1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152
153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 f2fs_update_time(sbi, REQ_TIME);
155
156 trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 filemap_invalidate_unlock_shared(inode->i_mapping);
159
160 sb_end_pagefault(inode->i_sb);
161 err:
162 return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 .fault = f2fs_filemap_fault,
167 .map_pages = filemap_map_pages,
168 .page_mkwrite = f2fs_vm_page_mkwrite,
169 };
170
get_parent_ino(struct inode * inode,nid_t * pino)171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 struct dentry *dentry;
174
175 /*
176 * Make sure to get the non-deleted alias. The alias associated with
177 * the open file descriptor being fsync()'ed may be deleted already.
178 */
179 dentry = d_find_alias(inode);
180 if (!dentry)
181 return 0;
182
183 *pino = parent_ino(dentry);
184 dput(dentry);
185 return 1;
186 }
187
need_do_checkpoint(struct inode * inode)188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193 if (!S_ISREG(inode->i_mode))
194 cp_reason = CP_NON_REGULAR;
195 else if (f2fs_compressed_file(inode))
196 cp_reason = CP_COMPRESSED;
197 else if (inode->i_nlink != 1)
198 cp_reason = CP_HARDLINK;
199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 cp_reason = CP_SB_NEED_CP;
201 else if (file_wrong_pino(inode))
202 cp_reason = CP_WRONG_PINO;
203 else if (!f2fs_space_for_roll_forward(sbi))
204 cp_reason = CP_NO_SPC_ROLL;
205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 cp_reason = CP_NODE_NEED_CP;
207 else if (test_opt(sbi, FASTBOOT))
208 cp_reason = CP_FASTBOOT_MODE;
209 else if (F2FS_OPTION(sbi).active_logs == 2)
210 cp_reason = CP_SPEC_LOG_NUM;
211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 TRANS_DIR_INO))
215 cp_reason = CP_RECOVER_DIR;
216
217 return cp_reason;
218 }
219
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 bool ret = false;
224 /* But we need to avoid that there are some inode updates */
225 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 ret = true;
227 f2fs_put_page(i, 0);
228 return ret;
229 }
230
try_to_fix_pino(struct inode * inode)231 static void try_to_fix_pino(struct inode *inode)
232 {
233 struct f2fs_inode_info *fi = F2FS_I(inode);
234 nid_t pino;
235
236 f2fs_down_write(&fi->i_sem);
237 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 get_parent_ino(inode, &pino)) {
239 f2fs_i_pino_write(inode, pino);
240 file_got_pino(inode);
241 }
242 f2fs_up_write(&fi->i_sem);
243 }
244
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 int datasync, bool atomic)
247 {
248 struct inode *inode = file->f_mapping->host;
249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 nid_t ino = inode->i_ino;
251 int ret = 0;
252 enum cp_reason_type cp_reason = 0;
253 struct writeback_control wbc = {
254 .sync_mode = WB_SYNC_ALL,
255 .nr_to_write = LONG_MAX,
256 .for_reclaim = 0,
257 };
258 unsigned int seq_id = 0;
259
260 if (unlikely(f2fs_readonly(inode->i_sb)))
261 return 0;
262
263 trace_f2fs_sync_file_enter(inode);
264
265 if (S_ISDIR(inode->i_mode))
266 goto go_write;
267
268 /* if fdatasync is triggered, let's do in-place-update */
269 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 set_inode_flag(inode, FI_NEED_IPU);
271 ret = file_write_and_wait_range(file, start, end);
272 clear_inode_flag(inode, FI_NEED_IPU);
273
274 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 return ret;
277 }
278
279 /* if the inode is dirty, let's recover all the time */
280 if (!f2fs_skip_inode_update(inode, datasync)) {
281 f2fs_write_inode(inode, NULL);
282 goto go_write;
283 }
284
285 /*
286 * if there is no written data, don't waste time to write recovery info.
287 */
288 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290
291 /* it may call write_inode just prior to fsync */
292 if (need_inode_page_update(sbi, ino))
293 goto go_write;
294
295 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 goto flush_out;
298 goto out;
299 } else {
300 /*
301 * for OPU case, during fsync(), node can be persisted before
302 * data when lower device doesn't support write barrier, result
303 * in data corruption after SPO.
304 * So for strict fsync mode, force to use atomic write semantics
305 * to keep write order in between data/node and last node to
306 * avoid potential data corruption.
307 */
308 if (F2FS_OPTION(sbi).fsync_mode ==
309 FSYNC_MODE_STRICT && !atomic)
310 atomic = true;
311 }
312 go_write:
313 /*
314 * Both of fdatasync() and fsync() are able to be recovered from
315 * sudden-power-off.
316 */
317 f2fs_down_read(&F2FS_I(inode)->i_sem);
318 cp_reason = need_do_checkpoint(inode);
319 f2fs_up_read(&F2FS_I(inode)->i_sem);
320
321 if (cp_reason) {
322 /* all the dirty node pages should be flushed for POR */
323 ret = f2fs_sync_fs(inode->i_sb, 1);
324
325 /*
326 * We've secured consistency through sync_fs. Following pino
327 * will be used only for fsynced inodes after checkpoint.
328 */
329 try_to_fix_pino(inode);
330 clear_inode_flag(inode, FI_APPEND_WRITE);
331 clear_inode_flag(inode, FI_UPDATE_WRITE);
332 goto out;
333 }
334 sync_nodes:
335 atomic_inc(&sbi->wb_sync_req[NODE]);
336 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 atomic_dec(&sbi->wb_sync_req[NODE]);
338 if (ret)
339 goto out;
340
341 /* if cp_error was enabled, we should avoid infinite loop */
342 if (unlikely(f2fs_cp_error(sbi))) {
343 ret = -EIO;
344 goto out;
345 }
346
347 if (f2fs_need_inode_block_update(sbi, ino)) {
348 f2fs_mark_inode_dirty_sync(inode, true);
349 f2fs_write_inode(inode, NULL);
350 goto sync_nodes;
351 }
352
353 /*
354 * If it's atomic_write, it's just fine to keep write ordering. So
355 * here we don't need to wait for node write completion, since we use
356 * node chain which serializes node blocks. If one of node writes are
357 * reordered, we can see simply broken chain, resulting in stopping
358 * roll-forward recovery. It means we'll recover all or none node blocks
359 * given fsync mark.
360 */
361 if (!atomic) {
362 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 if (ret)
364 goto out;
365 }
366
367 /* once recovery info is written, don't need to tack this */
368 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 ret = f2fs_issue_flush(sbi, inode->i_ino);
374 if (!ret) {
375 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 clear_inode_flag(inode, FI_UPDATE_WRITE);
377 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 }
379 f2fs_update_time(sbi, REQ_TIME);
380 out:
381 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 return ret;
383 }
384
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 return -EIO;
389 return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 pgoff_t index, int whence)
394 {
395 switch (whence) {
396 case SEEK_DATA:
397 if (__is_valid_data_blkaddr(blkaddr))
398 return true;
399 if (blkaddr == NEW_ADDR &&
400 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 return true;
402 break;
403 case SEEK_HOLE:
404 if (blkaddr == NULL_ADDR)
405 return true;
406 break;
407 }
408 return false;
409 }
410
f2fs_seek_block(struct file * file,loff_t offset,int whence)411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 struct inode *inode = file->f_mapping->host;
414 loff_t maxbytes = inode->i_sb->s_maxbytes;
415 struct dnode_of_data dn;
416 pgoff_t pgofs, end_offset;
417 loff_t data_ofs = offset;
418 loff_t isize;
419 int err = 0;
420
421 inode_lock(inode);
422
423 isize = i_size_read(inode);
424 if (offset >= isize)
425 goto fail;
426
427 /* handle inline data case */
428 if (f2fs_has_inline_data(inode)) {
429 if (whence == SEEK_HOLE) {
430 data_ofs = isize;
431 goto found;
432 } else if (whence == SEEK_DATA) {
433 data_ofs = offset;
434 goto found;
435 }
436 }
437
438 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439
440 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 set_new_dnode(&dn, inode, NULL, NULL, 0);
442 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 if (err && err != -ENOENT) {
444 goto fail;
445 } else if (err == -ENOENT) {
446 /* direct node does not exists */
447 if (whence == SEEK_DATA) {
448 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 continue;
450 } else {
451 goto found;
452 }
453 }
454
455 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456
457 /* find data/hole in dnode block */
458 for (; dn.ofs_in_node < end_offset;
459 dn.ofs_in_node++, pgofs++,
460 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 block_t blkaddr;
462
463 blkaddr = f2fs_data_blkaddr(&dn);
464
465 if (__is_valid_data_blkaddr(blkaddr) &&
466 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 blkaddr, DATA_GENERIC_ENHANCE)) {
468 f2fs_put_dnode(&dn);
469 goto fail;
470 }
471
472 if (__found_offset(file->f_mapping, blkaddr,
473 pgofs, whence)) {
474 f2fs_put_dnode(&dn);
475 goto found;
476 }
477 }
478 f2fs_put_dnode(&dn);
479 }
480
481 if (whence == SEEK_DATA)
482 goto fail;
483 found:
484 if (whence == SEEK_HOLE && data_ofs > isize)
485 data_ofs = isize;
486 inode_unlock(inode);
487 return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 inode_unlock(inode);
490 return -ENXIO;
491 }
492
f2fs_llseek(struct file * file,loff_t offset,int whence)493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 struct inode *inode = file->f_mapping->host;
496 loff_t maxbytes = inode->i_sb->s_maxbytes;
497
498 if (f2fs_compressed_file(inode))
499 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500
501 switch (whence) {
502 case SEEK_SET:
503 case SEEK_CUR:
504 case SEEK_END:
505 return generic_file_llseek_size(file, offset, whence,
506 maxbytes, i_size_read(inode));
507 case SEEK_DATA:
508 case SEEK_HOLE:
509 if (offset < 0)
510 return -ENXIO;
511 return f2fs_seek_block(file, offset, whence);
512 }
513
514 return -EINVAL;
515 }
516
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 struct inode *inode = file_inode(file);
520
521 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 return -EIO;
523
524 if (!f2fs_is_compress_backend_ready(inode))
525 return -EOPNOTSUPP;
526
527 file_accessed(file);
528 vma->vm_ops = &f2fs_file_vm_ops;
529
530 f2fs_down_read(&F2FS_I(inode)->i_sem);
531 set_inode_flag(inode, FI_MMAP_FILE);
532 f2fs_up_read(&F2FS_I(inode)->i_sem);
533
534 return 0;
535 }
536
f2fs_file_open(struct inode * inode,struct file * filp)537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 int err = fscrypt_file_open(inode, filp);
540
541 if (err)
542 return err;
543
544 if (!f2fs_is_compress_backend_ready(inode))
545 return -EOPNOTSUPP;
546
547 err = fsverity_file_open(inode, filp);
548 if (err)
549 return err;
550
551 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 filp->f_mode |= FMODE_CAN_ODIRECT;
553
554 return dquot_file_open(inode, filp);
555 }
556
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 struct f2fs_node *raw_node;
561 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562 __le32 *addr;
563 int base = 0;
564 bool compressed_cluster = false;
565 int cluster_index = 0, valid_blocks = 0;
566 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568
569 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 base = get_extra_isize(dn->inode);
571
572 raw_node = F2FS_NODE(dn->node_page);
573 addr = blkaddr_in_node(raw_node) + base + ofs;
574
575 /* Assumption: truncation starts with cluster */
576 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 block_t blkaddr = le32_to_cpu(*addr);
578
579 if (f2fs_compressed_file(dn->inode) &&
580 !(cluster_index & (cluster_size - 1))) {
581 if (compressed_cluster)
582 f2fs_i_compr_blocks_update(dn->inode,
583 valid_blocks, false);
584 compressed_cluster = (blkaddr == COMPRESS_ADDR);
585 valid_blocks = 0;
586 }
587
588 if (blkaddr == NULL_ADDR)
589 continue;
590
591 dn->data_blkaddr = NULL_ADDR;
592 f2fs_set_data_blkaddr(dn);
593
594 if (__is_valid_data_blkaddr(blkaddr)) {
595 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 DATA_GENERIC_ENHANCE))
597 continue;
598 if (compressed_cluster)
599 valid_blocks++;
600 }
601
602 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604
605 f2fs_invalidate_blocks(sbi, blkaddr);
606
607 if (!released || blkaddr != COMPRESS_ADDR)
608 nr_free++;
609 }
610
611 if (compressed_cluster)
612 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613
614 if (nr_free) {
615 pgoff_t fofs;
616 /*
617 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 * we will invalidate all blkaddr in the whole range.
619 */
620 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621 dn->inode) + ofs;
622 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623 f2fs_update_age_extent_cache_range(dn, fofs, len);
624 dec_valid_block_count(sbi, dn->inode, nr_free);
625 }
626 dn->ofs_in_node = ofs;
627
628 f2fs_update_time(sbi, REQ_TIME);
629 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630 dn->ofs_in_node, nr_free);
631 }
632
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634 bool cache_only)
635 {
636 loff_t offset = from & (PAGE_SIZE - 1);
637 pgoff_t index = from >> PAGE_SHIFT;
638 struct address_space *mapping = inode->i_mapping;
639 struct page *page;
640
641 if (!offset && !cache_only)
642 return 0;
643
644 if (cache_only) {
645 page = find_lock_page(mapping, index);
646 if (page && PageUptodate(page))
647 goto truncate_out;
648 f2fs_put_page(page, 1);
649 return 0;
650 }
651
652 page = f2fs_get_lock_data_page(inode, index, true);
653 if (IS_ERR(page))
654 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656 f2fs_wait_on_page_writeback(page, DATA, true, true);
657 zero_user(page, offset, PAGE_SIZE - offset);
658
659 /* An encrypted inode should have a key and truncate the last page. */
660 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661 if (!cache_only)
662 set_page_dirty(page);
663 f2fs_put_page(page, 1);
664 return 0;
665 }
666
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 struct dnode_of_data dn;
671 pgoff_t free_from;
672 int count = 0, err = 0;
673 struct page *ipage;
674 bool truncate_page = false;
675
676 trace_f2fs_truncate_blocks_enter(inode, from);
677
678 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679
680 if (free_from >= max_file_blocks(inode))
681 goto free_partial;
682
683 if (lock)
684 f2fs_lock_op(sbi);
685
686 ipage = f2fs_get_node_page(sbi, inode->i_ino);
687 if (IS_ERR(ipage)) {
688 err = PTR_ERR(ipage);
689 goto out;
690 }
691
692 if (f2fs_has_inline_data(inode)) {
693 f2fs_truncate_inline_inode(inode, ipage, from);
694 f2fs_put_page(ipage, 1);
695 truncate_page = true;
696 goto out;
697 }
698
699 set_new_dnode(&dn, inode, ipage, NULL, 0);
700 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701 if (err) {
702 if (err == -ENOENT)
703 goto free_next;
704 goto out;
705 }
706
707 count = ADDRS_PER_PAGE(dn.node_page, inode);
708
709 count -= dn.ofs_in_node;
710 f2fs_bug_on(sbi, count < 0);
711
712 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713 f2fs_truncate_data_blocks_range(&dn, count);
714 free_from += count;
715 }
716
717 f2fs_put_dnode(&dn);
718 free_next:
719 err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721 if (lock)
722 f2fs_unlock_op(sbi);
723 free_partial:
724 /* lastly zero out the first data page */
725 if (!err)
726 err = truncate_partial_data_page(inode, from, truncate_page);
727
728 trace_f2fs_truncate_blocks_exit(inode, err);
729 return err;
730 }
731
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734 u64 free_from = from;
735 int err;
736
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738 /*
739 * for compressed file, only support cluster size
740 * aligned truncation.
741 */
742 if (f2fs_compressed_file(inode))
743 free_from = round_up(from,
744 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746
747 err = f2fs_do_truncate_blocks(inode, free_from, lock);
748 if (err)
749 return err;
750
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 /*
753 * For compressed file, after release compress blocks, don't allow write
754 * direct, but we should allow write direct after truncate to zero.
755 */
756 if (f2fs_compressed_file(inode) && !free_from
757 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759
760 if (from != free_from) {
761 err = f2fs_truncate_partial_cluster(inode, from, lock);
762 if (err)
763 return err;
764 }
765 #endif
766
767 return 0;
768 }
769
f2fs_truncate(struct inode * inode)770 int f2fs_truncate(struct inode *inode)
771 {
772 int err;
773
774 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775 return -EIO;
776
777 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778 S_ISLNK(inode->i_mode)))
779 return 0;
780
781 trace_f2fs_truncate(inode);
782
783 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784 return -EIO;
785
786 err = f2fs_dquot_initialize(inode);
787 if (err)
788 return err;
789
790 /* we should check inline_data size */
791 if (!f2fs_may_inline_data(inode)) {
792 err = f2fs_convert_inline_inode(inode);
793 if (err)
794 return err;
795 }
796
797 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798 if (err)
799 return err;
800
801 inode->i_mtime = inode_set_ctime_current(inode);
802 f2fs_mark_inode_dirty_sync(inode, false);
803 return 0;
804 }
805
f2fs_force_buffered_io(struct inode * inode,int rw)806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809
810 if (!fscrypt_dio_supported(inode))
811 return true;
812 if (fsverity_active(inode))
813 return true;
814 if (f2fs_compressed_file(inode))
815 return true;
816
817 /* disallow direct IO if any of devices has unaligned blksize */
818 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819 return true;
820 /*
821 * for blkzoned device, fallback direct IO to buffered IO, so
822 * all IOs can be serialized by log-structured write.
