(sbi, nid, &ne);
615 return 0;
616 }
617
618 /*
619 * readahead MAX_RA_NODE number of node pages.
620 */
f2fs_ra_node_pages(struct page * parent,int start,int n)621 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
622 {
623 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
624 struct blk_plug plug;
625 int i, end;
626 nid_t nid;
627
628 blk_start_plug(&plug);
629
630 /* Then, try readahead for siblings of the desired node */
631 end = start + n;
632 end = min(end, NIDS_PER_BLOCK);
633 for (i = start; i < end; i++) {
634 nid = get_nid(parent, i, false);
635 f2fs_ra_node_page(sbi, nid);
636 }
637
638 blk_finish_plug(&plug);
639 }
640
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
642 {
643 const long direct_index = ADDRS_PER_INODE(dn->inode);
644 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
645 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
646 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
647 int cur_level = dn->cur_level;
648 int max_level = dn->max_level;
649 pgoff_t base = 0;
650
651 if (!dn->max_level)
652 return pgofs + 1;
653
654 while (max_level-- > cur_level)
655 skipped_unit *= NIDS_PER_BLOCK;
656
657 switch (dn->max_level) {
658 case 3:
659 base += 2 * indirect_blks;
660 fallthrough;
661 case 2:
662 base += 2 * direct_blks;
663 fallthrough;
664 case 1:
665 base += direct_index;
666 break;
667 default:
668 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
669 }
670
671 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
672 }
673
674 /*
675 * The maximum depth is four.
676 * Offset[0] will have raw inode offset.
677 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])678 static int get_node_path(struct inode *inode, long block,
679 int offset[4], unsigned int noffset[4])
680 {
681 const long direct_index = ADDRS_PER_INODE(inode);
682 const long direct_blks = ADDRS_PER_BLOCK(inode);
683 const long dptrs_per_blk = NIDS_PER_BLOCK;
684 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
685 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
686 int n = 0;
687 int level = 0;
688
689 noffset[0] = 0;
690
691 if (block < direct_index) {
692 offset[n] = block;
693 goto got;
694 }
695 block -= direct_index;
696 if (block < direct_blks) {
697 offset[n++] = NODE_DIR1_BLOCK;
698 noffset[n] = 1;
699 offset[n] = block;
700 level = 1;
701 goto got;
702 }
703 block -= direct_blks;
704 if (block < direct_blks) {
705 offset[n++] = NODE_DIR2_BLOCK;
706 noffset[n] = 2;
707 offset[n] = block;
708 level = 1;
709 goto got;
710 }
711 block -= direct_blks;
712 if (block < indirect_blks) {
713 offset[n++] = NODE_IND1_BLOCK;
714 noffset[n] = 3;
715 offset[n++] = block / direct_blks;
716 noffset[n] = 4 + offset[n - 1];
717 offset[n] = block % direct_blks;
718 level = 2;
719 goto got;
720 }
721 block -= indirect_blks;
722 if (block < indirect_blks) {
723 offset[n++] = NODE_IND2_BLOCK;
724 noffset[n] = 4 + dptrs_per_blk;
725 offset[n++] = block / direct_blks;
726 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
727 offset[n] = block % direct_blks;
728 level = 2;
729 goto got;
730 }
731 block -= indirect_blks;
732 if (block < dindirect_blks) {
733 offset[n++] = NODE_DIND_BLOCK;
734 noffset[n] = 5 + (dptrs_per_blk * 2);
735 offset[n++] = block / indirect_blks;
736 noffset[n] = 6 + (dptrs_per_blk * 2) +
737 offset[n - 1] * (dptrs_per_blk + 1);
738 offset[n++] = (block / direct_blks) % dptrs_per_blk;
739 noffset[n] = 7 + (dptrs_per_blk * 2) +
740 offset[n - 2] * (dptrs_per_blk + 1) +
741 offset[n - 1];
742 offset[n] = block % direct_blks;
743 level = 3;
744 goto got;
745 } else {
746 return -E2BIG;
747 }
748 got:
749 return level;
750 }
751
752 /*
753 * Caller should call f2fs_put_dnode(dn).
754 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
755 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
756 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
758 {
759 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
760 struct page *npage[4];
761 struct page *parent = NULL;
762 int offset[4];
763 unsigned int noffset[4];
764 nid_t nids[4];
765 int level, i = 0;
766 int err = 0;
767
768 level = get_node_path(dn->inode, index, offset, noffset);
769 if (level < 0)
770 return level;
771
772 nids[0] = dn->inode->i_ino;
773 npage[0] = dn->inode_page;
774
775 if (!npage[0]) {
776 npage[0] = f2fs_get_node_page(sbi, nids[0]);
777 if (IS_ERR(npage[0]))
778 return PTR_ERR(npage[0]);
779 }
780
781 /* if inline_data is set, should not report any block indices */
782 if (f2fs_has_inline_data(dn->inode) && index) {
783 err = -ENOENT;
784 f2fs_put_page(npage[0], 1);
785 goto release_out;
786 }
787
788 parent = npage[0];
789 if (level != 0)
790 nids[1] = get_nid(parent, offset[0], true);
791 dn->inode_page = npage[0];
792 dn->inode_page_locked = true;
793
794 /* get indirect or direct nodes */
795 for (i = 1; i <= level; i++) {
796 bool done = false;
797
798 if (!nids[i] && mode == ALLOC_NODE) {
799 /* alloc new node */
800 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
801 err = -ENOSPC;
802 goto release_pages;
803 }
804
805 dn->nid = nids[i];
806 npage[i] = f2fs_new_node_page(dn, noffset[i]);
807 if (IS_ERR(npage[i])) {
808 f2fs_alloc_nid_failed(sbi, nids[i]);
809 err = PTR_ERR(npage[i]);
810 goto release_pages;
811 }
812
813 set_nid(parent, offset[i - 1], nids[i], i == 1);
814 f2fs_alloc_nid_done(sbi, nids[i]);
815 done = true;
816 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
817 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
818 if (IS_ERR(npage[i])) {
819 err = PTR_ERR(npage[i]);
820 goto release_pages;
821 }
822 done = true;
823 }
824 if (i == 1) {
825 dn->inode_page_locked = false;
826 unlock_page(parent);
827 } else {
828 f2fs_put_page(parent, 1);
829 }
830
831 if (!done) {
832 npage[i] = f2fs_get_node_page(sbi, nids[i]);
833 if (IS_ERR(npage[i])) {
834 err = PTR_ERR(npage[i]);
835 f2fs_put_page(npage[0], 0);
836 goto release_out;
837 }
838 }
839 if (i < level) {
840 parent = npage[i];
841 nids[i + 1] = get_nid(parent, offset[i], false);
842 }
843 }
844 dn->nid = nids[level];
845 dn->ofs_in_node = offset[level];
846 dn->node_page = npage[level];
847 dn->data_blkaddr = f2fs_data_blkaddr(dn);
848
849 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
850 f2fs_sb_has_readonly(sbi)) {
851 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
852 block_t blkaddr;
853
854 if (!c_len)
855 goto out;
856
857 blkaddr = f2fs_data_blkaddr(dn);
858 if (blkaddr == COMPRESS_ADDR)
859 blkaddr = data_blkaddr(dn->inode, dn->node_page,
860 dn->ofs_in_node + 1);
861
862 f2fs_update_extent_tree_range_compressed(dn->inode,
863 index, blkaddr,
864 F2FS_I(dn->inode)->i_cluster_size,
865 c_len);
866 }
867 out:
868 return 0;
869
870 release_pages:
871 f2fs_put_page(parent, 1);
872 if (i > 1)
873 f2fs_put_page(npage[0], 0);
874 release_out:
875 dn->inode_page = NULL;
876 dn->node_page = NULL;
877 if (err == -ENOENT) {
878 dn->cur_level = i;
879 dn->max_level = level;
880 dn->ofs_in_node = offset[level];
881 }
882 return err;
883 }
884
truncate_node(struct dnode_of_data * dn)885 static int truncate_node(struct dnode_of_data *dn)
886 {
887 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
888 struct node_info ni;
889 int err;
890 pgoff_t index;
891
892 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
893 if (err)
894 return err;
895
896 /* Deallocate node address */
897 f2fs_invalidate_blocks(sbi, ni.blk_addr);
898 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
899 set_node_addr(sbi, &ni, NULL_ADDR, false);
900
901 if (dn->nid == dn->inode->i_ino) {
902 f2fs_remove_orphan_inode(sbi, dn->nid);
903 dec_valid_inode_count(sbi);
904 f2fs_inode_synced(dn->inode);
905 }
906
907 clear_node_page_dirty(dn->node_page);
908 set_sbi_flag(sbi, SBI_IS_DIRTY);
909
910 index = dn->node_page->index;
911 f2fs_put_page(dn->node_page, 1);
912
913 invalidate_mapping_pages(NODE_MAPPING(sbi),
914 index, index);
915
916 dn->node_page = NULL;
917 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
918
919 return 0;
920 }
921
truncate_dnode(struct dnode_of_data * dn)922 static int truncate_dnode(struct dnode_of_data *dn)
923 {
924 struct page *page;
925 int err;
926
927 if (dn->nid == 0)
928 return 1;
929
930 /* get direct node */
931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 if (PTR_ERR(page) == -ENOENT)
933 return 1;
934 else if (IS_ERR(page))
935 return PTR_ERR(page);
936
937 /* Make dnode_of_data for parameter */
938 dn->node_page = page;
939 dn->ofs_in_node = 0;
940 f2fs_truncate_data_blocks(dn);
941 err = truncate_node(dn);
942 if (err)
943 return err;
944
945 return 1;
946 }
947
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
949 int ofs, int depth)
950 {
951 struct dnode_of_data rdn = *dn;
952 struct page *page;
953 struct f2fs_node *rn;
954 nid_t child_nid;
955 unsigned int child_nofs;
956 int freed = 0;
957 int i, ret;
958
959 if (dn->nid == 0)
960 return NIDS_PER_BLOCK + 1;
961
962 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
963
964 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
965 if (IS_ERR(page)) {
966 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
967 return PTR_ERR(page);
968 }
969
970 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
971
972 rn = F2FS_NODE(page);
973 if (depth < 3) {
974 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
975 child_nid = le32_to_cpu(rn->in.nid[i]);
976 if (child_nid == 0)
