1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 struct f2fs_inode_info *fi = F2FS_I(inode);
192
193 if (f2fs_is_atomic_file(inode)) {
194 if (clean)
195 truncate_inode_pages_final(inode->i_mapping);
196 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
197 iput(fi->cow_inode);
198 fi->cow_inode = NULL;
199 clear_inode_flag(inode, FI_ATOMIC_FILE);
200
201 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
202 sbi->atomic_files--;
203 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
204 }
205 }
206
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)207 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
208 block_t new_addr, block_t *old_addr, bool recover)
209 {
210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 struct dnode_of_data dn;
212 struct node_info ni;
213 int err;
214
215 retry:
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
218 if (err) {
219 if (err == -ENOMEM) {
220 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
221 goto retry;
222 }
223 return err;
224 }
225
226 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
227 if (err) {
228 f2fs_put_dnode(&dn);
229 return err;
230 }
231
232 if (recover) {
233 /* dn.data_blkaddr is always valid */
234 if (!__is_valid_data_blkaddr(new_addr)) {
235 if (new_addr == NULL_ADDR)
236 dec_valid_block_count(sbi, inode, 1);
237 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
238 f2fs_update_data_blkaddr(&dn, new_addr);
239 } else {
240 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
241 new_addr, ni.version, true, true);
242 }
243 } else {
244 blkcnt_t count = 1;
245
246 *old_addr = dn.data_blkaddr;
247 f2fs_truncate_data_blocks_range(&dn, 1);
248 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
249 inc_valid_block_count(sbi, inode, &count);
250 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
251 ni.version, true, false);
252 }
253
254 f2fs_put_dnode(&dn);
255 return 0;
256 }
257
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)258 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
259 bool revoke)
260 {
261 struct revoke_entry *cur, *tmp;
262
263 list_for_each_entry_safe(cur, tmp, head, list) {
264 if (revoke)
265 __replace_atomic_write_block(inode, cur->index,
266 cur->old_addr, NULL, true);
267 list_del(&cur->list);
268 kmem_cache_free(revoke_entry_slab, cur);
269 }
270 }
271
__f2fs_commit_atomic_write(struct inode * inode)272 static int __f2fs_commit_atomic_write(struct inode *inode)
273 {
274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
275 struct f2fs_inode_info *fi = F2FS_I(inode);
276 struct inode *cow_inode = fi->cow_inode;
277 struct revoke_entry *new;
278 struct list_head revoke_list;
279 block_t blkaddr;
280 struct dnode_of_data dn;
281 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282 pgoff_t off = 0, blen, index;
283 int ret = 0, i;
284
285 INIT_LIST_HEAD(&revoke_list);
286
287 while (len) {
288 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
289
290 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
291 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
292 if (ret && ret != -ENOENT) {
293 goto out;
294 } else if (ret == -ENOENT) {
295 ret = 0;
296 if (dn.max_level == 0)
297 goto out;
298 goto next;
299 }
300
301 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
302 len);
303 index = off;
304 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
305 blkaddr = f2fs_data_blkaddr(&dn);
306
307 if (!__is_valid_data_blkaddr(blkaddr)) {
308 continue;
309 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
310 DATA_GENERIC_ENHANCE)) {
311 f2fs_put_dnode(&dn);
312 ret = -EFSCORRUPTED;
313 goto out;
314 }
315
316 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 true, NULL);
318
319 ret = __replace_atomic_write_block(inode, index, blkaddr,
320 &new->old_addr, false);
321 if (ret) {
322 f2fs_put_dnode(&dn);
323 kmem_cache_free(revoke_entry_slab, new);
324 goto out;
325 }
326
327 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 new->index = index;
329 list_add_tail(&new->list, &revoke_list);
330 }
331 f2fs_put_dnode(&dn);
332 next:
333 off += blen;
334 len -= blen;
335 }
336
337 out:
338 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
339
340 return ret;
341 }
342
f2fs_commit_atomic_write(struct inode * inode)343 int f2fs_commit_atomic_write(struct inode *inode)
344 {
345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
346 struct f2fs_inode_info *fi = F2FS_I(inode);
347 int err;
348
349 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
350 if (err)
351 return err;
352
353 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
354 f2fs_lock_op(sbi);
355
356 err = __f2fs_commit_atomic_write(inode);
357
358 f2fs_unlock_op(sbi);
359 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
360
361 return err;
362 }
363
364 /*
365 * This function balances dirty node and dentry pages.
366 * In addition, it controls garbage collection.
367 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)368 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
369 {
370 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
371 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
372 f2fs_stop_checkpoint(sbi, false);
373 }
374
375 /* balance_fs_bg is able to be pending */
376 if (need && excess_cached_nats(sbi))
377 f2fs_balance_fs_bg(sbi, false);
378
379 if (!f2fs_is_checkpoint_ready(sbi))
380 return;
381
382 /*
383 * We should do GC or end up with checkpoint, if there are so many dirty
384 * dir/node pages without enough free segments.
385 */
386 if (has_not_enough_free_secs(sbi, 0, 0)) {
387 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
388 sbi->gc_thread->f2fs_gc_task) {
389 DEFINE_WAIT(wait);
390
391 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
392 TASK_UNINTERRUPTIBLE);
393 wake_up(&sbi->gc_thread->gc_wait_queue_head);
394 io_schedule();
395 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
396 } else {
397 struct f2fs_gc_control gc_control = {
398 .victim_segno = NULL_SEGNO,
399 .init_gc_type = BG_GC,
400 .no_bg_gc = true,
401 .should_migrate_blocks = false,
402 .err_gc_skipped = false,
403 .nr_free_secs = 1 };
404 f2fs_down_write(&sbi->gc_lock);
405 f2fs_gc(sbi, &gc_control);
406 }
407 }
408 }
409
excess_dirty_threshold(struct f2fs_sb_info * sbi)410 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
411 {
412 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
413 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
414 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
415 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
416 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
417 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
418 unsigned int threshold = sbi->blocks_per_seg * factor *
419 DEFAULT_DIRTY_THRESHOLD;
420 unsigned int global_threshold = threshold * 3 / 2;
421
422 if (dents >= threshold || qdata >= threshold ||
423 nodes >= threshold || meta >= threshold ||
424 imeta >= threshold)
425 return true;
426 return dents + qdata + nodes + meta + imeta > global_threshold;
427 }
428
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)429 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
430 {
431 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
432 return;
433
434 /* try to shrink extent cache when there is no enough memory */
435 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
436 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
437
438 /* check the # of cached NAT entries */
439 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
440 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
441
442 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
443 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
444 else
445 f2fs_build_free_nids(sbi, false, false);
446
447 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
448 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
449 goto do_sync;
450
451 /* there is background inflight IO or foreground operation recently */
452 if (is_inflight_io(sbi, REQ_TIME) ||
453 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
454 return;
455
456 /* exceed periodical checkpoint timeout threshold */
457 if (f2fs_time_over(sbi, CP_TIME))
458 goto do_sync;
459
460 /* checkpoint is the only way to shrink partial cached entries */
461 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
462 f2fs_available_free_memory(sbi, INO_ENTRIES))
463 return;
464
465 do_sync:
466 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
467 struct blk_plug plug;
468
469 mutex_lock(&sbi->flush_lock);
470
471 blk_start_plug(&plug);
472 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
473 blk_finish_plug(&plug);
474
475 mutex_unlock(&sbi->flush_lock);
476 }
477 f2fs_sync_fs(sbi->sb, true);
478 stat_inc_bg_cp_count(sbi->stat_info);
479 }
480
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)481 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
482 struct block_device *bdev)
483 {
484 int ret = blkdev_issue_flush(bdev);
485
486 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
487 test_opt(sbi, FLUSH_MERGE), ret);
488 return ret;
489 }
490
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)491 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
492 {
493 int ret = 0;
494 int i;
495
496 if (!f2fs_is_multi_device(sbi))
497 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
498
499 for (i = 0; i < sbi->s_ndevs; i++) {
500 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
501 continue;
502 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
503 if (ret)
504 break;
505 }
506 return ret;
507 }
508
issue_flush_thread(void * data)509 static int issue_flush_thread(void *data)
510 {
511 struct f2fs_sb_info *sbi = data;
512 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
513 wait_queue_head_t *q = &fcc->flush_wait_queue;
514 repeat:
515 if (kthread_should_stop())
516 return 0;
517
518 if (!llist_empty(&fcc->issue_list)) {
519 struct flush_cmd *cmd, *next;
520 int ret;
521
522 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
523 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
524
525 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
526
527 ret = submit_flush_wait(sbi, cmd->ino);
528 atomic_inc(&fcc->issued_flush);
529
530 llist_for_each_entry_safe(cmd, next,
531 fcc->dispatch_list, llnode) {
532 cmd->ret = ret;
533 complete(&cmd->wait);
534 }
535 fcc->dispatch_list = NULL;
536 }
537
538 wait_event_interruptible(*q,
539 kthread_should_stop() || !llist_empty(&fcc->issue_list));
540 goto repeat;
541 }
542
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)543 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
546 struct flush_cmd cmd;
547 int ret;
548
549 if (test_opt(sbi, NOBARRIER))
550 return 0;
551
552 if (!test_opt(sbi, FLUSH_MERGE)) {
553 atomic_inc(&fcc->queued_flush);
554 ret = submit_flush_wait(sbi, ino);
555 atomic_dec(&fcc->queued_flush);
556 atomic_inc(&fcc->issued_flush);
557 return ret;
558 }
559
560 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
561 f2fs_is_multi_device(sbi)) {
562 ret = submit_flush_wait(sbi, ino);
563 atomic_dec(&fcc->queued_flush);
564
565 atomic_inc(&fcc->issued_flush);
566 return ret;
567 }
568
569 cmd.ino = ino;
570 init_completion(&cmd.wait);
571
572 llist_add(&cmd.llnode, &fcc->issue_list);
573
574 /*
575 * update issue_list before we wake up issue_flush thread, this
576 * smp_mb() pairs with another barrier in ___wait_event(), see
577 * more details in comments of waitqueue_active().
578 */
579 smp_mb();
580
581 if (waitqueue_active(&fcc->flush_wait_queue))
582 wake_up(&fcc->flush_wait_queue);
583
584 if (fcc->f2fs_issue_flush) {
585 wait_for_completion(&cmd.wait);
586 atomic_dec(&fcc->queued_flush);
587 } else {
588 struct llist_node *list;
589
590 list = llist_del_all(&fcc->issue_list);
591 if (!list) {
592 wait_for_completion(&cmd.wait);
593 atomic_dec(&fcc->queued_flush);
594 } else {
595 struct flush_cmd *tmp, *next;
596
597 ret = submit_flush_wait(sbi, ino);
598
599 llist_for_each_entry_safe(tmp, next, list, llnode) {
600 if (tmp == &cmd) {
601 cmd.ret = ret;
602 atomic_dec(&fcc->queued_flush);
603 continue;
604 }
605 tmp->ret = ret;
606 complete(&tmp->wait);
607 }
608 }
609 }
610
611 return cmd.ret;
612 }
613
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)614 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
615 {
616 dev_t dev = sbi->sb->s_bdev->bd_dev;
617 struct flush_cmd_control *fcc;
618 int err = 0;
619
620 if (SM_I(sbi)->fcc_info) {
621 fcc = SM_I(sbi)->fcc_info;
622 if (fcc->f2fs_issue_flush)
623 return err;
624 goto init_thread;
625 }
626
627 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
628 if (!fcc)
629 return -ENOMEM;
630 atomic_set(&fcc->issued_flush, 0);
631 atomic_set(&fcc->queued_flush, 0);
632 init_waitqueue_head(&fcc->flush_wait_queue);
633 init_llist_head(&fcc->issue_list);
634 SM_I(sbi)->fcc_info = fcc;
635 if (!test_opt(sbi, FLUSH_MERGE))
636 return err;
637
638 init_thread:
639 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
640 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
641 if (IS_ERR(fcc->f2fs_issue_flush)) {
642 err = PTR_ERR(fcc->f2fs_issue_flush);
643 kfree(fcc);
644 SM_I(sbi)->fcc_info = NULL;
645 return err;
646 }
647
648 return err;
649 }
650
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)651 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
652 {
653 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
654
655 if (fcc && fcc->f2fs_issue_flush) {
656 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
657
658 fcc->f2fs_issue_flush = NULL;
659 kthread_stop(flush_thread);
660 }
661 if (free) {
662 kfree(fcc);
663 SM_I(sbi)->fcc_info = NULL;
664 }
665 }
666
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)667 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
668 {
669 int ret = 0, i;
670
671 if (!f2fs_is_multi_device(sbi))
672 return 0;
673
674 if (test_opt(sbi, NOBARRIER))
675 return 0;
676
677 for (i = 1; i < sbi->s_ndevs; i++) {
678 int count = DEFAULT_RETRY_IO_COUNT;
679
680 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
681 continue;
682
683 do {
684 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
685 if (ret)
686 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
687 } while (ret && --count);
688
689 if (ret) {
690 f2fs_stop_checkpoint(sbi, false);
691 break;
692 }
693
694 spin_lock(&sbi->dev_lock);
695 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
696 spin_unlock(&sbi->dev_lock);
697 }
698
699 return ret;
700 }
701
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)702 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
703 enum dirty_type dirty_type)
704 {
705 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706
707 /* need not be added */
708 if (IS_CURSEG(sbi, segno))
709 return;
710
711 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
712 dirty_i->nr_dirty[dirty_type]++;
713
714 if (dirty_type == DIRTY) {
715 struct seg_entry *sentry = get_seg_entry(sbi, segno);
716 enum dirty_type t = sentry->type;
717
718 if (unlikely(t >= DIRTY)) {
719 f2fs_bug_on(sbi, 1);
720 return;
721 }
722 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
723 dirty_i->nr_dirty[t]++;
724
725 if (__is_large_section(sbi)) {
726 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
727 block_t valid_blocks =
728 get_valid_blocks(sbi, segno, true);
729
730 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
731 valid_blocks == BLKS_PER_SEC(sbi)));
732
733 if (!IS_CURSEC(sbi, secno))
734 set_bit(secno, dirty_i->dirty_secmap);
735 }
736 }
737 }
738
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)739 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
740 enum dirty_type dirty_type)
741 {
742 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
743 block_t valid_blocks;
744
745 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
746 dirty_i->nr_dirty[dirty_type]--;
747
748 if (dirty_type == DIRTY) {
749 struct seg_entry *sentry = get_seg_entry(sbi, segno);
750 enum dirty_type t = sentry->type;
751
752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
753 dirty_i->nr_dirty[t]--;
754
755 valid_blocks = get_valid_blocks(sbi, segno, true);
756 if (valid_blocks == 0) {
757 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
758 dirty_i->victim_secmap);
759 #ifdef CONFIG_F2FS_CHECK_FS
760 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
761 #endif
762 }
763 if (__is_large_section(sbi)) {
764 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
765
766 if (!valid_blocks ||
767 valid_blocks == BLKS_PER_SEC(sbi)) {
768 clear_bit(secno, dirty_i->dirty_secmap);
769 return;
770 }
771
772 if (!IS_CURSEC(sbi, secno))
773 set_bit(secno, dirty_i->dirty_secmap);
774 }
775 }
776 }
777
778 /*
779 * Should not occur error such as -ENOMEM.
780 * Adding dirty entry into seglist is not critical operation.
781 * If a given segment is one of current working segments, it won't be added.