823 */
824 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825 return true;
826 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827 return true;
828 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829 return true;
830
831 return false;
832 }
833
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835 struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837 struct inode *inode = d_inode(path->dentry);
838 struct f2fs_inode_info *fi = F2FS_I(inode);
839 struct f2fs_inode *ri = NULL;
840 unsigned int flags;
841
842 if (f2fs_has_extra_attr(inode) &&
843 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845 stat->result_mask |= STATX_BTIME;
846 stat->btime.tv_sec = fi->i_crtime.tv_sec;
847 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848 }
849
850 /*
851 * Return the DIO alignment restrictions if requested. We only return
852 * this information when requested, since on encrypted files it might
853 * take a fair bit of work to get if the file wasn't opened recently.
854 *
855 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
856 * cannot represent that, so in that case we report no DIO support.
857 */
858 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859 unsigned int bsize = i_blocksize(inode);
860
861 stat->result_mask |= STATX_DIOALIGN;
862 if (!f2fs_force_buffered_io(inode, WRITE)) {
863 stat->dio_mem_align = bsize;
864 stat->dio_offset_align = bsize;
865 }
866 }
867
868 flags = fi->i_flags;
869 if (flags & F2FS_COMPR_FL)
870 stat->attributes |= STATX_ATTR_COMPRESSED;
871 if (flags & F2FS_APPEND_FL)
872 stat->attributes |= STATX_ATTR_APPEND;
873 if (IS_ENCRYPTED(inode))
874 stat->attributes |= STATX_ATTR_ENCRYPTED;
875 if (flags & F2FS_IMMUTABLE_FL)
876 stat->attributes |= STATX_ATTR_IMMUTABLE;
877 if (flags & F2FS_NODUMP_FL)
878 stat->attributes |= STATX_ATTR_NODUMP;
879 if (IS_VERITY(inode))
880 stat->attributes |= STATX_ATTR_VERITY;
881
882 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883 STATX_ATTR_APPEND |
884 STATX_ATTR_ENCRYPTED |
885 STATX_ATTR_IMMUTABLE |
886 STATX_ATTR_NODUMP |
887 STATX_ATTR_VERITY);
888
889 generic_fillattr(idmap, request_mask, inode, stat);
890
891 /* we need to show initial sectors used for inline_data/dentries */
892 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893 f2fs_has_inline_dentry(inode))
894 stat->blocks += (stat->size + 511) >> 9;
895
896 return 0;
897 }
898
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)900 static void __setattr_copy(struct mnt_idmap *idmap,
901 struct inode *inode, const struct iattr *attr)
902 {
903 unsigned int ia_valid = attr->ia_valid;
904
905 i_uid_update(idmap, attr, inode);
906 i_gid_update(idmap, attr, inode);
907 if (ia_valid & ATTR_ATIME)
908 inode->i_atime = attr->ia_atime;
909 if (ia_valid & ATTR_MTIME)
910 inode->i_mtime = attr->ia_mtime;
911 if (ia_valid & ATTR_CTIME)
912 inode_set_ctime_to_ts(inode, attr->ia_ctime);
913 if (ia_valid & ATTR_MODE) {
914 umode_t mode = attr->ia_mode;
915 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916
917 if (!vfsgid_in_group_p(vfsgid) &&
918 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919 mode &= ~S_ISGID;
920 set_acl_inode(inode, mode);
921 }
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928 struct iattr *attr)
929 {
930 struct inode *inode = d_inode(dentry);
931 int err;
932
933 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934 return -EIO;
935
936 if (unlikely(IS_IMMUTABLE(inode)))
937 return -EPERM;
938
939 if (unlikely(IS_APPEND(inode) &&
940 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
941 ATTR_GID | ATTR_TIMES_SET))))
942 return -EPERM;
943
944 if ((attr->ia_valid & ATTR_SIZE) &&
945 !f2fs_is_compress_backend_ready(inode))
946 return -EOPNOTSUPP;
947
948 err = setattr_prepare(idmap, dentry, attr);
949 if (err)
950 return err;
951
952 err = fscrypt_prepare_setattr(dentry, attr);
953 if (err)
954 return err;
955
956 err = fsverity_prepare_setattr(dentry, attr);
957 if (err)
958 return err;
959
960 if (is_quota_modification(idmap, inode, attr)) {
961 err = f2fs_dquot_initialize(inode);
962 if (err)
963 return err;
964 }
965 if (i_uid_needs_update(idmap, attr, inode) ||
966 i_gid_needs_update(idmap, attr, inode)) {
967 f2fs_lock_op(F2FS_I_SB(inode));
968 err = dquot_transfer(idmap, inode, attr);
969 if (err) {
970 set_sbi_flag(F2FS_I_SB(inode),
971 SBI_QUOTA_NEED_REPAIR);
972 f2fs_unlock_op(F2FS_I_SB(inode));
973 return err;
974 }
975 /*
976 * update uid/gid under lock_op(), so that dquot and inode can
977 * be updated atomically.
978 */
979 i_uid_update(idmap, attr, inode);
980 i_gid_update(idmap, attr, inode);
981 f2fs_mark_inode_dirty_sync(inode, true);
982 f2fs_unlock_op(F2FS_I_SB(inode));
983 }
984
985 if (attr->ia_valid & ATTR_SIZE) {
986 loff_t old_size = i_size_read(inode);
987
988 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989 /*
990 * should convert inline inode before i_size_write to
991 * keep smaller than inline_data size with inline flag.
992 */
993 err = f2fs_convert_inline_inode(inode);
994 if (err)
995 return err;
996 }
997
998 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999 filemap_invalidate_lock(inode->i_mapping);
1000
1001 truncate_setsize(inode, attr->ia_size);
1002
1003 if (attr->ia_size <= old_size)
1004 err = f2fs_truncate(inode);
1005 /*
1006 * do not trim all blocks after i_size if target size is
1007 * larger than i_size.
1008 */
1009 filemap_invalidate_unlock(inode->i_mapping);
1010 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011 if (err)
1012 return err;
1013
1014 spin_lock(&F2FS_I(inode)->i_size_lock);
1015 inode->i_mtime = inode_set_ctime_current(inode);
1016 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017 spin_unlock(&F2FS_I(inode)->i_size_lock);
1018 }
1019
1020 __setattr_copy(idmap, inode, attr);
1021
1022 if (attr->ia_valid & ATTR_MODE) {
1023 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024
1025 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026 if (!err)
1027 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028 clear_inode_flag(inode, FI_ACL_MODE);
1029 }
1030 }
1031
1032 /* file size may changed here */
1033 f2fs_mark_inode_dirty_sync(inode, true);
1034
1035 /* inode change will produce dirty node pages flushed by checkpoint */
1036 f2fs_balance_fs(F2FS_I_SB(inode), true);
1037
1038 return err;
1039 }
1040
1041 const struct inode_operations f2fs_file_inode_operations = {
1042 .getattr = f2fs_getattr,
1043 .setattr = f2fs_setattr,
1044 .get_inode_acl = f2fs_get_acl,
1045 .set_acl = f2fs_set_acl,
1046 .listxattr = f2fs_listxattr,
1047 .fiemap = f2fs_fiemap,
1048 .fileattr_get = f2fs_fileattr_get,
1049 .fileattr_set = f2fs_fileattr_set,
1050 };
1051
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053 loff_t start, loff_t len)
1054 {
1055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 struct page *page;
1057
1058 if (!len)
1059 return 0;
1060
1061 f2fs_balance_fs(sbi, true);
1062
1063 f2fs_lock_op(sbi);
1064 page = f2fs_get_new_data_page(inode, NULL, index, false);
1065 f2fs_unlock_op(sbi);
1066
1067 if (IS_ERR(page))
1068 return PTR_ERR(page);
1069
1070 f2fs_wait_on_page_writeback(page, DATA, true, true);
1071 zero_user(page, start, len);
1072 set_page_dirty(page);
1073 f2fs_put_page(page, 1);
1074 return 0;
1075 }
1076
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079 int err;
1080
1081 while (pg_start < pg_end) {
1082 struct dnode_of_data dn;
1083 pgoff_t end_offset, count;
1084
1085 set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087 if (err) {
1088 if (err == -ENOENT) {
1089 pg_start = f2fs_get_next_page_offset(&dn,
1090 pg_start);
1091 continue;
1092 }
1093 return err;
1094 }
1095
1096 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098
1099 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100
1101 f2fs_truncate_data_blocks_range(&dn, count);
1102 f2fs_put_dnode(&dn);
1103
1104 pg_start += count;
1105 }
1106 return 0;
1107 }
1108
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111 pgoff_t pg_start, pg_end;
1112 loff_t off_start, off_end;
1113 int ret;
1114
1115 ret = f2fs_convert_inline_inode(inode);
1116 if (ret)
1117 return ret;
1118
1119 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121
1122 off_start = offset & (PAGE_SIZE - 1);
1123 off_end = (offset + len) & (PAGE_SIZE - 1);
1124
1125 if (pg_start == pg_end) {
1126 ret = fill_zero(inode, pg_start, off_start,
1127 off_end - off_start);
1128 if (ret)
1129 return ret;
1130 } else {
1131 if (off_start) {
1132 ret = fill_zero(inode, pg_start++, off_start,
1133 PAGE_SIZE - off_start);
1134 if (ret)
1135 return ret;
1136 }
1137 if (off_end) {
1138 ret = fill_zero(inode, pg_end, 0, off_end);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 if (pg_start < pg_end) {
1144 loff_t blk_start, blk_end;
1145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146
1147 f2fs_balance_fs(sbi, true);
1148
1149 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151
1152 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 filemap_invalidate_lock(inode->i_mapping);
1154
1155 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156
1157 f2fs_lock_op(sbi);
1158 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159 f2fs_unlock_op(sbi);
1160
1161 filemap_invalidate_unlock(inode->i_mapping);
1162 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163 }
1164 }
1165
1166 return ret;
1167 }
1168
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 struct dnode_of_data dn;
1174 int ret, done, i;
1175
1176 next_dnode:
1177 set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179 if (ret && ret != -ENOENT) {
1180 return ret;
1181 } else if (ret == -ENOENT) {
1182 if (dn.max_level == 0)
1183 return -ENOENT;
1184 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185 dn.ofs_in_node, len);
1186 blkaddr += done;
1187 do_replace += done;
1188 goto next;
1189 }
1190
1191 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192 dn.ofs_in_node, len);
1193 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194 *blkaddr = f2fs_data_blkaddr(&dn);
1195
1196 if (__is_valid_data_blkaddr(*blkaddr) &&
1197 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198 DATA_GENERIC_ENHANCE)) {
1199 f2fs_put_dnode(&dn);
1200 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201 return -EFSCORRUPTED;
1202 }
1203
1204 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205
1206 if (f2fs_lfs_mode(sbi)) {
1207 f2fs_put_dnode(&dn);
1208 return -EOPNOTSUPP;
1209 }
1210
1211 /* do not invalidate this block address */
1212 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213 *do_replace = 1;
1214 }
1215 }
1216 f2fs_put_dnode(&dn);
1217 next:
1218 len -= done;
1219 off += done;
1220 if (len)
1221 goto next_dnode;
1222 return 0;
1223 }
1224
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226 int *do_replace, pgoff_t off, int len)
1227 {
1228 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229 struct dnode_of_data dn;
1230 int ret, i;
1231
1232 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233 if (*do_replace == 0)
1234 continue;
1235
1236 set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238 if (ret) {
1239 dec_valid_block_count(sbi, inode, 1);
1240 f2fs_invalidate_blocks(sbi, *blkaddr);
1241 } else {
1242 f2fs_update_data_blkaddr(&dn, *blkaddr);
1243 }
1244 f2fs_put_dnode(&dn);
1245 }
1246 return 0;
1247 }
1248
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250 block_t *blkaddr, int *do_replace,
1251 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254 pgoff_t i = 0;
1255 int ret;
1256
1257 while (i < len) {
1258 if (blkaddr[i] == NULL_ADDR && !full) {
1259 i++;
1260 continue;
1261 }
1262
1263 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264 struct dnode_of_data dn;
1265 struct node_info ni;
1266 size_t new_size;
1267 pgoff_t ilen;
1268
1269 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271 if (ret)
1272 return ret;
1273
1274 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275 if (ret) {
1276 f2fs_put_dnode(&dn);
1277 return ret;
1278 }
1279
1280 ilen = min((pgoff_t)
1281 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282 dn.ofs_in_node, len - i);
1283 do {
1284 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285 f2fs_truncate_data_blocks_range(&dn, 1);
1286
1287 if (do_replace[i]) {
1288 f2fs_i_blocks_write(src_inode,
1289 1, false, false);
1290 f2fs_i_blocks_write(dst_inode,
1291 1, true, false);
1292 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293 blkaddr[i], ni.version, true, false);
1294
1295 do_replace[i] = 0;
1296 }
1297 dn.ofs_in_node++;
1298 i++;
1299 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300 if (dst_inode->i_size < new_size)
1301 f2fs_i_size_write(dst_inode, new_size);
1302 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303
1304 f2fs_put_dnode(&dn);
1305 } else {
1306 struct page *psrc, *pdst;
1307
1308 psrc = f2fs_get_lock_data_page(src_inode,
1309 src + i, true);
1310 if (IS_ERR(psrc))
1311 return PTR_ERR(psrc);
1312 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313 true);
1314 if (IS_ERR(pdst)) {
1315 f2fs_put_page(psrc, 1);
1316 return PTR_ERR(pdst);
1317 }
1318 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319 set_page_dirty(pdst);
1320 set_page_private_gcing(pdst);
1321 f2fs_put_page(pdst, 1);
1322 f2fs_put_page(psrc, 1);
1323
1324 ret = f2fs_truncate_hole(src_inode,
1325 src + i, src + i + 1);
1326 if (ret)
1327 return ret;
1328 i++;
1329 }
1330 }
1331 return 0;
1332 }
1333
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1334 static int __exchange_data_block(struct inode *src_inode,
1335 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1336 pgoff_t len, bool full)
1337 {
1338 block_t *src_blkaddr;
1339 int *do_replace;
1340 pgoff_t olen;
1341 int ret;
1342
1343 while (len) {
1344 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1345
1346 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1347 array_size(olen, sizeof(block_t)),
1348 GFP_NOFS);
1349 if (!src_blkaddr)
1350 return -ENOMEM;
1351
1352 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1353 array_size(olen, sizeof(int)),
1354 GFP_NOFS);
1355 if (!do_replace) {
1356 kvfree(src_blkaddr);
1357 return -ENOMEM;
1358 }
1359
1360 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1361 do_replace, src, olen);
1362 if (ret)
1363 goto roll_back;
1364
1365 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1366 do_replace, src, dst, olen, full);
1367 if (ret)
1368 goto roll_back;
1369
1370 src += olen;
1371 dst += olen;
1372 len -= olen;
1373
1374 kvfree(src_blkaddr);
1375 kvfree(do_replace);
1376 }
1377 return 0;
1378
1379 roll_back:
1380 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1381 kvfree(src_blkaddr);
1382 kvfree(do_replace);
1383 return ret;
1384 }
1385
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1386 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1387 {
1388 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1389 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1390 pgoff_t start = offset >> PAGE_SHIFT;
1391 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1392 int ret;
1393
1394 f2fs_balance_fs(sbi, true);
1395
1396 /* avoid gc operation during block exchange */
1397 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1398 filemap_invalidate_lock(inode->i_mapping);
1399
1400 f2fs_lock_op(sbi);
1401 f2fs_drop_extent_tree(inode);
1402 truncate_pagecache(inode, offset);
1403 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1404 f2fs_unlock_op(sbi);
1405
1406 filemap_invalidate_unlock(inode->i_mapping);
1407 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1408 return ret;
1409 }
1410
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1411 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1412 {
1413 loff_t new_size;
1414 int ret;
1415
1416 if (offset + len >= i_size_read(inode))
1417 return -EINVAL;
1418
1419 /* collapse range should be aligned to block size of f2fs. */
1420 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1421 return -EINVAL;
1422
1423 ret = f2fs_convert_inline_inode(inode);
1424 if (ret)
1425 return ret;
1426
1427 /* write out all dirty pages from offset */
1428 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429 if (ret)
1430 return ret;
1431
1432 ret = f2fs_do_collapse(inode, offset, len);
1433 if (ret)
1434 return ret;
1435
1436 /* write out all moved pages, if possible */
1437 filemap_invalidate_lock(inode->i_mapping);
1438 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1439 truncate_pagecache(inode, offset);
1440
1441 new_size = i_size_read(inode) - len;
1442 ret = f2fs_truncate_blocks(inode, new_size, true);
1443 filemap_invalidate_unlock(inode->i_mapping);
1444 if (!ret)
1445 f2fs_i_size_write(inode, new_size);
1446 return ret;
1447 }
1448
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1449 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1450 pgoff_t end)
1451 {
1452 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1453 pgoff_t index = start;
1454 unsigned int ofs_in_node = dn->ofs_in_node;
1455 blkcnt_t count = 0;
1456 int ret;
1457
1458 for (; index < end; index++, dn->ofs_in_node++) {
1459 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1460 count++;
1461 }
1462
1463 dn->ofs_in_node = ofs_in_node;
1464 ret = f2fs_reserve_new_blocks(dn, count);
1465 if (ret)
1466 return ret;
1467
1468 dn->ofs_in_node = ofs_in_node;
1469 for (index = start; index < end; index++, dn->ofs_in_node++) {
1470 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1471 /*
1472 * f2fs_reserve_new_blocks will not guarantee entire block
1473 * allocation.
