1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
__is_cp_guaranteed(struct page * page)53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct inode *inode;
57 struct f2fs_sb_info *sbi;
58
59 if (!mapping)
60 return false;
61
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
64
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
68 return true;
69
70 if (f2fs_is_compressed_page(page))
71 return false;
72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 page_private_gcing(page))
74 return true;
75 return false;
76 }
77
__read_io_type(struct page * page)78 static enum count_type __read_io_type(struct page *page)
79 {
80 struct address_space *mapping = page_file_mapping(page);
81
82 if (mapping) {
83 struct inode *inode = mapping->host;
84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85
86 if (inode->i_ino == F2FS_META_INO(sbi))
87 return F2FS_RD_META;
88
89 if (inode->i_ino == F2FS_NODE_INO(sbi))
90 return F2FS_RD_NODE;
91 }
92 return F2FS_RD_DATA;
93 }
94
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 STEP_DECRYPT = 1 << 0,
99 #else
100 STEP_DECRYPT = 0, /* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 STEP_DECOMPRESS = 1 << 1,
104 #else
105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108 STEP_VERITY = 1 << 2,
109 #else
110 STEP_VERITY = 0, /* compile out the verity-related code */
111 #endif
112 };
113
114 struct bio_post_read_ctx {
115 struct bio *bio;
116 struct f2fs_sb_info *sbi;
117 struct work_struct work;
118 unsigned int enabled_steps;
119 block_t fs_blkaddr;
120 };
121
f2fs_finish_read_bio(struct bio * bio,bool in_task)122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124 struct bio_vec *bv;
125 struct bvec_iter_all iter_all;
126
127 /*
128 * Update and unlock the bio's pagecache pages, and put the
129 * decompression context for any compressed pages.
130 */
131 bio_for_each_segment_all(bv, bio, iter_all) {
132 struct page *page = bv->bv_page;
133
134 if (f2fs_is_compressed_page(page)) {
135 if (bio->bi_status)
136 f2fs_end_read_compressed_page(page, true, 0,
137 in_task);
138 f2fs_put_page_dic(page, in_task);
139 continue;
140 }
141
142 /* PG_error was set if verity failed. */
143 if (bio->bi_status || PageError(page)) {
144 ClearPageUptodate(page);
145 /* will re-read again later */
146 ClearPageError(page);
147 } else {
148 SetPageUptodate(page);
149 }
150 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 unlock_page(page);
152 }
153
154 if (bio->bi_private)
155 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 bio_put(bio);
157 }
158
f2fs_verify_bio(struct work_struct * work)159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 struct bio_post_read_ctx *ctx =
162 container_of(work, struct bio_post_read_ctx, work);
163 struct bio *bio = ctx->bio;
164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166 /*
167 * fsverity_verify_bio() may call readahead() again, and while verity
168 * will be disabled for this, decryption and/or decompression may still
169 * be needed, resulting in another bio_post_read_ctx being allocated.
170 * So to prevent deadlocks we need to release the current ctx to the
171 * mempool first. This assumes that verity is the last post-read step.
172 */
173 mempool_free(ctx, bio_post_read_ctx_pool);
174 bio->bi_private = NULL;
175
176 /*
177 * Verify the bio's pages with fs-verity. Exclude compressed pages,
178 * as those were handled separately by f2fs_end_read_compressed_page().
179 */
180 if (may_have_compressed_pages) {
181 struct bio_vec *bv;
182 struct bvec_iter_all iter_all;
183
184 bio_for_each_segment_all(bv, bio, iter_all) {
185 struct page *page = bv->bv_page;
186
187 if (!f2fs_is_compressed_page(page) &&
188 !fsverity_verify_page(page))
189 SetPageError(page);
190 }
191 } else {
192 fsverity_verify_bio(bio);
193 }
194
195 f2fs_finish_read_bio(bio, true);
196 }
197
198 /*
199 * If the bio's data needs to be verified with fs-verity, then enqueue the
200 * verity work for the bio. Otherwise finish the bio now.
201 *
202 * Note that to avoid deadlocks, the verity work can't be done on the
203 * decryption/decompression workqueue. This is because verifying the data pages
204 * can involve reading verity metadata pages from the file, and these verity
205 * metadata pages may be encrypted and/or compressed.
206 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209 struct bio_post_read_ctx *ctx = bio->bi_private;
210
211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 INIT_WORK(&ctx->work, f2fs_verify_bio);
213 fsverity_enqueue_verify_work(&ctx->work);
214 } else {
215 f2fs_finish_read_bio(bio, in_task);
216 }
217 }
218
219 /*
220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221 * remaining page was read by @ctx->bio.