782 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)783 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
784 {
785 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
786 unsigned short valid_blocks, ckpt_valid_blocks;
787 unsigned int usable_blocks;
788
789 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
790 return;
791
792 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
793 mutex_lock(&dirty_i->seglist_lock);
794
795 valid_blocks = get_valid_blocks(sbi, segno, false);
796 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
797
798 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
799 ckpt_valid_blocks == usable_blocks)) {
800 __locate_dirty_segment(sbi, segno, PRE);
801 __remove_dirty_segment(sbi, segno, DIRTY);
802 } else if (valid_blocks < usable_blocks) {
803 __locate_dirty_segment(sbi, segno, DIRTY);
804 } else {
805 /* Recovery routine with SSR needs this */
806 __remove_dirty_segment(sbi, segno, DIRTY);
807 }
808
809 mutex_unlock(&dirty_i->seglist_lock);
810 }
811
812 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)813 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
814 {
815 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
816 unsigned int segno;
817
818 mutex_lock(&dirty_i->seglist_lock);
819 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
820 if (get_valid_blocks(sbi, segno, false))
821 continue;
822 if (IS_CURSEG(sbi, segno))
823 continue;
824 __locate_dirty_segment(sbi, segno, PRE);
825 __remove_dirty_segment(sbi, segno, DIRTY);
826 }
827 mutex_unlock(&dirty_i->seglist_lock);
828 }
829
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)830 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
831 {
832 int ovp_hole_segs =
833 (overprovision_segments(sbi) - reserved_segments(sbi));
834 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
835 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
836 block_t holes[2] = {0, 0}; /* DATA and NODE */
837 block_t unusable;
838 struct seg_entry *se;
839 unsigned int segno;
840
841 mutex_lock(&dirty_i->seglist_lock);
842 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
843 se = get_seg_entry(sbi, segno);
844 if (IS_NODESEG(se->type))
845 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
846 se->valid_blocks;
847 else
848 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
849 se->valid_blocks;
850 }
851 mutex_unlock(&dirty_i->seglist_lock);
852
853 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
854 if (unusable > ovp_holes)
855 return unusable - ovp_holes;
856 return 0;
857 }
858
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)859 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
860 {
861 int ovp_hole_segs =
862 (overprovision_segments(sbi) - reserved_segments(sbi));
863 if (unusable > F2FS_OPTION(sbi).unusable_cap)
864 return -EAGAIN;
865 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
866 dirty_segments(sbi) > ovp_hole_segs)
867 return -EAGAIN;
868 return 0;
869 }
870
871 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
873 {
874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875 unsigned int segno = 0;
876
877 mutex_lock(&dirty_i->seglist_lock);
878 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
879 if (get_valid_blocks(sbi, segno, false))
880 continue;
881 if (get_ckpt_valid_blocks(sbi, segno, false))
882 continue;
883 mutex_unlock(&dirty_i->seglist_lock);
884 return segno;
885 }
886 mutex_unlock(&dirty_i->seglist_lock);
887 return NULL_SEGNO;
888 }
889
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
891 struct block_device *bdev, block_t lstart,
892 block_t start, block_t len)
893 {
894 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
895 struct list_head *pend_list;
896 struct discard_cmd *dc;
897
898 f2fs_bug_on(sbi, !len);
899
900 pend_list = &dcc->pend_list[plist_idx(len)];
901
902 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
903 INIT_LIST_HEAD(&dc->list);
904 dc->bdev = bdev;
905 dc->lstart = lstart;
906 dc->start = start;
907 dc->len = len;
908 dc->ref = 0;
909 dc->state = D_PREP;
910 dc->queued = 0;
911 dc->error = 0;
912 init_completion(&dc->wait);
913 list_add_tail(&dc->list, pend_list);
914 spin_lock_init(&dc->lock);
915 dc->bio_ref = 0;
916 atomic_inc(&dcc->discard_cmd_cnt);
917 dcc->undiscard_blks += len;
918
919 return dc;
920 }
921
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
923 struct block_device *bdev, block_t lstart,
924 block_t start, block_t len,
925 struct rb_node *parent, struct rb_node **p,
926 bool leftmost)
927 {
928 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
929 struct discard_cmd *dc;
930
931 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
932
933 rb_link_node(&dc->rb_node, parent, p);
934 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
935
936 return dc;
937 }
938
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)939 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
940 struct discard_cmd *dc)
941 {
942 if (dc->state == D_DONE)
943 atomic_sub(dc->queued, &dcc->queued_discard);
944
945 list_del(&dc->list);
946 rb_erase_cached(&dc->rb_node, &dcc->root);
947 dcc->undiscard_blks -= dc->len;
948
949 kmem_cache_free(discard_cmd_slab, dc);
950
951 atomic_dec(&dcc->discard_cmd_cnt);
952 }
953
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
955 struct discard_cmd *dc)
956 {
957 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
958 unsigned long flags;
959
960 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
961
962 spin_lock_irqsave(&dc->lock, flags);
963 if (dc->bio_ref) {
964 spin_unlock_irqrestore(&dc->lock, flags);
965 return;
966 }
967 spin_unlock_irqrestore(&dc->lock, flags);
968
969 f2fs_bug_on(sbi, dc->ref);
970
971 if (dc->error == -EOPNOTSUPP)
972 dc->error = 0;
973
974 if (dc->error)
975 printk_ratelimited(
976 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
977 KERN_INFO, sbi->sb->s_id,
978 dc->lstart, dc->start, dc->len, dc->error);
979 __detach_discard_cmd(dcc, dc);
980 }
981
f2fs_submit_discard_endio(struct bio * bio)982 static void f2fs_submit_discard_endio(struct bio *bio)
983 {
984 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
985 unsigned long flags;
986
987 spin_lock_irqsave(&dc->lock, flags);
988 if (!dc->error)
989 dc->error = blk_status_to_errno(bio->bi_status);
990 dc->bio_ref--;
991 if (!dc->bio_ref && dc->state == D_SUBMIT) {
992 dc->state = D_DONE;
993 complete_all(&dc->wait);
994 }
995 spin_unlock_irqrestore(&dc->lock, flags);
996 bio_put(bio);
997 }
998
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)999 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1000 block_t start, block_t end)
1001 {
1002 #ifdef CONFIG_F2FS_CHECK_FS
1003 struct seg_entry *sentry;
1004 unsigned int segno;
1005 block_t blk = start;
1006 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1007 unsigned long *map;
1008
1009 while (blk < end) {
1010 segno = GET_SEGNO(sbi, blk);
1011 sentry = get_seg_entry(sbi, segno);
1012 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1013
1014 if (end < START_BLOCK(sbi, segno + 1))
1015 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1016 else
1017 size = max_blocks;
1018 map = (unsigned long *)(sentry->cur_valid_map);
1019 offset = __find_rev_next_bit(map, size, offset);
1020 f2fs_bug_on(sbi, offset != size);
1021 blk = START_BLOCK(sbi, segno + 1);
1022 }
1023 #endif
1024 }
1025
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1026 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1027 struct discard_policy *dpolicy,
1028 int discard_type, unsigned int granularity)
1029 {
1030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1031
1032 /* common policy */
1033 dpolicy->type = discard_type;
1034 dpolicy->sync = true;
1035 dpolicy->ordered = false;
1036 dpolicy->granularity = granularity;
1037
1038 dpolicy->max_requests = dcc->max_discard_request;
1039 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1040 dpolicy->timeout = false;
1041
1042 if (discard_type == DPOLICY_BG) {
1043 dpolicy->min_interval = dcc->min_discard_issue_time;
1044 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1045 dpolicy->max_interval = dcc->max_discard_issue_time;
1046 dpolicy->io_aware = true;
1047 dpolicy->sync = false;
1048 dpolicy->ordered = true;
1049 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1050 dpolicy->granularity = 1;
1051 if (atomic_read(&dcc->discard_cmd_cnt))
1052 dpolicy->max_interval =
1053 dcc->min_discard_issue_time;
1054 }
1055 } else if (discard_type == DPOLICY_FORCE) {
1056 dpolicy->min_interval = dcc->min_discard_issue_time;
1057 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1058 dpolicy->max_interval = dcc->max_discard_issue_time;
1059 dpolicy->io_aware = false;
1060 } else if (discard_type == DPOLICY_FSTRIM) {
1061 dpolicy->io_aware = false;
1062 } else if (discard_type == DPOLICY_UMOUNT) {
1063 dpolicy->io_aware = false;
1064 /* we need to issue all to keep CP_TRIMMED_FLAG */
1065 dpolicy->granularity = 1;
1066 dpolicy->timeout = true;
1067 }
1068 }
1069
1070 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1071 struct block_device *bdev, block_t lstart,
1072 block_t start, block_t len);
1073 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1074 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1075 struct discard_policy *dpolicy,
1076 struct discard_cmd *dc,
1077 unsigned int *issued)
1078 {
1079 struct block_device *bdev = dc->bdev;
1080 unsigned int max_discard_blocks =
1081 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1084 &(dcc->fstrim_list) : &(dcc->wait_list);
1085 int flag = dpolicy->sync ? REQ_SYNC : 0;
1086 block_t lstart, start, len, total_len;
1087 int err = 0;
1088
1089 if (dc->state != D_PREP)
1090 return 0;
1091
1092 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1093 return 0;
1094
1095 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1096
1097 lstart = dc->lstart;
1098 start = dc->start;
1099 len = dc->len;
1100 total_len = len;
1101
1102 dc->len = 0;
1103
1104 while (total_len && *issued < dpolicy->max_requests && !err) {
1105 struct bio *bio = NULL;
1106 unsigned long flags;
1107 bool last = true;
1108
1109 if (len > max_discard_blocks) {
1110 len = max_discard_blocks;
1111 last = false;
1112 }
1113
1114 (*issued)++;
1115 if (*issued == dpolicy->max_requests)
1116 last = true;
1117
1118 dc->len += len;
1119
1120 if (time_to_inject(sbi, FAULT_DISCARD)) {
1121 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1122 err = -EIO;
1123 goto submit;
1124 }
1125 err = __blkdev_issue_discard(bdev,
1126 SECTOR_FROM_BLOCK(start),
1127 SECTOR_FROM_BLOCK(len),
1128 GFP_NOFS, &bio);
1129 submit:
1130 if (err) {
1131 spin_lock_irqsave(&dc->lock, flags);
1132 if (dc->state == D_PARTIAL)
1133 dc->state = D_SUBMIT;
1134 spin_unlock_irqrestore(&dc->lock, flags);
1135
1136 break;
1137 }
1138
1139 f2fs_bug_on(sbi, !bio);
1140
1141 /*
1142 * should keep before submission to avoid D_DONE
1143 * right away
1144 */
1145 spin_lock_irqsave(&dc->lock, flags);
1146 if (last)
1147 dc->state = D_SUBMIT;
1148 else
1149 dc->state = D_PARTIAL;
1150 dc->bio_ref++;
1151 spin_unlock_irqrestore(&dc->lock, flags);
1152
1153 atomic_inc(&dcc->queued_discard);
1154 dc->queued++;
1155 list_move_tail(&dc->list, wait_list);
1156
1157 /* sanity check on discard range */
1158 __check_sit_bitmap(sbi, lstart, lstart + len);
1159
1160 bio->bi_private = dc;
1161 bio->bi_end_io = f2fs_submit_discard_endio;
1162 bio->bi_opf |= flag;
1163 submit_bio(bio);
1164
1165 atomic_inc(&dcc->issued_discard);
1166
1167 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1168
1169 lstart += len;
1170 start += len;
1171 total_len -= len;
1172 len = total_len;
1173 }
1174
1175 if (!err && len) {
1176 dcc->undiscard_blks -= len;
1177 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1178 }
1179 return err;
1180 }
1181
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1182 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1183 struct block_device *bdev, block_t lstart,
1184 block_t start, block_t len,
1185 struct rb_node **insert_p,
1186 struct rb_node *insert_parent)
1187 {
1188 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1189 struct rb_node **p;
1190 struct rb_node *parent = NULL;
1191 bool leftmost = true;
1192
1193 if (insert_p && insert_parent) {
1194 parent = insert_parent;
1195 p = insert_p;
1196 goto do_insert;
1197 }
1198
1199 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1200 lstart, &leftmost);
1201 do_insert:
1202 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1203 p, leftmost);
1204 }
1205
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1206 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1207 struct discard_cmd *dc)
1208 {
1209 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1210 }
1211
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1212 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1213 struct discard_cmd *dc, block_t blkaddr)
1214 {
1215 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1216 struct discard_info di = dc->di;
1217 bool modified = false;
1218
1219 if (dc->state == D_DONE || dc->len == 1) {
1220 __remove_discard_cmd(sbi, dc);
1221 return;
1222 }
1223
1224 dcc->undiscard_blks -= di.len;
1225
1226 if (blkaddr > di.lstart) {
1227 dc->len = blkaddr - dc->lstart;
1228 dcc->undiscard_blks += dc->len;
1229 __relocate_discard_cmd(dcc, dc);
1230 modified = true;
1231 }
1232
1233 if (blkaddr < di.lstart + di.len - 1) {
1234 if (modified) {
1235 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1236 di.start + blkaddr + 1 - di.lstart,
1237 di.lstart + di.len - 1 - blkaddr,
1238 NULL, NULL);
1239 } else {
1240 dc->lstart++;
1241 dc->len--;
1242 dc->start++;
1243 dcc->undiscard_blks += dc->len;
1244 __relocate_discard_cmd(dcc, dc);
1245 }
1246 }
1247 }
1248
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1249 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1250 struct block_device *bdev, block_t lstart,
1251 block_t start, block_t len)
1252 {
1253 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1254 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1255 struct discard_cmd *dc;
1256 struct discard_info di = {0};
1257 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1258 unsigned int max_discard_blocks =
1259 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1260 block_t end = lstart + len;
1261
1262 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1263 NULL, lstart,
1264 (struct rb_entry **)&prev_dc,
1265 (struct rb_entry **)&next_dc,
1266 &insert_p, &insert_parent, true, NULL);
1267 if (dc)
1268 prev_dc = dc;
1269
1270 if (!prev_dc) {
1271 di.lstart = lstart;
1272 di.len = next_dc ? next_dc->lstart - lstart : len;
1273 di.len = min(di.len, len);
1274 di.start = start;
1275 }
1276
1277 while (1) {
1278 struct rb_node *node;
1279 bool merged = false;
1280 struct discard_cmd *tdc = NULL;
1281
1282 if (prev_dc) {
1283 di.lstart = prev_dc->lstart + prev_dc->len;
1284 if (di.lstart < lstart)
1285 di.lstart = lstart;
1286 if (di.lstart >= end)
1287 break;
1288
1289 if (!next_dc || next_dc->lstart > end)
1290 di.len = end - di.lstart;
1291 else
1292 di.len = next_dc->lstart - di.lstart;
1293 di.start = start + di.lstart - lstart;
1294 }
1295
1296 if (!di.len)
1297 goto next;
1298
1299 if (prev_dc && prev_dc->state == D_PREP &&
1300 prev_dc->bdev == bdev &&
1301 __is_discard_back_mergeable(&di, &prev_dc->di,
1302 max_discard_blocks)) {
1303 prev_dc->di.len += di.len;
1304 dcc->undiscard_blks += di.len;
1305 __relocate_discard_cmd(dcc, prev_dc);
1306 di = prev_dc->di;
1307 tdc = prev_dc;
1308 merged = true;
1309 }
1310
1311 if (next_dc && next_dc->state == D_PREP &&
1312 next_dc->bdev == bdev &&
1313 __is_discard_front_mergeable(&di, &next_dc->di,
1314 max_discard_blocks)) {
1315 next_dc->di.lstart = di.lstart;
1316 next_dc->di.len += di.len;
1317 next_dc->di.start = di.start;
1318 dcc->undiscard_blks += di.len;
1319 __relocate_discard_cmd(dcc, next_dc);
1320 if (tdc)
1321 __remove_discard_cmd(sbi, tdc);
1322 merged = true;
1323 }
1324
1325 if (!merged) {
1326 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1327 di.len, NULL, NULL);
1328 }
1329 next:
1330 prev_dc = next_dc;
1331 if (!prev_dc)
1332 break;
1333
1334 node = rb_next(&prev_dc->rb_node);
1335 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1336 }
1337 }
1338
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1340 struct block_device *bdev, block_t blkstart, block_t blklen)
1341 {
1342 block_t lblkstart = blkstart;
1343
1344 if (!f2fs_bdev_support_discard(bdev))
1345 return 0;
1346
1347 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1348
1349 if (f2fs_is_multi_device(sbi)) {
1350 int devi = f2fs_target_device_index(sbi, blkstart);
1351
1352 blkstart -= FDEV(devi).start_blk;
1353 }
1354 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1355 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1356 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1357 return 0;
1358 }
1359
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1360 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1361 struct discard_policy *dpolicy)
1362 {
1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1365 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1366 struct discard_cmd *dc;
1367 struct blk_plug plug;
1368 unsigned int pos = dcc->next_pos;
1369 unsigned int issued = 0;
1370 bool io_interrupted = false;
1371
1372 mutex_lock(&dcc->cmd_lock);
1373 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1374 NULL, pos,
1375 (struct rb_entry **)&prev_dc,
1376 (struct rb_entry **)&next_dc,
1377 &insert_p, &insert_parent, true, NULL);
1378 if (!dc)
1379 dc = next_dc;
1380
1381 blk_start_plug(&plug);
1382
1383 while (dc) {
1384 struct rb_node *node;
1385 int err = 0;
1386
1387 if (dc->state != D_PREP)
1388 goto next;
1389
1390 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1391 io_interrupted = true;
1392 break;
1393 }
1394
1395 dcc->next_pos = dc->lstart + dc->len;
1396 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1397
1398 if (issued >= dpolicy->max_requests)
1399 break;
1400 next:
1401 node = rb_next(&dc->rb_node);
1402 if (err)
1403 __remove_discard_cmd(sbi, dc);
1404 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405 }
1406
1407 blk_finish_plug(&plug);
1408
1409 if (!dc)
1410 dcc->next_pos = 0;
1411
1412 mutex_unlock(&dcc->cmd_lock);
1413
1414 if (!issued && io_interrupted)
1415 issued = -1;
1416
1417 return issued;
1418 }
1419 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1420 struct discard_policy *dpolicy);
1421
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1422 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1423 struct discard_policy *dpolicy)
1424 {
1425 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1426 struct list_head *pend_list;
1427 struct discard_cmd *dc, *tmp;
1428 struct blk_plug plug;
1429 int i, issued;
1430 bool io_interrupted = false;
1431
1432 if (dpolicy->timeout)
1433 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1434
1435 retry:
1436 issued = 0;
1437 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1438 if (dpolicy->timeout &&
1439 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1440 break;
1441
1442 if (i + 1 < dpolicy->granularity)
1443 break;
1444
1445 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1446 return __issue_discard_cmd_orderly(sbi, dpolicy);
1447
1448 pend_list = &dcc->pend_list[i];
1449
1450 mutex_lock(&dcc->cmd_lock);
1451 if (list_empty(pend_list))
1452 goto next;
1453 if (unlikely(dcc->rbtree_check))
1454 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1455 &dcc->root, false));
1456 blk_start_plug(&plug);
1457 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1458 f2fs_bug_on(sbi, dc->state != D_PREP);
1459
1460 if (dpolicy->timeout &&
1461 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1462 break;
1463
1464 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1465 !is_idle(sbi, DISCARD_TIME)) {
1466 io_interrupted = true;
1467 break;
1468 }
1469
1470 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1471
1472 if (issued >= dpolicy->max_requests)
1473 break;
1474 }
1475 blk_finish_plug(&plug);
1476 next:
1477 mutex_unlock(&dcc->cmd_lock);
1478
1479 if (issued >= dpolicy->max_requests || io_interrupted)
1480 break;
1481 }
1482
1483 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1484 __wait_all_discard_cmd(sbi, dpolicy);
1485 goto retry;
1486 }
1487
1488 if (!issued && io_interrupted)
1489 issued = -1;
1490
1491 return issued;
1492 }
1493
__drop_discard_cmd(struct f2fs_sb_info * sbi)1494 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1495 {
1496 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1497 struct list_head *pend_list;
1498 struct discard_cmd *dc, *tmp;
1499 int i;
1500 bool dropped = false;
1501
1502 mutex_lock(&dcc->cmd_lock);
1503 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1504 pend_list = &dcc->pend_list[i];