977 continue;
978 rdn.nid = child_nid;
979 ret = truncate_dnode(&rdn);
980 if (ret < 0)
981 goto out_err;
982 if (set_nid(page, i, 0, false))
983 dn->node_changed = true;
984 }
985 } else {
986 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
987 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
988 child_nid = le32_to_cpu(rn->in.nid[i]);
989 if (child_nid == 0) {
990 child_nofs += NIDS_PER_BLOCK + 1;
991 continue;
992 }
993 rdn.nid = child_nid;
994 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
995 if (ret == (NIDS_PER_BLOCK + 1)) {
996 if (set_nid(page, i, 0, false))
997 dn->node_changed = true;
998 child_nofs += ret;
999 } else if (ret < 0 && ret != -ENOENT) {
1000 goto out_err;
1001 }
1002 }
1003 freed = child_nofs;
1004 }
1005
1006 if (!ofs) {
1007 /* remove current indirect node */
1008 dn->node_page = page;
1009 ret = truncate_node(dn);
1010 if (ret)
1011 goto out_err;
1012 freed++;
1013 } else {
1014 f2fs_put_page(page, 1);
1015 }
1016 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1017 return freed;
1018
1019 out_err:
1020 f2fs_put_page(page, 1);
1021 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1022 return ret;
1023 }
1024
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1025 static int truncate_partial_nodes(struct dnode_of_data *dn,
1026 struct f2fs_inode *ri, int *offset, int depth)
1027 {
1028 struct page *pages[2];
1029 nid_t nid[3];
1030 nid_t child_nid;
1031 int err = 0;
1032 int i;
1033 int idx = depth - 2;
1034
1035 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1036 if (!nid[0])
1037 return 0;
1038
1039 /* get indirect nodes in the path */
1040 for (i = 0; i < idx + 1; i++) {
1041 /* reference count'll be increased */
1042 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1043 if (IS_ERR(pages[i])) {
1044 err = PTR_ERR(pages[i]);
1045 idx = i - 1;
1046 goto fail;
1047 }
1048 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1049 }
1050
1051 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1052
1053 /* free direct nodes linked to a partial indirect node */
1054 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1055 child_nid = get_nid(pages[idx], i, false);
1056 if (!child_nid)
1057 continue;
1058 dn->nid = child_nid;
1059 err = truncate_dnode(dn);
1060 if (err < 0)
1061 goto fail;
1062 if (set_nid(pages[idx], i, 0, false))
1063 dn->node_changed = true;
1064 }
1065
1066 if (offset[idx + 1] == 0) {
1067 dn->node_page = pages[idx];
1068 dn->nid = nid[idx];
1069 err = truncate_node(dn);
1070 if (err)
1071 goto fail;
1072 } else {
1073 f2fs_put_page(pages[idx], 1);
1074 }
1075 offset[idx]++;
1076 offset[idx + 1] = 0;
1077 idx--;
1078 fail:
1079 for (i = idx; i >= 0; i--)
1080 f2fs_put_page(pages[i], 1);
1081
1082 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1083
1084 return err;
1085 }
1086
1087 /*
1088 * All the block addresses of data and nodes should be nullified.
1089 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1091 {
1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 int err = 0, cont = 1;
1094 int level, offset[4], noffset[4];
1095 unsigned int nofs = 0;
1096 struct f2fs_inode *ri;
1097 struct dnode_of_data dn;
1098 struct page *page;
1099
1100 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1101
1102 level = get_node_path(inode, from, offset, noffset);
1103 if (level < 0) {
1104 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1105 return level;
1106 }
1107
1108 page = f2fs_get_node_page(sbi, inode->i_ino);
1109 if (IS_ERR(page)) {
1110 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1111 return PTR_ERR(page);
1112 }
1113
1114 set_new_dnode(&dn, inode, page, NULL, 0);
1115 unlock_page(page);
1116
1117 ri = F2FS_INODE(page);
1118 switch (level) {
1119 case 0:
1120 case 1:
1121 nofs = noffset[1];
1122 break;
1123 case 2:
1124 nofs = noffset[1];
1125 if (!offset[level - 1])
1126 goto skip_partial;
1127 err = truncate_partial_nodes(&dn, ri, offset, level);
1128 if (err < 0 && err != -ENOENT)
1129 goto fail;
1130 nofs += 1 + NIDS_PER_BLOCK;
1131 break;
1132 case 3:
1133 nofs = 5 + 2 * NIDS_PER_BLOCK;
1134 if (!offset[level - 1])
1135 goto skip_partial;
1136 err = truncate_partial_nodes(&dn, ri, offset, level);
1137 if (err < 0 && err != -ENOENT)
1138 goto fail;
1139 break;
1140 default:
1141 BUG();
1142 }
1143
1144 skip_partial:
1145 while (cont) {
1146 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1147 switch (offset[0]) {
1148 case NODE_DIR1_BLOCK:
1149 case NODE_DIR2_BLOCK:
1150 err = truncate_dnode(&dn);
1151 break;
1152
1153 case NODE_IND1_BLOCK:
1154 case NODE_IND2_BLOCK:
1155 err = truncate_nodes(&dn, nofs, offset[1], 2);
1156 break;
1157
1158 case NODE_DIND_BLOCK:
1159 err = truncate_nodes(&dn, nofs, offset[1], 3);
1160 cont = 0;
1161 break;
1162
1163 default:
1164 BUG();
1165 }
1166 if (err < 0 && err != -ENOENT)
1167 goto fail;
1168 if (offset[1] == 0 &&
1169 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1170 lock_page(page);
1171 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1172 f2fs_wait_on_page_writeback(page, NODE, true, true);
1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1174 set_page_dirty(page);
1175 unlock_page(page);
1176 }
1177 offset[1] = 0;
1178 offset[0]++;
1179 nofs += err;
1180 }
1181 fail:
1182 f2fs_put_page(page, 0);
1183 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1184 return err > 0 ? 0 : err;
1185 }
1186
1187 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1188 int f2fs_truncate_xattr_node(struct inode *inode)
1189 {
1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1192 struct dnode_of_data dn;
1193 struct page *npage;
1194 int err;
1195
1196 if (!nid)
1197 return 0;
1198
1199 npage = f2fs_get_node_page(sbi, nid);
1200 if (IS_ERR(npage))
1201 return PTR_ERR(npage);
1202
1203 set_new_dnode(&dn, inode, NULL, npage, nid);
1204 err = truncate_node(&dn);
1205 if (err) {
1206 f2fs_put_page(npage, 1);
1207 return err;
1208 }
1209
1210 f2fs_i_xnid_write(inode, 0);
1211
1212 return 0;
1213 }
1214
1215 /*
1216 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1217 * f2fs_unlock_op().
1218 */
f2fs_remove_inode_page(struct inode * inode)1219 int f2fs_remove_inode_page(struct inode *inode)
1220 {
1221 struct dnode_of_data dn;
1222 int err;
1223
1224 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1225 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1226 if (err)
1227 return err;
1228
1229 err = f2fs_truncate_xattr_node(inode);
1230 if (err) {
1231 f2fs_put_dnode(&dn);
1232 return err;
1233 }
1234
1235 /* remove potential inline_data blocks */
1236 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1237 S_ISLNK(inode->i_mode))
1238 f2fs_truncate_data_blocks_range(&dn, 1);
1239
1240 /* 0 is possible, after f2fs_new_inode() has failed */
1241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1242 f2fs_put_dnode(&dn);
1243 return -EIO;
1244 }
1245
1246 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1247 f2fs_warn(F2FS_I_SB(inode),
1248 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1249 inode->i_ino, (unsigned long long)inode->i_blocks);
1250 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1251 }
1252
1253 /* will put inode & node pages */
1254 err = truncate_node(&dn);
1255 if (err) {
1256 f2fs_put_dnode(&dn);
1257 return err;
1258 }
1259 return 0;
1260 }
1261
f2fs_new_inode_page(struct inode * inode)1262 struct page *f2fs_new_inode_page(struct inode *inode)
1263 {
1264 struct dnode_of_data dn;
1265
1266 /* allocate inode page for new inode */
1267 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1268
1269 /* caller should f2fs_put_page(page, 1); */
1270 return f2fs_new_node_page(&dn, 0);
1271 }
1272
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1274 {
1275 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1276 struct node_info new_ni;
1277 struct page *page;
1278 int err;
1279
1280 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1281 return ERR_PTR(-EPERM);
1282
1283 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1284 if (!page)
1285 return ERR_PTR(-ENOMEM);
1286
1287 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1288 goto fail;
1289
1290 #ifdef CONFIG_F2FS_CHECK_FS
1291 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1292 if (err) {
1293 dec_valid_node_count(sbi, dn->inode, !ofs);
1294 goto fail;
1295 }
1296 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1297 err = -EFSCORRUPTED;
1298 set_sbi_flag(sbi, SBI_NEED_FSCK);
1299 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1300 goto fail;
1301 }
1302 #endif
1303 new_ni.nid = dn->nid;
1304 new_ni.ino = dn->inode->i_ino;
1305 new_ni.blk_addr = NULL_ADDR;
1306 new_ni.flag = 0;
1307 new_ni.version = 0;
1308 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1309
1310 f2fs_wait_on_page_writeback(page, NODE, true, true);
1311 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1312 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1313 if (!PageUptodate(page))
1314 SetPageUptodate(page);
1315 if (set_page_dirty(page))
1316 dn->node_changed = true;
1317
1318 if (f2fs_has_xattr_block(ofs))
1319 f2fs_i_xnid_write(dn->inode, dn->nid);
1320
1321 if (ofs == 0)
1322 inc_valid_inode_count(sbi);
1323 return page;
1324
1325 fail:
1326 clear_node_page_dirty(page);
1327 f2fs_put_page(page, 1);
1328 return ERR_PTR(err);
1329 }
1330
1331 /*
1332 * Caller should do after getting the following values.