222 *
223 * Note that a bio may span clusters (even a mix of compressed and uncompressed
224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
225 * that the bio includes at least one compressed page. The actual decompression
226 * is done on a per-cluster basis, not a per-bio basis.
227 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229 bool in_task)
230 {
231 struct bio_vec *bv;
232 struct bvec_iter_all iter_all;
233 bool all_compressed = true;
234 block_t blkaddr = ctx->fs_blkaddr;
235
236 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 struct page *page = bv->bv_page;
238
239 if (f2fs_is_compressed_page(page))
240 f2fs_end_read_compressed_page(page, false, blkaddr,
241 in_task);
242 else
243 all_compressed = false;
244
245 blkaddr++;
246 }
247
248 /*
249 * Optimization: if all the bio's pages are compressed, then scheduling
250 * the per-bio verity work is unnecessary, as verity will be fully
251 * handled at the compression cluster level.
252 */
253 if (all_compressed)
254 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
f2fs_post_read_work(struct work_struct * work)257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259 struct bio_post_read_ctx *ctx =
260 container_of(work, struct bio_post_read_ctx, work);
261 struct bio *bio = ctx->bio;
262
263 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
264 f2fs_finish_read_bio(bio, true);
265 return;
266 }
267
268 if (ctx->enabled_steps & STEP_DECOMPRESS)
269 f2fs_handle_step_decompress(ctx, true);
270
271 f2fs_verify_and_finish_bio(bio, true);
272 }
273
f2fs_read_end_io(struct bio * bio)274 static void f2fs_read_end_io(struct bio *bio)
275 {
276 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
277 struct bio_post_read_ctx *ctx;
278 bool intask = in_task();
279
280 iostat_update_and_unbind_ctx(bio, 0);
281 ctx = bio->bi_private;
282
283 if (time_to_inject(sbi, FAULT_READ_IO)) {
284 f2fs_show_injection_info(sbi, FAULT_READ_IO);
285 bio->bi_status = BLK_STS_IOERR;
286 }
287
288 if (bio->bi_status) {
289 f2fs_finish_read_bio(bio, intask);
290 return;
291 }
292
293 if (ctx) {
294 unsigned int enabled_steps = ctx->enabled_steps &
295 (STEP_DECRYPT | STEP_DECOMPRESS);
296
297 /*
298 * If we have only decompression step between decompression and
299 * decrypt, we don't need post processing for this.
300 */
301 if (enabled_steps == STEP_DECOMPRESS &&
302 !f2fs_low_mem_mode(sbi)) {
303 f2fs_handle_step_decompress(ctx, intask);
304 } else if (enabled_steps) {
305 INIT_WORK(&ctx->work, f2fs_post_read_work);
306 queue_work(ctx->sbi->post_read_wq, &ctx->work);
307 return;
308 }
309 }
310
311 f2fs_verify_and_finish_bio(bio, intask);
312 }
313
f2fs_write_end_io(struct bio * bio)314 static void f2fs_write_end_io(struct bio *bio)
315 {
316 struct f2fs_sb_info *sbi;
317 struct bio_vec *bvec;
318 struct bvec_iter_all iter_all;
319
320 iostat_update_and_unbind_ctx(bio, 1);
321 sbi = bio->bi_private;
322
323 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
324 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
325 bio->bi_status = BLK_STS_IOERR;
326 }
327
328 bio_for_each_segment_all(bvec, bio, iter_all) {
329 struct page *page = bvec->bv_page;
330 enum count_type type = WB_DATA_TYPE(page);
331
332 if (page_private_dummy(page)) {
333 clear_page_private_dummy(page);
334 unlock_page(page);
335 mempool_free(page, sbi->write_io_dummy);
336
337 if (unlikely(bio->bi_status))
338 f2fs_stop_checkpoint(sbi, true,
339 STOP_CP_REASON_WRITE_FAIL);
340 continue;
341 }
342
343 fscrypt_finalize_bounce_page(&page);
344
345 #ifdef CONFIG_F2FS_FS_COMPRESSION
346 if (f2fs_is_compressed_page(page)) {
347 f2fs_compress_write_end_io(bio, page);
348 continue;
349 }
350 #endif
351
352 if (unlikely(bio->bi_status)) {
353 mapping_set_error(page->mapping, -EIO);