1505 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1506 f2fs_bug_on(sbi, dc->state != D_PREP);
1507 __remove_discard_cmd(sbi, dc);
1508 dropped = true;
1509 }
1510 }
1511 mutex_unlock(&dcc->cmd_lock);
1512
1513 return dropped;
1514 }
1515
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1516 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1517 {
1518 __drop_discard_cmd(sbi);
1519 }
1520
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1521 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1522 struct discard_cmd *dc)
1523 {
1524 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1525 unsigned int len = 0;
1526
1527 wait_for_completion_io(&dc->wait);
1528 mutex_lock(&dcc->cmd_lock);
1529 f2fs_bug_on(sbi, dc->state != D_DONE);
1530 dc->ref--;
1531 if (!dc->ref) {
1532 if (!dc->error)
1533 len = dc->len;
1534 __remove_discard_cmd(sbi, dc);
1535 }
1536 mutex_unlock(&dcc->cmd_lock);
1537
1538 return len;
1539 }
1540
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1541 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1542 struct discard_policy *dpolicy,
1543 block_t start, block_t end)
1544 {
1545 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1547 &(dcc->fstrim_list) : &(dcc->wait_list);
1548 struct discard_cmd *dc = NULL, *iter, *tmp;
1549 unsigned int trimmed = 0;
1550
1551 next:
1552 dc = NULL;
1553
1554 mutex_lock(&dcc->cmd_lock);
1555 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1556 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1557 continue;
1558 if (iter->len < dpolicy->granularity)
1559 continue;
1560 if (iter->state == D_DONE && !iter->ref) {
1561 wait_for_completion_io(&iter->wait);
1562 if (!iter->error)
1563 trimmed += iter->len;
1564 __remove_discard_cmd(sbi, iter);
1565 } else {
1566 iter->ref++;
1567 dc = iter;
1568 break;
1569 }
1570 }
1571 mutex_unlock(&dcc->cmd_lock);
1572
1573 if (dc) {
1574 trimmed += __wait_one_discard_bio(sbi, dc);
1575 goto next;
1576 }
1577
1578 return trimmed;
1579 }
1580
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1581 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1582 struct discard_policy *dpolicy)
1583 {
1584 struct discard_policy dp;
1585 unsigned int discard_blks;
1586
1587 if (dpolicy)
1588 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1589
1590 /* wait all */
1591 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1592 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1593 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1594 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1595
1596 return discard_blks;
1597 }
1598
1599 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1600 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1601 {
1602 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 struct discard_cmd *dc;
1604 bool need_wait = false;
1605
1606 mutex_lock(&dcc->cmd_lock);
1607 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1608 NULL, blkaddr);
1609 if (dc) {
1610 if (dc->state == D_PREP) {
1611 __punch_discard_cmd(sbi, dc, blkaddr);
1612 } else {
1613 dc->ref++;
1614 need_wait = true;
1615 }
1616 }
1617 mutex_unlock(&dcc->cmd_lock);
1618
1619 if (need_wait)
1620 __wait_one_discard_bio(sbi, dc);
1621 }
1622
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1623 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1624 {
1625 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1626
1627 if (dcc && dcc->f2fs_issue_discard) {
1628 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1629
1630 dcc->f2fs_issue_discard = NULL;
1631 kthread_stop(discard_thread);
1632 }
1633 }
1634
1635 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1636 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1637 {
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct discard_policy dpolicy;
1640 bool dropped;
1641
1642 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1643 dcc->discard_granularity);
1644 __issue_discard_cmd(sbi, &dpolicy);
1645 dropped = __drop_discard_cmd(sbi);
1646
1647 /* just to make sure there is no pending discard commands */
1648 __wait_all_discard_cmd(sbi, NULL);
1649
1650 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1651 return dropped;
1652 }
1653
issue_discard_thread(void * data)1654 static int issue_discard_thread(void *data)
1655 {
1656 struct f2fs_sb_info *sbi = data;
1657 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1658 wait_queue_head_t *q = &dcc->discard_wait_queue;
1659 struct discard_policy dpolicy;
1660 unsigned int wait_ms = dcc->min_discard_issue_time;
1661 int issued;
1662
1663 set_freezable();
1664
1665 do {
1666 if (sbi->gc_mode == GC_URGENT_HIGH ||
1667 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1668 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1669 else
1670 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1671 dcc->discard_granularity);
1672
1673 if (!atomic_read(&dcc->discard_cmd_cnt))
1674 wait_ms = dpolicy.max_interval;
1675
1676 wait_event_interruptible_timeout(*q,
1677 kthread_should_stop() || freezing(current) ||
1678 dcc->discard_wake,
1679 msecs_to_jiffies(wait_ms));
1680
1681 if (dcc->discard_wake)
1682 dcc->discard_wake = 0;
1683
1684 /* clean up pending candidates before going to sleep */
1685 if (atomic_read(&dcc->queued_discard))
1686 __wait_all_discard_cmd(sbi, NULL);
1687
1688 if (try_to_freeze())
1689 continue;
1690 if (f2fs_readonly(sbi->sb))
1691 continue;
1692 if (kthread_should_stop())
1693 return 0;
1694 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1695 wait_ms = dpolicy.max_interval;
1696 continue;
1697 }
1698 if (!atomic_read(&dcc->discard_cmd_cnt))
1699 continue;
1700
1701 sb_start_intwrite(sbi->sb);
1702
1703 issued = __issue_discard_cmd(sbi, &dpolicy);
1704 if (issued > 0) {
1705 __wait_all_discard_cmd(sbi, &dpolicy);
1706 wait_ms = dpolicy.min_interval;
1707 } else if (issued == -1) {
1708 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1709 if (!wait_ms)
1710 wait_ms = dpolicy.mid_interval;
1711 } else {
1712 wait_ms = dpolicy.max_interval;
1713 }
1714
1715 sb_end_intwrite(sbi->sb);
1716
1717 } while (!kthread_should_stop());
1718 return 0;
1719 }
1720
1721 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1722 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1723 struct block_device *bdev, block_t blkstart, block_t blklen)
1724 {
1725 sector_t sector, nr_sects;
1726 block_t lblkstart = blkstart;
1727 int devi = 0;
1728
1729 if (f2fs_is_multi_device(sbi)) {
1730 devi = f2fs_target_device_index(sbi, blkstart);
1731 if (blkstart < FDEV(devi).start_blk ||
1732 blkstart > FDEV(devi).end_blk) {
1733 f2fs_err(sbi, "Invalid block %x", blkstart);
1734 return -EIO;
1735 }
1736 blkstart -= FDEV(devi).start_blk;
1737 }
1738
1739 /* For sequential zones, reset the zone write pointer */
1740 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1741 sector = SECTOR_FROM_BLOCK(blkstart);
1742 nr_sects = SECTOR_FROM_BLOCK(blklen);
1743
1744 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1745 nr_sects != bdev_zone_sectors(bdev)) {
1746 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1747 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1748 blkstart, blklen);
1749 return -EIO;
1750 }
1751 trace_f2fs_issue_reset_zone(bdev, blkstart);
1752 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1753 sector, nr_sects, GFP_NOFS);
1754 }
1755
1756 /* For conventional zones, use regular discard if supported */
1757 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1758 }
1759 #endif
1760
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1761 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1762 struct block_device *bdev, block_t blkstart, block_t blklen)
1763 {
1764 #ifdef CONFIG_BLK_DEV_ZONED
1765 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1766 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1767 #endif
1768 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1769 }
1770
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1771 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1772 block_t blkstart, block_t blklen)
1773 {
1774 sector_t start = blkstart, len = 0;
1775 struct block_device *bdev;
1776 struct seg_entry *se;
1777 unsigned int offset;
1778 block_t i;
1779 int err = 0;
1780
1781 bdev = f2fs_target_device(sbi, blkstart, NULL);
1782
1783 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1784 if (i != start) {
1785 struct block_device *bdev2 =
1786 f2fs_target_device(sbi, i, NULL);
1787
1788 if (bdev2 != bdev) {
1789 err = __issue_discard_async(sbi, bdev,
1790 start, len);
1791 if (err)
1792 return err;
1793 bdev = bdev2;
1794 start = i;
1795 len = 0;
1796 }
1797 }
1798
1799 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1800 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1801
1802 if (f2fs_block_unit_discard(sbi) &&
1803 !f2fs_test_and_set_bit(offset, se->discard_map))
1804 sbi->discard_blks--;
1805 }
1806
1807 if (len)
1808 err = __issue_discard_async(sbi, bdev, start, len);
1809 return err;
1810 }
1811
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1812 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1813 bool check_only)
1814 {
1815 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1816 int max_blocks = sbi->blocks_per_seg;
1817 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1818 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1819 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1820 unsigned long *discard_map = (unsigned long *)se->discard_map;
1821 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1822 unsigned int start = 0, end = -1;
1823 bool force = (cpc->reason & CP_DISCARD);
1824 struct discard_entry *de = NULL;
1825 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1826 int i;
1827
1828 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1829 !f2fs_block_unit_discard(sbi))
1830 return false;
1831
1832 if (!force) {
1833 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1834 SM_I(sbi)->dcc_info->nr_discards >=
1835 SM_I(sbi)->dcc_info->max_discards)
1836 return false;
1837 }
1838
1839 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1840 for (i = 0; i < entries; i++)
1841 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1842 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1843
1844 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1845 SM_I(sbi)->dcc_info->max_discards) {
1846 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1847 if (start >= max_blocks)
1848 break;
1849
1850 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1851 if (force && start && end != max_blocks
1852 && (end - start) < cpc->trim_minlen)
1853 continue;
1854
1855 if (check_only)
1856 return true;
1857
1858 if (!de) {
1859 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1860 GFP_F2FS_ZERO, true, NULL);
1861 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1862 list_add_tail(&de->list, head);
1863 }
1864
1865 for (i = start; i < end; i++)
1866 __set_bit_le(i, (void *)de->discard_map);
1867
1868 SM_I(sbi)->dcc_info->nr_discards += end - start;
1869 }
1870 return false;
1871 }
1872
release_discard_addr(struct discard_entry * entry)1873 static void release_discard_addr(struct discard_entry *entry)
1874 {
1875 list_del(&entry->list);
1876 kmem_cache_free(discard_entry_slab, entry);
1877 }
1878
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1879 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1880 {
1881 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1882 struct discard_entry *entry, *this;
1883
1884 /* drop caches */
1885 list_for_each_entry_safe(entry, this, head, list)
1886 release_discard_addr(entry);
1887 }
1888
1889 /*
1890 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1891 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1892 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1893 {
1894 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1895 unsigned int segno;
1896
1897 mutex_lock(&dirty_i->seglist_lock);
1898 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1899 __set_test_and_free(sbi, segno, false);
1900 mutex_unlock(&dirty_i->seglist_lock);
1901 }
1902
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1903 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1904 struct cp_control *cpc)
1905 {
1906 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907 struct list_head *head = &dcc->entry_list;
1908 struct discard_entry *entry, *this;
1909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1910 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1911 unsigned int start = 0, end = -1;
1912 unsigned int secno, start_segno;
1913 bool force = (cpc->reason & CP_DISCARD);
1914 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1915 DISCARD_UNIT_SECTION;
1916
1917 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1918 section_alignment = true;
1919
1920 mutex_lock(&dirty_i->seglist_lock);
1921
1922 while (1) {
1923 int i;
1924
1925 if (section_alignment && end != -1)
1926 end--;
1927 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1928 if (start >= MAIN_SEGS(sbi))
1929 break;
1930 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1931 start + 1);
1932
1933 if (section_alignment) {
1934 start = rounddown(start, sbi->segs_per_sec);
1935 end = roundup(end, sbi->segs_per_sec);
1936 }
1937
1938 for (i = start; i < end; i++) {
1939 if (test_and_clear_bit(i, prefree_map))
1940 dirty_i->nr_dirty[PRE]--;
1941 }
1942
1943 if (!f2fs_realtime_discard_enable(sbi))
1944 continue;
1945
1946 if (force && start >= cpc->trim_start &&
1947 (end - 1) <= cpc->trim_end)
1948 continue;
1949
1950 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1951 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1952 (end - start) << sbi->log_blocks_per_seg);
1953 continue;
1954 }
1955 next:
1956 secno = GET_SEC_FROM_SEG(sbi, start);
1957 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1958 if (!IS_CURSEC(sbi, secno) &&
1959 !get_valid_blocks(sbi, start, true))
1960 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1961 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1962
1963 start = start_segno + sbi->segs_per_sec;
1964 if (start < end)
1965 goto next;
1966 else
1967 end = start - 1;
1968 }
1969 mutex_unlock(&dirty_i->seglist_lock);
1970
1971 if (!f2fs_block_unit_discard(sbi))
1972 goto wakeup;
1973
1974 /* send small discards */
1975 list_for_each_entry_safe(entry, this, head, list) {
1976 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1977 bool is_valid = test_bit_le(0, entry->discard_map);
1978
1979 find_next:
1980 if (is_valid) {
1981 next_pos = find_next_zero_bit_le(entry->discard_map,
1982 sbi->blocks_per_seg, cur_pos);
1983 len = next_pos - cur_pos;
1984
1985 if (f2fs_sb_has_blkzoned(sbi) ||
1986 (force && len < cpc->trim_minlen))
1987 goto skip;
1988
1989 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1990 len);
1991 total_len += len;
1992 } else {
1993 next_pos = find_next_bit_le(entry->discard_map,
1994 sbi->blocks_per_seg, cur_pos);
1995 }
1996 skip:
1997 cur_pos = next_pos;
1998 is_valid = !is_valid;
1999
2000 if (cur_pos < sbi->blocks_per_seg)
2001 goto find_next;
2002
2003 release_discard_addr(entry);
2004 dcc->nr_discards -= total_len;
2005 }
2006
2007 wakeup:
2008 wake_up_discard_thread(sbi, false);
2009 }
2010
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2011 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2012 {
2013 dev_t dev = sbi->sb->s_bdev->bd_dev;
2014 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2015 int err = 0;
2016
2017 if (!f2fs_realtime_discard_enable(sbi))
2018 return 0;
2019
2020 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2021 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2022 if (IS_ERR(dcc->f2fs_issue_discard))
2023 err = PTR_ERR(dcc->f2fs_issue_discard);
2024
2025 return err;
2026 }
2027
create_discard_cmd_control(struct f2fs_sb_info * sbi)2028 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2029 {
2030 struct discard_cmd_control *dcc;
2031 int err = 0, i;
2032
2033 if (SM_I(sbi)->dcc_info) {
2034 dcc = SM_I(sbi)->dcc_info;
2035 goto init_thread;
2036 }
2037
2038 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2039 if (!dcc)
2040 return -ENOMEM;
2041
2042 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2043 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2044 dcc->discard_granularity = sbi->blocks_per_seg;
2045 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2046 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2047
2048 INIT_LIST_HEAD(&dcc->entry_list);
2049 for (i = 0; i < MAX_PLIST_NUM; i++)
2050 INIT_LIST_HEAD(&dcc->pend_list[i]);
2051 INIT_LIST_HEAD(&dcc->wait_list);
2052 INIT_LIST_HEAD(&dcc->fstrim_list);
2053 mutex_init(&dcc->cmd_lock);
2054 atomic_set(&dcc->issued_discard, 0);
2055 atomic_set(&dcc->queued_discard, 0);
2056 atomic_set(&dcc->discard_cmd_cnt, 0);
2057 dcc->nr_discards = 0;
2058 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2059 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2060 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2061 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2062 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2063 dcc->undiscard_blks = 0;
2064 dcc->next_pos = 0;
2065 dcc->root = RB_ROOT_CACHED;
2066 dcc->rbtree_check = false;
2067
2068 init_waitqueue_head(&dcc->discard_wait_queue);
2069 SM_I(sbi)->dcc_info = dcc;
2070 init_thread:
2071 err = f2fs_start_discard_thread(sbi);
2072 if (err) {
2073 kfree(dcc);
2074 SM_I(sbi)->dcc_info = NULL;
2075 }
2076
2077 return err;
2078 }
2079
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2081 {
2082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2083
2084 if (!dcc)
2085 return;
2086
2087 f2fs_stop_discard_thread(sbi);
2088
2089 /*
2090 * Recovery can cache discard commands, so in error path of
2091 * fill_super(), it needs to give a chance to handle them.
2092 */
2093 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2094 f2fs_issue_discard_timeout(sbi);
2095
2096 kfree(dcc);
2097 SM_I(sbi)->dcc_info = NULL;
2098 }
2099
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2101 {
2102 struct sit_info *sit_i = SIT_I(sbi);
2103
2104 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2105 sit_i->dirty_sentries++;
2106 return false;
2107 }
2108
2109 return true;
2110 }
2111
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2113 unsigned int segno, int modified)
2114 {
2115 struct seg_entry *se = get_seg_entry(sbi, segno);
2116
2117 se->type = type;
2118 if (modified)
2119 __mark_sit_entry_dirty(sbi, segno);
2120 }
2121
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2122 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2123 block_t blkaddr)
2124 {
2125 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2126
2127 if (segno == NULL_SEGNO)
2128 return 0;
2129 return get_seg_entry(sbi, segno)->mtime;
2130 }
2131
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2132 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2133 unsigned long long old_mtime)
2134 {
2135 struct seg_entry *se;
2136 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2137 unsigned long long ctime = get_mtime(sbi, false);
2138 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2139
2140 if (segno == NULL_SEGNO)
2141 return;
2142
2143 se = get_seg_entry(sbi, segno);
2144
2145 if (!se->mtime)
2146 se->mtime = mtime;
2147 else
2148 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2149 se->valid_blocks + 1);
2150
2151 if (ctime > SIT_I(sbi)->max_mtime)
2152 SIT_I(sbi)->max_mtime = ctime;
2153 }
2154
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2155 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2156 {
2157 struct seg_entry *se;
2158 unsigned int segno, offset;
2159 long int new_vblocks;
2160 bool exist;
2161 #ifdef CONFIG_F2FS_CHECK_FS
2162 bool mir_exist;
2163 #endif
2164
2165 segno = GET_SEGNO(sbi, blkaddr);
2166
2167 se = get_seg_entry(sbi, segno);
2168 new_vblocks = se->valid_blocks + del;
2169 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2170
2171 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2172 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2173
2174 se->valid_blocks = new_vblocks;
2175
2176 /* Update valid block bitmap */
2177 if (del > 0) {
2178 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180 mir_exist = f2fs_test_and_set_bit(offset,
2181 se->cur_valid_map_mir);
2182 if (unlikely(exist != mir_exist)) {
2183 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2184 blkaddr, exist);
2185 f2fs_bug_on(sbi, 1);
2186 }
2187 #endif
2188 if (unlikely(exist)) {
2189 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2190 blkaddr);
2191 f2fs_bug_on(sbi, 1);
2192 se->valid_blocks--;
2193 del = 0;
2194 }
2195
2196 if (f2fs_block_unit_discard(sbi) &&
2197 !f2fs_test_and_set_bit(offset, se->discard_map))
2198 sbi->discard_blks--;
2199
2200 /*
2201 * SSR should never reuse block which is checkpointed
2202 * or newly invalidated.