1333 * 0: f2fs_put_page(page, 0)
1334 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1335 */
read_node_page(struct page * page,blk_opf_t op_flags)1336 static int read_node_page(struct page *page, blk_opf_t op_flags)
1337 {
1338 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1339 struct node_info ni;
1340 struct f2fs_io_info fio = {
1341 .sbi = sbi,
1342 .type = NODE,
1343 .op = REQ_OP_READ,
1344 .op_flags = op_flags,
1345 .page = page,
1346 .encrypted_page = NULL,
1347 };
1348 int err;
1349
1350 if (PageUptodate(page)) {
1351 if (!f2fs_inode_chksum_verify(sbi, page)) {
1352 ClearPageUptodate(page);
1353 return -EFSBADCRC;
1354 }
1355 return LOCKED_PAGE;
1356 }
1357
1358 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1359 if (err)
1360 return err;
1361
1362 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1363 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1364 ClearPageUptodate(page);
1365 return -ENOENT;
1366 }
1367
1368 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1369
1370 err = f2fs_submit_page_bio(&fio);
1371
1372 if (!err)
1373 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1374
1375 return err;
1376 }
1377
1378 /*
1379 * Readahead a node page
1380 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1381 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1382 {
1383 struct page *apage;
1384 int err;
1385
1386 if (!nid)
1387 return;
1388 if (f2fs_check_nid_range(sbi, nid))
1389 return;
1390
1391 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1392 if (apage)
1393 return;
1394
1395 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1396 if (!apage)
1397 return;
1398
1399 err = read_node_page(apage, REQ_RAHEAD);
1400 f2fs_put_page(apage, err ? 1 : 0);
1401 }
1402
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1403 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1404 struct page *parent, int start)
1405 {
1406 struct page *page;
1407 int err;
1408
1409 if (!nid)
1410 return ERR_PTR(-ENOENT);
1411 if (f2fs_check_nid_range(sbi, nid))
1412 return ERR_PTR(-EINVAL);
1413 repeat:
1414 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1415 if (!page)
1416 return ERR_PTR(-ENOMEM);
1417
1418 err = read_node_page(page, 0);
1419 if (err < 0) {
1420 goto out_put_err;
1421 } else if (err == LOCKED_PAGE) {
1422 err = 0;
1423 goto page_hit;
1424 }
1425
1426 if (parent)
1427 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1428
1429 lock_page(page);
1430
1431 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1432 f2fs_put_page(page, 1);
1433 goto repeat;
1434 }
1435
1436 if (unlikely(!PageUptodate(page))) {
1437 err = -EIO;
1438 goto out_err;
1439 }
1440
1441 if (!f2fs_inode_chksum_verify(sbi, page)) {
1442 err = -EFSBADCRC;
1443 goto out_err;
1444 }
1445 page_hit:
1446 if (likely(nid == nid_of_node(page)))
1447 return page;
1448
1449 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1450 nid, nid_of_node(page), ino_of_node(page),
1451 ofs_of_node(page), cpver_of_node(page),
1452 next_blkaddr_of_node(page));
1453 set_sbi_flag(sbi, SBI_NEED_FSCK);
1454 err = -EINVAL;
1455 out_err:
1456 ClearPageUptodate(page);
1457 out_put_err:
1458 /* ENOENT comes from read_node_page which is not an error. */
1459 if (err != -ENOENT)
1460 f2fs_handle_page_eio(sbi, page->index, NODE);
1461 f2fs_put_page(page, 1);
1462 return ERR_PTR(err);
1463 }
1464
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1465 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1466 {
1467 return __get_node_page(sbi, nid, NULL, 0);
1468 }
1469
f2fs_get_node_page_ra(struct page * parent,int start)1470 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1471 {
1472 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1473 nid_t nid = get_nid(parent, start, false);
1474
1475 return __get_node_page(sbi, nid, parent, start);
1476 }
1477
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1478 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1479 {
1480 struct inode *inode;
1481 struct page *page;
1482 int ret;
1483
1484 /* should flush inline_data before evict_inode */
1485 inode = ilookup(sbi->sb, ino);
1486 if (!inode)
1487 return;
1488
1489 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1490 FGP_LOCK|FGP_NOWAIT, 0);
1491 if (!page)
1492 goto iput_out;
1493
1494 if (!PageUptodate(page))
1495 goto page_out;
1496
1497 if (!PageDirty(page))
1498 goto page_out;
1499
1500 if (!clear_page_dirty_for_io(page))
1501 goto page_out;
1502
1503 ret = f2fs_write_inline_data(inode, page);
1504 inode_dec_dirty_pages(inode);
1505 f2fs_remove_dirty_inode(inode);
1506 if (ret)
1507 set_page_dirty(page);
1508 page_out:
1509 f2fs_put_page(page, 1);
1510 iput_out:
1511 iput(inode);
1512 }
1513
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1514 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1515 {
1516 pgoff_t index;
1517 struct pagevec pvec;
1518 struct page *last_page = NULL;
1519 int nr_pages;
1520
1521 pagevec_init(&pvec);
1522 index = 0;
1523
1524 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1525 PAGECACHE_TAG_DIRTY))) {
1526 int i;
1527
1528 for (i = 0; i < nr_pages; i++) {
1529 struct page *page = pvec.pages[i];
1530
1531 if (unlikely(f2fs_cp_error(sbi))) {
1532 f2fs_put_page(last_page, 0);
1533 pagevec_release(&pvec);
1534 return ERR_PTR(-EIO);
1535 }
1536
1537 if (!IS_DNODE(page) || !is_cold_node(page))
1538 continue;
1539 if (ino_of_node(page) != ino)
1540 continue;
1541
1542 lock_page(page);
1543
1544 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1545 continue_unlock:
1546 unlock_page(page);
1547 continue;
1548 }
1549 if (ino_of_node(page) != ino)
1550 goto continue_unlock;
1551
1552 if (!PageDirty(page)) {
1553 /* someone wrote it for us */
1554 goto continue_unlock;
1555 }
1556
1557 if (last_page)
1558 f2fs_put_page(last_page, 0);
1559
1560 get_page(page);
1561 last_page = page;
1562 unlock_page(page);
1563 }
1564 pagevec_release(&pvec);
1565 cond_resched();
1566 }
1567 return last_page;
1568 }
1569
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1570 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1571 struct writeback_control *wbc, bool do_balance,
1572 enum iostat_type io_type, unsigned int *seq_id)
1573 {
1574 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1575 nid_t nid;
1576 struct node_info ni;
1577 struct f2fs_io_info fio = {
1578 .sbi = sbi,
1579 .ino = ino_of_node(page),
1580 .type = NODE,
1581 .op = REQ_OP_WRITE,
1582 .op_flags = wbc_to_write_flags(wbc),
1583 .page = page,
1584 .encrypted_page = NULL,
1585 .submitted = false,
1586 .io_type = io_type,
1587 .io_wbc = wbc,
1588 };
1589 unsigned int seq;
1590
1591 trace_f2fs_writepage(page, NODE);
1592
1593 if (unlikely(f2fs_cp_error(sbi))) {
1594 ClearPageUptodate(page);
1595 dec_page_count(sbi, F2FS_DIRTY_NODES);
1596 unlock_page(page);
1597 return 0;
1598 }
1599
1600 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1601 goto redirty_out;
1602
1603 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1604 wbc->sync_mode == WB_SYNC_NONE &&
1605 IS_DNODE(page) && is_cold_node(page))
1606 goto redirty_out;
1607
1608 /* get old block addr of this node page */
1609 nid = nid_of_node(page);
1610 f2fs_bug_on(sbi, page->index != nid);
1611
1612 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1613 goto redirty_out;
1614
1615 if (wbc->for_reclaim) {
1616 if (!f2fs_down_read_trylock(&sbi->node_write))
1617 goto redirty_out;
1618 } else {
1619 f2fs_down_read(&sbi->node_write);
1620 }
1621
1622 /* This page is already truncated */
1623 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1624 ClearPageUptodate(page);
1625 dec_page_count(sbi, F2FS_DIRTY_NODES);
1626 f2fs_up_read(&sbi->node_write);
1627 unlock_page(page);
1628 return 0;
1629 }
1630
1631 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1632 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1633 DATA_GENERIC_ENHANCE)) {
1634 f2fs_up_read(&sbi->node_write);
1635 goto redirty_out;
1636 }
1637
1638 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1639 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1640
1641 /* should add to global list before clearing PAGECACHE status */
1642 if (f2fs_in_warm_node_list(sbi, page)) {
1643 seq = f2fs_add_fsync_node_entry(sbi, page);
1644 if (seq_id)
1645 *seq_id = seq;
1646 }
1647
1648 set_page_writeback(page);
1649 ClearPageError(page);
1650
1651 fio.old_blkaddr = ni.blk_addr;
1652 f2fs_do_write_node_page(nid, &fio);
1653 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1654 dec_page_count(sbi, F2FS_DIRTY_NODES);
1655 f2fs_up_read(&sbi->node_write);
1656
1657 if (wbc->for_reclaim) {
1658 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1659 submitted = NULL;
1660 }
1661
1662 unlock_page(page);
1663
1664 if (unlikely(f2fs_cp_error(sbi))) {
1665 f2fs_submit_merged_write(sbi, NODE);
1666 submitted = NULL;
1667 }
1668 if (submitted)
1669 *submitted = fio.submitted;
1670
1671 if (do_balance)
1672 f2fs_balance_fs(sbi, false);
1673 return 0;
1674
1675 redirty_out:
1676 redirty_page_for_writepage(wbc, page);
1677 return AOP_WRITEPAGE_ACTIVATE;
1678 }
1679
f2fs_move_node_page(struct page * node_page,int gc_type)1680 int f2fs_move_node_page(struct page *node_page, int gc_type)
1681 {
1682 int err = 0;
1683
1684 if (gc_type == FG_GC) {
1685 struct writeback_control wbc = {
1686 .sync_mode = WB_SYNC_ALL,
1687 .nr_to_write = 1,
1688 .for_reclaim = 0,
1689 };
1690
1691 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1692
1693 set_page_dirty(node_page);
1694