354 if (type == F2FS_WB_CP_DATA)
355 f2fs_stop_checkpoint(sbi, true,
356 STOP_CP_REASON_WRITE_FAIL);
357 }
358
359 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
360 page->index != nid_of_node(page));
361
362 dec_page_count(sbi, type);
363 if (f2fs_in_warm_node_list(sbi, page))
364 f2fs_del_fsync_node_entry(sbi, page);
365 clear_page_private_gcing(page);
366 end_page_writeback(page);
367 }
368 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
369 wq_has_sleeper(&sbi->cp_wait))
370 wake_up(&sbi->cp_wait);
371
372 bio_put(bio);
373 }
374
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)375 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
376 block_t blk_addr, sector_t *sector)
377 {
378 struct block_device *bdev = sbi->sb->s_bdev;
379 int i;
380
381 if (f2fs_is_multi_device(sbi)) {
382 for (i = 0; i < sbi->s_ndevs; i++) {
383 if (FDEV(i).start_blk <= blk_addr &&
384 FDEV(i).end_blk >= blk_addr) {
385 blk_addr -= FDEV(i).start_blk;
386 bdev = FDEV(i).bdev;
387 break;
388 }
389 }
390 }
391
392 if (sector)
393 *sector = SECTOR_FROM_BLOCK(blk_addr);
394 return bdev;
395 }
396
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)397 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
398 {
399 int i;
400
401 if (!f2fs_is_multi_device(sbi))
402 return 0;
403
404 for (i = 0; i < sbi->s_ndevs; i++)
405 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
406 return i;
407 return 0;
408 }
409
f2fs_io_flags(struct f2fs_io_info * fio)410 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
411 {
412 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
413 unsigned int fua_flag, meta_flag, io_flag;
414 blk_opf_t op_flags = 0;
415
416 if (fio->op != REQ_OP_WRITE)
417 return 0;
418 if (fio->type == DATA)
419 io_flag = fio->sbi->data_io_flag;
420 else if (fio->type == NODE)
421 io_flag = fio->sbi->node_io_flag;
422 else
423 return 0;
424
425 fua_flag = io_flag & temp_mask;
426 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
427
428 /*
429 * data/node io flag bits per temp:
430 * REQ_META | REQ_FUA |
431 * 5 | 4 | 3 | 2 | 1 | 0 |
432 * Cold | Warm | Hot | Cold | Warm | Hot |
433 */
434 if ((1 << fio->temp) & meta_flag)
435 op_flags |= REQ_META;
436 if ((1 << fio->temp) & fua_flag)
437 op_flags |= REQ_FUA;
438 return op_flags;
439 }
440
__bio_alloc(struct f2fs_io_info * fio,int npages)441 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
442 {
443 struct f2fs_sb_info *sbi = fio->sbi;
444 struct block_device *bdev;
445 sector_t sector;
446 struct bio *bio;
447
448 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
449 bio = bio_alloc_bioset(bdev, npages,
450 fio->op | fio->op_flags | f2fs_io_flags(fio),
451 GFP_NOIO, &f2fs_bioset);
452 bio->bi_iter.bi_sector = sector;
453 if (is_read_io(fio->op)) {
454 bio->bi_end_io = f2fs_read_end_io;
455 bio->bi_private = NULL;
456 } else {
457 bio->bi_end_io = f2fs_write_end_io;
458 bio->bi_private = sbi;
459 }
460 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
461
462 if (fio->io_wbc)
463 wbc_init_bio(fio->io_wbc, bio);
464
465 return bio;
466 }
467
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)468 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
469 pgoff_t first_idx,
470 const struct f2fs_io_info *fio,
471 gfp_t gfp_mask)
472 {
473 /*
474 * The f2fs garbage collector sets ->encrypted_page when it wants to
475 * read/write raw data without encryption.
476 */
477 if (!fio || !fio->encrypted_page)
478 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
479 }
480
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)481 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
482 pgoff_t next_idx,
483 const struct f2fs_io_info *fio)
484 {
485 /*
486 * The f2fs garbage collector sets ->encrypted_page when it wants to
487 * read/write raw data without encryption.