2203 */
2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206 se->ckpt_valid_blocks++;
2207 }
2208 } else {
2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211 mir_exist = f2fs_test_and_clear_bit(offset,
2212 se->cur_valid_map_mir);
2213 if (unlikely(exist != mir_exist)) {
2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215 blkaddr, exist);
2216 f2fs_bug_on(sbi, 1);
2217 }
2218 #endif
2219 if (unlikely(!exist)) {
2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221 blkaddr);
2222 f2fs_bug_on(sbi, 1);
2223 se->valid_blocks++;
2224 del = 0;
2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226 /*
2227 * If checkpoints are off, we must not reuse data that
2228 * was used in the previous checkpoint. If it was used
2229 * before, we must track that to know how much space we
2230 * really have.
2231 */
2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233 spin_lock(&sbi->stat_lock);
2234 sbi->unusable_block_count++;
2235 spin_unlock(&sbi->stat_lock);
2236 }
2237 }
2238
2239 if (f2fs_block_unit_discard(sbi) &&
2240 f2fs_test_and_clear_bit(offset, se->discard_map))
2241 sbi->discard_blks++;
2242 }
2243 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2244 se->ckpt_valid_blocks += del;
2245
2246 __mark_sit_entry_dirty(sbi, segno);
2247
2248 /* update total number of valid blocks to be written in ckpt area */
2249 SIT_I(sbi)->written_valid_blocks += del;
2250
2251 if (__is_large_section(sbi))
2252 get_sec_entry(sbi, segno)->valid_blocks += del;
2253 }
2254
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2255 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2256 {
2257 unsigned int segno = GET_SEGNO(sbi, addr);
2258 struct sit_info *sit_i = SIT_I(sbi);
2259
2260 f2fs_bug_on(sbi, addr == NULL_ADDR);
2261 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2262 return;
2263
2264 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2265 f2fs_invalidate_compress_page(sbi, addr);
2266
2267 /* add it into sit main buffer */
2268 down_write(&sit_i->sentry_lock);
2269
2270 update_segment_mtime(sbi, addr, 0);
2271 update_sit_entry(sbi, addr, -1);
2272
2273 /* add it into dirty seglist */
2274 locate_dirty_segment(sbi, segno);
2275
2276 up_write(&sit_i->sentry_lock);
2277 }
2278
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2279 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2280 {
2281 struct sit_info *sit_i = SIT_I(sbi);
2282 unsigned int segno, offset;
2283 struct seg_entry *se;
2284 bool is_cp = false;
2285
2286 if (!__is_valid_data_blkaddr(blkaddr))
2287 return true;
2288
2289 down_read(&sit_i->sentry_lock);
2290
2291 segno = GET_SEGNO(sbi, blkaddr);
2292 se = get_seg_entry(sbi, segno);
2293 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2294
2295 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2296 is_cp = true;
2297
2298 up_read(&sit_i->sentry_lock);
2299
2300 return is_cp;
2301 }
2302
2303 /*
2304 * This function should be resided under the curseg_mutex lock
2305 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2306 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2307 struct f2fs_summary *sum)
2308 {
2309 struct curseg_info *curseg = CURSEG_I(sbi, type);
2310 void *addr = curseg->sum_blk;
2311
2312 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2313 memcpy(addr, sum, sizeof(struct f2fs_summary));
2314 }
2315
2316 /*
2317 * Calculate the number of current summary pages for writing
2318 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2319 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2320 {
2321 int valid_sum_count = 0;
2322 int i, sum_in_page;
2323
2324 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2325 if (sbi->ckpt->alloc_type[i] == SSR)
2326 valid_sum_count += sbi->blocks_per_seg;
2327 else {
2328 if (for_ra)
2329 valid_sum_count += le16_to_cpu(
2330 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2331 else
2332 valid_sum_count += curseg_blkoff(sbi, i);
2333 }
2334 }
2335
2336 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2337 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2338 if (valid_sum_count <= sum_in_page)
2339 return 1;
2340 else if ((valid_sum_count - sum_in_page) <=
2341 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2342 return 2;
2343 return 3;
2344 }
2345
2346 /*
2347 * Caller should put this summary page
2348 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2349 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2350 {
2351 if (unlikely(f2fs_cp_error(sbi)))
2352 return ERR_PTR(-EIO);
2353 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2354 }
2355
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2356 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2357 void *src, block_t blk_addr)
2358 {
2359 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2360
2361 memcpy(page_address(page), src, PAGE_SIZE);
2362 set_page_dirty(page);
2363 f2fs_put_page(page, 1);
2364 }
2365
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2366 static void write_sum_page(struct f2fs_sb_info *sbi,
2367 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2368 {
2369 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2370 }
2371
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2372 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2373 int type, block_t blk_addr)
2374 {
2375 struct curseg_info *curseg = CURSEG_I(sbi, type);
2376 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2377 struct f2fs_summary_block *src = curseg->sum_blk;
2378 struct f2fs_summary_block *dst;
2379
2380 dst = (struct f2fs_summary_block *)page_address(page);
2381 memset(dst, 0, PAGE_SIZE);
2382
2383 mutex_lock(&curseg->curseg_mutex);
2384
2385 down_read(&curseg->journal_rwsem);
2386 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2387 up_read(&curseg->journal_rwsem);
2388
2389 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2390 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2391
2392 mutex_unlock(&curseg->curseg_mutex);
2393
2394 set_page_dirty(page);
2395 f2fs_put_page(page, 1);
2396 }
2397
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2398 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2399 struct curseg_info *curseg, int type)
2400 {
2401 unsigned int segno = curseg->segno + 1;
2402 struct free_segmap_info *free_i = FREE_I(sbi);
2403
2404 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2405 return !test_bit(segno, free_i->free_segmap);
2406 return 0;
2407 }
2408
2409 /*
2410 * Find a new segment from the free segments bitmap to right order
2411 * This function should be returned with success, otherwise BUG
2412 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2413 static void get_new_segment(struct f2fs_sb_info *sbi,
2414 unsigned int *newseg, bool new_sec, int dir)
2415 {
2416 struct free_segmap_info *free_i = FREE_I(sbi);
2417 unsigned int segno, secno, zoneno;
2418 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2419 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2420 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2421 unsigned int left_start = hint;
2422 bool init = true;
2423 int go_left = 0;
2424 int i;
2425
2426 spin_lock(&free_i->segmap_lock);
2427
2428 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2429 segno = find_next_zero_bit(free_i->free_segmap,
2430 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2431 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2432 goto got_it;
2433 }
2434 find_other_zone:
2435 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2436 if (secno >= MAIN_SECS(sbi)) {
2437 if (dir == ALLOC_RIGHT) {
2438 secno = find_first_zero_bit(free_i->free_secmap,
2439 MAIN_SECS(sbi));
2440 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2441 } else {
2442 go_left = 1;
2443 left_start = hint - 1;
2444 }
2445 }
2446 if (go_left == 0)
2447 goto skip_left;
2448
2449 while (test_bit(left_start, free_i->free_secmap)) {
2450 if (left_start > 0) {
2451 left_start--;
2452 continue;
2453 }
2454 left_start = find_first_zero_bit(free_i->free_secmap,
2455 MAIN_SECS(sbi));
2456 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2457 break;
2458 }
2459 secno = left_start;
2460 skip_left:
2461 segno = GET_SEG_FROM_SEC(sbi, secno);
2462 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2463
2464 /* give up on finding another zone */
2465 if (!init)
2466 goto got_it;
2467 if (sbi->secs_per_zone == 1)
2468 goto got_it;
2469 if (zoneno == old_zoneno)
2470 goto got_it;
2471 if (dir == ALLOC_LEFT) {
2472 if (!go_left && zoneno + 1 >= total_zones)
2473 goto got_it;
2474 if (go_left && zoneno == 0)
2475 goto got_it;
2476 }
2477 for (i = 0; i < NR_CURSEG_TYPE; i++)
2478 if (CURSEG_I(sbi, i)->zone == zoneno)
2479 break;
2480
2481 if (i < NR_CURSEG_TYPE) {
2482 /* zone is in user, try another */
2483 if (go_left)
2484 hint = zoneno * sbi->secs_per_zone - 1;
2485 else if (zoneno + 1 >= total_zones)
2486 hint = 0;
2487 else
2488 hint = (zoneno + 1) * sbi->secs_per_zone;
2489 init = false;
2490 goto find_other_zone;
2491 }
2492 got_it:
2493 /* set it as dirty segment in free segmap */
2494 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2495 __set_inuse(sbi, segno);
2496 *newseg = segno;
2497 spin_unlock(&free_i->segmap_lock);
2498 }
2499
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2500 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2501 {
2502 struct curseg_info *curseg = CURSEG_I(sbi, type);
2503 struct summary_footer *sum_footer;
2504 unsigned short seg_type = curseg->seg_type;
2505
2506 curseg->inited = true;
2507 curseg->segno = curseg->next_segno;
2508 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2509 curseg->next_blkoff = 0;
2510 curseg->next_segno = NULL_SEGNO;
2511
2512 sum_footer = &(curseg->sum_blk->footer);
2513 memset(sum_footer, 0, sizeof(struct summary_footer));
2514
2515 sanity_check_seg_type(sbi, seg_type);
2516
2517 if (IS_DATASEG(seg_type))
2518 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2519 if (IS_NODESEG(seg_type))
2520 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2521 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2522 }
2523
__get_next_segno(struct f2fs_sb_info * sbi,int type)2524 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2525 {
2526 struct curseg_info *curseg = CURSEG_I(sbi, type);
2527 unsigned short seg_type = curseg->seg_type;
2528
2529 sanity_check_seg_type(sbi, seg_type);
2530 if (f2fs_need_rand_seg(sbi))
2531 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2532
2533 /* if segs_per_sec is large than 1, we need to keep original policy. */
2534 if (__is_large_section(sbi))
2535 return curseg->segno;
2536
2537 /* inmem log may not locate on any segment after mount */
2538 if (!curseg->inited)
2539 return 0;
2540
2541 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2542 return 0;
2543
2544 if (test_opt(sbi, NOHEAP) &&
2545 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2546 return 0;
2547
2548 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2549 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2550
2551 /* find segments from 0 to reuse freed segments */
2552 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2553 return 0;
2554
2555 return curseg->segno;
2556 }
2557
2558 /*
2559 * Allocate a current working segment.
2560 * This function always allocates a free segment in LFS manner.
2561 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2562 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2563 {
2564 struct curseg_info *curseg = CURSEG_I(sbi, type);
2565 unsigned short seg_type = curseg->seg_type;
2566 unsigned int segno = curseg->segno;
2567 int dir = ALLOC_LEFT;
2568
2569 if (curseg->inited)
2570 write_sum_page(sbi, curseg->sum_blk,
2571 GET_SUM_BLOCK(sbi, segno));
2572 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2573 dir = ALLOC_RIGHT;
2574
2575 if (test_opt(sbi, NOHEAP))
2576 dir = ALLOC_RIGHT;
2577
2578 segno = __get_next_segno(sbi, type);
2579 get_new_segment(sbi, &segno, new_sec, dir);
2580 curseg->next_segno = segno;
2581 reset_curseg(sbi, type, 1);
2582 curseg->alloc_type = LFS;
2583 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2584 curseg->fragment_remained_chunk =
2585 prandom_u32() % sbi->max_fragment_chunk + 1;
2586 }
2587
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2588 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2589 int segno, block_t start)
2590 {
2591 struct seg_entry *se = get_seg_entry(sbi, segno);
2592 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2593 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2594 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2595 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2596 int i;
2597
2598 for (i = 0; i < entries; i++)
2599 target_map[i] = ckpt_map[i] | cur_map[i];
2600
2601 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2602 }
2603
2604 /*
2605 * If a segment is written by LFS manner, next block offset is just obtained
2606 * by increasing the current block offset. However, if a segment is written by
2607 * SSR manner, next block offset obtained by calling __next_free_blkoff
2608 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2609 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2610 struct curseg_info *seg)
2611 {
2612 if (seg->alloc_type == SSR) {
2613 seg->next_blkoff =
2614 __next_free_blkoff(sbi, seg->segno,
2615 seg->next_blkoff + 1);
2616 } else {
2617 seg->next_blkoff++;
2618 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2619 /* To allocate block chunks in different sizes, use random number */
2620 if (--seg->fragment_remained_chunk <= 0) {
2621 seg->fragment_remained_chunk =
2622 prandom_u32() % sbi->max_fragment_chunk + 1;
2623 seg->next_blkoff +=
2624 prandom_u32() % sbi->max_fragment_hole + 1;
2625 }
2626 }
2627 }
2628 }
2629
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2630 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2631 {
2632 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2633 }
2634
2635 /*
2636 * This function always allocates a used segment(from dirty seglist) by SSR
2637 * manner, so it should recover the existing segment information of valid blocks
2638 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2639 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2640 {
2641 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643 unsigned int new_segno = curseg->next_segno;
2644 struct f2fs_summary_block *sum_node;
2645 struct page *sum_page;
2646
2647 if (flush)
2648 write_sum_page(sbi, curseg->sum_blk,
2649 GET_SUM_BLOCK(sbi, curseg->segno));
2650
2651 __set_test_and_inuse(sbi, new_segno);
2652
2653 mutex_lock(&dirty_i->seglist_lock);
2654 __remove_dirty_segment(sbi, new_segno, PRE);
2655 __remove_dirty_segment(sbi, new_segno, DIRTY);
2656 mutex_unlock(&dirty_i->seglist_lock);
2657
2658 reset_curseg(sbi, type, 1);
2659 curseg->alloc_type = SSR;
2660 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2661
2662 sum_page = f2fs_get_sum_page(sbi, new_segno);
2663 if (IS_ERR(sum_page)) {
2664 /* GC won't be able to use stale summary pages by cp_error */
2665 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2666 return;
2667 }
2668 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2669 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2670 f2fs_put_page(sum_page, 1);
2671 }
2672
2673 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2674 int alloc_mode, unsigned long long age);
2675
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2676 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2677 int target_type, int alloc_mode,
2678 unsigned long long age)
2679 {
2680 struct curseg_info *curseg = CURSEG_I(sbi, type);
2681
2682 curseg->seg_type = target_type;
2683
2684 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2685 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2686
2687 curseg->seg_type = se->type;
2688 change_curseg(sbi, type, true);
2689 } else {
2690 /* allocate cold segment by default */
2691 curseg->seg_type = CURSEG_COLD_DATA;
2692 new_curseg(sbi, type, true);
2693 }
2694 stat_inc_seg_type(sbi, curseg);
2695 }
2696
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2697 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2698 {
2699 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2700
2701 if (!sbi->am.atgc_enabled)
2702 return;
2703
2704 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2705
2706 mutex_lock(&curseg->curseg_mutex);
2707 down_write(&SIT_I(sbi)->sentry_lock);
2708
2709 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2710
2711 up_write(&SIT_I(sbi)->sentry_lock);
2712 mutex_unlock(&curseg->curseg_mutex);
2713
2714 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2715
2716 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2717 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2718 {
2719 __f2fs_init_atgc_curseg(sbi);
2720 }
2721
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2722 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2723 {