1474 */
1475 if (dn->data_blkaddr == NULL_ADDR) {
1476 ret = -ENOSPC;
1477 break;
1478 }
1479
1480 if (dn->data_blkaddr == NEW_ADDR)
1481 continue;
1482
1483 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1484 DATA_GENERIC_ENHANCE)) {
1485 ret = -EFSCORRUPTED;
1486 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1487 break;
1488 }
1489
1490 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1491 dn->data_blkaddr = NEW_ADDR;
1492 f2fs_set_data_blkaddr(dn);
1493 }
1494
1495 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1496 f2fs_update_age_extent_cache_range(dn, start, index - start);
1497
1498 return ret;
1499 }
1500
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1501 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1502 int mode)
1503 {
1504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1505 struct address_space *mapping = inode->i_mapping;
1506 pgoff_t index, pg_start, pg_end;
1507 loff_t new_size = i_size_read(inode);
1508 loff_t off_start, off_end;
1509 int ret = 0;
1510
1511 ret = inode_newsize_ok(inode, (len + offset));
1512 if (ret)
1513 return ret;
1514
1515 ret = f2fs_convert_inline_inode(inode);
1516 if (ret)
1517 return ret;
1518
1519 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1520 if (ret)
1521 return ret;
1522
1523 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1524 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1525
1526 off_start = offset & (PAGE_SIZE - 1);
1527 off_end = (offset + len) & (PAGE_SIZE - 1);
1528
1529 if (pg_start == pg_end) {
1530 ret = fill_zero(inode, pg_start, off_start,
1531 off_end - off_start);
1532 if (ret)
1533 return ret;
1534
1535 new_size = max_t(loff_t, new_size, offset + len);
1536 } else {
1537 if (off_start) {
1538 ret = fill_zero(inode, pg_start++, off_start,
1539 PAGE_SIZE - off_start);
1540 if (ret)
1541 return ret;
1542
1543 new_size = max_t(loff_t, new_size,
1544 (loff_t)pg_start << PAGE_SHIFT);
1545 }
1546
1547 for (index = pg_start; index < pg_end;) {
1548 struct dnode_of_data dn;
1549 unsigned int end_offset;
1550 pgoff_t end;
1551
1552 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1553 filemap_invalidate_lock(mapping);
1554
1555 truncate_pagecache_range(inode,
1556 (loff_t)index << PAGE_SHIFT,
1557 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1558
1559 f2fs_lock_op(sbi);
1560
1561 set_new_dnode(&dn, inode, NULL, NULL, 0);
1562 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1563 if (ret) {
1564 f2fs_unlock_op(sbi);
1565 filemap_invalidate_unlock(mapping);
1566 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1567 goto out;
1568 }
1569
1570 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1571 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1572
1573 ret = f2fs_do_zero_range(&dn, index, end);
1574 f2fs_put_dnode(&dn);
1575
1576 f2fs_unlock_op(sbi);
1577 filemap_invalidate_unlock(mapping);
1578 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1579
1580 f2fs_balance_fs(sbi, dn.node_changed);
1581
1582 if (ret)
1583 goto out;
1584
1585 index = end;
1586 new_size = max_t(loff_t, new_size,
1587 (loff_t)index << PAGE_SHIFT);
1588 }
1589
1590 if (off_end) {
1591 ret = fill_zero(inode, pg_end, 0, off_end);
1592 if (ret)
1593 goto out;
1594
1595 new_size = max_t(loff_t, new_size, offset + len);
1596 }
1597 }
1598
1599 out:
1600 if (new_size > i_size_read(inode)) {
1601 if (mode & FALLOC_FL_KEEP_SIZE)
1602 file_set_keep_isize(inode);
1603 else
1604 f2fs_i_size_write(inode, new_size);
1605 }
1606 return ret;
1607 }
1608
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1609 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1610 {
1611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1612 struct address_space *mapping = inode->i_mapping;
1613 pgoff_t nr, pg_start, pg_end, delta, idx;
1614 loff_t new_size;
1615 int ret = 0;
1616
1617 new_size = i_size_read(inode) + len;
1618 ret = inode_newsize_ok(inode, new_size);
1619 if (ret)
1620 return ret;
1621
1622 if (offset >= i_size_read(inode))
1623 return -EINVAL;
1624
1625 /* insert range should be aligned to block size of f2fs. */
1626 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1627 return -EINVAL;
1628
1629 ret = f2fs_convert_inline_inode(inode);
1630 if (ret)
1631 return ret;
1632
1633 f2fs_balance_fs(sbi, true);
1634
1635 filemap_invalidate_lock(mapping);
1636 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1637 filemap_invalidate_unlock(mapping);
1638 if (ret)
1639 return ret;
1640
1641 /* write out all dirty pages from offset */
1642 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1643 if (ret)
1644 return ret;
1645
1646 pg_start = offset >> PAGE_SHIFT;
1647 pg_end = (offset + len) >> PAGE_SHIFT;
1648 delta = pg_end - pg_start;
1649 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1650
1651 /* avoid gc operation during block exchange */
1652 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1653 filemap_invalidate_lock(mapping);
1654 truncate_pagecache(inode, offset);
1655
1656 while (!ret && idx > pg_start) {
1657 nr = idx - pg_start;
1658 if (nr > delta)
1659 nr = delta;
1660 idx -= nr;
1661
1662 f2fs_lock_op(sbi);
1663 f2fs_drop_extent_tree(inode);
1664
1665 ret = __exchange_data_block(inode, inode, idx,
1666 idx + delta, nr, false);
1667 f2fs_unlock_op(sbi);
1668 }
1669 filemap_invalidate_unlock(mapping);
1670 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1671
1672 /* write out all moved pages, if possible */
1673 filemap_invalidate_lock(mapping);
1674 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1675 truncate_pagecache(inode, offset);
1676 filemap_invalidate_unlock(mapping);
1677
1678 if (!ret)
1679 f2fs_i_size_write(inode, new_size);
1680 return ret;
1681 }
1682
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1683 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1684 loff_t len, int mode)
1685 {
1686 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1687 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1688 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1689 .m_may_create = true };
1690 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1691 .init_gc_type = FG_GC,
1692 .should_migrate_blocks = false,
1693 .err_gc_skipped = true,
1694 .nr_free_secs = 0 };
1695 pgoff_t pg_start, pg_end;
1696 loff_t new_size;
1697 loff_t off_end;
1698 block_t expanded = 0;
1699 int err;
1700
1701 err = inode_newsize_ok(inode, (len + offset));
1702 if (err)
1703 return err;
1704
1705 err = f2fs_convert_inline_inode(inode);
1706 if (err)
1707 return err;
1708
1709 f2fs_balance_fs(sbi, true);
1710
1711 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1712 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1713 off_end = (offset + len) & (PAGE_SIZE - 1);
1714
1715 map.m_lblk = pg_start;
1716 map.m_len = pg_end - pg_start;
1717 if (off_end)
1718 map.m_len++;
1719
1720 if (!map.m_len)
1721 return 0;
1722
1723 if (f2fs_is_pinned_file(inode)) {
1724 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1725 block_t sec_len = roundup(map.m_len, sec_blks);
1726
1727 map.m_len = sec_blks;
1728 next_alloc:
1729 if (has_not_enough_free_secs(sbi, 0,
1730 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1731 f2fs_down_write(&sbi->gc_lock);
1732 stat_inc_gc_call_count(sbi, FOREGROUND);
1733 err = f2fs_gc(sbi, &gc_control);
1734 if (err && err != -ENODATA)
1735 goto out_err;
1736 }
1737
1738 f2fs_down_write(&sbi->pin_sem);
1739
1740 f2fs_lock_op(sbi);
1741 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1742 f2fs_unlock_op(sbi);
1743
1744 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1745 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1746 file_dont_truncate(inode);
1747
1748 f2fs_up_write(&sbi->pin_sem);
1749
1750 expanded += map.m_len;
1751 sec_len -= map.m_len;
1752 map.m_lblk += map.m_len;
1753 if (!err && sec_len)
1754 goto next_alloc;
1755
1756 map.m_len = expanded;
1757 } else {
1758 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1759 expanded = map.m_len;
1760 }
1761 out_err:
1762 if (err) {
1763 pgoff_t last_off;
1764
1765 if (!expanded)
1766 return err;
1767
1768 last_off = pg_start + expanded - 1;
1769
1770 /* update new size to the failed position */
1771 new_size = (last_off == pg_end) ? offset + len :
1772 (loff_t)(last_off + 1) << PAGE_SHIFT;
1773 } else {
1774 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1775 }
1776
1777 if (new_size > i_size_read(inode)) {
1778 if (mode & FALLOC_FL_KEEP_SIZE)
1779 file_set_keep_isize(inode);
1780 else
1781 f2fs_i_size_write(inode, new_size);
1782 }
1783
1784 return err;
1785 }
1786
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1787 static long f2fs_fallocate(struct file *file, int mode,
1788 loff_t offset, loff_t len)
1789 {
1790 struct inode *inode = file_inode(file);
1791 long ret = 0;
1792
1793 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1794 return -EIO;
1795 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1796 return -ENOSPC;
1797 if (!f2fs_is_compress_backend_ready(inode))
1798 return -EOPNOTSUPP;
1799
1800 /* f2fs only support ->fallocate for regular file */
1801 if (!S_ISREG(inode->i_mode))
1802 return -EINVAL;
1803
1804 if (IS_ENCRYPTED(inode) &&
1805 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1806 return -EOPNOTSUPP;
1807
1808 /*
1809 * Pinned file should not support partial truncation since the block
1810 * can be used by applications.
1811 */
1812 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1813 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1814 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1815 return -EOPNOTSUPP;
1816
1817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1818 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1819 FALLOC_FL_INSERT_RANGE))
1820 return -EOPNOTSUPP;
1821
1822 inode_lock(inode);
1823
1824 ret = file_modified(file);
1825 if (ret)
1826 goto out;
1827
1828 if (mode & FALLOC_FL_PUNCH_HOLE) {
1829 if (offset >= inode->i_size)
1830 goto out;
1831
1832 ret = f2fs_punch_hole(inode, offset, len);
1833 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1834 ret = f2fs_collapse_range(inode, offset, len);
1835 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1836 ret = f2fs_zero_range(inode, offset, len, mode);
1837 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1838 ret = f2fs_insert_range(inode, offset, len);
1839 } else {
1840 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1841 }
1842
1843 if (!ret) {
1844 inode->i_mtime = inode_set_ctime_current(inode);
1845 f2fs_mark_inode_dirty_sync(inode, false);
1846 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1847 }
1848
1849 out:
1850 inode_unlock(inode);
1851
1852 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1853 return ret;
1854 }
1855
f2fs_release_file(struct inode * inode,struct file * filp)1856 static int f2fs_release_file(struct inode *inode, struct file *filp)
1857 {
1858 /*
1859 * f2fs_release_file is called at every close calls. So we should
1860 * not drop any inmemory pages by close called by other process.
1861 */
1862 if (!(filp->f_mode & FMODE_WRITE) ||
1863 atomic_read(&inode->i_writecount) != 1)
1864 return 0;
1865
1866 inode_lock(inode);
1867 f2fs_abort_atomic_write(inode, true);
1868 inode_unlock(inode);
1869
1870 return 0;
1871 }
1872
f2fs_file_flush(struct file * file,fl_owner_t id)1873 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1874 {
1875 struct inode *inode = file_inode(file);
1876
1877 /*
1878 * If the process doing a transaction is crashed, we should do
1879 * roll-back. Otherwise, other reader/write can see corrupted database
1880 * until all the writers close its file. Since this should be done
1881 * before dropping file lock, it needs to do in ->flush.
1882 */
1883 if (F2FS_I(inode)->atomic_write_task == current &&
1884 (current->flags & PF_EXITING)) {
1885 inode_lock(inode);
1886 f2fs_abort_atomic_write(inode, true);
1887 inode_unlock(inode);
1888 }
1889
1890 return 0;
1891 }
1892
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1893 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1894 {
1895 struct f2fs_inode_info *fi = F2FS_I(inode);
1896 u32 masked_flags = fi->i_flags & mask;
1897
1898 /* mask can be shrunk by flags_valid selector */
1899 iflags &= mask;
1900
1901 /* Is it quota file? Do not allow user to mess with it */
1902 if (IS_NOQUOTA(inode))
1903 return -EPERM;
1904
1905 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1906 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1907 return -EOPNOTSUPP;
1908 if (!f2fs_empty_dir(inode))
1909 return -ENOTEMPTY;
1910 }
1911
1912 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1913 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1914 return -EOPNOTSUPP;
1915 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1916 return -EINVAL;
1917 }
1918
1919 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1920 if (masked_flags & F2FS_COMPR_FL) {
1921 if (!f2fs_disable_compressed_file(inode))
1922 return -EINVAL;
1923 } else {
1924 /* try to convert inline_data to support compression */
1925 int err = f2fs_convert_inline_inode(inode);
1926 if (err)
1927 return err;
1928
1929 f2fs_down_write(&F2FS_I(inode)->i_sem);
1930 if (!f2fs_may_compress(inode) ||
1931 (S_ISREG(inode->i_mode) &&
1932 F2FS_HAS_BLOCKS(inode))) {
1933 f2fs_up_write(&F2FS_I(inode)->i_sem);
1934 return -EINVAL;
1935 }
1936 err = set_compress_context(inode);
1937 f2fs_up_write(&F2FS_I(inode)->i_sem);
1938
1939 if (err)
1940 return err;
1941 }
1942 }
1943
1944 fi->i_flags = iflags | (fi->i_flags & ~mask);
1945 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1946 (fi->i_flags & F2FS_NOCOMP_FL));
1947
1948 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1949 set_inode_flag(inode, FI_PROJ_INHERIT);
1950 else
1951 clear_inode_flag(inode, FI_PROJ_INHERIT);
1952
1953 inode_set_ctime_current(inode);
1954 f2fs_set_inode_flags(inode);
1955 f2fs_mark_inode_dirty_sync(inode, true);
1956 return 0;
1957 }
1958
1959 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1960
1961 /*
1962 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1963 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1964 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1965 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1966 *
1967 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1968 * FS_IOC_FSSETXATTR is done by the VFS.