488 */
489 if (fio && fio->encrypted_page)
490 return !bio_has_crypt_ctx(bio);
491
492 return fscrypt_mergeable_bio(bio, inode, next_idx);
493 }
494
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)495 static inline void __submit_bio(struct f2fs_sb_info *sbi,
496 struct bio *bio, enum page_type type)
497 {
498 if (!is_read_io(bio_op(bio))) {
499 unsigned int start;
500
501 if (type != DATA && type != NODE)
502 goto submit_io;
503
504 if (f2fs_lfs_mode(sbi) && current->plug)
505 blk_finish_plug(current->plug);
506
507 if (!F2FS_IO_ALIGNED(sbi))
508 goto submit_io;
509
510 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
511 start %= F2FS_IO_SIZE(sbi);
512
513 if (start == 0)
514 goto submit_io;
515
516 /* fill dummy pages */
517 for (; start < F2FS_IO_SIZE(sbi); start++) {
518 struct page *page =
519 mempool_alloc(sbi->write_io_dummy,
520 GFP_NOIO | __GFP_NOFAIL);
521 f2fs_bug_on(sbi, !page);
522
523 lock_page(page);
524
525 zero_user_segment(page, 0, PAGE_SIZE);
526 set_page_private_dummy(page);
527
528 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
529 f2fs_bug_on(sbi, 1);
530 }
531 /*
532 * In the NODE case, we lose next block address chain. So, we
533 * need to do checkpoint in f2fs_sync_file.
534 */
535 if (type == NODE)
536 set_sbi_flag(sbi, SBI_NEED_CP);
537 }
538 submit_io:
539 if (is_read_io(bio_op(bio)))
540 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
541 else
542 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
543
544 iostat_update_submit_ctx(bio, type);
545 submit_bio(bio);
546 }
547
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)548 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
549 struct bio *bio, enum page_type type)
550 {
551 __submit_bio(sbi, bio, type);
552 }
553
__submit_merged_bio(struct f2fs_bio_info * io)554 static void __submit_merged_bio(struct f2fs_bio_info *io)
555 {
556 struct f2fs_io_info *fio = &io->fio;
557
558 if (!io->bio)
559 return;
560
561 if (is_read_io(fio->op))
562 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
563 else
564 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
565
566 __submit_bio(io->sbi, io->bio, fio->type);
567 io->bio = NULL;
568 }
569
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)570 static bool __has_merged_page(struct bio *bio, struct inode *inode,
571 struct page *page, nid_t ino)
572 {
573 struct bio_vec *bvec;
574 struct bvec_iter_all iter_all;
575
576 if (!bio)
577 return false;
578
579 if (!inode && !page && !ino)
580 return true;
581
582 bio_for_each_segment_all(bvec, bio, iter_all) {
583 struct page *target = bvec->bv_page;
584
585 if (fscrypt_is_bounce_page(target)) {
586 target = fscrypt_pagecache_page(target);
587 if (IS_ERR(target))
588 continue;
589 }
590 if (f2fs_is_compressed_page(target)) {
591 target = f2fs_compress_control_page(target);
592 if (IS_ERR(target))
593 continue;
594 }
595
596 if (inode && inode == target->mapping->host)
597 return true;
598 if (page && page == target)
599 return true;
600 if (ino && ino == ino_of_node(target))
601 return true;
602 }
603
604 return false;
605 }
606
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)607 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
608 {
609 int i;
610
611 for (i = 0; i < NR_PAGE_TYPE; i++) {
612 int n = (i == META) ? 1 : NR_TEMP_TYPE;
613 int j;
614
615 sbi->write_io[i] = f2fs_kmalloc(sbi,
616 array_size(n, sizeof(struct f2fs_bio_info)),
617 GFP_KERNEL);
618 if (!sbi->write_io[i])
619 return -ENOMEM;
620
621 for (j = HOT; j < n; j++) {
622 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
623 sbi->write_io[i][j].sbi = sbi;
624 sbi->write_io[i][j].bio = NULL;
625 spin_lock_init(&sbi->write_io[i][j].io_lock);
626 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
627 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
628 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
629 }
630 }
631
632 return 0;
633 }
634
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)635 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
636 enum page_type type, enum temp_type temp)
637 {
638 enum page_type btype = PAGE_TYPE_OF_BIO(type);
639 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
640
641 f2fs_down_write(&io->io_rwsem);
642
643 /* change META to META_FLUSH in the checkpoint procedure */
644 if (type >= META_FLUSH) {
645 io->fio.type = META_FLUSH;
646 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
647 if (!test_opt(sbi, NOBARRIER))
648 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
649 }
650 __submit_merged_bio(io);
651 f2fs_up_write(&io->io_rwsem);
652 }
653
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)654 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
655 struct inode *inode, struct page *page,
656 nid_t ino, enum page_type type, bool force)
657 {
658 enum temp_type temp;
659 bool ret = true;
660
661 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
662 if (!force) {
663 enum page_type btype = PAGE_TYPE_OF_BIO(type);
664 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
665
666 f2fs_down_read(&io->io_rwsem);
667 ret = __has_merged_page(io->bio, inode, page, ino);
668 f2fs_up_read(&io->io_rwsem);
669 }
670 if (ret)
671 __f2fs_submit_merged_write(sbi, type, temp);
672
673 /* TODO: use HOT temp only for meta pages now. */
674 if (type >= META)
675 break;
676 }
677 }
678
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)679 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
680 {
681 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
682 }
683
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)684 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
685 struct inode *inode, struct page *page,
686 nid_t ino, enum page_type type)
687 {
688 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
689 }
690
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)691 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
692 {
693 f2fs_submit_merged_write(sbi, DATA);
694 f2fs_submit_merged_write(sbi, NODE);
695 f2fs_submit_merged_write(sbi, META);
696 }
697
698 /*
699 * Fill the locked page with data located in the block address.