2724 struct curseg_info *curseg = CURSEG_I(sbi, type);
2725
2726 mutex_lock(&curseg->curseg_mutex);
2727 if (!curseg->inited)
2728 goto out;
2729
2730 if (get_valid_blocks(sbi, curseg->segno, false)) {
2731 write_sum_page(sbi, curseg->sum_blk,
2732 GET_SUM_BLOCK(sbi, curseg->segno));
2733 } else {
2734 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2735 __set_test_and_free(sbi, curseg->segno, true);
2736 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2737 }
2738 out:
2739 mutex_unlock(&curseg->curseg_mutex);
2740 }
2741
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2742 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2743 {
2744 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2745
2746 if (sbi->am.atgc_enabled)
2747 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2748 }
2749
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2750 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2751 {
2752 struct curseg_info *curseg = CURSEG_I(sbi, type);
2753
2754 mutex_lock(&curseg->curseg_mutex);
2755 if (!curseg->inited)
2756 goto out;
2757 if (get_valid_blocks(sbi, curseg->segno, false))
2758 goto out;
2759
2760 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2761 __set_test_and_inuse(sbi, curseg->segno);
2762 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2763 out:
2764 mutex_unlock(&curseg->curseg_mutex);
2765 }
2766
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2767 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2768 {
2769 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2770
2771 if (sbi->am.atgc_enabled)
2772 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2773 }
2774
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2775 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2776 int alloc_mode, unsigned long long age)
2777 {
2778 struct curseg_info *curseg = CURSEG_I(sbi, type);
2779 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2780 unsigned segno = NULL_SEGNO;
2781 unsigned short seg_type = curseg->seg_type;
2782 int i, cnt;
2783 bool reversed = false;
2784
2785 sanity_check_seg_type(sbi, seg_type);
2786
2787 /* f2fs_need_SSR() already forces to do this */
2788 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2789 curseg->next_segno = segno;
2790 return 1;
2791 }
2792
2793 /* For node segments, let's do SSR more intensively */
2794 if (IS_NODESEG(seg_type)) {
2795 if (seg_type >= CURSEG_WARM_NODE) {
2796 reversed = true;
2797 i = CURSEG_COLD_NODE;
2798 } else {
2799 i = CURSEG_HOT_NODE;
2800 }
2801 cnt = NR_CURSEG_NODE_TYPE;
2802 } else {
2803 if (seg_type >= CURSEG_WARM_DATA) {
2804 reversed = true;
2805 i = CURSEG_COLD_DATA;
2806 } else {
2807 i = CURSEG_HOT_DATA;
2808 }
2809 cnt = NR_CURSEG_DATA_TYPE;
2810 }
2811
2812 for (; cnt-- > 0; reversed ? i-- : i++) {
2813 if (i == seg_type)
2814 continue;
2815 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2816 curseg->next_segno = segno;
2817 return 1;
2818 }
2819 }
2820
2821 /* find valid_blocks=0 in dirty list */
2822 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2823 segno = get_free_segment(sbi);
2824 if (segno != NULL_SEGNO) {
2825 curseg->next_segno = segno;
2826 return 1;
2827 }
2828 }
2829 return 0;
2830 }
2831
2832 /*
2833 * flush out current segment and replace it with new segment
2834 * This function should be returned with success, otherwise BUG
2835 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2836 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2837 int type, bool force)
2838 {
2839 struct curseg_info *curseg = CURSEG_I(sbi, type);
2840
2841 if (force)
2842 new_curseg(sbi, type, true);
2843 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2844 curseg->seg_type == CURSEG_WARM_NODE)
2845 new_curseg(sbi, type, false);
2846 else if (curseg->alloc_type == LFS &&
2847 is_next_segment_free(sbi, curseg, type) &&
2848 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2849 new_curseg(sbi, type, false);
2850 else if (f2fs_need_SSR(sbi) &&
2851 get_ssr_segment(sbi, type, SSR, 0))
2852 change_curseg(sbi, type, true);
2853 else
2854 new_curseg(sbi, type, false);
2855
2856 stat_inc_seg_type(sbi, curseg);
2857 }
2858
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2859 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2860 unsigned int start, unsigned int end)
2861 {
2862 struct curseg_info *curseg = CURSEG_I(sbi, type);
2863 unsigned int segno;
2864
2865 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2866 mutex_lock(&curseg->curseg_mutex);
2867 down_write(&SIT_I(sbi)->sentry_lock);
2868
2869 segno = CURSEG_I(sbi, type)->segno;
2870 if (segno < start || segno > end)
2871 goto unlock;
2872
2873 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2874 change_curseg(sbi, type, true);
2875 else
2876 new_curseg(sbi, type, true);
2877
2878 stat_inc_seg_type(sbi, curseg);
2879
2880 locate_dirty_segment(sbi, segno);
2881 unlock:
2882 up_write(&SIT_I(sbi)->sentry_lock);
2883
2884 if (segno != curseg->segno)
2885 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2886 type, segno, curseg->segno);
2887
2888 mutex_unlock(&curseg->curseg_mutex);
2889 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2890 }
2891
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2892 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2893 bool new_sec, bool force)
2894 {
2895 struct curseg_info *curseg = CURSEG_I(sbi, type);
2896 unsigned int old_segno;
2897
2898 if (!curseg->inited)
2899 goto alloc;
2900
2901 if (force || curseg->next_blkoff ||
2902 get_valid_blocks(sbi, curseg->segno, new_sec))
2903 goto alloc;
2904
2905 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2906 return;
2907 alloc:
2908 old_segno = curseg->segno;
2909 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2910 locate_dirty_segment(sbi, old_segno);
2911 }
2912
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2913 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2914 int type, bool force)
2915 {
2916 __allocate_new_segment(sbi, type, true, force);
2917 }
2918
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2919 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2920 {
2921 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2922 down_write(&SIT_I(sbi)->sentry_lock);
2923 __allocate_new_section(sbi, type, force);
2924 up_write(&SIT_I(sbi)->sentry_lock);
2925 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2926 }
2927
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2928 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2929 {
2930 int i;
2931
2932 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2933 down_write(&SIT_I(sbi)->sentry_lock);
2934 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2935 __allocate_new_segment(sbi, i, false, false);
2936 up_write(&SIT_I(sbi)->sentry_lock);
2937 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2938 }
2939
2940 static const struct segment_allocation default_salloc_ops = {
2941 .allocate_segment = allocate_segment_by_default,
2942 };
2943
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2944 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2945 struct cp_control *cpc)
2946 {
2947 __u64 trim_start = cpc->trim_start;
2948 bool has_candidate = false;
2949
2950 down_write(&SIT_I(sbi)->sentry_lock);
2951 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2952 if (add_discard_addrs(sbi, cpc, true)) {
2953 has_candidate = true;
2954 break;
2955 }
2956 }
2957 up_write(&SIT_I(sbi)->sentry_lock);
2958
2959 cpc->trim_start = trim_start;
2960 return has_candidate;
2961 }
2962
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2963 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2964 struct discard_policy *dpolicy,
2965 unsigned int start, unsigned int end)
2966 {
2967 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2968 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2969 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2970 struct discard_cmd *dc;
2971 struct blk_plug plug;
2972 int issued;
2973 unsigned int trimmed = 0;
2974
2975 next:
2976 issued = 0;
2977
2978 mutex_lock(&dcc->cmd_lock);
2979 if (unlikely(dcc->rbtree_check))
2980 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2981 &dcc->root, false));
2982
2983 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2984 NULL, start,
2985 (struct rb_entry **)&prev_dc,
2986 (struct rb_entry **)&next_dc,
2987 &insert_p, &insert_parent, true, NULL);
2988 if (!dc)
2989 dc = next_dc;
2990
2991 blk_start_plug(&plug);
2992
2993 while (dc && dc->lstart <= end) {
2994 struct rb_node *node;
2995 int err = 0;
2996
2997 if (dc->len < dpolicy->granularity)
2998 goto skip;
2999
3000 if (dc->state != D_PREP) {
3001 list_move_tail(&dc->list, &dcc->fstrim_list);
3002 goto skip;
3003 }
3004
3005 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3006
3007 if (issued >= dpolicy->max_requests) {
3008 start = dc->lstart + dc->len;
3009
3010 if (err)
3011 __remove_discard_cmd(sbi, dc);
3012
3013 blk_finish_plug(&plug);
3014 mutex_unlock(&dcc->cmd_lock);
3015 trimmed += __wait_all_discard_cmd(sbi, NULL);
3016 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3017 goto next;
3018 }
3019 skip:
3020 node = rb_next(&dc->rb_node);
3021 if (err)
3022 __remove_discard_cmd(sbi, dc);
3023 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3024
3025 if (fatal_signal_pending(current))
3026 break;
3027 }
3028
3029 blk_finish_plug(&plug);
3030 mutex_unlock(&dcc->cmd_lock);
3031
3032 return trimmed;
3033 }
3034
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3035 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3036 {
3037 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3038 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3039 unsigned int start_segno, end_segno;
3040 block_t start_block, end_block;
3041 struct cp_control cpc;
3042 struct discard_policy dpolicy;
3043 unsigned long long trimmed = 0;
3044 int err = 0;
3045 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3046
3047 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3048 return -EINVAL;
3049
3050 if (end < MAIN_BLKADDR(sbi))
3051 goto out;
3052
3053 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3054 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3055 return -EFSCORRUPTED;
3056 }
3057
3058 /* start/end segment number in main_area */
3059 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3060 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3061 GET_SEGNO(sbi, end);
3062 if (need_align) {
3063 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3064 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3065 }
3066
3067 cpc.reason = CP_DISCARD;
3068 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3069 cpc.trim_start = start_segno;
3070 cpc.trim_end = end_segno;
3071
3072 if (sbi->discard_blks == 0)
3073 goto out;
3074
3075 f2fs_down_write(&sbi->gc_lock);
3076 err = f2fs_write_checkpoint(sbi, &cpc);
3077 f2fs_up_write(&sbi->gc_lock);
3078 if (err)
3079 goto out;
3080
3081 /*
3082 * We filed discard candidates, but actually we don't need to wait for
3083 * all of them, since they'll be issued in idle time along with runtime
3084 * discard option. User configuration looks like using runtime discard
3085 * or periodic fstrim instead of it.
3086 */
3087 if (f2fs_realtime_discard_enable(sbi))
3088 goto out;
3089
3090 start_block = START_BLOCK(sbi, start_segno);
3091 end_block = START_BLOCK(sbi, end_segno + 1);
3092
3093 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3094 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3095 start_block, end_block);
3096
3097 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3098 start_block, end_block);
3099 out:
3100 if (!err)
3101 range->len = F2FS_BLK_TO_BYTES(trimmed);
3102 return err;
3103 }
3104
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3105 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3106 struct curseg_info *curseg)
3107 {
3108 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3109 curseg->segno);
3110 }
3111
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3112 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3113 {
3114 switch (hint) {
3115 case WRITE_LIFE_SHORT:
3116 return CURSEG_HOT_DATA;
3117 case WRITE_LIFE_EXTREME:
3118 return CURSEG_COLD_DATA;
3119 default:
3120 return CURSEG_WARM_DATA;
3121 }
3122 }
3123
__get_segment_type_2(struct f2fs_io_info * fio)3124 static int __get_segment_type_2(struct f2fs_io_info *fio)
3125 {
3126 if (fio->type == DATA)
3127 return CURSEG_HOT_DATA;
3128 else
3129 return CURSEG_HOT_NODE;
3130 }
3131
__get_segment_type_4(struct f2fs_io_info * fio)3132 static int __get_segment_type_4(struct f2fs_io_info *fio)
3133 {
3134 if (fio->type == DATA) {
3135 struct inode *inode = fio->page->mapping->host;
3136
3137 if (S_ISDIR(inode->i_mode))
3138 return CURSEG_HOT_DATA;
3139 else
3140 return CURSEG_COLD_DATA;
3141 } else {
3142 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3143 return CURSEG_WARM_NODE;
3144 else
3145 return CURSEG_COLD_NODE;
3146 }
3147 }
3148
__get_segment_type_6(struct f2fs_io_info * fio)3149 static int __get_segment_type_6(struct f2fs_io_info *fio)
3150 {
3151 if (fio->type == DATA) {
3152 struct inode *inode = fio->page->mapping->host;
3153
3154 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3155 return CURSEG_COLD_DATA_PINNED;
3156
3157 if (page_private_gcing(fio->page)) {
3158 if (fio->sbi->am.atgc_enabled &&
3159 (fio->io_type == FS_DATA_IO) &&
3160 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3161 return CURSEG_ALL_DATA_ATGC;
3162 else
3163 return CURSEG_COLD_DATA;
3164 }
3165 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3166 return CURSEG_COLD_DATA;
3167 if (file_is_hot(inode) ||
3168 is_inode_flag_set(inode, FI_HOT_DATA) ||
3169 f2fs_is_cow_file(inode))
3170 return CURSEG_HOT_DATA;
3171 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3172 } else {
3173 if (IS_DNODE(fio->page))
3174 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3175 CURSEG_HOT_NODE;
3176 return CURSEG_COLD_NODE;
3177 }
3178 }
3179
__get_segment_type(struct f2fs_io_info * fio)3180 static int __get_segment_type(struct f2fs_io_info *fio)
3181 {
3182 int type = 0;
3183
3184 switch (F2FS_OPTION(fio->sbi).active_logs) {
3185 case 2:
3186 type = __get_segment_type_2(fio);
3187 break;
3188 case 4:
3189 type = __get_segment_type_4(fio);
3190 break;
3191 case 6:
3192 type = __get_segment_type_6(fio);
3193 break;
3194 default:
3195 f2fs_bug_on(fio->sbi, true);
3196 }
3197
3198 if (IS_HOT(type))
3199 fio->temp = HOT;
3200 else if (IS_WARM(type))
3201 fio->temp = WARM;
3202 else
3203 fio->temp = COLD;
3204 return type;
3205 }
3206
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3207 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3208 block_t old_blkaddr, block_t *new_blkaddr,
3209 struct f2fs_summary *sum, int type,
3210 struct f2fs_io_info *fio)
3211 {
3212 struct sit_info *sit_i = SIT_I(sbi);
3213 struct curseg_info *curseg = CURSEG_I(sbi, type);
3214 unsigned long long old_mtime;
3215 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3216 struct seg_entry *se = NULL;
3217
3218 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3219
3220 mutex_lock(&curseg->curseg_mutex);
3221 down_write(&sit_i->sentry_lock);
3222
3223 if (from_gc) {
3224 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3225 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3226 sanity_check_seg_type(sbi, se->type);
3227 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3228 }
3229 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3230
3231 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3232
3233 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3234
3235 /*
3236 * __add_sum_entry should be resided under the curseg_mutex
3237 * because, this function updates a summary entry in the
3238 * current summary block.
3239 */
3240 __add_sum_entry(sbi, type, sum);
3241
3242 __refresh_next_blkoff(sbi, curseg);
3243
3244 stat_inc_block_count(sbi, curseg);
3245
3246 if (from_gc) {
3247 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3248 } else {
3249 update_segment_mtime(sbi, old_blkaddr, 0);
3250 old_mtime = 0;
3251 }
3252 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3253
3254 /*
3255 * SIT information should be updated before segment allocation,
3256 * since SSR needs latest valid block information.
3257 */
3258 update_sit_entry(sbi, *new_blkaddr, 1);
3259 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3260 update_sit_entry(sbi, old_blkaddr, -1);
3261
3262 if (!__has_curseg_space(sbi, curseg)) {
3263 if (from_gc)
3264 get_atssr_segment(sbi, type, se->type,
3265 AT_SSR, se->mtime);
3266 else
3267 sit_i->s_ops->allocate_segment(sbi, type, false);
3268 }
3269 /*
3270 * segment dirty status should be updated after segment allocation,
3271 * so we just need to update status only one time after previous
3272 * segment being closed.