1695 if (!clear_page_dirty_for_io(node_page)) {
1696 err = -EAGAIN;
1697 goto out_page;
1698 }
1699
1700 if (__write_node_page(node_page, false, NULL,
1701 &wbc, false, FS_GC_NODE_IO, NULL)) {
1702 err = -EAGAIN;
1703 unlock_page(node_page);
1704 }
1705 goto release_page;
1706 } else {
1707 /* set page dirty and write it */
1708 if (!PageWriteback(node_page))
1709 set_page_dirty(node_page);
1710 }
1711 out_page:
1712 unlock_page(node_page);
1713 release_page:
1714 f2fs_put_page(node_page, 0);
1715 return err;
1716 }
1717
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1718 static int f2fs_write_node_page(struct page *page,
1719 struct writeback_control *wbc)
1720 {
1721 return __write_node_page(page, false, NULL, wbc, false,
1722 FS_NODE_IO, NULL);
1723 }
1724
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1725 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1726 struct writeback_control *wbc, bool atomic,
1727 unsigned int *seq_id)
1728 {
1729 pgoff_t index;
1730 struct pagevec pvec;
1731 int ret = 0;
1732 struct page *last_page = NULL;
1733 bool marked = false;
1734 nid_t ino = inode->i_ino;
1735 int nr_pages;
1736 int nwritten = 0;
1737
1738 if (atomic) {
1739 last_page = last_fsync_dnode(sbi, ino);
1740 if (IS_ERR_OR_NULL(last_page))
1741 return PTR_ERR_OR_ZERO(last_page);
1742 }
1743 retry:
1744 pagevec_init(&pvec);
1745 index = 0;
1746
1747 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1748 PAGECACHE_TAG_DIRTY))) {
1749 int i;
1750
1751 for (i = 0; i < nr_pages; i++) {
1752 struct page *page = pvec.pages[i];
1753 bool submitted = false;
1754
1755 if (unlikely(f2fs_cp_error(sbi))) {
1756 f2fs_put_page(last_page, 0);
1757 pagevec_release(&pvec);
1758 ret = -EIO;
1759 goto out;
1760 }
1761
1762 if (!IS_DNODE(page) || !is_cold_node(page))
1763 continue;
1764 if (ino_of_node(page) != ino)
1765 continue;
1766
1767 lock_page(page);
1768
1769 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1770 continue_unlock:
1771 unlock_page(page);
1772 continue;
1773 }
1774 if (ino_of_node(page) != ino)
1775 goto continue_unlock;
1776
1777 if (!PageDirty(page) && page != last_page) {
1778 /* someone wrote it for us */
1779 goto continue_unlock;
1780 }
1781
1782 f2fs_wait_on_page_writeback(page, NODE, true, true);
1783
1784 set_fsync_mark(page, 0);
1785 set_dentry_mark(page, 0);
1786
1787 if (!atomic || page == last_page) {
1788 set_fsync_mark(page, 1);
1789 percpu_counter_inc(&sbi->rf_node_block_count);
1790 if (IS_INODE(page)) {
1791 if (is_inode_flag_set(inode,
1792 FI_DIRTY_INODE))
1793 f2fs_update_inode(inode, page);
1794 set_dentry_mark(page,
1795 f2fs_need_dentry_mark(sbi, ino));
1796 }
1797 /* may be written by other thread */
1798 if (!PageDirty(page))
1799 set_page_dirty(page);
1800 }
1801
1802 if (!clear_page_dirty_for_io(page))
1803 goto continue_unlock;
1804
1805 ret = __write_node_page(page, atomic &&
1806 page == last_page,
1807 &submitted, wbc, true,
1808 FS_NODE_IO, seq_id);
1809 if (ret) {
1810 unlock_page(page);
1811 f2fs_put_page(last_page, 0);
1812 break;
1813 } else if (submitted) {
1814 nwritten++;
1815 }
1816
1817 if (page == last_page) {
1818 f2fs_put_page(page, 0);
1819 marked = true;
1820 break;
1821 }
1822 }
1823 pagevec_release(&pvec);
1824 cond_resched();
1825
1826 if (ret || marked)
1827 break;
1828 }
1829 if (!ret && atomic && !marked) {
1830 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1831 ino, last_page->index);
1832 lock_page(last_page);
1833 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1834 set_page_dirty(last_page);
1835 unlock_page(last_page);
1836 goto retry;
1837 }
1838 out:
1839 if (nwritten)
1840 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1841 return ret ? -EIO : 0;
1842 }
1843
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1844 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1845 {
1846 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1847 bool clean;
1848
1849 if (inode->i_ino != ino)
1850 return 0;
1851
1852 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1853 return 0;
1854
1855 spin_lock(&sbi->inode_lock[DIRTY_META]);
1856 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1857 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1858
1859 if (clean)
1860 return 0;
1861
1862 inode = igrab(inode);
1863 if (!inode)
1864 return 0;
1865 return 1;
1866 }
1867
flush_dirty_inode(struct page * page)1868 static bool flush_dirty_inode(struct page *page)
1869 {
1870 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1871 struct inode *inode;
1872 nid_t ino = ino_of_node(page);
1873
1874 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1875 if (!inode)
1876 return false;
1877
1878 f2fs_update_inode(inode, page);
1879 unlock_page(page);
1880
1881 iput(inode);
1882 return true;
1883 }
1884
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1885 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1886 {
1887 pgoff_t index = 0;
1888 struct pagevec pvec;
1889 int nr_pages;
1890
1891 pagevec_init(&pvec);
1892
1893 while ((nr_pages = pagevec_lookup_tag(&pvec,
1894 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1895 int i;
1896
1897 for (i = 0; i < nr_pages; i++) {
1898 struct page *page = pvec.pages[i];
1899
1900 if (!IS_DNODE(page))
1901 continue;
1902
1903 lock_page(page);
1904
1905 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1906 continue_unlock:
1907 unlock_page(page);
1908 continue;
1909 }
1910
1911 if (!PageDirty(page)) {
1912 /* someone wrote it for us */
1913 goto continue_unlock;
1914 }
1915
1916 /* flush inline_data, if it's async context. */
1917 if (page_private_inline(page)) {
1918 clear_page_private_inline(page);
1919 unlock_page(page);
1920 flush_inline_data(sbi, ino_of_node(page));
1921 continue;
1922 }
1923 unlock_page(page);
1924 }
1925 pagevec_release(&pvec);
1926 cond_resched();
1927 }
1928 }
1929
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1930 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1931 struct writeback_control *wbc,
1932 bool do_balance, enum iostat_type io_type)
1933 {
1934 pgoff_t index;
1935 struct pagevec pvec;
1936 int step = 0;
1937 int nwritten = 0;
1938 int ret = 0;
1939 int nr_pages, done = 0;
1940
1941 pagevec_init(&pvec);
1942
1943 next_step:
1944 index = 0;
1945
1946 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1947 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1948 int i;
1949
1950 for (i = 0; i < nr_pages; i++) {
1951 struct page *page = pvec.pages[i];
1952 bool submitted = false;
1953
1954 /* give a priority to WB_SYNC threads */
1955 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1956 wbc->sync_mode == WB_SYNC_NONE) {
1957 done = 1;
1958 break;
1959 }
1960
1961 /*
1962 * flushing sequence with step:
1963 * 0. indirect nodes
1964 * 1. dentry dnodes
1965 * 2. file dnodes
1966 */
1967 if (step == 0 && IS_DNODE(page))
1968 continue;
1969 if (step == 1 && (!IS_DNODE(page) ||
1970 is_cold_node(page)))
1971 continue;
1972 if (step == 2 && (!IS_DNODE(page) ||
1973 !is_cold_node(page)))
1974 continue;
1975 lock_node:
1976 if (wbc->sync_mode == WB_SYNC_ALL)
1977 lock_page(page);
1978 else if (!trylock_page(page))
1979 continue;
1980
1981 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1982 continue_unlock:
1983 unlock_page(page);
1984 continue;
1985 }
1986
1987 if (!PageDirty(page)) {
1988 /* someone wrote it for us */
1989 goto continue_unlock;
1990 }
1991
1992 /* flush inline_data/inode, if it's async context. */
1993 if (!do_balance)
1994 goto write_node;
1995
1996 /* flush inline_data */
1997 if (page_private_inline(page)) {
1998 clear_page_private_inline(page);
1999 unlock_page(page);
2000 flush_inline_data(sbi, ino_of_node(page));
2001 goto lock_node;
2002 }
2003
2004 /* flush dirty inode */
2005 if (IS_INODE(page) && flush_dirty_inode(page))
2006 goto lock_node;
2007 write_node:
2008 f2fs_wait_on_page_writeback(page, NODE, true, true);
2009
2010 if (!clear_page_dirty_for_io(page))
2011 goto continue_unlock;
2012
2013 set_fsync_mark(page, 0);
2014 set_dentry_mark(page, 0);
2015
2016 ret = __write_node_page(page, false, &submitted,
2017 wbc, do_balance, io_type, NULL);
2018 if (ret)
2019 unlock_page(page);
2020 else if (submitted)
2021 nwritten++;
2022
2023 if (--wbc->nr_to_write == 0)
2024 break;
2025 }
2026 pagevec_release(&pvec);
2027 cond_resched();
2028
2029 if (wbc->nr_to_write == 0) {
2030 step = 2;
2031 break;
2032 }
2033 }
2034
2035 if (step < 2) {
2036 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2037 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2038 goto out;
2039 step++;
2040 goto next_step;
2041 }
2042 out:
2043 if (nwritten)
2044 f2fs_submit_merged_write(sbi, NODE);
2045
2046 if (unlikely(f2fs_cp_error(sbi)))
2047 return -EIO;
2048 return ret;
2049 }
2050
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2051 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2052 unsigned int seq_id)
2053 {
2054 struct fsync_node_entry *fn;
2055 struct page *page;
2056 struct list_head *head = &sbi->fsync_node_list;
2057 unsigned long flags;
2058 unsigned int cur_seq_id = 0;
2059 int ret2, ret = 0;
2060
2061 while (seq_id && cur_seq_id < seq_id) {
2062 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2063 if (list_empty(head)) {
2064 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2065 break;
2066 }
2067 fn = list_first_entry(head, struct fsync_node_entry, list);
2068 if (fn->seq_id > seq_id) {
2069 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2070 break;
2071 }