700 * A caller needs to unlock the page on failure.
701 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)702 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
703 {
704 struct bio *bio;
705 struct page *page = fio->encrypted_page ?
706 fio->encrypted_page : fio->page;
707
708 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
709 fio->is_por ? META_POR : (__is_meta_io(fio) ?
710 META_GENERIC : DATA_GENERIC_ENHANCE))) {
711 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
712 return -EFSCORRUPTED;
713 }
714
715 trace_f2fs_submit_page_bio(page, fio);
716
717 /* Allocate a new bio */
718 bio = __bio_alloc(fio, 1);
719
720 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
721 fio->page->index, fio, GFP_NOIO);
722
723 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
724 bio_put(bio);
725 return -EFAULT;
726 }
727
728 if (fio->io_wbc && !is_read_io(fio->op))
729 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
730
731 inc_page_count(fio->sbi, is_read_io(fio->op) ?
732 __read_io_type(page) : WB_DATA_TYPE(fio->page));
733
734 __submit_bio(fio->sbi, bio, fio->type);
735 return 0;
736 }
737
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)738 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
739 block_t last_blkaddr, block_t cur_blkaddr)
740 {
741 if (unlikely(sbi->max_io_bytes &&
742 bio->bi_iter.bi_size >= sbi->max_io_bytes))
743 return false;
744 if (last_blkaddr + 1 != cur_blkaddr)
745 return false;
746 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
747 }
748
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)749 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
750 struct f2fs_io_info *fio)
751 {
752 if (io->fio.op != fio->op)
753 return false;
754 return io->fio.op_flags == fio->op_flags;
755 }
756
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)757 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
758 struct f2fs_bio_info *io,
759 struct f2fs_io_info *fio,
760 block_t last_blkaddr,
761 block_t cur_blkaddr)
762 {
763 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
764 unsigned int filled_blocks =
765 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
766 unsigned int io_size = F2FS_IO_SIZE(sbi);
767 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
768
769 /* IOs in bio is aligned and left space of vectors is not enough */
770 if (!(filled_blocks % io_size) && left_vecs < io_size)
771 return false;
772 }
773 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
774 return false;
775 return io_type_is_mergeable(io, fio);
776 }
777
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)778 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
779 struct page *page, enum temp_type temp)
780 {
781 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
782 struct bio_entry *be;
783
784 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
785 be->bio = bio;
786 bio_get(bio);
787
788 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
789 f2fs_bug_on(sbi, 1);
790
791 f2fs_down_write(&io->bio_list_lock);
792 list_add_tail(&be->list, &io->bio_list);
793 f2fs_up_write(&io->bio_list_lock);
794 }
795
del_bio_entry(struct bio_entry * be)796 static void del_bio_entry(struct bio_entry *be)
797 {
798 list_del(&be->list);
799 kmem_cache_free(bio_entry_slab, be);
800 }
801
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)802 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
803 struct page *page)
804 {
805 struct f2fs_sb_info *sbi = fio->sbi;
806 enum temp_type temp;
807 bool found = false;
808 int ret = -EAGAIN;
809
810 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
811 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
812 struct list_head *head = &io->bio_list;
813 struct bio_entry *be;
814
815 f2fs_down_write(&io->bio_list_lock);
816 list_for_each_entry(be, head, list) {
817 if (be->bio != *bio)
818 continue;
819
820 found = true;
821
822 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
823 *fio->last_block,
824 fio->new_blkaddr));
825 if (f2fs_crypt_mergeable_bio(*bio,
826 fio->page->mapping->host,
827 fio->page->index, fio) &&
828 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
829 PAGE_SIZE) {
830 ret = 0;
831 break;
832 }
833
834 /* page can't be merged into bio; submit the bio */