3273 */
3274 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3275 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3276
3277 up_write(&sit_i->sentry_lock);
3278
3279 if (page && IS_NODESEG(type)) {
3280 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3281
3282 f2fs_inode_chksum_set(sbi, page);
3283 }
3284
3285 if (fio) {
3286 struct f2fs_bio_info *io;
3287
3288 if (F2FS_IO_ALIGNED(sbi))
3289 fio->retry = false;
3290
3291 INIT_LIST_HEAD(&fio->list);
3292 fio->in_list = true;
3293 io = sbi->write_io[fio->type] + fio->temp;
3294 spin_lock(&io->io_lock);
3295 list_add_tail(&fio->list, &io->io_list);
3296 spin_unlock(&io->io_lock);
3297 }
3298
3299 mutex_unlock(&curseg->curseg_mutex);
3300
3301 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3302 }
3303
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3304 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3305 block_t blkaddr, unsigned int blkcnt)
3306 {
3307 if (!f2fs_is_multi_device(sbi))
3308 return;
3309
3310 while (1) {
3311 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3312 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3313
3314 /* update device state for fsync */
3315 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3316
3317 /* update device state for checkpoint */
3318 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3319 spin_lock(&sbi->dev_lock);
3320 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3321 spin_unlock(&sbi->dev_lock);
3322 }
3323
3324 if (blkcnt <= blks)
3325 break;
3326 blkcnt -= blks;
3327 blkaddr += blks;
3328 }
3329 }
3330
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3331 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3332 {
3333 int type = __get_segment_type(fio);
3334 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3335
3336 if (keep_order)
3337 f2fs_down_read(&fio->sbi->io_order_lock);
3338 reallocate:
3339 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3340 &fio->new_blkaddr, sum, type, fio);
3341 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3342 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3343 fio->old_blkaddr, fio->old_blkaddr);
3344 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3345 }
3346
3347 /* writeout dirty page into bdev */
3348 f2fs_submit_page_write(fio);
3349 if (fio->retry) {
3350 fio->old_blkaddr = fio->new_blkaddr;
3351 goto reallocate;
3352 }
3353
3354 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3355
3356 if (keep_order)
3357 f2fs_up_read(&fio->sbi->io_order_lock);
3358 }
3359
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3360 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3361 enum iostat_type io_type)
3362 {
3363 struct f2fs_io_info fio = {
3364 .sbi = sbi,
3365 .type = META,
3366 .temp = HOT,
3367 .op = REQ_OP_WRITE,
3368 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3369 .old_blkaddr = page->index,
3370 .new_blkaddr = page->index,
3371 .page = page,
3372 .encrypted_page = NULL,
3373 .in_list = false,
3374 };
3375
3376 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3377 fio.op_flags &= ~REQ_META;
3378
3379 set_page_writeback(page);
3380 ClearPageError(page);
3381 f2fs_submit_page_write(&fio);
3382
3383 stat_inc_meta_count(sbi, page->index);
3384 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3385 }
3386
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3387 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3388 {
3389 struct f2fs_summary sum;
3390
3391 set_summary(&sum, nid, 0, 0);
3392 do_write_page(&sum, fio);
3393
3394 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3395 }
3396
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3397 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3398 struct f2fs_io_info *fio)
3399 {
3400 struct f2fs_sb_info *sbi = fio->sbi;
3401 struct f2fs_summary sum;
3402
3403 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3404 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3405 do_write_page(&sum, fio);
3406 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3407
3408 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3409 }
3410
f2fs_inplace_write_data(struct f2fs_io_info * fio)3411 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3412 {
3413 int err;
3414 struct f2fs_sb_info *sbi = fio->sbi;
3415 unsigned int segno;
3416
3417 fio->new_blkaddr = fio->old_blkaddr;
3418 /* i/o temperature is needed for passing down write hints */
3419 __get_segment_type(fio);
3420
3421 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3422
3423 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3424 set_sbi_flag(sbi, SBI_NEED_FSCK);
3425 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3426 __func__, segno);
3427 err = -EFSCORRUPTED;
3428 goto drop_bio;
3429 }
3430
3431 if (f2fs_cp_error(sbi)) {
3432 err = -EIO;
3433 goto drop_bio;
3434 }
3435
3436 invalidate_mapping_pages(META_MAPPING(sbi),
3437 fio->new_blkaddr, fio->new_blkaddr);
3438
3439 stat_inc_inplace_blocks(fio->sbi);
3440
3441 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3442 err = f2fs_merge_page_bio(fio);
3443 else
3444 err = f2fs_submit_page_bio(fio);
3445 if (!err) {
3446 f2fs_update_device_state(fio->sbi, fio->ino,
3447 fio->new_blkaddr, 1);
3448 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3449 }
3450
3451 return err;
3452 drop_bio:
3453 if (fio->bio && *(fio->bio)) {
3454 struct bio *bio = *(fio->bio);
3455
3456 bio->bi_status = BLK_STS_IOERR;
3457 bio_endio(bio);
3458 *(fio->bio) = NULL;
3459 }
3460 return err;
3461 }
3462
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3463 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3464 unsigned int segno)
3465 {
3466 int i;
3467
3468 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3469 if (CURSEG_I(sbi, i)->segno == segno)
3470 break;
3471 }
3472 return i;
3473 }
3474
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3475 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3476 block_t old_blkaddr, block_t new_blkaddr,
3477 bool recover_curseg, bool recover_newaddr,
3478 bool from_gc)
3479 {
3480 struct sit_info *sit_i = SIT_I(sbi);
3481 struct curseg_info *curseg;
3482 unsigned int segno, old_cursegno;
3483 struct seg_entry *se;
3484 int type;
3485 unsigned short old_blkoff;
3486 unsigned char old_alloc_type;
3487
3488 segno = GET_SEGNO(sbi, new_blkaddr);
3489 se = get_seg_entry(sbi, segno);
3490 type = se->type;
3491
3492 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3493
3494 if (!recover_curseg) {
3495 /* for recovery flow */
3496 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3497 if (old_blkaddr == NULL_ADDR)
3498 type = CURSEG_COLD_DATA;
3499 else
3500 type = CURSEG_WARM_DATA;
3501 }
3502 } else {
3503 if (IS_CURSEG(sbi, segno)) {
3504 /* se->type is volatile as SSR allocation */
3505 type = __f2fs_get_curseg(sbi, segno);
3506 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3507 } else {
3508 type = CURSEG_WARM_DATA;
3509 }
3510 }
3511
3512 f2fs_bug_on(sbi, !IS_DATASEG(type));
3513 curseg = CURSEG_I(sbi, type);
3514
3515 mutex_lock(&curseg->curseg_mutex);
3516 down_write(&sit_i->sentry_lock);
3517
3518 old_cursegno = curseg->segno;
3519 old_blkoff = curseg->next_blkoff;
3520 old_alloc_type = curseg->alloc_type;
3521
3522 /* change the current segment */
3523 if (segno != curseg->segno) {
3524 curseg->next_segno = segno;
3525 change_curseg(sbi, type, true);
3526 }
3527
3528 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3529 __add_sum_entry(sbi, type, sum);
3530
3531 if (!recover_curseg || recover_newaddr) {
3532 if (!from_gc)
3533 update_segment_mtime(sbi, new_blkaddr, 0);
3534 update_sit_entry(sbi, new_blkaddr, 1);
3535 }
3536 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3537 invalidate_mapping_pages(META_MAPPING(sbi),
3538 old_blkaddr, old_blkaddr);
3539 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3540 if (!from_gc)
3541 update_segment_mtime(sbi, old_blkaddr, 0);
3542 update_sit_entry(sbi, old_blkaddr, -1);
3543 }
3544
3545 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3546 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3547
3548 locate_dirty_segment(sbi, old_cursegno);
3549
3550 if (recover_curseg) {
3551 if (old_cursegno != curseg->segno) {
3552 curseg->next_segno = old_cursegno;
3553 change_curseg(sbi, type, true);
3554 }
3555 curseg->next_blkoff = old_blkoff;
3556 curseg->alloc_type = old_alloc_type;
3557 }
3558
3559 up_write(&sit_i->sentry_lock);
3560 mutex_unlock(&curseg->curseg_mutex);
3561 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3562 }
3563
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3564 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3565 block_t old_addr, block_t new_addr,
3566 unsigned char version, bool recover_curseg,
3567 bool recover_newaddr)
3568 {
3569 struct f2fs_summary sum;
3570
3571 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3572
3573 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3574 recover_curseg, recover_newaddr, false);
3575
3576 f2fs_update_data_blkaddr(dn, new_addr);
3577 }
3578
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3579 void f2fs_wait_on_page_writeback(struct page *page,
3580 enum page_type type, bool ordered, bool locked)
3581 {
3582 if (PageWriteback(page)) {
3583 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3584
3585 /* submit cached LFS IO */
3586 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3587 /* sbumit cached IPU IO */
3588 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3589 if (ordered) {
3590 wait_on_page_writeback(page);
3591 f2fs_bug_on(sbi, locked && PageWriteback(page));
3592 } else {
3593 wait_for_stable_page(page);
3594 }
3595 }
3596 }
3597
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3598 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3599 {
3600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3601 struct page *cpage;
3602
3603 if (!f2fs_post_read_required(inode))
3604 return;
3605
3606 if (!__is_valid_data_blkaddr(blkaddr))
3607 return;
3608
3609 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3610 if (cpage) {
3611 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3612 f2fs_put_page(cpage, 1);
3613 }
3614 }
3615
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3616 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3617 block_t len)
3618 {
3619 block_t i;
3620
3621 for (i = 0; i < len; i++)
3622 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3623 }
3624
read_compacted_summaries(struct f2fs_sb_info * sbi)3625 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3626 {
3627 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3628 struct curseg_info *seg_i;
3629 unsigned char *kaddr;
3630 struct page *page;
3631 block_t start;
3632 int i, j, offset;
3633
3634 start = start_sum_block(sbi);
3635
3636 page = f2fs_get_meta_page(sbi, start++);
3637 if (IS_ERR(page))
3638 return PTR_ERR(page);
3639 kaddr = (unsigned char *)page_address(page);
3640
3641 /* Step 1: restore nat cache */
3642 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3643 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3644
3645 /* Step 2: restore sit cache */
3646 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3647 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3648 offset = 2 * SUM_JOURNAL_SIZE;
3649
3650 /* Step 3: restore summary entries */
3651 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3652 unsigned short blk_off;
3653 unsigned int segno;
3654
3655 seg_i = CURSEG_I(sbi, i);
3656 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3657 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3658 seg_i->next_segno = segno;
3659 reset_curseg(sbi, i, 0);
3660 seg_i->alloc_type = ckpt->alloc_type[i];
3661 seg_i->next_blkoff = blk_off;
3662
3663 if (seg_i->alloc_type == SSR)
3664 blk_off = sbi->blocks_per_seg;
3665
3666 for (j = 0; j < blk_off; j++) {
3667 struct f2fs_summary *s;
3668
3669 s = (struct f2fs_summary *)(kaddr + offset);
3670 seg_i->sum_blk->entries[j] = *s;
3671 offset += SUMMARY_SIZE;
3672 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3673 SUM_FOOTER_SIZE)
3674 continue;
3675
3676 f2fs_put_page(page, 1);
3677 page = NULL;
3678
3679 page = f2fs_get_meta_page(sbi, start++);
3680 if (IS_ERR(page))
3681 return PTR_ERR(page);
3682 kaddr = (unsigned char *)page_address(page);
3683 offset = 0;
3684 }
3685 }
3686 f2fs_put_page(page, 1);
3687 return 0;
3688 }
3689
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3690 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3691 {
3692 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3693 struct f2fs_summary_block *sum;
3694 struct curseg_info *curseg;
3695 struct page *new;
3696 unsigned short blk_off;
3697 unsigned int segno = 0;
3698 block_t blk_addr = 0;
3699 int err = 0;
3700
3701 /* get segment number and block addr */
3702 if (IS_DATASEG(type)) {
3703 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3704 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3705 CURSEG_HOT_DATA]);
3706 if (__exist_node_summaries(sbi))
3707 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3708 else
3709 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3710 } else {
3711 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3712 CURSEG_HOT_NODE]);
3713 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3714 CURSEG_HOT_NODE]);
3715 if (__exist_node_summaries(sbi))
3716 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3717 type - CURSEG_HOT_NODE);
3718 else
3719 blk_addr = GET_SUM_BLOCK(sbi, segno);
3720 }
3721
3722 new = f2fs_get_meta_page(sbi, blk_addr);
3723 if (IS_ERR(new))
3724 return PTR_ERR(new);
3725 sum = (struct f2fs_summary_block *)page_address(new);
3726
3727 if (IS_NODESEG(type)) {
3728 if (__exist_node_summaries(sbi)) {
3729 struct f2fs_summary *ns = &sum->entries[0];
3730 int i;
3731
3732 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3733 ns->version = 0;
3734 ns->ofs_in_node = 0;
3735 }
3736 } else {
3737 err = f2fs_restore_node_summary(sbi, segno, sum);
3738 if (err)
3739 goto out;
3740 }
3741 }
3742
3743 /* set uncompleted segment to curseg */
3744 curseg = CURSEG_I(sbi, type);
3745 mutex_lock(&curseg->curseg_mutex);
3746
3747 /* update journal info */
3748 down_write(&curseg->journal_rwsem);
3749 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3750 up_write(&curseg->journal_rwsem);
3751
3752 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3753 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3754 curseg->next_segno = segno;
3755 reset_curseg(sbi, type, 0);
3756 curseg->alloc_type = ckpt->alloc_type[type];
3757 curseg->next_blkoff = blk_off;
3758 mutex_unlock(&curseg->curseg_mutex);
3759 out:
3760 f2fs_put_page(new, 1);
3761 return err;
3762 }
3763
restore_curseg_summaries(struct f2fs_sb_info * sbi)3764 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3765 {
3766 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3767 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3768 int type = CURSEG_HOT_DATA;
3769 int err;
3770
3771 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3772 int npages = f2fs_npages_for_summary_flush(sbi, true);
3773
3774 if (npages >= 2)
3775 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3776 META_CP, true);
3777
3778 /* restore for compacted data summary */
3779 err = read_compacted_summaries(sbi);
3780 if (err)
3781 return err;
3782 type = CURSEG_HOT_NODE;
3783 }
3784
3785 if (__exist_node_summaries(sbi))
3786 f2fs_ra_meta_pages(sbi,
3787 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3788 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3789
3790 for (; type <= CURSEG_COLD_NODE; type++) {
3791 err = read_normal_summaries(sbi, type);
3792 if (err)
3793 return err;
3794 }
3795
3796 /* sanity check for summary blocks */
3797 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3798 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3799 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3800 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3801 return -EINVAL;
3802 }
3803
3804 return 0;
3805 }
3806
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3807 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3808 {
3809 struct page *page;
3810 unsigned char *kaddr;
3811 struct f2fs_summary *summary;
3812 struct curseg_info *seg_i;
3813 int written_size = 0;
3814 int i, j;
3815
3816 page = f2fs_grab_meta_page(sbi, blkaddr++);
3817 kaddr = (unsigned char *)page_address(page);
3818 memset(kaddr, 0, PAGE_SIZE);
3819
3820 /* Step 1: write nat cache */
3821 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3822 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3823 written_size += SUM_JOURNAL_SIZE;
3824
3825 /* Step 2: write sit cache */
3826 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3827 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3828 written_size += SUM_JOURNAL_SIZE;
3829
3830 /* Step 3: write summary entries */
3831 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3832 unsigned short blkoff;
3833
3834 seg_i = CURSEG_I(sbi, i);
3835 if (sbi->ckpt->alloc_type[i] == SSR)
3836 blkoff = sbi->blocks_per_seg;
3837 else
3838 blkoff = curseg_blkoff(sbi, i);
3839
3840 for (j = 0; j < blkoff; j++) {
3841 if (!page) {
3842 page = f2fs_grab_meta_page(sbi, blkaddr++);
3843 kaddr = (unsigned char *)page_address(page);
3844 memset(kaddr, 0, PAGE_SIZE);
3845 written_size = 0;
3846 }
3847 summary = (struct f2fs_summary *)(kaddr + written_size);
3848 *summary = seg_i->sum_blk->entries[j];
3849 written_size += SUMMARY_SIZE;
3850
3851 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3852 SUM_FOOTER_SIZE)
3853 continue;
3854
3855 set_page_dirty(page);
3856 f2fs_put_page(page, 1);
3857 page = NULL;
3858 }
3859 }
3860 if (page) {
3861 set_page_dirty(page);
3862 f2fs_put_page(page, 1);
3863 }
3864 }
3865
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3866 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3867 block_t blkaddr, int type)
3868 {
3869 int i, end;
3870
3871 if (IS_DATASEG(type))
3872 end = type + NR_CURSEG_DATA_TYPE;
3873 else
3874 end = type + NR_CURSEG_NODE_TYPE;
3875
3876 for (i = type; i < end; i++)
3877 write_current_sum_page(sbi, i, blkaddr + (i - type));
3878 }
3879
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3880 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3881 {
3882 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3883 write_compacted_summaries(sbi, start_blk);
3884 else
3885 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3886 }
3887
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3888 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3889 {
3890 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3891 }
3892
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3893 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3894 unsigned int val, int alloc)
3895 {
3896 int i;
3897
3898 if (type == NAT_JOURNAL) {
3899 for (i = 0; i < nats_in_cursum(journal); i++) {
3900 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3901 return i;
3902 }
3903 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3904 return update_nats_in_cursum(journal, 1);
3905 } else if (type == SIT_JOURNAL) {
3906 for (i = 0; i < sits_in_cursum(journal); i++)
3907 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3908 return i;
3909 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3910 return update_sits_in_cursum(journal, 1);
3911 }
3912 return -1;
3913 }
3914
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3915 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3916 unsigned int segno)
3917 {
3918 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3919 }
3920
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3921 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3922 unsigned int start)
3923 {
3924 struct sit_info *sit_i = SIT_I(sbi);
3925 struct page *page;
3926 pgoff_t src_off, dst_off;
3927
3928 src_off = current_sit_addr(sbi, start);
3929 dst_off = next_sit_addr(sbi, src_off);
3930
3931 page = f2fs_grab_meta_page(sbi, dst_off);
3932 seg_info_to_sit_page(sbi, page, start);
3933
3934 set_page_dirty(page);
3935 set_to_next_sit(sit_i, start);
3936
3937 return page;
3938 }
3939
grab_sit_entry_set(void)3940 static struct sit_entry_set *grab_sit_entry_set(void)
3941 {
3942 struct sit_entry_set *ses =
3943 f2fs_kmem_cache_alloc(sit_entry_set_slab,
3944 GFP_NOFS, true, NULL);
3945
3946 ses->entry_cnt = 0;
3947 INIT_LIST_HEAD(&ses->set_list);
3948 return ses;
3949 }
3950
release_sit_entry_set(struct sit_entry_set * ses)3951 static void release_sit_entry_set(struct sit_entry_set *ses)
3952 {
3953 list_del(&ses->set_list);
3954 kmem_cache_free(sit_entry_set_slab, ses);
3955 }
3956
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3957 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3958 struct list_head *head)
3959 {
3960 struct sit_entry_set *next = ses;
3961
3962 if (list_is_last(&ses->set_list, head))
3963 return;
3964
3965 list_for_each_entry_continue(next, head, set_list)
3966 if (ses->entry_cnt <= next->entry_cnt) {
3967 list_move_tail(&ses->set_list, &next->set_list);
3968 return;
3969 }
3970
3971 list_move_tail(&ses->set_list, head);
3972 }
3973
add_sit_entry(unsigned int segno,struct list_head * head)3974 static void add_sit_entry(unsigned int segno, struct list_head *head)
3975 {
3976 struct sit_entry_set *ses;
3977 unsigned int start_segno = START_SEGNO(segno);
3978
3979 list_for_each_entry(ses, head, set_list) {
3980 if (ses->start_segno == start_segno) {
3981 ses->entry_cnt++;
3982 adjust_sit_entry_set(ses, head);
3983 return;
3984 }
3985 }
3986
3987 ses = grab_sit_entry_set();
3988
3989 ses->start_segno = start_segno;
3990 ses->entry_cnt++;
3991 list_add(&ses->set_list, head);
3992 }
3993
add_sits_in_set(struct f2fs_sb_info * sbi)3994 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3995 {
3996 struct f2fs_sm_info *sm_info = SM_I(sbi);
3997 struct list_head *set_list = &sm_info->sit_entry_set;
3998 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3999 unsigned int segno;
4000
4001 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4002 add_sit_entry(segno, set_list);
4003 }
4004
remove_sits_in_journal(struct f2fs_sb_info * sbi)4005 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4006 {
4007 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4008 struct f2fs_journal *journal = curseg->journal;
4009 int i;
4010
4011 down_write(&curseg->journal_rwsem);
4012 for (i = 0; i < sits_in_cursum(journal); i++) {
4013 unsigned int segno;
4014 bool dirtied;
4015
4016 segno = le32_to_cpu(segno_in_journal(journal, i));
4017 dirtied = __mark_sit_entry_dirty(sbi, segno);
4018
4019 if (!dirtied)
4020 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4021 }
4022 update_sits_in_cursum(journal, -i);
4023 up_write(&curseg->journal_rwsem);
4024 }
4025
4026 /*
4027 * CP calls this function, which flushes SIT entries including sit_journal,
4028 * and moves prefree segs to free segs.