2072 cur_seq_id = fn->seq_id;
2073 page = fn->page;
2074 get_page(page);
2075 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2076
2077 f2fs_wait_on_page_writeback(page, NODE, true, false);
2078 if (TestClearPageError(page))
2079 ret = -EIO;
2080
2081 put_page(page);
2082
2083 if (ret)
2084 break;
2085 }
2086
2087 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2088 if (!ret)
2089 ret = ret2;
2090
2091 return ret;
2092 }
2093
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2094 static int f2fs_write_node_pages(struct address_space *mapping,
2095 struct writeback_control *wbc)
2096 {
2097 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2098 struct blk_plug plug;
2099 long diff;
2100
2101 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2102 goto skip_write;
2103
2104 /* balancing f2fs's metadata in background */
2105 f2fs_balance_fs_bg(sbi, true);
2106
2107 /* collect a number of dirty node pages and write together */
2108 if (wbc->sync_mode != WB_SYNC_ALL &&
2109 get_pages(sbi, F2FS_DIRTY_NODES) <
2110 nr_pages_to_skip(sbi, NODE))
2111 goto skip_write;
2112
2113 if (wbc->sync_mode == WB_SYNC_ALL)
2114 atomic_inc(&sbi->wb_sync_req[NODE]);
2115 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2116 /* to avoid potential deadlock */
2117 if (current->plug)
2118 blk_finish_plug(current->plug);
2119 goto skip_write;
2120 }
2121
2122 trace_f2fs_writepages(mapping->host, wbc, NODE);
2123
2124 diff = nr_pages_to_write(sbi, NODE, wbc);
2125 blk_start_plug(&plug);
2126 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2127 blk_finish_plug(&plug);
2128 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2129
2130 if (wbc->sync_mode == WB_SYNC_ALL)
2131 atomic_dec(&sbi->wb_sync_req[NODE]);
2132 return 0;
2133
2134 skip_write:
2135 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2136 trace_f2fs_writepages(mapping->host, wbc, NODE);
2137 return 0;
2138 }
2139
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2140 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2141 struct folio *folio)
2142 {
2143 trace_f2fs_set_page_dirty(&folio->page, NODE);
2144
2145 if (!folio_test_uptodate(folio))
2146 folio_mark_uptodate(folio);
2147 #ifdef CONFIG_F2FS_CHECK_FS
2148 if (IS_INODE(&folio->page))
2149 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2150 #endif
2151 if (filemap_dirty_folio(mapping, folio)) {
2152 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2153 set_page_private_reference(&folio->page);
2154 return true;
2155 }
2156 return false;
2157 }
2158
2159 /*
2160 * Structure of the f2fs node operations
2161 */
2162 const struct address_space_operations f2fs_node_aops = {
2163 .writepage = f2fs_write_node_page,
2164 .writepages = f2fs_write_node_pages,
2165 .dirty_folio = f2fs_dirty_node_folio,
2166 .invalidate_folio = f2fs_invalidate_folio,
2167 .release_folio = f2fs_release_folio,
2168 .migrate_folio = filemap_migrate_folio,
2169 };
2170
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2172 nid_t n)
2173 {
2174 return radix_tree_lookup(&nm_i->free_nid_root, n);
2175 }
2176
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2177 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2178 struct free_nid *i)
2179 {
2180 struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2182
2183 if (err)
2184 return err;
2185
2186 nm_i->nid_cnt[FREE_NID]++;
2187 list_add_tail(&i->list, &nm_i->free_nid_list);
2188 return 0;
2189 }
2190
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2191 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2192 struct free_nid *i, enum nid_state state)
2193 {
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2195
2196 f2fs_bug_on(sbi, state != i->state);
2197 nm_i->nid_cnt[state]--;
2198 if (state == FREE_NID)
2199 list_del(&i->list);
2200 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2201 }
2202
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2204 enum nid_state org_state, enum nid_state dst_state)
2205 {
2206 struct f2fs_nm_info *nm_i = NM_I(sbi);
2207
2208 f2fs_bug_on(sbi, org_state != i->state);
2209 i->state = dst_state;
2210 nm_i->nid_cnt[org_state]--;
2211 nm_i->nid_cnt[dst_state]++;
2212
2213 switch (dst_state) {
2214 case PREALLOC_NID:
2215 list_del(&i->list);
2216 break;
2217 case FREE_NID:
2218 list_add_tail(&i->list, &nm_i->free_nid_list);
2219 break;
2220 default:
2221 BUG_ON(1);
2222 }
2223 }
2224
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2226 {
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2228 unsigned int i;
2229 bool ret = true;
2230
2231 f2fs_down_read(&nm_i->nat_tree_lock);
2232 for (i = 0; i < nm_i->nat_blocks; i++) {
2233 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2234 ret = false;
2235 break;
2236 }
2237 }
2238 f2fs_up_read(&nm_i->nat_tree_lock);
2239
2240 return ret;
2241 }
2242
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2244 bool set, bool build)
2245 {
2246 struct f2fs_nm_info *nm_i = NM_I(sbi);
2247 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2248 unsigned int nid_ofs = nid - START_NID(nid);
2249
2250 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2251 return;
2252
2253 if (set) {
2254 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2255 return;
2256 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2257 nm_i->free_nid_count[nat_ofs]++;
2258 } else {
2259 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2260 return;
2261 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2262 if (!build)
2263 nm_i->free_nid_count[nat_ofs]--;
2264 }
2265 }
2266
2267 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2268 static bool add_free_nid(struct f2fs_sb_info *sbi,
2269 nid_t nid, bool build, bool update)
2270 {
2271 struct f2fs_nm_info *nm_i = NM_I(sbi);
2272 struct free_nid *i, *e;
2273 struct nat_entry *ne;
2274 int err = -EINVAL;
2275 bool ret = false;
2276
2277 /* 0 nid should not be used */
2278 if (unlikely(nid == 0))
2279 return false;
2280
2281 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2282 return false;
2283
2284 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2285 i->nid = nid;
2286 i->state = FREE_NID;
2287
2288 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2289
2290 spin_lock(&nm_i->nid_list_lock);
2291
2292 if (build) {
2293 /*
2294 * Thread A Thread B
2295 * - f2fs_create
2296 * - f2fs_new_inode
2297 * - f2fs_alloc_nid
2298 * - __insert_nid_to_list(PREALLOC_NID)
2299 * - f2fs_balance_fs_bg
2300 * - f2fs_build_free_nids
2301 * - __f2fs_build_free_nids
2302 * - scan_nat_page
2303 * - add_free_nid
2304 * - __lookup_nat_cache
2305 * - f2fs_add_link
2306 * - f2fs_init_inode_metadata
2307 * - f2fs_new_inode_page
2308 * - f2fs_new_node_page
2309 * - set_node_addr
2310 * - f2fs_alloc_nid_done
2311 * - __remove_nid_from_list(PREALLOC_NID)
2312 * - __insert_nid_to_list(FREE_NID)
2313 */
2314 ne = __lookup_nat_cache(nm_i, nid);
2315 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2316 nat_get_blkaddr(ne) != NULL_ADDR))
2317 goto err_out;
2318
2319 e = __lookup_free_nid_list(nm_i, nid);
2320 if (e) {
2321 if (e->state == FREE_NID)
2322 ret = true;
2323 goto err_out;
2324 }
2325 }
2326 ret = true;
2327 err = __insert_free_nid(sbi, i);
2328 err_out:
2329 if (update) {
2330 update_free_nid_bitmap(sbi, nid, ret, build);
2331 if (!build)
2332 nm_i->available_nids++;
2333 }
2334 spin_unlock(&nm_i->nid_list_lock);
2335 radix_tree_preload_end();
2336
2337 if (err)
2338 kmem_cache_free(free_nid_slab, i);
2339 return ret;
2340 }
2341
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2343 {
2344 struct f2fs_nm_info *nm_i = NM_I(sbi);
2345 struct free_nid *i;
2346 bool need_free = false;
2347
2348 spin_lock(&nm_i->nid_list_lock);
2349 i = __lookup_free_nid_list(nm_i, nid);
2350 if (i && i->state == FREE_NID) {
2351 __remove_free_nid(sbi, i, FREE_NID);
2352 need_free = true;
2353 }
2354 spin_unlock(&nm_i->nid_list_lock);
2355
2356 if (need_free)
2357 kmem_cache_free(free_nid_slab, i);
2358 }
2359
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2360 static int scan_nat_page(struct f2fs_sb_info *sbi,
2361 struct page *nat_page, nid_t start_nid)
2362 {
2363 struct f2fs_nm_info *nm_i = NM_I(sbi);
2364 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2365 block_t blk_addr;
2366 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2367 int i;
2368
2369 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2370
2371 i = start_nid % NAT_ENTRY_PER_BLOCK;
2372
2373 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2374 if (unlikely(start_nid >= nm_i->max_nid))
2375 break;
2376
2377 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2378
2379 if (blk_addr == NEW_ADDR)
2380 return -EINVAL;
2381
2382 if (blk_addr == NULL_ADDR) {
2383 add_free_nid(sbi, start_nid, true, true);
2384 } else {
2385 spin_lock(&NM_I(sbi)->nid_list_lock);
2386 update_free_nid_bitmap(sbi, start_nid, false, true);
2387 spin_unlock(&NM_I(sbi)->nid_list_lock);
2388 }
2389 }
2390
2391 return 0;
2392 }
2393
scan_curseg_cache(struct f2fs_sb_info * sbi)2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2395 {
2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2397 struct f2fs_journal *journal = curseg->journal;
2398 int i;
2399
2400 down_read(&curseg->journal_rwsem);
2401 for (i = 0; i < nats_in_cursum(journal); i++) {
2402 block_t addr;
2403 nid_t nid;
2404
2405 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2406 nid = le32_to_cpu(nid_in_journal(journal, i));
2407 if (addr == NULL_ADDR)
2408 add_free_nid(sbi, nid, true, false);