1969 */
1970
1971 static const struct {
1972 u32 iflag;
1973 u32 fsflag;
1974 } f2fs_fsflags_map[] = {
1975 { F2FS_COMPR_FL, FS_COMPR_FL },
1976 { F2FS_SYNC_FL, FS_SYNC_FL },
1977 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1978 { F2FS_APPEND_FL, FS_APPEND_FL },
1979 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1980 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1981 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1982 { F2FS_INDEX_FL, FS_INDEX_FL },
1983 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1984 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1985 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1986 };
1987
1988 #define F2FS_GETTABLE_FS_FL ( \
1989 FS_COMPR_FL | \
1990 FS_SYNC_FL | \
1991 FS_IMMUTABLE_FL | \
1992 FS_APPEND_FL | \
1993 FS_NODUMP_FL | \
1994 FS_NOATIME_FL | \
1995 FS_NOCOMP_FL | \
1996 FS_INDEX_FL | \
1997 FS_DIRSYNC_FL | \
1998 FS_PROJINHERIT_FL | \
1999 FS_ENCRYPT_FL | \
2000 FS_INLINE_DATA_FL | \
2001 FS_NOCOW_FL | \
2002 FS_VERITY_FL | \
2003 FS_CASEFOLD_FL)
2004
2005 #define F2FS_SETTABLE_FS_FL ( \
2006 FS_COMPR_FL | \
2007 FS_SYNC_FL | \
2008 FS_IMMUTABLE_FL | \
2009 FS_APPEND_FL | \
2010 FS_NODUMP_FL | \
2011 FS_NOATIME_FL | \
2012 FS_NOCOMP_FL | \
2013 FS_DIRSYNC_FL | \
2014 FS_PROJINHERIT_FL | \
2015 FS_CASEFOLD_FL)
2016
2017 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2018 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2019 {
2020 u32 fsflags = 0;
2021 int i;
2022
2023 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2024 if (iflags & f2fs_fsflags_map[i].iflag)
2025 fsflags |= f2fs_fsflags_map[i].fsflag;
2026
2027 return fsflags;
2028 }
2029
2030 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2031 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2032 {
2033 u32 iflags = 0;
2034 int i;
2035
2036 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2037 if (fsflags & f2fs_fsflags_map[i].fsflag)
2038 iflags |= f2fs_fsflags_map[i].iflag;
2039
2040 return iflags;
2041 }
2042
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2043 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2044 {
2045 struct inode *inode = file_inode(filp);
2046
2047 return put_user(inode->i_generation, (int __user *)arg);
2048 }
2049
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2050 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2051 {
2052 struct inode *inode = file_inode(filp);
2053 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2054 struct f2fs_inode_info *fi = F2FS_I(inode);
2055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2056 struct inode *pinode;
2057 loff_t isize;
2058 int ret;
2059
2060 if (!inode_owner_or_capable(idmap, inode))
2061 return -EACCES;
2062
2063 if (!S_ISREG(inode->i_mode))
2064 return -EINVAL;
2065
2066 if (filp->f_flags & O_DIRECT)
2067 return -EINVAL;
2068
2069 ret = mnt_want_write_file(filp);
2070 if (ret)
2071 return ret;
2072
2073 inode_lock(inode);
2074
2075 if (!f2fs_disable_compressed_file(inode)) {
2076 ret = -EINVAL;
2077 goto out;
2078 }
2079
2080 if (f2fs_is_atomic_file(inode))
2081 goto out;
2082
2083 ret = f2fs_convert_inline_inode(inode);
2084 if (ret)
2085 goto out;
2086
2087 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2088
2089 /*
2090 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2091 * f2fs_is_atomic_file.
2092 */
2093 if (get_dirty_pages(inode))
2094 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2095 inode->i_ino, get_dirty_pages(inode));
2096 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2097 if (ret) {
2098 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2099 goto out;
2100 }
2101
2102 /* Check if the inode already has a COW inode */
2103 if (fi->cow_inode == NULL) {
2104 /* Create a COW inode for atomic write */
2105 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2106 if (IS_ERR(pinode)) {
2107 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2108 ret = PTR_ERR(pinode);
2109 goto out;
2110 }
2111
2112 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2113 iput(pinode);
2114 if (ret) {
2115 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2116 goto out;
2117 }
2118
2119 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2120 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2121 } else {
2122 /* Reuse the already created COW inode */
2123 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2124 if (ret) {
2125 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2126 goto out;
2127 }
2128 }
2129
2130 f2fs_write_inode(inode, NULL);
2131
2132 stat_inc_atomic_inode(inode);
2133
2134 set_inode_flag(inode, FI_ATOMIC_FILE);
2135
2136 isize = i_size_read(inode);
2137 fi->original_i_size = isize;
2138 if (truncate) {
2139 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2140 truncate_inode_pages_final(inode->i_mapping);
2141 f2fs_i_size_write(inode, 0);
2142 isize = 0;
2143 }
2144 f2fs_i_size_write(fi->cow_inode, isize);
2145
2146 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2147
2148 f2fs_update_time(sbi, REQ_TIME);
2149 fi->atomic_write_task = current;
2150 stat_update_max_atomic_write(inode);
2151 fi->atomic_write_cnt = 0;
2152 out:
2153 inode_unlock(inode);
2154 mnt_drop_write_file(filp);
2155 return ret;
2156 }
2157
f2fs_ioc_commit_atomic_write(struct file * filp)2158 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2159 {
2160 struct inode *inode = file_inode(filp);
2161 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2162 int ret;
2163
2164 if (!inode_owner_or_capable(idmap, inode))
2165 return -EACCES;
2166
2167 ret = mnt_want_write_file(filp);
2168 if (ret)
2169 return ret;
2170
2171 f2fs_balance_fs(F2FS_I_SB(inode), true);
2172
2173 inode_lock(inode);
2174
2175 if (f2fs_is_atomic_file(inode)) {
2176 ret = f2fs_commit_atomic_write(inode);
2177 if (!ret)
2178 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2179
2180 f2fs_abort_atomic_write(inode, ret);
2181 } else {
2182 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2183 }
2184
2185 inode_unlock(inode);
2186 mnt_drop_write_file(filp);
2187 return ret;
2188 }
2189
f2fs_ioc_abort_atomic_write(struct file * filp)2190 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2191 {
2192 struct inode *inode = file_inode(filp);
2193 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2194 int ret;
2195
2196 if (!inode_owner_or_capable(idmap, inode))
2197 return -EACCES;
2198
2199 ret = mnt_want_write_file(filp);
2200 if (ret)
2201 return ret;
2202
2203 inode_lock(inode);
2204
2205 f2fs_abort_atomic_write(inode, true);
2206
2207 inode_unlock(inode);
2208
2209 mnt_drop_write_file(filp);
2210 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2211 return ret;
2212 }
2213
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2214 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2215 {
2216 struct inode *inode = file_inode(filp);
2217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2218 struct super_block *sb = sbi->sb;
2219 __u32 in;
2220 int ret = 0;
2221
2222 if (!capable(CAP_SYS_ADMIN))
2223 return -EPERM;
2224
2225 if (get_user(in, (__u32 __user *)arg))
2226 return -EFAULT;
2227
2228 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2229 ret = mnt_want_write_file(filp);
2230 if (ret) {
2231 if (ret == -EROFS) {
2232 ret = 0;
2233 f2fs_stop_checkpoint(sbi, false,
2234 STOP_CP_REASON_SHUTDOWN);
2235 trace_f2fs_shutdown(sbi, in, ret);
2236 }
2237 return ret;
2238 }
2239 }
2240
2241 switch (in) {
2242 case F2FS_GOING_DOWN_FULLSYNC:
2243 ret = freeze_bdev(sb->s_bdev);
2244 if (ret)
2245 goto out;
2246 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2247 thaw_bdev(sb->s_bdev);
2248 break;
2249 case F2FS_GOING_DOWN_METASYNC:
2250 /* do checkpoint only */
2251 ret = f2fs_sync_fs(sb, 1);
2252 if (ret)
2253 goto out;
2254 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2255 break;
2256 case F2FS_GOING_DOWN_NOSYNC:
2257 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2258 break;
2259 case F2FS_GOING_DOWN_METAFLUSH:
2260 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2261 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2262 break;
2263 case F2FS_GOING_DOWN_NEED_FSCK:
2264 set_sbi_flag(sbi, SBI_NEED_FSCK);
2265 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2266 set_sbi_flag(sbi, SBI_IS_DIRTY);
2267 /* do checkpoint only */
2268 ret = f2fs_sync_fs(sb, 1);
2269 goto out;
2270 default:
2271 ret = -EINVAL;
2272 goto out;
2273 }
2274
2275 f2fs_stop_gc_thread(sbi);
2276 f2fs_stop_discard_thread(sbi);
2277
2278 f2fs_drop_discard_cmd(sbi);
2279 clear_opt(sbi, DISCARD);
2280
2281 f2fs_update_time(sbi, REQ_TIME);
2282 out:
2283 if (in != F2FS_GOING_DOWN_FULLSYNC)
2284 mnt_drop_write_file(filp);
2285
2286 trace_f2fs_shutdown(sbi, in, ret);
2287
2288 return ret;
2289 }
2290
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2291 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2292 {
2293 struct inode *inode = file_inode(filp);
2294 struct super_block *sb = inode->i_sb;
2295 struct fstrim_range range;
2296 int ret;
2297
2298 if (!capable(CAP_SYS_ADMIN))
2299 return -EPERM;
2300
2301 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2302 return -EOPNOTSUPP;
2303
2304 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2305 sizeof(range)))
2306 return -EFAULT;
2307
2308 ret = mnt_want_write_file(filp);
2309 if (ret)
2310 return ret;
2311
2312 range.minlen = max((unsigned int)range.minlen,
2313 bdev_discard_granularity(sb->s_bdev));
2314 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2315 mnt_drop_write_file(filp);
2316 if (ret < 0)
2317 return ret;
2318
2319 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2320 sizeof(range)))
2321 return -EFAULT;
2322 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2323 return 0;
2324 }
2325
uuid_is_nonzero(__u8 u[16])2326 static bool uuid_is_nonzero(__u8 u[16])
2327 {
2328 int i;
2329
2330 for (i = 0; i < 16; i++)
2331 if (u[i])
2332 return true;
2333 return false;
2334 }
2335
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2336 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2337 {
2338 struct inode *inode = file_inode(filp);
2339
2340 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2341 return -EOPNOTSUPP;
2342
2343 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2344
2345 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2346 }
2347
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2348 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2349 {
2350 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2351 return -EOPNOTSUPP;
2352 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2353 }
2354
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2355 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2356 {
2357 struct inode *inode = file_inode(filp);
2358 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2359 u8 encrypt_pw_salt[16];
2360 int err;
2361
2362 if (!f2fs_sb_has_encrypt(sbi))
2363 return -EOPNOTSUPP;
2364
2365 err = mnt_want_write_file(filp);
2366 if (err)
2367 return err;
2368
2369 f2fs_down_write(&sbi->sb_lock);
2370
2371 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2372 goto got_it;
2373
2374 /* update superblock with uuid */
2375 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2376
2377 err = f2fs_commit_super(sbi, false);
2378 if (err) {
2379 /* undo new data */
2380 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2381 goto out_err;
2382 }
2383 got_it:
2384 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2385 out_err:
2386 f2fs_up_write(&sbi->sb_lock);
2387 mnt_drop_write_file(filp);
2388
2389 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2390 err = -EFAULT;
2391
2392 return err;
2393 }
2394
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2395 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2396 unsigned long arg)
2397 {
2398 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2399 return -EOPNOTSUPP;
2400
2401 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2402 }
2403
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2404 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2405 {
2406 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2407 return -EOPNOTSUPP;
2408
2409 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2410 }
2411
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2412 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2413 {
2414 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2415 return -EOPNOTSUPP;
2416
2417 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2418 }
2419
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2420 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2421 unsigned long arg)
2422 {
2423 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2424 return -EOPNOTSUPP;
2425
2426 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2427 }
2428
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2429 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2430 unsigned long arg)
2431 {
2432 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2433 return -EOPNOTSUPP;
2434
2435 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2436 }
2437
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2438 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2439 {
2440 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2441 return -EOPNOTSUPP;
2442
2443 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2444 }
2445
f2fs_ioc_gc(struct file * filp,unsigned long arg)2446 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2447 {
2448 struct inode *inode = file_inode(filp);
2449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2451 .no_bg_gc = false,
2452 .should_migrate_blocks = false,
2453 .nr_free_secs = 0 };
2454 __u32 sync;
2455 int ret;
2456
2457 if (!capable(CAP_SYS_ADMIN))
2458 return -EPERM;
2459
2460 if (get_user(sync, (__u32 __user *)arg))
2461 return -EFAULT;
2462
2463 if (f2fs_readonly(sbi->sb))
2464 return -EROFS;
2465
2466 ret = mnt_want_write_file(filp);
2467 if (ret)
2468 return ret;
2469
2470 if (!sync) {
2471 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2472 ret = -EBUSY;
2473 goto out;
2474 }
2475 } else {
2476 f2fs_down_write(&sbi->gc_lock);
2477 }
2478
2479 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2480 gc_control.err_gc_skipped = sync;
2481 stat_inc_gc_call_count(sbi, FOREGROUND);
2482 ret = f2fs_gc(sbi, &gc_control);
2483 out:
2484 mnt_drop_write_file(filp);
2485 return ret;
2486 }
2487
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2488 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2489 {
2490 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2491 struct f2fs_gc_control gc_control = {
2492 .init_gc_type = range->sync ? FG_GC : BG_GC,
2493 .no_bg_gc = false,
2494 .should_migrate_blocks = false,
2495 .err_gc_skipped = range->sync,
2496 .nr_free_secs = 0 };
2497 u64 end;
2498 int ret;
2499
2500 if (!capable(CAP_SYS_ADMIN))
2501 return -EPERM;
2502 if (f2fs_readonly(sbi->sb))
2503 return -EROFS;
2504
2505 end = range->start + range->len;
2506 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2507 end >= MAX_BLKADDR(sbi))
2508 return -EINVAL;
2509
2510 ret = mnt_want_write_file(filp);
2511 if (ret)
2512 return ret;
2513
2514 do_more:
2515 if (!range->sync) {
2516 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2517 ret = -EBUSY;
2518 goto out;
2519 }
2520 } else {
2521 f2fs_down_write(&sbi->gc_lock);
2522 }
2523
2524 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2525 stat_inc_gc_call_count(sbi, FOREGROUND);
2526 ret = f2fs_gc(sbi, &gc_control);
2527 if (ret) {
2528 if (ret == -EBUSY)
2529 ret = -EAGAIN;
2530 goto out;
2531 }
2532 range->start += CAP_BLKS_PER_SEC(sbi);
2533 if (range->start <= end)
2534 goto do_more;
2535 out:
2536 mnt_drop_write_file(filp);
2537 return ret;
2538 }
2539
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2540 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2541 {
2542 struct f2fs_gc_range range;
2543
2544 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2545 sizeof(range)))
2546 return -EFAULT;
2547 return __f2fs_ioc_gc_range(filp, &range);
2548 }
2549
f2fs_ioc_write_checkpoint(struct file * filp)2550 static int f2fs_ioc_write_checkpoint(struct file *filp)
2551 {
2552 struct inode *inode = file_inode(filp);
2553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2554 int ret;
2555
2556 if (!capable(CAP_SYS_ADMIN))
2557 return -EPERM;
2558
2559 if (f2fs_readonly(sbi->sb))
2560 return -EROFS;
2561
2562 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2563 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2564 return -EINVAL;
2565 }
2566
2567 ret = mnt_want_write_file(filp);
2568 if (ret)
2569 return ret;
2570
2571 ret = f2fs_sync_fs(sbi->sb, 1);
2572
2573 mnt_drop_write_file(filp);
2574 return ret;
2575 }
2576
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2577 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2578 struct file *filp,
2579 struct f2fs_defragment *range)
2580 {
2581 struct inode *inode = file_inode(filp);
2582 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2583 .m_seg_type = NO_CHECK_TYPE,
2584 .m_may_create = false };
2585 struct extent_info ei = {};
2586 pgoff_t pg_start, pg_end, next_pgofs;
2587 unsigned int blk_per_seg = sbi->blocks_per_seg;
2588 unsigned int total = 0, sec_num;
2589 block_t blk_end = 0;
2590 bool fragmented = false;
2591 int err;
2592
2593 pg_start = range->start >> PAGE_SHIFT;
2594 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2595
2596 f2fs_balance_fs(sbi, true);
2597
2598 inode_lock(inode);
2599
2600 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2601 err = -EINVAL;
2602 goto unlock_out;
2603 }
2604
2605 /* if in-place-update policy is enabled, don't waste time here */
2606 set_inode_flag(inode, FI_OPU_WRITE);
2607 if (f2fs_should_update_inplace(inode, NULL)) {
2608 err = -EINVAL;
2609 goto out;
2610 }
2611
2612 /* writeback all dirty pages in the range */
2613 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2614 range->start + range->len - 1);
2615 if (err)
2616 goto out;
2617
2618 /*
2619 * lookup mapping info in extent cache, skip defragmenting if physical
2620 * block addresses are continuous.
2621 */
2622 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2623 if (ei.fofs + ei.len >= pg_end)
2624 goto out;
2625 }
2626
2627 map.m_lblk = pg_start;
2628 map.m_next_pgofs = &next_pgofs;
2629
2630 /*
2631 * lookup mapping info in dnode page cache, skip defragmenting if all
2632 * physical block addresses are continuous even if there are hole(s)
2633 * in logical blocks.