4029 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4030 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4031 {
4032 struct sit_info *sit_i = SIT_I(sbi);
4033 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4034 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4035 struct f2fs_journal *journal = curseg->journal;
4036 struct sit_entry_set *ses, *tmp;
4037 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4038 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4039 struct seg_entry *se;
4040
4041 down_write(&sit_i->sentry_lock);
4042
4043 if (!sit_i->dirty_sentries)
4044 goto out;
4045
4046 /*
4047 * add and account sit entries of dirty bitmap in sit entry
4048 * set temporarily
4049 */
4050 add_sits_in_set(sbi);
4051
4052 /*
4053 * if there are no enough space in journal to store dirty sit
4054 * entries, remove all entries from journal and add and account
4055 * them in sit entry set.
4056 */
4057 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4058 !to_journal)
4059 remove_sits_in_journal(sbi);
4060
4061 /*
4062 * there are two steps to flush sit entries:
4063 * #1, flush sit entries to journal in current cold data summary block.
4064 * #2, flush sit entries to sit page.
4065 */
4066 list_for_each_entry_safe(ses, tmp, head, set_list) {
4067 struct page *page = NULL;
4068 struct f2fs_sit_block *raw_sit = NULL;
4069 unsigned int start_segno = ses->start_segno;
4070 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4071 (unsigned long)MAIN_SEGS(sbi));
4072 unsigned int segno = start_segno;
4073
4074 if (to_journal &&
4075 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4076 to_journal = false;
4077
4078 if (to_journal) {
4079 down_write(&curseg->journal_rwsem);
4080 } else {
4081 page = get_next_sit_page(sbi, start_segno);
4082 raw_sit = page_address(page);
4083 }
4084
4085 /* flush dirty sit entries in region of current sit set */
4086 for_each_set_bit_from(segno, bitmap, end) {
4087 int offset, sit_offset;
4088
4089 se = get_seg_entry(sbi, segno);
4090 #ifdef CONFIG_F2FS_CHECK_FS
4091 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4092 SIT_VBLOCK_MAP_SIZE))
4093 f2fs_bug_on(sbi, 1);
4094 #endif
4095
4096 /* add discard candidates */
4097 if (!(cpc->reason & CP_DISCARD)) {
4098 cpc->trim_start = segno;
4099 add_discard_addrs(sbi, cpc, false);
4100 }
4101
4102 if (to_journal) {
4103 offset = f2fs_lookup_journal_in_cursum(journal,
4104 SIT_JOURNAL, segno, 1);
4105 f2fs_bug_on(sbi, offset < 0);
4106 segno_in_journal(journal, offset) =
4107 cpu_to_le32(segno);
4108 seg_info_to_raw_sit(se,
4109 &sit_in_journal(journal, offset));
4110 check_block_count(sbi, segno,
4111 &sit_in_journal(journal, offset));
4112 } else {
4113 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4114 seg_info_to_raw_sit(se,
4115 &raw_sit->entries[sit_offset]);
4116 check_block_count(sbi, segno,
4117 &raw_sit->entries[sit_offset]);
4118 }
4119
4120 __clear_bit(segno, bitmap);
4121 sit_i->dirty_sentries--;
4122 ses->entry_cnt--;
4123 }
4124
4125 if (to_journal)
4126 up_write(&curseg->journal_rwsem);
4127 else
4128 f2fs_put_page(page, 1);
4129
4130 f2fs_bug_on(sbi, ses->entry_cnt);
4131 release_sit_entry_set(ses);
4132 }
4133
4134 f2fs_bug_on(sbi, !list_empty(head));
4135 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4136 out:
4137 if (cpc->reason & CP_DISCARD) {
4138 __u64 trim_start = cpc->trim_start;
4139
4140 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4141 add_discard_addrs(sbi, cpc, false);
4142
4143 cpc->trim_start = trim_start;
4144 }
4145 up_write(&sit_i->sentry_lock);
4146
4147 set_prefree_as_free_segments(sbi);
4148 }
4149
build_sit_info(struct f2fs_sb_info * sbi)4150 static int build_sit_info(struct f2fs_sb_info *sbi)
4151 {
4152 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4153 struct sit_info *sit_i;
4154 unsigned int sit_segs, start;
4155 char *src_bitmap, *bitmap;
4156 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4157 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4158
4159 /* allocate memory for SIT information */
4160 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4161 if (!sit_i)
4162 return -ENOMEM;
4163
4164 SM_I(sbi)->sit_info = sit_i;
4165
4166 sit_i->sentries =
4167 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4168 MAIN_SEGS(sbi)),
4169 GFP_KERNEL);
4170 if (!sit_i->sentries)
4171 return -ENOMEM;
4172
4173 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4174 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4175 GFP_KERNEL);
4176 if (!sit_i->dirty_sentries_bitmap)
4177 return -ENOMEM;
4178
4179 #ifdef CONFIG_F2FS_CHECK_FS
4180 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4181 #else
4182 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4183 #endif
4184 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4185 if (!sit_i->bitmap)
4186 return -ENOMEM;
4187
4188 bitmap = sit_i->bitmap;
4189
4190 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4191 sit_i->sentries[start].cur_valid_map = bitmap;
4192 bitmap += SIT_VBLOCK_MAP_SIZE;
4193
4194 sit_i->sentries[start].ckpt_valid_map = bitmap;
4195 bitmap += SIT_VBLOCK_MAP_SIZE;
4196
4197 #ifdef CONFIG_F2FS_CHECK_FS
4198 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4199 bitmap += SIT_VBLOCK_MAP_SIZE;
4200 #endif
4201
4202 if (discard_map) {
4203 sit_i->sentries[start].discard_map = bitmap;
4204 bitmap += SIT_VBLOCK_MAP_SIZE;
4205 }
4206 }
4207
4208 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4209 if (!sit_i->tmp_map)
4210 return -ENOMEM;
4211
4212 if (__is_large_section(sbi)) {
4213 sit_i->sec_entries =
4214 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4215 MAIN_SECS(sbi)),
4216 GFP_KERNEL);
4217 if (!sit_i->sec_entries)
4218 return -ENOMEM;
4219 }
4220
4221 /* get information related with SIT */
4222 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4223
4224 /* setup SIT bitmap from ckeckpoint pack */
4225 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4226 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4227
4228 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4229 if (!sit_i->sit_bitmap)
4230 return -ENOMEM;
4231
4232 #ifdef CONFIG_F2FS_CHECK_FS
4233 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4234 sit_bitmap_size, GFP_KERNEL);
4235 if (!sit_i->sit_bitmap_mir)
4236 return -ENOMEM;
4237
4238 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4239 main_bitmap_size, GFP_KERNEL);
4240 if (!sit_i->invalid_segmap)
4241 return -ENOMEM;
4242 #endif
4243
4244 /* init SIT information */
4245 sit_i->s_ops = &default_salloc_ops;
4246
4247 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4248 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4249 sit_i->written_valid_blocks = 0;
4250 sit_i->bitmap_size = sit_bitmap_size;
4251 sit_i->dirty_sentries = 0;
4252 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4253 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4254 sit_i->mounted_time = ktime_get_boottime_seconds();
4255 init_rwsem(&sit_i->sentry_lock);
4256 return 0;
4257 }
4258
build_free_segmap(struct f2fs_sb_info * sbi)4259 static int build_free_segmap(struct f2fs_sb_info *sbi)
4260 {
4261 struct free_segmap_info *free_i;
4262 unsigned int bitmap_size, sec_bitmap_size;
4263
4264 /* allocate memory for free segmap information */
4265 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4266 if (!free_i)
4267 return -ENOMEM;
4268
4269 SM_I(sbi)->free_info = free_i;
4270
4271 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4272 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4273 if (!free_i->free_segmap)
4274 return -ENOMEM;
4275
4276 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4277 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4278 if (!free_i->free_secmap)
4279 return -ENOMEM;
4280
4281 /* set all segments as dirty temporarily */
4282 memset(free_i->free_segmap, 0xff, bitmap_size);
4283 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4284
4285 /* init free segmap information */
4286 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4287 free_i->free_segments = 0;
4288 free_i->free_sections = 0;
4289 spin_lock_init(&free_i->segmap_lock);
4290 return 0;
4291 }
4292
build_curseg(struct f2fs_sb_info * sbi)4293 static int build_curseg(struct f2fs_sb_info *sbi)
4294 {
4295 struct curseg_info *array;
4296 int i;
4297
4298 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4299 sizeof(*array)), GFP_KERNEL);
4300 if (!array)
4301 return -ENOMEM;
4302
4303 SM_I(sbi)->curseg_array = array;
4304
4305 for (i = 0; i < NO_CHECK_TYPE; i++) {
4306 mutex_init(&array[i].curseg_mutex);
4307 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4308 if (!array[i].sum_blk)
4309 return -ENOMEM;
4310 init_rwsem(&array[i].journal_rwsem);
4311 array[i].journal = f2fs_kzalloc(sbi,
4312 sizeof(struct f2fs_journal), GFP_KERNEL);
4313 if (!array[i].journal)
4314 return -ENOMEM;
4315 if (i < NR_PERSISTENT_LOG)
4316 array[i].seg_type = CURSEG_HOT_DATA + i;
4317 else if (i == CURSEG_COLD_DATA_PINNED)
4318 array[i].seg_type = CURSEG_COLD_DATA;
4319 else if (i == CURSEG_ALL_DATA_ATGC)
4320 array[i].seg_type = CURSEG_COLD_DATA;
4321 array[i].segno = NULL_SEGNO;
4322 array[i].next_blkoff = 0;
4323 array[i].inited = false;
4324 }
4325 return restore_curseg_summaries(sbi);
4326 }
4327
build_sit_entries(struct f2fs_sb_info * sbi)4328 static int build_sit_entries(struct f2fs_sb_info *sbi)
4329 {
4330 struct sit_info *sit_i = SIT_I(sbi);
4331 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4332 struct f2fs_journal *journal = curseg->journal;
4333 struct seg_entry *se;
4334 struct f2fs_sit_entry sit;
4335 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4336 unsigned int i, start, end;
4337 unsigned int readed, start_blk = 0;
4338 int err = 0;
4339 block_t sit_valid_blocks[2] = {0, 0};
4340
4341 do {
4342 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4343 META_SIT, true);
4344
4345 start = start_blk * sit_i->sents_per_block;
4346 end = (start_blk + readed) * sit_i->sents_per_block;
4347
4348 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4349 struct f2fs_sit_block *sit_blk;
4350 struct page *page;
4351
4352 se = &sit_i->sentries[start];
4353 page = get_current_sit_page(sbi, start);
4354 if (IS_ERR(page))
4355 return PTR_ERR(page);
4356 sit_blk = (struct f2fs_sit_block *)page_address(page);
4357 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4358 f2fs_put_page(page, 1);
4359
4360 err = check_block_count(sbi, start, &sit);
4361 if (err)
4362 return err;
4363 seg_info_from_raw_sit(se, &sit);
4364
4365 if (se->type >= NR_PERSISTENT_LOG) {
4366 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4367 se->type, start);
4368 return -EFSCORRUPTED;
4369 }
4370
4371 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4372
4373 if (f2fs_block_unit_discard(sbi)) {
4374 /* build discard map only one time */
4375 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4376 memset(se->discard_map, 0xff,
4377 SIT_VBLOCK_MAP_SIZE);
4378 } else {
4379 memcpy(se->discard_map,
4380 se->cur_valid_map,
4381 SIT_VBLOCK_MAP_SIZE);
4382 sbi->discard_blks +=
4383 sbi->blocks_per_seg -
4384 se->valid_blocks;
4385 }
4386 }
4387
4388 if (__is_large_section(sbi))
4389 get_sec_entry(sbi, start)->valid_blocks +=
4390 se->valid_blocks;
4391 }
4392 start_blk += readed;
4393 } while (start_blk < sit_blk_cnt);
4394
4395 down_read(&curseg->journal_rwsem);
4396 for (i = 0; i < sits_in_cursum(journal); i++) {
4397 unsigned int old_valid_blocks;
4398
4399 start = le32_to_cpu(segno_in_journal(journal, i));
4400 if (start >= MAIN_SEGS(sbi)) {
4401 f2fs_err(sbi, "Wrong journal entry on segno %u",
4402 start);
4403 err = -EFSCORRUPTED;
4404 break;
4405 }
4406
4407 se = &sit_i->sentries[start];
4408 sit = sit_in_journal(journal, i);
4409
4410 old_valid_blocks = se->valid_blocks;
4411
4412 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4413
4414 err = check_block_count(sbi, start, &sit);
4415 if (err)
4416 break;
4417 seg_info_from_raw_sit(se, &sit);
4418
4419 if (se->type >= NR_PERSISTENT_LOG) {
4420 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4421 se->type, start);
4422 err = -EFSCORRUPTED;
4423 break;
4424 }
4425
4426 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4427
4428 if (f2fs_block_unit_discard(sbi)) {
4429 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4430 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4431 } else {
4432 memcpy(se->discard_map, se->cur_valid_map,
4433 SIT_VBLOCK_MAP_SIZE);
4434 sbi->discard_blks += old_valid_blocks;
4435 sbi->discard_blks -= se->valid_blocks;
4436 }
4437 }
4438
4439 if (__is_large_section(sbi)) {
4440 get_sec_entry(sbi, start)->valid_blocks +=
4441 se->valid_blocks;
4442 get_sec_entry(sbi, start)->valid_blocks -=
4443 old_valid_blocks;
4444 }
4445 }
4446 up_read(&curseg->journal_rwsem);
4447
4448 if (err)
4449 return err;
4450
4451 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4452 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4453 sit_valid_blocks[NODE], valid_node_count(sbi));
4454 return -EFSCORRUPTED;
4455 }
4456
4457 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4458 valid_user_blocks(sbi)) {
4459 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4460 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4461 valid_user_blocks(sbi));
4462 return -EFSCORRUPTED;
4463 }
4464
4465 return 0;
4466 }
4467
init_free_segmap(struct f2fs_sb_info * sbi)4468 static void init_free_segmap(struct f2fs_sb_info *sbi)
4469 {
4470 unsigned int start;
4471 int type;
4472 struct seg_entry *sentry;
4473
4474 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4475 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4476 continue;
4477 sentry = get_seg_entry(sbi, start);
4478 if (!sentry->valid_blocks)
4479 __set_free(sbi, start);
4480 else
4481 SIT_I(sbi)->written_valid_blocks +=
4482 sentry->valid_blocks;
4483 }
4484
4485 /* set use the current segments */
4486 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4487 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4488
4489 __set_test_and_inuse(sbi, curseg_t->segno);
4490 }
4491 }
4492
init_dirty_segmap(struct f2fs_sb_info * sbi)4493 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4494 {
4495 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4496 struct free_segmap_info *free_i = FREE_I(sbi);
4497 unsigned int segno = 0, offset = 0, secno;
4498 block_t valid_blocks, usable_blks_in_seg;
4499 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4500
4501 while (1) {
4502 /* find dirty segment based on free segmap */
4503 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4504 if (segno >= MAIN_SEGS(sbi))
4505 break;
4506 offset = segno + 1;
4507 valid_blocks = get_valid_blocks(sbi, segno, false);
4508 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4509 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4510 continue;
4511 if (valid_blocks > usable_blks_in_seg) {
4512 f2fs_bug_on(sbi, 1);
4513 continue;
4514 }
4515 mutex_lock(&dirty_i->seglist_lock);
4516 __locate_dirty_segment(sbi, segno, DIRTY);
4517 mutex_unlock(&dirty_i->seglist_lock);
4518 }
4519
4520 if (!__is_large_section(sbi))
4521 return;
4522
4523 mutex_lock(&dirty_i->seglist_lock);
4524 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4525 valid_blocks = get_valid_blocks(sbi, segno, true);
4526 secno = GET_SEC_FROM_SEG(sbi, segno);
4527
4528 if (!valid_blocks || valid_blocks == blks_per_sec)
4529 continue;
4530 if (IS_CURSEC(sbi, secno))
4531 continue;
4532 set_bit(secno, dirty_i->dirty_secmap);
4533 }
4534 mutex_unlock(&dirty_i->seglist_lock);
4535 }
4536
init_victim_secmap(struct f2fs_sb_info * sbi)4537 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4538 {
4539 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4540 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4541
4542 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4543 if (!dirty_i->victim_secmap)
4544 return -ENOMEM;
4545
4546 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4547 if (!dirty_i->pinned_secmap)
4548 return -ENOMEM;
4549
4550 dirty_i->pinned_secmap_cnt = 0;
4551 dirty_i->enable_pin_section = true;
4552 return 0;
4553 }
4554
build_dirty_segmap(struct f2fs_sb_info * sbi)4555 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4556 {
4557 struct dirty_seglist_info *dirty_i;
4558 unsigned int bitmap_size, i;
4559
4560 /* allocate memory for dirty segments list information */
4561 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4562 GFP_KERNEL);
4563 if (!dirty_i)
4564 return -ENOMEM;
4565
4566 SM_I(sbi)->dirty_info = dirty_i;
4567 mutex_init(&dirty_i->seglist_lock);
4568
4569 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4570
4571 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4572 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4573 GFP_KERNEL);
4574 if (!dirty_i->dirty_segmap[i])
4575 return -ENOMEM;
4576 }
4577
4578 if (__is_large_section(sbi)) {
4579 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4580 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4581 bitmap_size, GFP_KERNEL);
4582 if (!dirty_i->dirty_secmap)
4583 return -ENOMEM;
4584 }
4585
4586 init_dirty_segmap(sbi);
4587 return init_victim_secmap(sbi);
4588 }
4589
sanity_check_curseg(struct f2fs_sb_info * sbi)4590 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4591 {
4592 int i;
4593
4594 /*
4595 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4596 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4597 */
4598 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4599 struct curseg_info *curseg = CURSEG_I(sbi, i);
4600 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4601 unsigned int blkofs = curseg->next_blkoff;
4602
4603 if (f2fs_sb_has_readonly(sbi) &&
4604 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4605 continue;
4606
4607 sanity_check_seg_type(sbi, curseg->seg_type);
4608
4609 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4610 f2fs_err(sbi,
4611 "Current segment has invalid alloc_type:%d",
4612 curseg->alloc_type);
4613 return -EFSCORRUPTED;
4614 }
4615
4616 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4617 goto out;
4618
4619 if (curseg->alloc_type == SSR)
4620 continue;
4621
4622 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4623 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4624 continue;
4625 out:
4626 f2fs_err(sbi,
4627 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4628 i, curseg->segno, curseg->alloc_type,
4629 curseg->next_blkoff, blkofs);
4630 return -EFSCORRUPTED;
4631 }
4632 }
4633 return 0;
4634 }
4635
4636 #ifdef CONFIG_BLK_DEV_ZONED
4637
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4638 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4639 struct f2fs_dev_info *fdev,
4640 struct blk_zone *zone)
4641 {
4642 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4643 block_t zone_block, wp_block, last_valid_block;
4644 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4645 int i, s, b, ret;
4646 struct seg_entry *se;
4647
4648 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4649 return 0;
4650
4651 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4652 wp_segno = GET_SEGNO(sbi, wp_block);
4653 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4654 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4655 zone_segno = GET_SEGNO(sbi, zone_block);
4656 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4657
4658 if (zone_segno >= MAIN_SEGS(sbi))
4659 return 0;
4660
4661 /*
4662 * Skip check of zones cursegs point to, since
4663 * fix_curseg_write_pointer() checks them.