2409 else
2410 remove_free_nid(sbi, nid);
2411 }
2412 up_read(&curseg->journal_rwsem);
2413 }
2414
scan_free_nid_bits(struct f2fs_sb_info * sbi)2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2416 {
2417 struct f2fs_nm_info *nm_i = NM_I(sbi);
2418 unsigned int i, idx;
2419 nid_t nid;
2420
2421 f2fs_down_read(&nm_i->nat_tree_lock);
2422
2423 for (i = 0; i < nm_i->nat_blocks; i++) {
2424 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2425 continue;
2426 if (!nm_i->free_nid_count[i])
2427 continue;
2428 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2429 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2430 NAT_ENTRY_PER_BLOCK, idx);
2431 if (idx >= NAT_ENTRY_PER_BLOCK)
2432 break;
2433
2434 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2435 add_free_nid(sbi, nid, true, false);
2436
2437 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2438 goto out;
2439 }
2440 }
2441 out:
2442 scan_curseg_cache(sbi);
2443
2444 f2fs_up_read(&nm_i->nat_tree_lock);
2445 }
2446
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2448 bool sync, bool mount)
2449 {
2450 struct f2fs_nm_info *nm_i = NM_I(sbi);
2451 int i = 0, ret;
2452 nid_t nid = nm_i->next_scan_nid;
2453
2454 if (unlikely(nid >= nm_i->max_nid))
2455 nid = 0;
2456
2457 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2458 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2459
2460 /* Enough entries */
2461 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2462 return 0;
2463
2464 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2465 return 0;
2466
2467 if (!mount) {
2468 /* try to find free nids in free_nid_bitmap */
2469 scan_free_nid_bits(sbi);
2470
2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2472 return 0;
2473 }
2474
2475 /* readahead nat pages to be scanned */
2476 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2477 META_NAT, true);
2478
2479 f2fs_down_read(&nm_i->nat_tree_lock);
2480
2481 while (1) {
2482 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2483 nm_i->nat_block_bitmap)) {
2484 struct page *page = get_current_nat_page(sbi, nid);
2485
2486 if (IS_ERR(page)) {
2487 ret = PTR_ERR(page);
2488 } else {
2489 ret = scan_nat_page(sbi, page, nid);
2490 f2fs_put_page(page, 1);
2491 }
2492
2493 if (ret) {
2494 f2fs_up_read(&nm_i->nat_tree_lock);
2495 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2496 return ret;
2497 }
2498 }
2499
2500 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2501 if (unlikely(nid >= nm_i->max_nid))
2502 nid = 0;
2503
2504 if (++i >= FREE_NID_PAGES)
2505 break;
2506 }
2507
2508 /* go to the next free nat pages to find free nids abundantly */
2509 nm_i->next_scan_nid = nid;
2510
2511 /* find free nids from current sum_pages */
2512 scan_curseg_cache(sbi);
2513
2514 f2fs_up_read(&nm_i->nat_tree_lock);
2515
2516 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2517 nm_i->ra_nid_pages, META_NAT, false);
2518
2519 return 0;
2520 }
2521
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2523 {
2524 int ret;
2525
2526 mutex_lock(&NM_I(sbi)->build_lock);
2527 ret = __f2fs_build_free_nids(sbi, sync, mount);
2528 mutex_unlock(&NM_I(sbi)->build_lock);
2529
2530 return ret;
2531 }
2532
2533 /*
2534 * If this function returns success, caller can obtain a new nid
2535 * from second parameter of this function.
2536 * The returned nid could be used ino as well as nid when inode is created.
2537 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2539 {
2540 struct f2fs_nm_info *nm_i = NM_I(sbi);
2541 struct free_nid *i = NULL;
2542 retry:
2543 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2544 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2545 return false;
2546 }
2547
2548 spin_lock(&nm_i->nid_list_lock);
2549
2550 if (unlikely(nm_i->available_nids == 0)) {
2551 spin_unlock(&nm_i->nid_list_lock);
2552 return false;
2553 }
2554
2555 /* We should not use stale free nids created by f2fs_build_free_nids */
2556 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2558 i = list_first_entry(&nm_i->free_nid_list,
2559 struct free_nid, list);
2560 *nid = i->nid;
2561
2562 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2563 nm_i->available_nids--;
2564
2565 update_free_nid_bitmap(sbi, *nid, false, false);
2566
2567 spin_unlock(&nm_i->nid_list_lock);
2568 return true;
2569 }
2570 spin_unlock(&nm_i->nid_list_lock);
2571
2572 /* Let's scan nat pages and its caches to get free nids */
2573 if (!f2fs_build_free_nids(sbi, true, false))
2574 goto retry;
2575 return false;
2576 }
2577
2578 /*
2579 * f2fs_alloc_nid() should be called prior to this function.
2580 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2582 {
2583 struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 struct free_nid *i;
2585
2586 spin_lock(&nm_i->nid_list_lock);
2587 i = __lookup_free_nid_list(nm_i, nid);
2588 f2fs_bug_on(sbi, !i);
2589 __remove_free_nid(sbi, i, PREALLOC_NID);
2590 spin_unlock(&nm_i->nid_list_lock);
2591
2592 kmem_cache_free(free_nid_slab, i);
2593 }
2594
2595 /*
2596 * f2fs_alloc_nid() should be called prior to this function.
2597 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2599 {
2600 struct f2fs_nm_info *nm_i = NM_I(sbi);
2601 struct free_nid *i;
2602 bool need_free = false;
2603
2604 if (!nid)
2605 return;
2606
2607 spin_lock(&nm_i->nid_list_lock);
2608 i = __lookup_free_nid_list(nm_i, nid);
2609 f2fs_bug_on(sbi, !i);
2610
2611 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2612 __remove_free_nid(sbi, i, PREALLOC_NID);
2613 need_free = true;
2614 } else {
2615 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2616 }
2617
2618 nm_i->available_nids++;
2619
2620 update_free_nid_bitmap(sbi, nid, true, false);
2621
2622 spin_unlock(&nm_i->nid_list_lock);
2623
2624 if (need_free)
2625 kmem_cache_free(free_nid_slab, i);
2626 }
2627
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2629 {
2630 struct f2fs_nm_info *nm_i = NM_I(sbi);
2631 int nr = nr_shrink;
2632
2633 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2634 return 0;
2635
2636 if (!mutex_trylock(&nm_i->build_lock))
2637 return 0;
2638
2639 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2640 struct free_nid *i, *next;
2641 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2642
2643 spin_lock(&nm_i->nid_list_lock);
2644 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2645 if (!nr_shrink || !batch ||
2646 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2647 break;
2648 __remove_free_nid(sbi, i, FREE_NID);
2649 kmem_cache_free(free_nid_slab, i);
2650 nr_shrink--;
2651 batch--;
2652 }
2653 spin_unlock(&nm_i->nid_list_lock);
2654 }
2655
2656 mutex_unlock(&nm_i->build_lock);
2657
2658 return nr - nr_shrink;
2659 }
2660
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2662 {
2663 void *src_addr, *dst_addr;
2664 size_t inline_size;
2665 struct page *ipage;
2666 struct f2fs_inode *ri;
2667
2668 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2669 if (IS_ERR(ipage))
2670 return PTR_ERR(ipage);
2671
2672 ri = F2FS_INODE(page);
2673 if (ri->i_inline & F2FS_INLINE_XATTR) {
2674 if (!f2fs_has_inline_xattr(inode)) {
2675 set_inode_flag(inode, FI_INLINE_XATTR);
2676 stat_inc_inline_xattr(inode);
2677 }
2678 } else {
2679 if (f2fs_has_inline_xattr(inode)) {
2680 stat_dec_inline_xattr(inode);
2681 clear_inode_flag(inode, FI_INLINE_XATTR);
2682 }
2683 goto update_inode;
2684 }
2685
2686 dst_addr = inline_xattr_addr(inode, ipage);
2687 src_addr = inline_xattr_addr(inode, page);
2688 inline_size = inline_xattr_size(inode);
2689
2690 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2691 memcpy(dst_addr, src_addr, inline_size);
2692 update_inode:
2693 f2fs_update_inode(inode, ipage);
2694 f2fs_put_page(ipage, 1);
2695 return 0;
2696 }
2697
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2699 {
2700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2702 nid_t new_xnid;
2703 struct dnode_of_data dn;
2704 struct node_info ni;
2705 struct page *xpage;
2706 int err;
2707
2708 if (!prev_xnid)
2709 goto recover_xnid;
2710
2711 /* 1: invalidate the previous xattr nid */
2712 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2713 if (err)
2714 return err;
2715
2716 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2717 dec_valid_node_count(sbi, inode, false);
2718 set_node_addr(sbi, &ni, NULL_ADDR, false);
2719
2720 recover_xnid:
2721 /* 2: update xattr nid in inode */
2722 if (!f2fs_alloc_nid(sbi, &new_xnid))
2723 return -ENOSPC;
2724
2725 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2726 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2727 if (IS_ERR(xpage)) {
2728 f2fs_alloc_nid_failed(sbi, new_xnid);
2729 return PTR_ERR(xpage);
2730 }
2731
2732 f2fs_alloc_nid_done(sbi, new_xnid);
2733 f2fs_update_inode_page(inode);
2734
2735 /* 3: update and set xattr node page dirty */
2736 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2737
2738 set_page_dirty(xpage);
2739 f2fs_put_page(xpage, 1);
2740
2741 return 0;
2742 }
2743
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2745 {
2746 struct f2fs_inode *src, *dst;
2747 nid_t ino = ino_of_node(page);
2748 struct node_info old_ni, new_ni;
2749 struct page *ipage;
2750 int err;
2751
2752 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2753 if (err)
2754 return err;
2755
2756 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2757 return -EINVAL;
2758 retry:
2759 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2760 if (!ipage) {
2761 memalloc_retry_wait(GFP_NOFS);
2762 goto retry;