2634 */
2635 while (map.m_lblk < pg_end) {
2636 map.m_len = pg_end - map.m_lblk;
2637 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2638 if (err)
2639 goto out;
2640
2641 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2642 map.m_lblk = next_pgofs;
2643 continue;
2644 }
2645
2646 if (blk_end && blk_end != map.m_pblk)
2647 fragmented = true;
2648
2649 /* record total count of block that we're going to move */
2650 total += map.m_len;
2651
2652 blk_end = map.m_pblk + map.m_len;
2653
2654 map.m_lblk += map.m_len;
2655 }
2656
2657 if (!fragmented) {
2658 total = 0;
2659 goto out;
2660 }
2661
2662 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2663
2664 /*
2665 * make sure there are enough free section for LFS allocation, this can
2666 * avoid defragment running in SSR mode when free section are allocated
2667 * intensively
2668 */
2669 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2670 err = -EAGAIN;
2671 goto out;
2672 }
2673
2674 map.m_lblk = pg_start;
2675 map.m_len = pg_end - pg_start;
2676 total = 0;
2677
2678 while (map.m_lblk < pg_end) {
2679 pgoff_t idx;
2680 int cnt = 0;
2681
2682 do_map:
2683 map.m_len = pg_end - map.m_lblk;
2684 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2685 if (err)
2686 goto clear_out;
2687
2688 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2689 map.m_lblk = next_pgofs;
2690 goto check;
2691 }
2692
2693 set_inode_flag(inode, FI_SKIP_WRITES);
2694
2695 idx = map.m_lblk;
2696 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2697 struct page *page;
2698
2699 page = f2fs_get_lock_data_page(inode, idx, true);
2700 if (IS_ERR(page)) {
2701 err = PTR_ERR(page);
2702 goto clear_out;
2703 }
2704
2705 set_page_dirty(page);
2706 set_page_private_gcing(page);
2707 f2fs_put_page(page, 1);
2708
2709 idx++;
2710 cnt++;
2711 total++;
2712 }
2713
2714 map.m_lblk = idx;
2715 check:
2716 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2717 goto do_map;
2718
2719 clear_inode_flag(inode, FI_SKIP_WRITES);
2720
2721 err = filemap_fdatawrite(inode->i_mapping);
2722 if (err)
2723 goto out;
2724 }
2725 clear_out:
2726 clear_inode_flag(inode, FI_SKIP_WRITES);
2727 out:
2728 clear_inode_flag(inode, FI_OPU_WRITE);
2729 unlock_out:
2730 inode_unlock(inode);
2731 if (!err)
2732 range->len = (u64)total << PAGE_SHIFT;
2733 return err;
2734 }
2735
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2736 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2737 {
2738 struct inode *inode = file_inode(filp);
2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 struct f2fs_defragment range;
2741 int err;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2747 return -EINVAL;
2748
2749 if (f2fs_readonly(sbi->sb))
2750 return -EROFS;
2751
2752 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2753 sizeof(range)))
2754 return -EFAULT;
2755
2756 /* verify alignment of offset & size */
2757 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2758 return -EINVAL;
2759
2760 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2761 max_file_blocks(inode)))
2762 return -EINVAL;
2763
2764 err = mnt_want_write_file(filp);
2765 if (err)
2766 return err;
2767
2768 err = f2fs_defragment_range(sbi, filp, &range);
2769 mnt_drop_write_file(filp);
2770
2771 f2fs_update_time(sbi, REQ_TIME);
2772 if (err < 0)
2773 return err;
2774
2775 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2776 sizeof(range)))
2777 return -EFAULT;
2778
2779 return 0;
2780 }
2781
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2782 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2783 struct file *file_out, loff_t pos_out, size_t len)
2784 {
2785 struct inode *src = file_inode(file_in);
2786 struct inode *dst = file_inode(file_out);
2787 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2788 size_t olen = len, dst_max_i_size = 0;
2789 size_t dst_osize;
2790 int ret;
2791
2792 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2793 src->i_sb != dst->i_sb)
2794 return -EXDEV;
2795
2796 if (unlikely(f2fs_readonly(src->i_sb)))
2797 return -EROFS;
2798
2799 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2800 return -EINVAL;
2801
2802 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2803 return -EOPNOTSUPP;
2804
2805 if (pos_out < 0 || pos_in < 0)
2806 return -EINVAL;
2807
2808 if (src == dst) {
2809 if (pos_in == pos_out)
2810 return 0;
2811 if (pos_out > pos_in && pos_out < pos_in + len)
2812 return -EINVAL;
2813 }
2814
2815 inode_lock(src);
2816 if (src != dst) {
2817 ret = -EBUSY;
2818 if (!inode_trylock(dst))
2819 goto out;
2820 }
2821
2822 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2823 ret = -EOPNOTSUPP;
2824 goto out_unlock;
2825 }
2826
2827 ret = -EINVAL;
2828 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2829 goto out_unlock;
2830 if (len == 0)
2831 olen = len = src->i_size - pos_in;
2832 if (pos_in + len == src->i_size)
2833 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2834 if (len == 0) {
2835 ret = 0;
2836 goto out_unlock;
2837 }
2838
2839 dst_osize = dst->i_size;
2840 if (pos_out + olen > dst->i_size)
2841 dst_max_i_size = pos_out + olen;
2842
2843 /* verify the end result is block aligned */
2844 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2845 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2846 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2847 goto out_unlock;
2848
2849 ret = f2fs_convert_inline_inode(src);
2850 if (ret)
2851 goto out_unlock;
2852
2853 ret = f2fs_convert_inline_inode(dst);
2854 if (ret)
2855 goto out_unlock;
2856
2857 /* write out all dirty pages from offset */
2858 ret = filemap_write_and_wait_range(src->i_mapping,
2859 pos_in, pos_in + len);
2860 if (ret)
2861 goto out_unlock;
2862
2863 ret = filemap_write_and_wait_range(dst->i_mapping,
2864 pos_out, pos_out + len);
2865 if (ret)
2866 goto out_unlock;
2867
2868 f2fs_balance_fs(sbi, true);
2869
2870 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2871 if (src != dst) {
2872 ret = -EBUSY;
2873 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2874 goto out_src;
2875 }
2876
2877 f2fs_lock_op(sbi);
2878 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2879 pos_out >> F2FS_BLKSIZE_BITS,
2880 len >> F2FS_BLKSIZE_BITS, false);
2881
2882 if (!ret) {
2883 if (dst_max_i_size)
2884 f2fs_i_size_write(dst, dst_max_i_size);
2885 else if (dst_osize != dst->i_size)
2886 f2fs_i_size_write(dst, dst_osize);
2887 }
2888 f2fs_unlock_op(sbi);
2889
2890 if (src != dst)
2891 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2892 out_src:
2893 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2894 if (ret)
2895 goto out_unlock;
2896
2897 src->i_mtime = inode_set_ctime_current(src);
2898 f2fs_mark_inode_dirty_sync(src, false);
2899 if (src != dst) {
2900 dst->i_mtime = inode_set_ctime_current(dst);
2901 f2fs_mark_inode_dirty_sync(dst, false);
2902 }
2903 f2fs_update_time(sbi, REQ_TIME);
2904
2905 out_unlock:
2906 if (src != dst)
2907 inode_unlock(dst);
2908 out:
2909 inode_unlock(src);
2910 return ret;
2911 }
2912
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2913 static int __f2fs_ioc_move_range(struct file *filp,
2914 struct f2fs_move_range *range)
2915 {
2916 struct fd dst;
2917 int err;
2918
2919 if (!(filp->f_mode & FMODE_READ) ||
2920 !(filp->f_mode & FMODE_WRITE))
2921 return -EBADF;
2922
2923 dst = fdget(range->dst_fd);
2924 if (!dst.file)
2925 return -EBADF;
2926
2927 if (!(dst.file->f_mode & FMODE_WRITE)) {
2928 err = -EBADF;
2929 goto err_out;
2930 }
2931
2932 err = mnt_want_write_file(filp);
2933 if (err)
2934 goto err_out;
2935
2936 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2937 range->pos_out, range->len);
2938
2939 mnt_drop_write_file(filp);
2940 err_out:
2941 fdput(dst);
2942 return err;
2943 }
2944
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2945 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2946 {
2947 struct f2fs_move_range range;
2948
2949 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2950 sizeof(range)))
2951 return -EFAULT;
2952 return __f2fs_ioc_move_range(filp, &range);
2953 }
2954
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2955 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2956 {
2957 struct inode *inode = file_inode(filp);
2958 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2959 struct sit_info *sm = SIT_I(sbi);
2960 unsigned int start_segno = 0, end_segno = 0;
2961 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2962 struct f2fs_flush_device range;
2963 struct f2fs_gc_control gc_control = {
2964 .init_gc_type = FG_GC,
2965 .should_migrate_blocks = true,
2966 .err_gc_skipped = true,
2967 .nr_free_secs = 0 };
2968 int ret;
2969
2970 if (!capable(CAP_SYS_ADMIN))
2971 return -EPERM;
2972
2973 if (f2fs_readonly(sbi->sb))
2974 return -EROFS;
2975
2976 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2977 return -EINVAL;
2978
2979 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2980 sizeof(range)))
2981 return -EFAULT;
2982
2983 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2984 __is_large_section(sbi)) {
2985 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2986 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2987 return -EINVAL;
2988 }
2989
2990 ret = mnt_want_write_file(filp);
2991 if (ret)
2992 return ret;
2993
2994 if (range.dev_num != 0)
2995 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2996 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2997
2998 start_segno = sm->last_victim[FLUSH_DEVICE];
2999 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3000 start_segno = dev_start_segno;
3001 end_segno = min(start_segno + range.segments, dev_end_segno);
3002
3003 while (start_segno < end_segno) {
3004 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3005 ret = -EBUSY;
3006 goto out;
3007 }
3008 sm->last_victim[GC_CB] = end_segno + 1;
3009 sm->last_victim[GC_GREEDY] = end_segno + 1;
3010 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3011
3012 gc_control.victim_segno = start_segno;
3013 stat_inc_gc_call_count(sbi, FOREGROUND);
3014 ret = f2fs_gc(sbi, &gc_control);
3015 if (ret == -EAGAIN)
3016 ret = 0;
3017 else if (ret < 0)
3018 break;
3019 start_segno++;
3020 }
3021 out:
3022 mnt_drop_write_file(filp);
3023 return ret;
3024 }
3025
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3026 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3027 {
3028 struct inode *inode = file_inode(filp);
3029 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3030
3031 /* Must validate to set it with SQLite behavior in Android. */
3032 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3033
3034 return put_user(sb_feature, (u32 __user *)arg);
3035 }
3036
3037 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3038 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3039 {
3040 struct dquot *transfer_to[MAXQUOTAS] = {};
3041 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3042 struct super_block *sb = sbi->sb;
3043 int err;
3044
3045 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3046 if (IS_ERR(transfer_to[PRJQUOTA]))
3047 return PTR_ERR(transfer_to[PRJQUOTA]);
3048
3049 err = __dquot_transfer(inode, transfer_to);
3050 if (err)
3051 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3052 dqput(transfer_to[PRJQUOTA]);
3053 return err;
3054 }
3055
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3056 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3057 {
3058 struct f2fs_inode_info *fi = F2FS_I(inode);
3059 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3060 struct f2fs_inode *ri = NULL;
3061 kprojid_t kprojid;
3062 int err;
3063
3064 if (!f2fs_sb_has_project_quota(sbi)) {
3065 if (projid != F2FS_DEF_PROJID)
3066 return -EOPNOTSUPP;
3067 else
3068 return 0;
3069 }
3070
3071 if (!f2fs_has_extra_attr(inode))
3072 return -EOPNOTSUPP;
3073
3074 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3075
3076 if (projid_eq(kprojid, fi->i_projid))
3077 return 0;
3078
3079 err = -EPERM;
3080 /* Is it quota file? Do not allow user to mess with it */
3081 if (IS_NOQUOTA(inode))
3082 return err;
3083
3084 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3085 return -EOVERFLOW;
3086
3087 err = f2fs_dquot_initialize(inode);
3088 if (err)
3089 return err;
3090
3091 f2fs_lock_op(sbi);
3092 err = f2fs_transfer_project_quota(inode, kprojid);
3093 if (err)
3094 goto out_unlock;
3095
3096 fi->i_projid = kprojid;
3097 inode_set_ctime_current(inode);
3098 f2fs_mark_inode_dirty_sync(inode, true);
3099 out_unlock:
3100 f2fs_unlock_op(sbi);
3101 return err;
3102 }
3103 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3104 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3105 {
3106 return 0;
3107 }
3108
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3109 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3110 {
3111 if (projid != F2FS_DEF_PROJID)
3112 return -EOPNOTSUPP;
3113 return 0;
3114 }
3115 #endif
3116
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3117 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3118 {
3119 struct inode *inode = d_inode(dentry);
3120 struct f2fs_inode_info *fi = F2FS_I(inode);
3121 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3122
3123 if (IS_ENCRYPTED(inode))
3124 fsflags |= FS_ENCRYPT_FL;
3125 if (IS_VERITY(inode))
3126 fsflags |= FS_VERITY_FL;
3127 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3128 fsflags |= FS_INLINE_DATA_FL;
3129 if (is_inode_flag_set(inode, FI_PIN_FILE))
3130 fsflags |= FS_NOCOW_FL;
3131
3132 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3133
3134 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3135 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3136
3137 return 0;
3138 }
3139
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3140 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3141 struct dentry *dentry, struct fileattr *fa)
3142 {
3143 struct inode *inode = d_inode(dentry);
3144 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3145 u32 iflags;
3146 int err;
3147
3148 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3149 return -EIO;
3150 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3151 return -ENOSPC;
3152 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3153 return -EOPNOTSUPP;
3154 fsflags &= F2FS_SETTABLE_FS_FL;
3155 if (!fa->flags_valid)
3156 mask &= FS_COMMON_FL;
3157
3158 iflags = f2fs_fsflags_to_iflags(fsflags);
3159 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3160 return -EOPNOTSUPP;
3161
3162 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3163 if (!err)
3164 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3165
3166 return err;
3167 }
3168
f2fs_pin_file_control(struct inode * inode,bool inc)3169 int f2fs_pin_file_control(struct inode *inode, bool inc)
3170 {
3171 struct f2fs_inode_info *fi = F2FS_I(inode);
3172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3173
3174 /* Use i_gc_failures for normal file as a risk signal. */
3175 if (inc)
3176 f2fs_i_gc_failures_write(inode,
3177 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3178
3179 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3180 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3181 __func__, inode->i_ino,
3182 fi->i_gc_failures[GC_FAILURE_PIN]);
3183 clear_inode_flag(inode, FI_PIN_FILE);
3184 return -EAGAIN;
3185 }
3186 return 0;
3187 }
3188
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3189 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3190 {
3191 struct inode *inode = file_inode(filp);
3192 __u32 pin;
3193 int ret = 0;
3194
3195 if (get_user(pin, (__u32 __user *)arg))
3196 return -EFAULT;
3197
3198 if (!S_ISREG(inode->i_mode))
3199 return -EINVAL;
3200
3201 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3202 return -EROFS;
3203
3204 ret = mnt_want_write_file(filp);
3205 if (ret)
3206 return ret;
3207
3208 inode_lock(inode);
3209
3210 if (!pin) {
3211 clear_inode_flag(inode, FI_PIN_FILE);
3212 f2fs_i_gc_failures_write(inode, 0);
3213 goto done;
3214 }
3215
3216 if (f2fs_should_update_outplace(inode, NULL)) {
3217 ret = -EINVAL;
3218 goto out;
3219 }
3220
3221 if (f2fs_pin_file_control(inode, false)) {
3222 ret = -EAGAIN;
3223 goto out;
3224 }
3225
3226 ret = f2fs_convert_inline_inode(inode);
3227 if (ret)
3228 goto out;
3229
3230 if (!f2fs_disable_compressed_file(inode)) {
3231 ret = -EOPNOTSUPP;
3232 goto out;
3233 }
3234
3235 set_inode_flag(inode, FI_PIN_FILE);
3236 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3237 done:
3238 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3239 out:
3240 inode_unlock(inode);
3241 mnt_drop_write_file(filp);
3242 return ret;
3243 }
3244
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3245 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3246 {
3247 struct inode *inode = file_inode(filp);
3248 __u32 pin = 0;
3249
3250 if (is_inode_flag_set(inode, FI_PIN_FILE))
3251 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3252 return put_user(pin, (u32 __user *)arg);
3253 }
3254
f2fs_precache_extents(struct inode * inode)3255 int f2fs_precache_extents(struct inode *inode)
3256 {
3257 struct f2fs_inode_info *fi = F2FS_I(inode);
3258 struct f2fs_map_blocks map;
3259 pgoff_t m_next_extent;
3260 loff_t end;
3261 int err;
3262
3263 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3264 return -EOPNOTSUPP;
3265
3266 map.m_lblk = 0;
3267 map.m_pblk = 0;
3268 map.m_next_pgofs = NULL;
3269 map.m_next_extent = &m_next_extent;
3270 map.m_seg_type = NO_CHECK_TYPE;
3271 map.m_may_create = false;
3272 end = max_file_blocks(inode);
3273
3274 while (map.m_lblk < end) {
3275 map.m_len = end - map.m_lblk;
3276
3277 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3278 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3279 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3280 if (err)
3281 return err;
3282
3283 map.m_lblk = m_next_extent;
3284 }
3285
3286 return 0;
3287 }
3288
f2fs_ioc_precache_extents(struct file * filp)3289 static int f2fs_ioc_precache_extents(struct file *filp)
3290 {
3291 return f2fs_precache_extents(file_inode(filp));
3292 }
3293
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3294 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3295 {
3296 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3297 __u64 block_count;
3298
3299 if (!capable(CAP_SYS_ADMIN))
3300 return -EPERM;
3301
3302 if (f2fs_readonly(sbi->sb))
3303 return -EROFS;
3304
3305 if (copy_from_user(&block_count, (void __user *)arg,
3306 sizeof(block_count)))
3307 return -EFAULT;
3308
3309 return f2fs_resize_fs(filp, block_count);
3310 }
3311
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3312 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3313 {
3314 struct inode *inode = file_inode(filp);
3315
3316 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3317
3318 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3319 f2fs_warn(F2FS_I_SB(inode),
3320 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3321 inode->i_ino);
3322 return -EOPNOTSUPP;
3323 }
3324
3325 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3326 }
3327
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3328 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3329 {
3330 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3331 return -EOPNOTSUPP;
3332
3333 return fsverity_ioctl_measure(filp, (void __user *)arg);
3334 }
3335
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3336 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3337 {
3338 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3339 return -EOPNOTSUPP;
3340
3341 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3342 }
3343
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3344 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3345 {
3346 struct inode *inode = file_inode(filp);
3347 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3348 char *vbuf;
3349 int count;
3350 int err = 0;
3351
3352 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3353 if (!vbuf)
3354 return -ENOMEM;
3355
3356 f2fs_down_read(&sbi->sb_lock);
3357 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3358 ARRAY_SIZE(sbi->raw_super->volume_name),
3359 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3360 f2fs_up_read(&sbi->sb_lock);
3361
3362 if (copy_to_user((char __user *)arg, vbuf,
3363 min(FSLABEL_MAX, count)))
3364 err = -EFAULT;
3365
3366 kfree(vbuf);
3367 return err;
3368 }
3369
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3370 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3371 {
3372 struct inode *inode = file_inode(filp);
3373 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3374 char *vbuf;
3375 int err = 0;
3376
3377 if (!capable(CAP_SYS_ADMIN))
3378 return -EPERM;
3379
3380 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3381 if (IS_ERR(vbuf))
3382 return PTR_ERR(vbuf);
3383
3384 err = mnt_want_write_file(filp);
3385 if (err)
3386 goto out;
3387
3388 f2fs_down_write(&sbi->sb_lock);
3389
3390 memset(sbi->raw_super->volume_name, 0,
3391 sizeof(sbi->raw_super->volume_name));
3392 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3393 sbi->raw_super->volume_name,
3394 ARRAY_SIZE(sbi->raw_super->volume_name));
3395
3396 err = f2fs_commit_super(sbi, false);
3397
3398 f2fs_up_write(&sbi->sb_lock);
3399
3400 mnt_drop_write_file(filp);
3401 out:
3402 kfree(vbuf);
3403 return err;
3404 }
3405
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3406 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3407 {
3408 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3409 return -EOPNOTSUPP;
3410
3411 if (!f2fs_compressed_file(inode))
3412 return -EINVAL;
3413
3414 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3415
3416 return 0;
3417 }
3418
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3419 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3420 {
3421 struct inode *inode = file_inode(filp);
3422 __u64 blocks;
3423 int ret;
3424
3425 ret = f2fs_get_compress_blocks(inode, &blocks);
3426 if (ret < 0)
3427 return ret;
3428
3429 return put_user(blocks, (u64 __user *)arg);
3430 }
3431
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3432 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3433 {
3434 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3435 unsigned int released_blocks = 0;
3436 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3437 block_t blkaddr;
3438 int i;
3439
3440 for (i = 0; i < count; i++) {
3441 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3442 dn->ofs_in_node + i);
3443
3444 if (!__is_valid_data_blkaddr(blkaddr))
3445 continue;
3446 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3447 DATA_GENERIC_ENHANCE))) {
3448 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3449 return -EFSCORRUPTED;
3450 }
3451 }
3452
3453 while (count) {
3454 int compr_blocks = 0;
3455
3456 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3457 blkaddr = f2fs_data_blkaddr(dn);
3458
3459 if (i == 0) {
3460 if (blkaddr == COMPRESS_ADDR)
3461 continue;
3462 dn->ofs_in_node += cluster_size;
3463 goto next;
3464 }
3465
3466 if (__is_valid_data_blkaddr(blkaddr))
3467 compr_blocks++;
3468
3469 if (blkaddr != NEW_ADDR)
3470 continue;
3471
3472 dn->data_blkaddr = NULL_ADDR;
3473 f2fs_set_data_blkaddr(dn);
3474 }
3475
3476 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3477 dec_valid_block_count(sbi, dn->inode,
3478 cluster_size - compr_blocks);
3479
3480 released_blocks += cluster_size - compr_blocks;
3481 next:
3482 count -= cluster_size;
3483 }
3484
3485 return released_blocks;
3486 }
3487
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3488 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3489 {
3490 struct inode *inode = file_inode(filp);
3491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492 pgoff_t page_idx = 0, last_idx;
3493 unsigned int released_blocks = 0;
3494 int ret;
3495 int writecount;
3496
3497 if (!f2fs_sb_has_compression(sbi))
3498 return -EOPNOTSUPP;
3499
3500 if (!f2fs_compressed_file(inode))
3501 return -EINVAL;
3502
3503 if (f2fs_readonly(sbi->sb))
3504 return -EROFS;
3505
3506 ret = mnt_want_write_file(filp);
3507 if (ret)
3508 return ret;
3509
3510 f2fs_balance_fs(sbi, true);
3511
3512 inode_lock(inode);
3513
3514 writecount = atomic_read(&inode->i_writecount);
3515 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3516 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3517 ret = -EBUSY;
3518 goto out;
3519 }
3520
3521 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3522 ret = -EINVAL;
3523 goto out;
3524 }
3525
3526 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3527 if (ret)
3528 goto out;
3529
3530 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3531 ret = -EPERM;
3532 goto out;
3533 }
3534
3535 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3536 inode_set_ctime_current(inode);
3537 f2fs_mark_inode_dirty_sync(inode, true);
3538
3539 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3540 filemap_invalidate_lock(inode->i_mapping);
3541
3542 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3543
3544 while (page_idx < last_idx) {
3545 struct dnode_of_data dn;
3546 pgoff_t end_offset, count;
3547
3548 set_new_dnode(&dn, inode, NULL, NULL, 0);
3549 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3550 if (ret) {
3551 if (ret == -ENOENT) {
3552 page_idx = f2fs_get_next_page_offset(&dn,
3553 page_idx);
3554 ret = 0;
3555 continue;
3556 }
3557 break;
3558 }
3559
3560 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3561 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3562 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3563
3564 ret = release_compress_blocks(&dn, count);
3565
3566 f2fs_put_dnode(&dn);
3567
3568 if (ret < 0)
3569 break;
3570
3571 page_idx += count;
3572 released_blocks += ret;
3573 }
3574
3575 filemap_invalidate_unlock(inode->i_mapping);
3576 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3577 out:
3578 inode_unlock(inode);
3579
3580 mnt_drop_write_file(filp);
3581
3582 if (ret >= 0) {
3583 ret = put_user(released_blocks, (u64 __user *)arg);
3584 } else if (released_blocks &&
3585 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3586 set_sbi_flag(sbi, SBI_NEED_FSCK);
3587 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3588 "iblocks=%llu, released=%u, compr_blocks=%u, "
3589 "run fsck to fix.",
3590 __func__, inode->i_ino, inode->i_blocks,
3591 released_blocks,
3592 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3593 }
3594
3595 return ret;
3596 }
3597
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3598 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3599 {
3600 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3601 unsigned int reserved_blocks = 0;
3602 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3603 block_t blkaddr;
3604 int i;
3605
3606 for (i = 0; i < count; i++) {
3607 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3608 dn->ofs_in_node + i);
3609
3610 if (!__is_valid_data_blkaddr(blkaddr))
3611 continue;
3612 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3613 DATA_GENERIC_ENHANCE))) {
3614 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3615 return -EFSCORRUPTED;
3616 }
3617 }
3618
3619 while (count) {
3620 int compr_blocks = 0;
3621 blkcnt_t reserved;
3622 int ret;
3623
3624 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3625 blkaddr = f2fs_data_blkaddr(dn);
3626
3627 if (i == 0) {
3628 if (blkaddr == COMPRESS_ADDR)
3629 continue;
3630 dn->ofs_in_node += cluster_size;
3631 goto next;
3632 }
3633
3634 if (__is_valid_data_blkaddr(blkaddr)) {
3635 compr_blocks++;
3636 continue;
3637 }
3638
3639 dn->data_blkaddr = NEW_ADDR;
3640 f2fs_set_data_blkaddr(dn);
3641 }
3642
3643 reserved = cluster_size - compr_blocks;
3644 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3645 if (ret)
3646 return ret;
3647
3648 if (reserved != cluster_size - compr_blocks)
3649 return -ENOSPC;
3650
3651 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3652
3653 reserved_blocks += reserved;
3654 next:
3655 count -= cluster_size;
3656 }
3657
3658 return reserved_blocks;
3659 }
3660
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3661 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3662 {
3663 struct inode *inode = file_inode(filp);
3664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665 pgoff_t page_idx = 0, last_idx;
3666 unsigned int reserved_blocks = 0;
3667 int ret;
3668
3669 if (!f2fs_sb_has_compression(sbi))
3670 return -EOPNOTSUPP;
3671
3672 if (!f2fs_compressed_file(inode))
3673 return -EINVAL;
3674
3675 if (f2fs_readonly(sbi->sb))
3676 return -EROFS;
3677
3678 ret = mnt_want_write_file(filp);
3679 if (ret)
3680 return ret;
3681
3682 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3683 goto out;
3684
3685 f2fs_balance_fs(sbi, true);
3686
3687 inode_lock(inode);
3688
3689 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3690 ret = -EINVAL;
3691 goto unlock_inode;
3692 }
3693
3694 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3695 filemap_invalidate_lock(inode->i_mapping);
3696
3697 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3698
3699 while (page_idx < last_idx) {
3700 struct dnode_of_data dn;
3701 pgoff_t end_offset, count;
3702
3703 set_new_dnode(&dn, inode, NULL, NULL, 0);
3704 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3705 if (ret) {
3706 if (ret == -ENOENT) {
3707 page_idx = f2fs_get_next_page_offset(&dn,
3708 page_idx);
3709 ret = 0;
3710 continue;
3711 }
3712 break;
3713 }
3714
3715 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3716 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3717 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3718
3719 ret = reserve_compress_blocks(&dn, count);
3720
3721 f2fs_put_dnode(&dn);
3722
3723 if (ret < 0)
3724 break;
3725
3726 page_idx += count;
3727 reserved_blocks += ret;
3728 }
3729
3730 filemap_invalidate_unlock(inode->i_mapping);
3731 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3732
3733 if (ret >= 0) {
3734 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3735 inode_set_ctime_current(inode);
3736 f2fs_mark_inode_dirty_sync(inode, true);
3737 }
3738 unlock_inode:
3739 inode_unlock(inode);
3740 out:
3741 mnt_drop_write_file(filp);
3742
3743 if (ret >= 0) {
3744 ret = put_user(reserved_blocks, (u64 __user *)arg);
3745 } else if (reserved_blocks &&
3746 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3747 set_sbi_flag(sbi, SBI_NEED_FSCK);
3748 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3749 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3750 "run fsck to fix.",
3751 __func__, inode->i_ino, inode->i_blocks,
3752 reserved_blocks,
3753 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3754 }
3755
3756 return ret;
3757 }
3758
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3759 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3760 pgoff_t off, block_t block, block_t len, u32 flags)
3761 {
3762 sector_t sector = SECTOR_FROM_BLOCK(block);
3763 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3764 int ret = 0;
3765
3766 if (flags & F2FS_TRIM_FILE_DISCARD) {
3767 if (bdev_max_secure_erase_sectors(bdev))
3768 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3769 GFP_NOFS);
3770 else
3771 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3772 GFP_NOFS);
3773 }
3774
3775 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3776 if (IS_ENCRYPTED(inode))
3777 ret = fscrypt_zeroout_range(inode, off, block, len);
3778 else
3779 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3780 GFP_NOFS, 0);
3781 }
3782
3783 return ret;
3784 }
3785
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3786 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3787 {
3788 struct inode *inode = file_inode(filp);
3789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3790 struct address_space *mapping = inode->i_mapping;
3791 struct block_device *prev_bdev = NULL;
3792 struct f2fs_sectrim_range range;
3793 pgoff_t index, pg_end, prev_index = 0;
3794 block_t prev_block = 0, len = 0;
3795 loff_t end_addr;
3796 bool to_end = false;
3797 int ret = 0;
3798
3799 if (!(filp->f_mode & FMODE_WRITE))
3800 return -EBADF;
3801
3802 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3803 sizeof(range)))
3804 return -EFAULT;
3805
3806 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3807 !S_ISREG(inode->i_mode))
3808 return -EINVAL;
3809
3810 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3811 !f2fs_hw_support_discard(sbi)) ||
3812 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3813 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3814 return -EOPNOTSUPP;
3815
3816 file_start_write(filp);
3817 inode_lock(inode);
3818
3819 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3820 range.start >= inode->i_size) {
3821 ret = -EINVAL;
3822 goto err;
3823 }
3824
3825 if (range.len == 0)
3826 goto err;
3827
3828 if (inode->i_size - range.start > range.len) {
3829 end_addr = range.start + range.len;
3830 } else {
3831 end_addr = range.len == (u64)-1 ?