4664 */
4665 for (i = 0; i < NO_CHECK_TYPE; i++)
4666 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4667 CURSEG_I(sbi, i)->segno))
4668 return 0;
4669
4670 /*
4671 * Get last valid block of the zone.
4672 */
4673 last_valid_block = zone_block - 1;
4674 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4675 segno = zone_segno + s;
4676 se = get_seg_entry(sbi, segno);
4677 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4678 if (f2fs_test_bit(b, se->cur_valid_map)) {
4679 last_valid_block = START_BLOCK(sbi, segno) + b;
4680 break;
4681 }
4682 if (last_valid_block >= zone_block)
4683 break;
4684 }
4685
4686 /*
4687 * If last valid block is beyond the write pointer, report the
4688 * inconsistency. This inconsistency does not cause write error
4689 * because the zone will not be selected for write operation until
4690 * it get discarded. Just report it.
4691 */
4692 if (last_valid_block >= wp_block) {
4693 f2fs_notice(sbi, "Valid block beyond write pointer: "
4694 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4695 GET_SEGNO(sbi, last_valid_block),
4696 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4697 wp_segno, wp_blkoff);
4698 return 0;
4699 }
4700
4701 /*
4702 * If there is no valid block in the zone and if write pointer is
4703 * not at zone start, reset the write pointer.
4704 */
4705 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4706 f2fs_notice(sbi,
4707 "Zone without valid block has non-zero write "
4708 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4709 wp_segno, wp_blkoff);
4710 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4711 zone->len >> log_sectors_per_block);
4712 if (ret) {
4713 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4714 fdev->path, ret);
4715 return ret;
4716 }
4717 }
4718
4719 return 0;
4720 }
4721
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4722 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4723 block_t zone_blkaddr)
4724 {
4725 int i;
4726
4727 for (i = 0; i < sbi->s_ndevs; i++) {
4728 if (!bdev_is_zoned(FDEV(i).bdev))
4729 continue;
4730 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4731 zone_blkaddr <= FDEV(i).end_blk))
4732 return &FDEV(i);
4733 }
4734
4735 return NULL;
4736 }
4737
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4738 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4739 void *data)
4740 {
4741 memcpy(data, zone, sizeof(struct blk_zone));
4742 return 0;
4743 }
4744
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4745 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4746 {
4747 struct curseg_info *cs = CURSEG_I(sbi, type);
4748 struct f2fs_dev_info *zbd;
4749 struct blk_zone zone;
4750 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4751 block_t cs_zone_block, wp_block;
4752 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4753 sector_t zone_sector;
4754 int err;
4755
4756 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4757 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4758
4759 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4760 if (!zbd)
4761 return 0;
4762
4763 /* report zone for the sector the curseg points to */
4764 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4765 << log_sectors_per_block;
4766 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4767 report_one_zone_cb, &zone);
4768 if (err != 1) {
4769 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4770 zbd->path, err);
4771 return err;
4772 }
4773
4774 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4775 return 0;
4776
4777 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4778 wp_segno = GET_SEGNO(sbi, wp_block);
4779 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4780 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4781
4782 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4783 wp_sector_off == 0)
4784 return 0;
4785
4786 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4787 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4788 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4789
4790 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4791 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4792
4793 f2fs_allocate_new_section(sbi, type, true);
4794
4795 /* check consistency of the zone curseg pointed to */
4796 if (check_zone_write_pointer(sbi, zbd, &zone))
4797 return -EIO;
4798
4799 /* check newly assigned zone */
4800 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4801 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4802
4803 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4804 if (!zbd)
4805 return 0;
4806
4807 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4808 << log_sectors_per_block;
4809 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4810 report_one_zone_cb, &zone);
4811 if (err != 1) {
4812 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4813 zbd->path, err);
4814 return err;
4815 }
4816
4817 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4818 return 0;
4819
4820 if (zone.wp != zone.start) {
4821 f2fs_notice(sbi,
4822 "New zone for curseg[%d] is not yet discarded. "
4823 "Reset the zone: curseg[0x%x,0x%x]",
4824 type, cs->segno, cs->next_blkoff);
4825 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4826 zone_sector >> log_sectors_per_block,
4827 zone.len >> log_sectors_per_block);
4828 if (err) {
4829 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4830 zbd->path, err);
4831 return err;
4832 }
4833 }
4834
4835 return 0;
4836 }
4837
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4838 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4839 {
4840 int i, ret;
4841
4842 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4843 ret = fix_curseg_write_pointer(sbi, i);
4844 if (ret)
4845 return ret;
4846 }
4847
4848 return 0;
4849 }
4850
4851 struct check_zone_write_pointer_args {
4852 struct f2fs_sb_info *sbi;
4853 struct f2fs_dev_info *fdev;
4854 };
4855
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4856 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4857 void *data)
4858 {
4859 struct check_zone_write_pointer_args *args;
4860
4861 args = (struct check_zone_write_pointer_args *)data;
4862
4863 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4864 }
4865
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4866 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4867 {
4868 int i, ret;
4869 struct check_zone_write_pointer_args args;
4870
4871 for (i = 0; i < sbi->s_ndevs; i++) {
4872 if (!bdev_is_zoned(FDEV(i).bdev))
4873 continue;
4874
4875 args.sbi = sbi;
4876 args.fdev = &FDEV(i);
4877 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4878 check_zone_write_pointer_cb, &args);
4879 if (ret < 0)
4880 return ret;
4881 }
4882
4883 return 0;
4884 }
4885
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)4886 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4887 unsigned int dev_idx)
4888 {
4889 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4890 return true;
4891 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4892 }
4893
4894 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)4895 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4896 int dev_idx)
4897 {
4898 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4899
4900 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4901 sbi->log_blocks_per_blkz;
4902 }
4903
4904 /*
4905 * Return the usable segments in a section based on the zone's
4906 * corresponding zone capacity. Zone is equal to a section.
4907 */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4908 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4909 struct f2fs_sb_info *sbi, unsigned int segno)
4910 {
4911 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4912
4913 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4914 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4915
4916 /* Conventional zone's capacity is always equal to zone size */
4917 if (is_conv_zone(sbi, zone_idx, dev_idx))
4918 return sbi->segs_per_sec;
4919
4920 /*
4921 * If the zone_capacity_blocks array is NULL, then zone capacity
4922 * is equal to the zone size for all zones
4923 */
4924 if (!FDEV(dev_idx).zone_capacity_blocks)
4925 return sbi->segs_per_sec;
4926
4927 /* Get the segment count beyond zone capacity block */
4928 unusable_segs_in_sec = (sbi->blocks_per_blkz -
4929 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4930 sbi->log_blocks_per_seg;
4931 return sbi->segs_per_sec - unusable_segs_in_sec;
4932 }
4933
4934 /*
4935 * Return the number of usable blocks in a segment. The number of blocks
4936 * returned is always equal to the number of blocks in a segment for
4937 * segments fully contained within a sequential zone capacity or a
4938 * conventional zone. For segments partially contained in a sequential
4939 * zone capacity, the number of usable blocks up to the zone capacity
4940 * is returned. 0 is returned in all other cases.
4941 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4942 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4943 struct f2fs_sb_info *sbi, unsigned int segno)
4944 {
4945 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4946 unsigned int zone_idx, dev_idx, secno;
4947
4948 secno = GET_SEC_FROM_SEG(sbi, segno);
4949 seg_start = START_BLOCK(sbi, segno);
4950 dev_idx = f2fs_target_device_index(sbi, seg_start);
4951 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4952
4953 /*
4954 * Conventional zone's capacity is always equal to zone size,
4955 * so, blocks per segment is unchanged.
4956 */
4957 if (is_conv_zone(sbi, zone_idx, dev_idx))
4958 return sbi->blocks_per_seg;
4959
4960 if (!FDEV(dev_idx).zone_capacity_blocks)
4961 return sbi->blocks_per_seg;
4962
4963 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4964 sec_cap_blkaddr = sec_start_blkaddr +
4965 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4966
4967 /*
4968 * If segment starts before zone capacity and spans beyond
4969 * zone capacity, then usable blocks are from seg start to
4970 * zone capacity. If the segment starts after the zone capacity,
4971 * then there are no usable blocks.
4972 */
4973 if (seg_start >= sec_cap_blkaddr)
4974 return 0;
4975 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4976 return sec_cap_blkaddr - seg_start;
4977
4978 return sbi->blocks_per_seg;
4979 }
4980 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4981 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4982 {
4983 return 0;
4984 }
4985
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4986 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4987 {
4988 return 0;
4989 }
4990
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4991 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4992 unsigned int segno)
4993 {
4994 return 0;
4995 }
4996
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4997 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4998 unsigned int segno)
4999 {
5000 return 0;
5001 }
5002 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5003 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5004 unsigned int segno)
5005 {
5006 if (f2fs_sb_has_blkzoned(sbi))
5007 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5008
5009 return sbi->blocks_per_seg;
5010 }
5011
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5012 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5013 unsigned int segno)
5014 {
5015 if (f2fs_sb_has_blkzoned(sbi))
5016 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5017
5018 return sbi->segs_per_sec;
5019 }
5020
5021 /*
5022 * Update min, max modified time for cost-benefit GC algorithm
5023 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5024 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5025 {
5026 struct sit_info *sit_i = SIT_I(sbi);
5027 unsigned int segno;
5028
5029 down_write(&sit_i->sentry_lock);
5030
5031 sit_i->min_mtime = ULLONG_MAX;
5032
5033 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5034 unsigned int i;
5035 unsigned long long mtime = 0;
5036
5037 for (i = 0; i < sbi->segs_per_sec; i++)
5038 mtime += get_seg_entry(sbi, segno + i)->mtime;
5039
5040 mtime = div_u64(mtime, sbi->segs_per_sec);
5041
5042 if (sit_i->min_mtime > mtime)
5043 sit_i->min_mtime = mtime;
5044 }
5045 sit_i->max_mtime = get_mtime(sbi, false);
5046 sit_i->dirty_max_mtime = 0;
5047 up_write(&sit_i->sentry_lock);
5048 }
5049
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5050 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5051 {
5052 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5054 struct f2fs_sm_info *sm_info;
5055 int err;
5056
5057 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5058 if (!sm_info)
5059 return -ENOMEM;
5060
5061 /* init sm info */
5062 sbi->sm_info = sm_info;
5063 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5064 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5065 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5066 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5067 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5068 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5069 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5070 sm_info->rec_prefree_segments = sm_info->main_segments *
5071 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5072 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5073 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5074
5075 if (!f2fs_lfs_mode(sbi))
5076 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5077 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5078 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5079 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5080 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5081 sm_info->min_ssr_sections = reserved_sections(sbi);
5082
5083 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5084
5085 init_f2fs_rwsem(&sm_info->curseg_lock);
5086
5087 if (!f2fs_readonly(sbi->sb)) {
5088 err = f2fs_create_flush_cmd_control(sbi);
5089 if (err)
5090 return err;
5091 }
5092
5093 err = create_discard_cmd_control(sbi);
5094 if (err)
5095 return err;
5096
5097 err = build_sit_info(sbi);
5098 if (err)
5099 return err;
5100 err = build_free_segmap(sbi);
5101 if (err)
5102 return err;
5103 err = build_curseg(sbi);
5104 if (err)
5105 return err;
5106
5107 /* reinit free segmap based on SIT */
5108 err = build_sit_entries(sbi);
5109 if (err)
5110 return err;
5111
5112 init_free_segmap(sbi);
5113 err = build_dirty_segmap(sbi);
5114 if (err)
5115 return err;
5116
5117 err = sanity_check_curseg(sbi);
5118 if (err)
5119 return err;
5120
5121 init_min_max_mtime(sbi);
5122 return 0;
5123 }
5124
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5125 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5126 enum dirty_type dirty_type)
5127 {
5128 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5129
5130 mutex_lock(&dirty_i->seglist_lock);
5131 kvfree(dirty_i->dirty_segmap[dirty_type]);
5132 dirty_i->nr_dirty[dirty_type] = 0;
5133 mutex_unlock(&dirty_i->seglist_lock);
5134 }
5135
destroy_victim_secmap(struct f2fs_sb_info * sbi)5136 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5137 {
5138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5139
5140 kvfree(dirty_i->pinned_secmap);
5141 kvfree(dirty_i->victim_secmap);
5142 }
5143
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5144 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5145 {
5146 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5147 int i;
5148
5149 if (!dirty_i)
5150 return;
5151
5152 /* discard pre-free/dirty segments list */
5153 for (i = 0; i < NR_DIRTY_TYPE; i++)
5154 discard_dirty_segmap(sbi, i);
5155
5156 if (__is_large_section(sbi)) {
5157 mutex_lock(&dirty_i->seglist_lock);
5158 kvfree(dirty_i->dirty_secmap);
5159 mutex_unlock(&dirty_i->seglist_lock);
5160 }
5161
5162 destroy_victim_secmap(sbi);
5163 SM_I(sbi)->dirty_info = NULL;
5164 kfree(dirty_i);
5165 }
5166
destroy_curseg(struct f2fs_sb_info * sbi)5167 static void destroy_curseg(struct f2fs_sb_info *sbi)
5168 {
5169 struct curseg_info *array = SM_I(sbi)->curseg_array;
5170 int i;
5171
5172 if (!array)
5173 return;
5174 SM_I(sbi)->curseg_array = NULL;
5175 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5176 kfree(array[i].sum_blk);
5177 kfree(array[i].journal);
5178 }
5179 kfree(array);
5180 }
5181
destroy_free_segmap(struct f2fs_sb_info * sbi)5182 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5183 {
5184 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5185
5186 if (!free_i)
5187 return;
5188 SM_I(sbi)->free_info = NULL;
5189 kvfree(free_i->free_segmap);
5190 kvfree(free_i->free_secmap);
5191 kfree(free_i);
5192 }
5193
destroy_sit_info(struct f2fs_sb_info * sbi)5194 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5195 {
5196 struct sit_info *sit_i = SIT_I(sbi);
5197
5198 if (!sit_i)
5199 return;
5200
5201 if (sit_i->sentries)
5202 kvfree(sit_i->bitmap);
5203 kfree(sit_i->tmp_map);
5204
5205 kvfree(sit_i->sentries);
5206 kvfree(sit_i->sec_entries);
5207 kvfree(sit_i->dirty_sentries_bitmap);
5208
5209 SM_I(sbi)->sit_info = NULL;
5210 kvfree(sit_i->sit_bitmap);
5211 #ifdef CONFIG_F2FS_CHECK_FS
5212 kvfree(sit_i->sit_bitmap_mir);
5213 kvfree(sit_i->invalid_segmap);
5214 #endif
5215 kfree(sit_i);
5216 }
5217
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5218 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5219 {
5220 struct f2fs_sm_info *sm_info = SM_I(sbi);
5221
5222 if (!sm_info)
5223 return;
5224 f2fs_destroy_flush_cmd_control(sbi, true);
5225 destroy_discard_cmd_control(sbi);
5226 destroy_dirty_segmap(sbi);
5227 destroy_curseg(sbi);
5228 destroy_free_segmap(sbi);
5229 destroy_sit_info(sbi);
5230 sbi->sm_info = NULL;
5231 kfree(sm_info);
5232 }
5233
f2fs_create_segment_manager_caches(void)5234 int __init f2fs_create_segment_manager_caches(void)
5235 {
5236 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5237 sizeof(struct discard_entry));
5238 if (!discard_entry_slab)
5239 goto fail;
5240
5241 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5242 sizeof(struct discard_cmd));
5243 if (!discard_cmd_slab)
5244 goto destroy_discard_entry;
5245
5246 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5247 sizeof(struct sit_entry_set));
5248 if (!sit_entry_set_slab)
5249 goto destroy_discard_cmd;
5250
5251 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5252 sizeof(struct revoke_entry));
5253 if (!revoke_entry_slab)
5254 goto destroy_sit_entry_set;
5255 return 0;
5256
5257 destroy_sit_entry_set:
5258 kmem_cache_destroy(sit_entry_set_slab);
5259 destroy_discard_cmd:
5260 kmem_cache_destroy(discard_cmd_slab);
5261 destroy_discard_entry:
5262 kmem_cache_destroy(discard_entry_slab);
5263 fail:
5264 return -ENOMEM;
5265 }
5266
f2fs_destroy_segment_manager_caches(void)5267 void f2fs_destroy_segment_manager_caches(void)
5268 {
5269 kmem_cache_destroy(sit_entry_set_slab);
5270 kmem_cache_destroy(discard_cmd_slab);
5271 kmem_cache_destroy(discard_entry_slab);
5272 kmem_cache_destroy(revoke_entry_slab);
5273 }
5274