2763 }
2764
2765 /* Should not use this inode from free nid list */
2766 remove_free_nid(sbi, ino);
2767
2768 if (!PageUptodate(ipage))
2769 SetPageUptodate(ipage);
2770 fill_node_footer(ipage, ino, ino, 0, true);
2771 set_cold_node(ipage, false);
2772
2773 src = F2FS_INODE(page);
2774 dst = F2FS_INODE(ipage);
2775
2776 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2777 dst->i_size = 0;
2778 dst->i_blocks = cpu_to_le64(1);
2779 dst->i_links = cpu_to_le32(1);
2780 dst->i_xattr_nid = 0;
2781 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2782 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2783 dst->i_extra_isize = src->i_extra_isize;
2784
2785 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2786 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2787 i_inline_xattr_size))
2788 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2789
2790 if (f2fs_sb_has_project_quota(sbi) &&
2791 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2792 i_projid))
2793 dst->i_projid = src->i_projid;
2794
2795 if (f2fs_sb_has_inode_crtime(sbi) &&
2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2797 i_crtime_nsec)) {
2798 dst->i_crtime = src->i_crtime;
2799 dst->i_crtime_nsec = src->i_crtime_nsec;
2800 }
2801 }
2802
2803 new_ni = old_ni;
2804 new_ni.ino = ino;
2805
2806 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2807 WARN_ON(1);
2808 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2809 inc_valid_inode_count(sbi);
2810 set_page_dirty(ipage);
2811 f2fs_put_page(ipage, 1);
2812 return 0;
2813 }
2814
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2816 unsigned int segno, struct f2fs_summary_block *sum)
2817 {
2818 struct f2fs_node *rn;
2819 struct f2fs_summary *sum_entry;
2820 block_t addr;
2821 int i, idx, last_offset, nrpages;
2822
2823 /* scan the node segment */
2824 last_offset = sbi->blocks_per_seg;
2825 addr = START_BLOCK(sbi, segno);
2826 sum_entry = &sum->entries[0];
2827
2828 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2829 nrpages = bio_max_segs(last_offset - i);
2830
2831 /* readahead node pages */
2832 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2833
2834 for (idx = addr; idx < addr + nrpages; idx++) {
2835 struct page *page = f2fs_get_tmp_page(sbi, idx);
2836
2837 if (IS_ERR(page))
2838 return PTR_ERR(page);
2839
2840 rn = F2FS_NODE(page);
2841 sum_entry->nid = rn->footer.nid;
2842 sum_entry->version = 0;
2843 sum_entry->ofs_in_node = 0;
2844 sum_entry++;
2845 f2fs_put_page(page, 1);
2846 }
2847
2848 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2849 addr + nrpages);
2850 }
2851 return 0;
2852 }
2853
remove_nats_in_journal(struct f2fs_sb_info * sbi)2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2855 {
2856 struct f2fs_nm_info *nm_i = NM_I(sbi);
2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858 struct f2fs_journal *journal = curseg->journal;
2859 int i;
2860
2861 down_write(&curseg->journal_rwsem);
2862 for (i = 0; i < nats_in_cursum(journal); i++) {
2863 struct nat_entry *ne;
2864 struct f2fs_nat_entry raw_ne;
2865 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2866
2867 if (f2fs_check_nid_range(sbi, nid))
2868 continue;
2869
2870 raw_ne = nat_in_journal(journal, i);
2871
2872 ne = __lookup_nat_cache(nm_i, nid);
2873 if (!ne) {
2874 ne = __alloc_nat_entry(sbi, nid, true);
2875 __init_nat_entry(nm_i, ne, &raw_ne, true);
2876 }
2877
2878 /*
2879 * if a free nat in journal has not been used after last
2880 * checkpoint, we should remove it from available nids,
2881 * since later we will add it again.
2882 */
2883 if (!get_nat_flag(ne, IS_DIRTY) &&
2884 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2885 spin_lock(&nm_i->nid_list_lock);
2886 nm_i->available_nids--;
2887 spin_unlock(&nm_i->nid_list_lock);
2888 }
2889
2890 __set_nat_cache_dirty(nm_i, ne);
2891 }
2892 update_nats_in_cursum(journal, -i);
2893 up_write(&curseg->journal_rwsem);
2894 }
2895
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2897 struct list_head *head, int max)
2898 {
2899 struct nat_entry_set *cur;
2900
2901 if (nes->entry_cnt >= max)
2902 goto add_out;
2903
2904 list_for_each_entry(cur, head, set_list) {
2905 if (cur->entry_cnt >= nes->entry_cnt) {
2906 list_add(&nes->set_list, cur->set_list.prev);
2907 return;
2908 }
2909 }
2910 add_out:
2911 list_add_tail(&nes->set_list, head);
2912 }
2913
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2915 unsigned int valid)
2916 {
2917 if (valid == 0) {
2918 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2919 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2920 return;
2921 }
2922
2923 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2924 if (valid == NAT_ENTRY_PER_BLOCK)
2925 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2926 else
2927 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2928 }
2929
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2931 struct page *page)
2932 {
2933 struct f2fs_nm_info *nm_i = NM_I(sbi);
2934 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2935 struct f2fs_nat_block *nat_blk = page_address(page);
2936 int valid = 0;
2937 int i = 0;
2938
2939 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2940 return;
2941
2942 if (nat_index == 0) {
2943 valid = 1;
2944 i = 1;
2945 }
2946 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2947 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2948 valid++;
2949 }
2950
2951 __update_nat_bits(nm_i, nat_index, valid);
2952 }
2953
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2955 {
2956 struct f2fs_nm_info *nm_i = NM_I(sbi);
2957 unsigned int nat_ofs;
2958
2959 f2fs_down_read(&nm_i->nat_tree_lock);
2960
2961 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2962 unsigned int valid = 0, nid_ofs = 0;
2963
2964 /* handle nid zero due to it should never be used */
2965 if (unlikely(nat_ofs == 0)) {
2966 valid = 1;
2967 nid_ofs = 1;
2968 }
2969
2970 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2971 if (!test_bit_le(nid_ofs,
2972 nm_i->free_nid_bitmap[nat_ofs]))
2973 valid++;
2974 }
2975
2976 __update_nat_bits(nm_i, nat_ofs, valid);
2977 }
2978
2979 f2fs_up_read(&nm_i->nat_tree_lock);
2980 }
2981
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2983 struct nat_entry_set *set, struct cp_control *cpc)
2984 {
2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2986 struct f2fs_journal *journal = curseg->journal;
2987 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2988 bool to_journal = true;
2989 struct f2fs_nat_block *nat_blk;
2990 struct nat_entry *ne, *cur;
2991 struct page *page = NULL;
2992
2993 /*
2994 * there are two steps to flush nat entries:
2995 * #1, flush nat entries to journal in current hot data summary block.
2996 * #2, flush nat entries to nat page.
2997 */
2998 if ((cpc->reason & CP_UMOUNT) ||
2999 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3000 to_journal = false;
3001
3002 if (to_journal) {
3003 down_write(&curseg->journal_rwsem);
3004 } else {
3005 page = get_next_nat_page(sbi, start_nid);
3006 if (IS_ERR(page))
3007 return PTR_ERR(page);
3008
3009 nat_blk = page_address(page);
3010 f2fs_bug_on(sbi, !nat_blk);
3011 }
3012
3013 /* flush dirty nats in nat entry set */
3014 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3015 struct f2fs_nat_entry *raw_ne;
3016 nid_t nid = nat_get_nid(ne);
3017 int offset;
3018
3019 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3020
3021 if (to_journal) {
3022 offset = f2fs_lookup_journal_in_cursum(journal,
3023 NAT_JOURNAL, nid, 1);
3024 f2fs_bug_on(sbi, offset < 0);
3025 raw_ne = &nat_in_journal(journal, offset);
3026 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3027 } else {
3028 raw_ne = &nat_blk->entries[nid - start_nid];
3029 }
3030 raw_nat_from_node_info(raw_ne, &ne->ni);
3031 nat_reset_flag(ne);
3032 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3033 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3034 add_free_nid(sbi, nid, false, true);
3035 } else {
3036 spin_lock(&NM_I(sbi)->nid_list_lock);
3037 update_free_nid_bitmap(sbi, nid, false, false);
3038 spin_unlock(&NM_I(sbi)->nid_list_lock);
3039 }
3040 }
3041
3042 if (to_journal) {
3043 up_write(&curseg->journal_rwsem);
3044 } else {
3045 update_nat_bits(sbi, start_nid, page);
3046 f2fs_put_page(page, 1);
3047 }
3048
3049 /* Allow dirty nats by node block allocation in write_begin */
3050 if (!set->entry_cnt) {
3051 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3052 kmem_cache_free(nat_entry_set_slab, set);
3053 }
3054 return 0;
3055 }
3056
3057 /*
3058 * This function is called during the checkpointing process.
3059 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3061 {
3062 struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3064 struct f2fs_journal *journal = curseg->journal;
3065 struct nat_entry_set *setvec[SETVEC_SIZE];
3066 struct nat_entry_set *set, *tmp;
3067 unsigned int found;
3068 nid_t set_idx = 0;
3069 LIST_HEAD(sets);
3070 int err = 0;
3071
3072 /*
3073 * during unmount, let's flush nat_bits before checking
3074 * nat_cnt[DIRTY_NAT].
3075 */
3076 if (cpc->reason & CP_UMOUNT) {
3077 f2fs_down_write(&nm_i->nat_tree_lock);
3078 remove_nats_in_journal(sbi);
3079 f2fs_up_write(&nm_i->nat_tree_lock);
3080 }
3081
3082 if (!nm_i->nat_cnt[DIRTY_NAT])
3083 return 0;
3084
3085 f2fs_down_write(&nm_i->nat_tree_lock);
3086
3087 /*
3088 * if there are no enough space in journal to store dirty nat
3089 * entries, remove all entries from journal and merge them
3090 * into nat entry set.