3832 sbi->sb->s_maxbytes : inode->i_size;
3833 to_end = true;
3834 }
3835
3836 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3837 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3838 ret = -EINVAL;
3839 goto err;
3840 }
3841
3842 index = F2FS_BYTES_TO_BLK(range.start);
3843 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3844
3845 ret = f2fs_convert_inline_inode(inode);
3846 if (ret)
3847 goto err;
3848
3849 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3850 filemap_invalidate_lock(mapping);
3851
3852 ret = filemap_write_and_wait_range(mapping, range.start,
3853 to_end ? LLONG_MAX : end_addr - 1);
3854 if (ret)
3855 goto out;
3856
3857 truncate_inode_pages_range(mapping, range.start,
3858 to_end ? -1 : end_addr - 1);
3859
3860 while (index < pg_end) {
3861 struct dnode_of_data dn;
3862 pgoff_t end_offset, count;
3863 int i;
3864
3865 set_new_dnode(&dn, inode, NULL, NULL, 0);
3866 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3867 if (ret) {
3868 if (ret == -ENOENT) {
3869 index = f2fs_get_next_page_offset(&dn, index);
3870 continue;
3871 }
3872 goto out;
3873 }
3874
3875 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3876 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3877 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3878 struct block_device *cur_bdev;
3879 block_t blkaddr = f2fs_data_blkaddr(&dn);
3880
3881 if (!__is_valid_data_blkaddr(blkaddr))
3882 continue;
3883
3884 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3885 DATA_GENERIC_ENHANCE)) {
3886 ret = -EFSCORRUPTED;
3887 f2fs_put_dnode(&dn);
3888 f2fs_handle_error(sbi,
3889 ERROR_INVALID_BLKADDR);
3890 goto out;
3891 }
3892
3893 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3894 if (f2fs_is_multi_device(sbi)) {
3895 int di = f2fs_target_device_index(sbi, blkaddr);
3896
3897 blkaddr -= FDEV(di).start_blk;
3898 }
3899
3900 if (len) {
3901 if (prev_bdev == cur_bdev &&
3902 index == prev_index + len &&
3903 blkaddr == prev_block + len) {
3904 len++;
3905 } else {
3906 ret = f2fs_secure_erase(prev_bdev,
3907 inode, prev_index, prev_block,
3908 len, range.flags);
3909 if (ret) {
3910 f2fs_put_dnode(&dn);
3911 goto out;
3912 }
3913
3914 len = 0;
3915 }
3916 }
3917
3918 if (!len) {
3919 prev_bdev = cur_bdev;
3920 prev_index = index;
3921 prev_block = blkaddr;
3922 len = 1;
3923 }
3924 }
3925
3926 f2fs_put_dnode(&dn);
3927
3928 if (fatal_signal_pending(current)) {
3929 ret = -EINTR;
3930 goto out;
3931 }
3932 cond_resched();
3933 }
3934
3935 if (len)
3936 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3937 prev_block, len, range.flags);
3938 out:
3939 filemap_invalidate_unlock(mapping);
3940 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3941 err:
3942 inode_unlock(inode);
3943 file_end_write(filp);
3944
3945 return ret;
3946 }
3947
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)3948 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3949 {
3950 struct inode *inode = file_inode(filp);
3951 struct f2fs_comp_option option;
3952
3953 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3954 return -EOPNOTSUPP;
3955
3956 inode_lock_shared(inode);
3957
3958 if (!f2fs_compressed_file(inode)) {
3959 inode_unlock_shared(inode);
3960 return -ENODATA;
3961 }
3962
3963 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3964 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3965
3966 inode_unlock_shared(inode);
3967
3968 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3969 sizeof(option)))
3970 return -EFAULT;
3971
3972 return 0;
3973 }
3974
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)3975 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3976 {
3977 struct inode *inode = file_inode(filp);
3978 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979 struct f2fs_comp_option option;
3980 int ret = 0;
3981
3982 if (!f2fs_sb_has_compression(sbi))
3983 return -EOPNOTSUPP;
3984
3985 if (!(filp->f_mode & FMODE_WRITE))
3986 return -EBADF;
3987
3988 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3989 sizeof(option)))
3990 return -EFAULT;
3991
3992 if (!f2fs_compressed_file(inode) ||
3993 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3994 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3995 option.algorithm >= COMPRESS_MAX)
3996 return -EINVAL;
3997
3998 file_start_write(filp);
3999 inode_lock(inode);
4000
4001 f2fs_down_write(&F2FS_I(inode)->i_sem);
4002 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4003 ret = -EBUSY;
4004 goto out;
4005 }
4006
4007 if (F2FS_HAS_BLOCKS(inode)) {
4008 ret = -EFBIG;
4009 goto out;
4010 }
4011
4012 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4013 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4014 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4015 /* Set default level */
4016 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4017 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4018 else
4019 F2FS_I(inode)->i_compress_level = 0;
4020 /* Adjust mount option level */
4021 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4022 F2FS_OPTION(sbi).compress_level)
4023 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4024 f2fs_mark_inode_dirty_sync(inode, true);
4025
4026 if (!f2fs_is_compress_backend_ready(inode))
4027 f2fs_warn(sbi, "compression algorithm is successfully set, "
4028 "but current kernel doesn't support this algorithm.");
4029 out:
4030 f2fs_up_write(&F2FS_I(inode)->i_sem);
4031 inode_unlock(inode);
4032 file_end_write(filp);
4033
4034 return ret;
4035 }
4036
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4037 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4038 {
4039 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4040 struct address_space *mapping = inode->i_mapping;
4041 struct page *page;
4042 pgoff_t redirty_idx = page_idx;
4043 int i, page_len = 0, ret = 0;
4044
4045 page_cache_ra_unbounded(&ractl, len, 0);
4046
4047 for (i = 0; i < len; i++, page_idx++) {
4048 page = read_cache_page(mapping, page_idx, NULL, NULL);
4049 if (IS_ERR(page)) {
4050 ret = PTR_ERR(page);
4051 break;
4052 }
4053 page_len++;
4054 }
4055
4056 for (i = 0; i < page_len; i++, redirty_idx++) {
4057 page = find_lock_page(mapping, redirty_idx);
4058
4059 /* It will never fail, when page has pinned above */
4060 f2fs_bug_on(F2FS_I_SB(inode), !page);
4061
4062 set_page_dirty(page);
4063 set_page_private_gcing(page);
4064 f2fs_put_page(page, 1);
4065 f2fs_put_page(page, 0);
4066 }
4067
4068 return ret;
4069 }
4070
f2fs_ioc_decompress_file(struct file * filp)4071 static int f2fs_ioc_decompress_file(struct file *filp)
4072 {
4073 struct inode *inode = file_inode(filp);
4074 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4075 struct f2fs_inode_info *fi = F2FS_I(inode);
4076 pgoff_t page_idx = 0, last_idx;
4077 unsigned int blk_per_seg = sbi->blocks_per_seg;
4078 int cluster_size = fi->i_cluster_size;
4079 int count, ret;
4080
4081 if (!f2fs_sb_has_compression(sbi) ||
4082 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4083 return -EOPNOTSUPP;
4084
4085 if (!(filp->f_mode & FMODE_WRITE))
4086 return -EBADF;
4087
4088 if (!f2fs_compressed_file(inode))
4089 return -EINVAL;
4090
4091 f2fs_balance_fs(sbi, true);
4092
4093 file_start_write(filp);
4094 inode_lock(inode);
4095
4096 if (!f2fs_is_compress_backend_ready(inode)) {
4097 ret = -EOPNOTSUPP;
4098 goto out;
4099 }
4100
4101 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4102 ret = -EINVAL;
4103 goto out;
4104 }
4105
4106 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4107 if (ret)
4108 goto out;
4109
4110 if (!atomic_read(&fi->i_compr_blocks))
4111 goto out;
4112
4113 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4114
4115 count = last_idx - page_idx;
4116 while (count && count >= cluster_size) {
4117 ret = redirty_blocks(inode, page_idx, cluster_size);
4118 if (ret < 0)
4119 break;
4120
4121 if (get_dirty_pages(inode) >= blk_per_seg) {
4122 ret = filemap_fdatawrite(inode->i_mapping);
4123 if (ret < 0)
4124 break;
4125 }
4126
4127 count -= cluster_size;
4128 page_idx += cluster_size;
4129
4130 cond_resched();
4131 if (fatal_signal_pending(current)) {
4132 ret = -EINTR;
4133 break;
4134 }
4135 }
4136
4137 if (!ret)
4138 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4139 LLONG_MAX);
4140
4141 if (ret)
4142 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4143 __func__, ret);
4144 out:
4145 inode_unlock(inode);
4146 file_end_write(filp);
4147
4148 return ret;
4149 }
4150
f2fs_ioc_compress_file(struct file * filp)4151 static int f2fs_ioc_compress_file(struct file *filp)
4152 {
4153 struct inode *inode = file_inode(filp);
4154 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4155 pgoff_t page_idx = 0, last_idx;
4156 unsigned int blk_per_seg = sbi->blocks_per_seg;
4157 int cluster_size = F2FS_I(inode)->i_cluster_size;
4158 int count, ret;
4159
4160 if (!f2fs_sb_has_compression(sbi) ||
4161 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4162 return -EOPNOTSUPP;
4163
4164 if (!(filp->f_mode & FMODE_WRITE))
4165 return -EBADF;
4166
4167 if (!f2fs_compressed_file(inode))
4168 return -EINVAL;
4169
4170 f2fs_balance_fs(sbi, true);
4171
4172 file_start_write(filp);
4173 inode_lock(inode);
4174
4175 if (!f2fs_is_compress_backend_ready(inode)) {
4176 ret = -EOPNOTSUPP;
4177 goto out;
4178 }
4179
4180 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4181 ret = -EINVAL;
4182 goto out;
4183 }
4184
4185 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4186 if (ret)
4187 goto out;
4188
4189 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4190
4191 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4192
4193 count = last_idx - page_idx;
4194 while (count && count >= cluster_size) {
4195 ret = redirty_blocks(inode, page_idx, cluster_size);
4196 if (ret < 0)
4197 break;
4198
4199 if (get_dirty_pages(inode) >= blk_per_seg) {
4200 ret = filemap_fdatawrite(inode->i_mapping);
4201 if (ret < 0)
4202 break;
4203 }
4204
4205 count -= cluster_size;
4206 page_idx += cluster_size;
4207
4208 cond_resched();
4209 if (fatal_signal_pending(current)) {
4210 ret = -EINTR;
4211 break;
4212 }
4213 }
4214
4215 if (!ret)
4216 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4217 LLONG_MAX);
4218
4219 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4220
4221 if (ret)
4222 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4223 __func__, ret);
4224 out:
4225 inode_unlock(inode);
4226 file_end_write(filp);
4227
4228 return ret;
4229 }
4230
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4231 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4232 {
4233 switch (cmd) {
4234 case FS_IOC_GETVERSION:
4235 return f2fs_ioc_getversion(filp, arg);
4236 case F2FS_IOC_START_ATOMIC_WRITE:
4237 return f2fs_ioc_start_atomic_write(filp, false);
4238 case F2FS_IOC_START_ATOMIC_REPLACE:
4239 return f2fs_ioc_start_atomic_write(filp, true);
4240 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4241 return f2fs_ioc_commit_atomic_write(filp);
4242 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4243 return f2fs_ioc_abort_atomic_write(filp);
4244 case F2FS_IOC_START_VOLATILE_WRITE:
4245 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4246 return -EOPNOTSUPP;
4247 case F2FS_IOC_SHUTDOWN:
4248 return f2fs_ioc_shutdown(filp, arg);
4249 case FITRIM:
4250 return f2fs_ioc_fitrim(filp, arg);
4251 case FS_IOC_SET_ENCRYPTION_POLICY:
4252 return f2fs_ioc_set_encryption_policy(filp, arg);
4253 case FS_IOC_GET_ENCRYPTION_POLICY:
4254 return f2fs_ioc_get_encryption_policy(filp, arg);
4255 case FS_IOC_GET_ENCRYPTION_PWSALT:
4256 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4257 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4258 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4259 case FS_IOC_ADD_ENCRYPTION_KEY:
4260 return f2fs_ioc_add_encryption_key(filp, arg);
4261 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4262 return f2fs_ioc_remove_encryption_key(filp, arg);
4263 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4264 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4265 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4266 return f2fs_ioc_get_encryption_key_status(filp, arg);
4267 case FS_IOC_GET_ENCRYPTION_NONCE:
4268 return f2fs_ioc_get_encryption_nonce(filp, arg);
4269 case F2FS_IOC_GARBAGE_COLLECT:
4270 return f2fs_ioc_gc(filp, arg);
4271 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4272 return f2fs_ioc_gc_range(filp, arg);
4273 case F2FS_IOC_WRITE_CHECKPOINT:
4274 return f2fs_ioc_write_checkpoint(filp);
4275 case F2FS_IOC_DEFRAGMENT:
4276 return f2fs_ioc_defragment(filp, arg);
4277 case F2FS_IOC_MOVE_RANGE:
4278 return f2fs_ioc_move_range(filp, arg);
4279 case F2FS_IOC_FLUSH_DEVICE:
4280 return f2fs_ioc_flush_device(filp, arg);
4281 case F2FS_IOC_GET_FEATURES:
4282 return f2fs_ioc_get_features(filp, arg);
4283 case F2FS_IOC_GET_PIN_FILE:
4284 return f2fs_ioc_get_pin_file(filp, arg);
4285 case F2FS_IOC_SET_PIN_FILE:
4286 return f2fs_ioc_set_pin_file(filp, arg);
4287 case F2FS_IOC_PRECACHE_EXTENTS:
4288 return f2fs_ioc_precache_extents(filp);
4289 case F2FS_IOC_RESIZE_FS:
4290 return f2fs_ioc_resize_fs(filp, arg);
4291 case FS_IOC_ENABLE_VERITY:
4292 return f2fs_ioc_enable_verity(filp, arg);
4293 case FS_IOC_MEASURE_VERITY:
4294 return f2fs_ioc_measure_verity(filp, arg);
4295 case FS_IOC_READ_VERITY_METADATA:
4296 return f2fs_ioc_read_verity_metadata(filp, arg);
4297 case FS_IOC_GETFSLABEL:
4298 return f2fs_ioc_getfslabel(filp, arg);
4299 case FS_IOC_SETFSLABEL:
4300 return f2fs_ioc_setfslabel(filp, arg);
4301 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4302 return f2fs_ioc_get_compress_blocks(filp, arg);
4303 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4304 return f2fs_release_compress_blocks(filp, arg);
4305 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4306 return f2fs_reserve_compress_blocks(filp, arg);
4307 case F2FS_IOC_SEC_TRIM_FILE:
4308 return f2fs_sec_trim_file(filp, arg);
4309 case F2FS_IOC_GET_COMPRESS_OPTION:
4310 return f2fs_ioc_get_compress_option(filp, arg);
4311 case F2FS_IOC_SET_COMPRESS_OPTION:
4312 return f2fs_ioc_set_compress_option(filp, arg);
4313 case F2FS_IOC_DECOMPRESS_FILE:
4314 return f2fs_ioc_decompress_file(filp);
4315 case F2FS_IOC_COMPRESS_FILE:
4316 return f2fs_ioc_compress_file(filp);
4317 default:
4318 return -ENOTTY;
4319 }
4320 }
4321
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4322 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4323 {
4324 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4325 return -EIO;
4326 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4327 return -ENOSPC;
4328
4329 return __f2fs_ioctl(filp, cmd, arg);
4330 }
4331
4332 /*
4333 * Return %true if the given read or write request should use direct I/O, or
4334 * %false if it should use buffered I/O.
4335 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4336 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4337 struct iov_iter *iter)
4338 {
4339 unsigned int align;
4340
4341 if (!(iocb->ki_flags & IOCB_DIRECT))
4342 return false;
4343
4344 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4345 return false;
4346
4347 /*
4348 * Direct I/O not aligned to the disk's logical_block_size will be
4349 * attempted, but will fail with -EINVAL.
4350 *
4351 * f2fs additionally requires that direct I/O be aligned to the
4352 * filesystem block size, which is often a stricter requirement.
4353 * However, f2fs traditionally falls back to buffered I/O on requests
4354 * that are logical_block_size-aligned but not fs-block aligned.
4355 *
4356 * The below logic implements this behavior.
4357 */
4358 align = iocb->ki_pos | iov_iter_alignment(iter);
4359 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4360 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4361 return false;
4362
4363 return true;
4364 }
4365
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4366 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4367 unsigned int flags)
4368 {
4369 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4370
4371 dec_page_count(sbi, F2FS_DIO_READ);
4372 if (error)
4373 return error;
4374 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4375 return 0;
4376 }
4377
4378 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4379 .end_io = f2fs_dio_read_end_io,
4380 };
4381
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4382 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4383 {
4384 struct file *file = iocb->ki_filp;
4385 struct inode *inode = file_inode(file);
4386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4387 struct f2fs_inode_info *fi = F2FS_I(inode);
4388 const loff_t pos = iocb->ki_pos;
4389 const size_t count = iov_iter_count(to);
4390 struct iomap_dio *dio;
4391 ssize_t ret;
4392
4393 if (count == 0)
4394 return 0; /* skip atime update */
4395
4396 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4397
4398 if (iocb->ki_flags & IOCB_NOWAIT) {
4399 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4400 ret = -EAGAIN;
4401 goto out;
4402 }
4403 } else {
4404 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4405 }
4406
4407 /*
4408 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4409 * the higher-level function iomap_dio_rw() in order to ensure that the
4410 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4411 */
4412 inc_page_count(sbi, F2FS_DIO_READ);
4413 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4414 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4415 if (IS_ERR_OR_NULL(dio)) {
4416 ret = PTR_ERR_OR_ZERO(dio);
4417 if (ret != -EIOCBQUEUED)
4418 dec_page_count(sbi, F2FS_DIO_READ);
4419 } else {
4420 ret = iomap_dio_complete(dio);
4421 }
4422
4423 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4424
4425 file_accessed(file);
4426 out:
4427 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4428 return ret;
4429 }
4430
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4431 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4432 int rw)
4433 {
4434 struct inode *inode = file_inode(file);
4435 char *buf, *path;
4436
4437 buf = f2fs_getname(F2FS_I_SB(inode));
4438 if (!buf)
4439 return;
4440 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4441 if (IS_ERR(path))
4442 goto free_buf;
4443 if (rw == WRITE)
4444 trace_f2fs_datawrite_start(inode, pos, count,
4445 current->pid, path, current->comm);
4446 else
4447 trace_f2fs_dataread_start(inode, pos, count,
4448 current->pid, path, current->comm);
4449 free_buf:
4450 f2fs_putname(buf);
4451 }
4452
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4453 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4454 {
4455 struct inode *inode = file_inode(iocb->ki_filp);
4456 const loff_t pos = iocb->ki_pos;
4457 ssize_t ret;
4458
4459 if (!f2fs_is_compress_backend_ready(inode))
4460 return -EOPNOTSUPP;
4461
4462 if (trace_f2fs_dataread_start_enabled())
4463 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4464 iov_iter_count(to), READ);
4465
4466 if (f2fs_should_use_dio(inode, iocb, to)) {
4467 ret = f2fs_dio_read_iter(iocb, to);
4468 } else {
4469 ret = filemap_read(iocb, to, 0);
4470 if (ret > 0)
4471 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4472 APP_BUFFERED_READ_IO, ret);
4473 }
4474 if (trace_f2fs_dataread_end_enabled())
4475 trace_f2fs_dataread_end(inode, pos, ret);
4476 return ret;
4477 }
4478
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4479 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4480 struct pipe_inode_info *pipe,
4481 size_t len, unsigned int flags)
4482 {
4483 struct inode *inode = file_inode(in);
4484 const loff_t pos = *ppos;
4485 ssize_t ret;
4486
4487 if (!f2fs_is_compress_backend_ready(inode))
4488 return -EOPNOTSUPP;
4489
4490 if (trace_f2fs_dataread_start_enabled())
4491 f2fs_trace_rw_file_path(in, pos, len, READ);
4492
4493 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4494 if (ret > 0)
4495 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4496 APP_BUFFERED_READ_IO, ret);
4497
4498 if (trace_f2fs_dataread_end_enabled())
4499 trace_f2fs_dataread_end(inode, pos, ret);
4500 return ret;
4501 }
4502
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4503 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4504 {
4505 struct file *file = iocb->ki_filp;
4506 struct inode *inode = file_inode(file);
4507 ssize_t count;
4508 int err;
4509
4510 if (IS_IMMUTABLE(inode))
4511 return -EPERM;
4512
4513 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4514 return -EPERM;
4515
4516 count = generic_write_checks(iocb, from);
4517 if (count <= 0)
4518 return count;
4519
4520 err = file_modified(file);
4521 if (err)
4522 return err;
4523 return count;
4524 }
4525
4526 /*
4527 * Preallocate blocks for a write request, if it is possible and helpful to do
4528 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4529 * blocks were preallocated, or a negative errno value if something went
4530 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4531 * requested blocks (not just some of them) have been allocated.
4532 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4533 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4534 bool dio)
4535 {
4536 struct inode *inode = file_inode(iocb->ki_filp);
4537 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4538 const loff_t pos = iocb->ki_pos;
4539 const size_t count = iov_iter_count(iter);
4540 struct f2fs_map_blocks map = {};
4541 int flag;
4542 int ret;
4543
4544 /* If it will be an out-of-place direct write, don't bother. */
4545 if (dio && f2fs_lfs_mode(sbi))
4546 return 0;
4547 /*
4548 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4549 * buffered IO, if DIO meets any holes.
4550 */
4551 if (dio && i_size_read(inode) &&
4552 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4553 return 0;
4554
4555 /* No-wait I/O can't allocate blocks. */
4556 if (iocb->ki_flags & IOCB_NOWAIT)
4557 return 0;
4558
4559 /* If it will be a short write, don't bother. */
4560 if (fault_in_iov_iter_readable(iter, count))
4561 return 0;
4562
4563 if (f2fs_has_inline_data(inode)) {
4564 /* If the data will fit inline, don't bother. */
4565 if (pos + count <= MAX_INLINE_DATA(inode))
4566 return 0;
4567 ret = f2fs_convert_inline_inode(inode);
4568 if (ret)
4569 return ret;
4570 }
4571
4572 /* Do not preallocate blocks that will be written partially in 4KB. */
4573 map.m_lblk = F2FS_BLK_ALIGN(pos);
4574 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4575 if (map.m_len > map.m_lblk)
4576 map.m_len -= map.m_lblk;
4577 else
4578 map.m_len = 0;
4579 map.m_may_create = true;
4580 if (dio) {
4581 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4582 flag = F2FS_GET_BLOCK_PRE_DIO;
4583 } else {
4584 map.m_seg_type = NO_CHECK_TYPE;
4585 flag = F2FS_GET_BLOCK_PRE_AIO;
4586 }
4587
4588 ret = f2fs_map_blocks(inode, &map, flag);
4589 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4590 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4591 return ret;
4592 if (ret == 0)
4593 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4594 return map.m_len;
4595 }
4596
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4597 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4598 struct iov_iter *from)
4599 {
4600 struct file *file = iocb->ki_filp;
4601 struct inode *inode = file_inode(file);
4602 ssize_t ret;
4603
4604 if (iocb->ki_flags & IOCB_NOWAIT)
4605 return -EOPNOTSUPP;
4606
4607 ret = generic_perform_write(iocb, from);
4608
4609 if (ret > 0) {
4610 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4611 APP_BUFFERED_IO, ret);
4612 }
4613 return ret;
4614 }
4615
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4616 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4617 unsigned int flags)
4618 {
4619 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4620
4621 dec_page_count(sbi, F2FS_DIO_WRITE);
4622 if (error)
4623 return error;
4624 f2fs_update_time(sbi, REQ_TIME);
4625 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4626 return 0;
4627 }
4628
4629 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4630 .end_io = f2fs_dio_write_end_io,
4631 };
4632
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4633 static void f2fs_flush_buffered_write(struct address_space *mapping,
4634 loff_t start_pos, loff_t end_pos)
4635 {
4636 int ret;
4637
4638 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4639 if (ret < 0)
4640 return;
4641 invalidate_mapping_pages(mapping,
4642 start_pos >> PAGE_SHIFT,
4643 end_pos >> PAGE_SHIFT);
4644 }
4645
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4646 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4647 bool *may_need_sync)
4648 {
4649 struct file *file = iocb->ki_filp;
4650 struct inode *inode = file_inode(file);
4651 struct f2fs_inode_info *fi = F2FS_I(inode);
4652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4653 const bool do_opu = f2fs_lfs_mode(sbi);
4654 const loff_t pos = iocb->ki_pos;
4655 const ssize_t count = iov_iter_count(from);
4656 unsigned int dio_flags;
4657 struct iomap_dio *dio;
4658 ssize_t ret;
4659
4660 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4661
4662 if (iocb->ki_flags & IOCB_NOWAIT) {
4663 /* f2fs_convert_inline_inode() and block allocation can block */
4664 if (f2fs_has_inline_data(inode) ||
4665 !f2fs_overwrite_io(inode, pos, count)) {
4666 ret = -EAGAIN;
4667 goto out;
4668 }
4669
4670 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4671 ret = -EAGAIN;
4672 goto out;
4673 }
4674 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4675 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4676 ret = -EAGAIN;
4677 goto out;
4678 }
4679 } else {
4680 ret = f2fs_convert_inline_inode(inode);
4681 if (ret)
4682 goto out;
4683
4684 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4685 if (do_opu)
4686 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4687 }
4688
4689 /*
4690 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4691 * the higher-level function iomap_dio_rw() in order to ensure that the
4692 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4693 */
4694 inc_page_count(sbi, F2FS_DIO_WRITE);
4695 dio_flags = 0;
4696 if (pos + count > inode->i_size)
4697 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4698 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4699 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4700 if (IS_ERR_OR_NULL(dio)) {
4701 ret = PTR_ERR_OR_ZERO(dio);
4702 if (ret == -ENOTBLK)
4703 ret = 0;
4704 if (ret != -EIOCBQUEUED)
4705 dec_page_count(sbi, F2FS_DIO_WRITE);
4706 } else {
4707 ret = iomap_dio_complete(dio);
4708 }
4709
4710 if (do_opu)
4711 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4712 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4713
4714 if (ret < 0)
4715 goto out;
4716 if (pos + ret > inode->i_size)
4717 f2fs_i_size_write(inode, pos + ret);
4718 if (!do_opu)
4719 set_inode_flag(inode, FI_UPDATE_WRITE);
4720
4721 if (iov_iter_count(from)) {
4722 ssize_t ret2;
4723 loff_t bufio_start_pos = iocb->ki_pos;
4724
4725 /*
4726 * The direct write was partial, so we need to fall back to a
4727 * buffered write for the remainder.
4728 */
4729
4730 ret2 = f2fs_buffered_write_iter(iocb, from);
4731 if (iov_iter_count(from))
4732 f2fs_write_failed(inode, iocb->ki_pos);
4733 if (ret2 < 0)
4734 goto out;
4735
4736 /*
4737 * Ensure that the pagecache pages are written to disk and
4738 * invalidated to preserve the expected O_DIRECT semantics.
4739 */
4740 if (ret2 > 0) {
4741 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4742
4743 ret += ret2;
4744
4745 f2fs_flush_buffered_write(file->f_mapping,
4746 bufio_start_pos,
4747 bufio_end_pos);
4748 }
4749 } else {
4750 /* iomap_dio_rw() already handled the generic_write_sync(). */
4751 *may_need_sync = false;
4752 }
4753 out:
4754 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4755 return ret;
4756 }
4757
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4758 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4759 {
4760 struct inode *inode = file_inode(iocb->ki_filp);
4761 const loff_t orig_pos = iocb->ki_pos;
4762 const size_t orig_count = iov_iter_count(from);
4763 loff_t target_size;
4764 bool dio;
4765 bool may_need_sync = true;
4766 int preallocated;
4767 ssize_t ret;
4768
4769 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4770 ret = -EIO;
4771 goto out;
4772 }
4773
4774 if (!f2fs_is_compress_backend_ready(inode)) {
4775 ret = -EOPNOTSUPP;
4776 goto out;
4777 }
4778
4779 if (iocb->ki_flags & IOCB_NOWAIT) {
4780 if (!inode_trylock(inode)) {
4781 ret = -EAGAIN;
4782 goto out;
4783 }
4784 } else {
4785 inode_lock(inode);
4786 }
4787
4788 ret = f2fs_write_checks(iocb, from);
4789 if (ret <= 0)
4790 goto out_unlock;
4791
4792 /* Determine whether we will do a direct write or a buffered write. */
4793 dio = f2fs_should_use_dio(inode, iocb, from);
4794
4795 /* Possibly preallocate the blocks for the write. */
4796 target_size = iocb->ki_pos + iov_iter_count(from);
4797 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4798 if (preallocated < 0) {
4799 ret = preallocated;
4800 } else {
4801 if (trace_f2fs_datawrite_start_enabled())
4802 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4803 orig_count, WRITE);
4804
4805 /* Do the actual write. */
4806 ret = dio ?
4807 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4808 f2fs_buffered_write_iter(iocb, from);
4809
4810 if (trace_f2fs_datawrite_end_enabled())
4811 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4812 }
4813
4814 /* Don't leave any preallocated blocks around past i_size. */
4815 if (preallocated && i_size_read(inode) < target_size) {
4816 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4817 filemap_invalidate_lock(inode->i_mapping);
4818 if (!f2fs_truncate(inode))
4819 file_dont_truncate(inode);
4820 filemap_invalidate_unlock(inode->i_mapping);
4821 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4822 } else {
4823 file_dont_truncate(inode);
4824 }
4825
4826 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4827 out_unlock:
4828 inode_unlock(inode);
4829 out:
4830 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4831
4832 if (ret > 0 && may_need_sync)
4833 ret = generic_write_sync(iocb, ret);
4834
4835 /* If buffered IO was forced, flush and drop the data from
4836 * the page cache to preserve O_DIRECT semantics
4837 */
4838 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4839 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4840 orig_pos,
4841 orig_pos + ret - 1);
4842
4843 return ret;
4844 }
4845
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4846 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4847 int advice)
4848 {
4849 struct address_space *mapping;
4850 struct backing_dev_info *bdi;
4851 struct inode *inode = file_inode(filp);
4852 int err;
4853
4854 if (advice == POSIX_FADV_SEQUENTIAL) {
4855 if (S_ISFIFO(inode->i_mode))
4856 return -ESPIPE;
4857
4858 mapping = filp->f_mapping;
4859 if (!mapping || len < 0)
4860 return -EINVAL;
4861
4862 bdi = inode_to_bdi(mapping->host);
4863 filp->f_ra.ra_pages = bdi->ra_pages *
4864 F2FS_I_SB(inode)->seq_file_ra_mul;
4865 spin_lock(&filp->f_lock);
4866 filp->f_mode &= ~FMODE_RANDOM;
4867 spin_unlock(&filp->f_lock);
4868 return 0;
4869 }
4870
4871 err = generic_fadvise(filp, offset, len, advice);
4872 if (!err && advice == POSIX_FADV_DONTNEED &&
4873 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4874 f2fs_compressed_file(inode))
4875 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4876
4877 return err;
4878 }
4879
4880 #ifdef CONFIG_COMPAT
4881 struct compat_f2fs_gc_range {
4882 u32 sync;
4883 compat_u64 start;
4884 compat_u64 len;
4885 };
4886 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4887 struct compat_f2fs_gc_range)
4888
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4889 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4890 {
4891 struct compat_f2fs_gc_range __user *urange;
4892 struct f2fs_gc_range range;
4893 int err;
4894
4895 urange = compat_ptr(arg);
4896 err = get_user(range.sync, &urange->sync);
4897 err |= get_user(range.start, &urange->start);
4898 err |= get_user(range.len, &urange->len);
4899 if (err)
4900 return -EFAULT;
4901
4902 return __f2fs_ioc_gc_range(file, &range);
4903 }
4904
4905 struct compat_f2fs_move_range {
4906 u32 dst_fd;
4907 compat_u64 pos_in;
4908 compat_u64 pos_out;
4909 compat_u64 len;
4910 };
4911 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4912 struct compat_f2fs_move_range)
4913
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4914 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4915 {
4916 struct compat_f2fs_move_range __user *urange;
4917 struct f2fs_move_range range;
4918 int err;
4919
4920 urange = compat_ptr(arg);
4921 err = get_user(range.dst_fd, &urange->dst_fd);
4922 err |= get_user(range.pos_in, &urange->pos_in);
4923 err |= get_user(range.pos_out, &urange->pos_out);
4924 err |= get_user(range.len, &urange->len);
4925 if (err)
4926 return -EFAULT;
4927
4928 return __f2fs_ioc_move_range(file, &range);
4929 }
4930
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4931 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4932 {
4933 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4934 return -EIO;
4935 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4936 return -ENOSPC;
4937
4938 switch (cmd) {
4939 case FS_IOC32_GETVERSION:
4940 cmd = FS_IOC_GETVERSION;
4941 break;
4942 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4943 return f2fs_compat_ioc_gc_range(file, arg);
4944 case F2FS_IOC32_MOVE_RANGE:
4945 return f2fs_compat_ioc_move_range(file, arg);
4946 case F2FS_IOC_START_ATOMIC_WRITE:
4947 case F2FS_IOC_START_ATOMIC_REPLACE:
4948 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4949 case F2FS_IOC_START_VOLATILE_WRITE:
4950 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4951 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4952 case F2FS_IOC_SHUTDOWN:
4953 case FITRIM:
4954 case FS_IOC_SET_ENCRYPTION_POLICY:
4955 case FS_IOC_GET_ENCRYPTION_PWSALT:
4956 case FS_IOC_GET_ENCRYPTION_POLICY:
4957 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4958 case FS_IOC_ADD_ENCRYPTION_KEY:
4959 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4960 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4961 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4962 case FS_IOC_GET_ENCRYPTION_NONCE:
4963 case F2FS_IOC_GARBAGE_COLLECT:
4964 case F2FS_IOC_WRITE_CHECKPOINT:
4965 case F2FS_IOC_DEFRAGMENT:
4966 case F2FS_IOC_FLUSH_DEVICE:
4967 case F2FS_IOC_GET_FEATURES:
4968 case F2FS_IOC_GET_PIN_FILE:
4969 case F2FS_IOC_SET_PIN_FILE:
4970 case F2FS_IOC_PRECACHE_EXTENTS:
4971 case F2FS_IOC_RESIZE_FS:
4972 case FS_IOC_ENABLE_VERITY:
4973 case FS_IOC_MEASURE_VERITY:
4974 case FS_IOC_READ_VERITY_METADATA:
4975 case FS_IOC_GETFSLABEL:
4976 case FS_IOC_SETFSLABEL:
4977 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4978 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4979 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4980 case F2FS_IOC_SEC_TRIM_FILE:
4981 case F2FS_IOC_GET_COMPRESS_OPTION:
4982 case F2FS_IOC_SET_COMPRESS_OPTION:
4983 case F2FS_IOC_DECOMPRESS_FILE:
4984 case F2FS_IOC_COMPRESS_FILE:
4985 break;
4986 default:
4987 return -ENOIOCTLCMD;
4988 }
4989 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4990 }
4991 #endif
4992
4993 const struct file_operations f2fs_file_operations = {
4994 .llseek = f2fs_llseek,
4995 .read_iter = f2fs_file_read_iter,
4996 .write_iter = f2fs_file_write_iter,
4997 .iopoll = iocb_bio_iopoll,
4998 .open = f2fs_file_open,
4999 .release = f2fs_release_file,
5000 .mmap = f2fs_file_mmap,
5001 .flush = f2fs_file_flush,
5002 .fsync = f2fs_sync_file,
5003 .fallocate = f2fs_fallocate,
5004 .unlocked_ioctl = f2fs_ioctl,
5005 #ifdef CONFIG_COMPAT
5006 .compat_ioctl = f2fs_compat_ioctl,
5007 #endif
5008 .splice_read = f2fs_file_splice_read,
5009 .splice_write = iter_file_splice_write,
5010 .fadvise = f2fs_file_fadvise,
5011 };
5012