3091 */
3092 if (cpc->reason & CP_UMOUNT ||
3093 !__has_cursum_space(journal,
3094 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3095 remove_nats_in_journal(sbi);
3096
3097 while ((found = __gang_lookup_nat_set(nm_i,
3098 set_idx, SETVEC_SIZE, setvec))) {
3099 unsigned idx;
3100
3101 set_idx = setvec[found - 1]->set + 1;
3102 for (idx = 0; idx < found; idx++)
3103 __adjust_nat_entry_set(setvec[idx], &sets,
3104 MAX_NAT_JENTRIES(journal));
3105 }
3106
3107 /* flush dirty nats in nat entry set */
3108 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3109 err = __flush_nat_entry_set(sbi, set, cpc);
3110 if (err)
3111 break;
3112 }
3113
3114 f2fs_up_write(&nm_i->nat_tree_lock);
3115 /* Allow dirty nats by node block allocation in write_begin */
3116
3117 return err;
3118 }
3119
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3121 {
3122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3123 struct f2fs_nm_info *nm_i = NM_I(sbi);
3124 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3125 unsigned int i;
3126 __u64 cp_ver = cur_cp_version(ckpt);
3127 block_t nat_bits_addr;
3128
3129 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3130 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3131 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3132 if (!nm_i->nat_bits)
3133 return -ENOMEM;
3134
3135 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3136 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3137
3138 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3139 return 0;
3140
3141 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3142 nm_i->nat_bits_blocks;
3143 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3144 struct page *page;
3145
3146 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3147 if (IS_ERR(page))
3148 return PTR_ERR(page);
3149
3150 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3151 page_address(page), F2FS_BLKSIZE);
3152 f2fs_put_page(page, 1);
3153 }
3154
3155 cp_ver |= (cur_cp_crc(ckpt) << 32);
3156 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3157 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3158 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3159 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3160 return 0;
3161 }
3162
3163 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3164 return 0;
3165 }
3166
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3168 {
3169 struct f2fs_nm_info *nm_i = NM_I(sbi);
3170 unsigned int i = 0;
3171 nid_t nid, last_nid;
3172
3173 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3174 return;
3175
3176 for (i = 0; i < nm_i->nat_blocks; i++) {
3177 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3178 if (i >= nm_i->nat_blocks)
3179 break;
3180
3181 __set_bit_le(i, nm_i->nat_block_bitmap);
3182
3183 nid = i * NAT_ENTRY_PER_BLOCK;
3184 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3185
3186 spin_lock(&NM_I(sbi)->nid_list_lock);
3187 for (; nid < last_nid; nid++)
3188 update_free_nid_bitmap(sbi, nid, true, true);
3189 spin_unlock(&NM_I(sbi)->nid_list_lock);
3190 }
3191
3192 for (i = 0; i < nm_i->nat_blocks; i++) {
3193 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3194 if (i >= nm_i->nat_blocks)
3195 break;
3196
3197 __set_bit_le(i, nm_i->nat_block_bitmap);
3198 }
3199 }
3200
init_node_manager(struct f2fs_sb_info * sbi)3201 static int init_node_manager(struct f2fs_sb_info *sbi)
3202 {
3203 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3204 struct f2fs_nm_info *nm_i = NM_I(sbi);
3205 unsigned char *version_bitmap;
3206 unsigned int nat_segs;
3207 int err;
3208
3209 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3210
3211 /* segment_count_nat includes pair segment so divide to 2. */
3212 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3213 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3214 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3215
3216 /* not used nids: 0, node, meta, (and root counted as valid node) */
3217 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3218 F2FS_RESERVED_NODE_NUM;
3219 nm_i->nid_cnt[FREE_NID] = 0;
3220 nm_i->nid_cnt[PREALLOC_NID] = 0;
3221 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3222 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3223 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3224 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3225
3226 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3227 INIT_LIST_HEAD(&nm_i->free_nid_list);
3228 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3229 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3230 INIT_LIST_HEAD(&nm_i->nat_entries);
3231 spin_lock_init(&nm_i->nat_list_lock);
3232
3233 mutex_init(&nm_i->build_lock);
3234 spin_lock_init(&nm_i->nid_list_lock);
3235 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3236
3237 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3238 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3239 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3240 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3241 GFP_KERNEL);
3242 if (!nm_i->nat_bitmap)
3243 return -ENOMEM;
3244
3245 err = __get_nat_bitmaps(sbi);
3246 if (err)
3247 return err;
3248
3249 #ifdef CONFIG_F2FS_CHECK_FS
3250 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3251 GFP_KERNEL);
3252 if (!nm_i->nat_bitmap_mir)
3253 return -ENOMEM;
3254 #endif
3255
3256 return 0;
3257 }
3258
init_free_nid_cache(struct f2fs_sb_info * sbi)3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3260 {
3261 struct f2fs_nm_info *nm_i = NM_I(sbi);
3262 int i;
3263
3264 nm_i->free_nid_bitmap =
3265 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3266 nm_i->nat_blocks),
3267 GFP_KERNEL);
3268 if (!nm_i->free_nid_bitmap)
3269 return -ENOMEM;
3270
3271 for (i = 0; i < nm_i->nat_blocks; i++) {
3272 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3273 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3274 if (!nm_i->free_nid_bitmap[i])
3275 return -ENOMEM;
3276 }
3277
3278 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3279 GFP_KERNEL);
3280 if (!nm_i->nat_block_bitmap)
3281 return -ENOMEM;
3282
3283 nm_i->free_nid_count =
3284 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3285 nm_i->nat_blocks),
3286 GFP_KERNEL);
3287 if (!nm_i->free_nid_count)
3288 return -ENOMEM;
3289 return 0;
3290 }
3291
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3293 {
3294 int err;
3295
3296 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3297 GFP_KERNEL);
3298 if (!sbi->nm_info)
3299 return -ENOMEM;
3300
3301 err = init_node_manager(sbi);
3302 if (err)
3303 return err;
3304
3305 err = init_free_nid_cache(sbi);
3306 if (err)
3307 return err;
3308
3309 /* load free nid status from nat_bits table */
3310 load_free_nid_bitmap(sbi);
3311
3312 return f2fs_build_free_nids(sbi, true, true);
3313 }
3314
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3316 {
3317 struct f2fs_nm_info *nm_i = NM_I(sbi);
3318 struct free_nid *i, *next_i;
3319 struct nat_entry *natvec[NATVEC_SIZE];
3320 struct nat_entry_set *setvec[SETVEC_SIZE];
3321 nid_t nid = 0;
3322 unsigned int found;
3323
3324 if (!nm_i)
3325 return;
3326
3327 /* destroy free nid list */
3328 spin_lock(&nm_i->nid_list_lock);
3329 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3330 __remove_free_nid(sbi, i, FREE_NID);
3331 spin_unlock(&nm_i->nid_list_lock);
3332 kmem_cache_free(free_nid_slab, i);
3333 spin_lock(&nm_i->nid_list_lock);
3334 }
3335 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3336 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3337 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3338 spin_unlock(&nm_i->nid_list_lock);
3339
3340 /* destroy nat cache */
3341 f2fs_down_write(&nm_i->nat_tree_lock);
3342 while ((found = __gang_lookup_nat_cache(nm_i,
3343 nid, NATVEC_SIZE, natvec))) {
3344 unsigned idx;
3345
3346 nid = nat_get_nid(natvec[found - 1]) + 1;
3347 for (idx = 0; idx < found; idx++) {
3348 spin_lock(&nm_i->nat_list_lock);
3349 list_del(&natvec[idx]->list);
3350 spin_unlock(&nm_i->nat_list_lock);
3351
3352 __del_from_nat_cache(nm_i, natvec[idx]);
3353 }
3354 }
3355 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3356
3357 /* destroy nat set cache */
3358 nid = 0;
3359 while ((found = __gang_lookup_nat_set(nm_i,
3360 nid, SETVEC_SIZE, setvec))) {
3361 unsigned idx;
3362
3363 nid = setvec[found - 1]->set + 1;
3364 for (idx = 0; idx < found; idx++) {
3365 /* entry_cnt is not zero, when cp_error was occurred */
3366 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3367 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3368 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3369 }
3370 }
3371 f2fs_up_write(&nm_i->nat_tree_lock);
3372
3373 kvfree(nm_i->nat_block_bitmap);
3374 if (nm_i->free_nid_bitmap) {
3375 int i;
3376
3377 for (i = 0; i < nm_i->nat_blocks; i++)
3378 kvfree(nm_i->free_nid_bitmap[i]);
3379 kvfree(nm_i->free_nid_bitmap);
3380 }
3381 kvfree(nm_i->free_nid_count);
3382
3383 kvfree(nm_i->nat_bitmap);
3384 kvfree(nm_i->nat_bits);
3385 #ifdef CONFIG_F2FS_CHECK_FS
3386 kvfree(nm_i->nat_bitmap_mir);
3387 #endif
3388 sbi->nm_info = NULL;
3389 kfree(nm_i);
3390 }
3391
f2fs_create_node_manager_caches(void)3392 int __init f2fs_create_node_manager_caches(void)
3393 {
3394 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3395 sizeof(struct nat_entry));
3396 if (!nat_entry_slab)
3397 goto fail;
3398
3399 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3400 sizeof(struct free_nid));
3401 if (!free_nid_slab)
3402 goto destroy_nat_entry;
3403
3404 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3405 sizeof(struct nat_entry_set));
3406 if (!nat_entry_set_slab)
3407 goto destroy_free_nid;
3408
3409 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3410 sizeof(struct fsync_node_entry));
3411 if (!fsync_node_entry_slab)
3412 goto destroy_nat_entry_set;
3413 return 0;
3414
3415 destroy_nat_entry_set:
3416 kmem_cache_destroy(nat_entry_set_slab);
3417 destroy_free_nid:
3418 kmem_cache_destroy(free_nid_slab);
3419 destroy_nat_entry:
3420 kmem_cache_destroy(nat_entry_slab);
3421 fail:
3422 return -ENOMEM;
3423 }
3424
f2fs_destroy_node_manager_caches(void)3425 void f2fs_destroy_node_manager_caches(void)
3426 {
3427 kmem_cache_destroy(fsync_node_entry_slab);
3428 kmem_cache_destroy(nat_entry_set_slab);
3429 kmem_cache_destroy(free_nid_slab);
3430 kmem_cache_destroy(nat_entry_slab);
3431 }
3432