835 del_bio_entry(be);
836 __submit_bio(sbi, *bio, DATA);
837 break;
838 }
839 f2fs_up_write(&io->bio_list_lock);
840 }
841
842 if (ret) {
843 bio_put(*bio);
844 *bio = NULL;
845 }
846
847 return ret;
848 }
849
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)850 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
851 struct bio **bio, struct page *page)
852 {
853 enum temp_type temp;
854 bool found = false;
855 struct bio *target = bio ? *bio : NULL;
856
857 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
858 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
859 struct list_head *head = &io->bio_list;
860 struct bio_entry *be;
861
862 if (list_empty(head))
863 continue;
864
865 f2fs_down_read(&io->bio_list_lock);
866 list_for_each_entry(be, head, list) {
867 if (target)
868 found = (target == be->bio);
869 else
870 found = __has_merged_page(be->bio, NULL,
871 page, 0);
872 if (found)
873 break;
874 }
875 f2fs_up_read(&io->bio_list_lock);
876
877 if (!found)
878 continue;
879
880 found = false;
881
882 f2fs_down_write(&io->bio_list_lock);
883 list_for_each_entry(be, head, list) {
884 if (target)
885 found = (target == be->bio);
886 else
887 found = __has_merged_page(be->bio, NULL,
888 page, 0);
889 if (found) {
890 target = be->bio;
891 del_bio_entry(be);
892 break;
893 }
894 }
895 f2fs_up_write(&io->bio_list_lock);
896 }
897
898 if (found)
899 __submit_bio(sbi, target, DATA);
900 if (bio && *bio) {
901 bio_put(*bio);
902 *bio = NULL;
903 }
904 }
905
f2fs_merge_page_bio(struct f2fs_io_info * fio)906 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
907 {
908 struct bio *bio = *fio->bio;
909 struct page *page = fio->encrypted_page ?
910 fio->encrypted_page : fio->page;
911
912 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
913 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
914 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
915 return -EFSCORRUPTED;
916 }
917
918 trace_f2fs_submit_page_bio(page, fio);
919
920 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
921 fio->new_blkaddr))
922 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
923 alloc_new:
924 if (!bio) {
925 bio = __bio_alloc(fio, BIO_MAX_VECS);
926 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
927 fio->page->index, fio, GFP_NOIO);
928
929 add_bio_entry(fio->sbi, bio, page, fio->temp);
930 } else {
931 if (add_ipu_page(fio, &bio, page))
932 goto alloc_new;
933 }
934
935 if (fio->io_wbc)
936 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
937
938 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
939
940 *fio->last_block = fio->new_blkaddr;
941 *fio->bio = bio;
942
943 return 0;
944 }
945
f2fs_submit_page_write(struct f2fs_io_info * fio)946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 struct f2fs_sb_info *sbi = fio->sbi;
949 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 struct page *bio_page;
952
953 f2fs_bug_on(sbi, is_read_io(fio->op));
954
955 f2fs_down_write(&io->io_rwsem);
956 next:
957 if (fio->in_list) {
958 spin_lock(&io->io_lock);
959 if (list_empty(&io->io_list)) {
960 spin_unlock(&io->io_lock);
961 goto out;
962 }
963 fio = list_first_entry(&io->io_list,
964 struct f2fs_io_info, list);
965 list_del(&fio->list);
966 spin_unlock(&io->io_lock);
967 }
968
969 verify_fio_blkaddr(fio);
970
971 if (fio->encrypted_page)
972 bio_page = fio->encrypted_page;
973 else if (fio->compressed_page)
974 bio_page = fio->compressed_page;
975 else
976 bio_page = fio->page;
977
978 /* set submitted = true as a return value */
979 fio->submitted = true;
980
981 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
982
983 if (io->bio &&
984 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
985 fio->new_blkaddr) ||
986 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
987 bio_page->index, fio)))
988 __submit_merged_bio(io);
989 alloc_new:
990 if (io->bio == NULL) {
991 if (F2FS_IO_ALIGNED(sbi) &&
992 (fio->type == DATA || fio->type == NODE) &&
993 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
994 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
995 fio->retry = true;
996 goto skip;
997 }
998 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
999 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1000 bio_page->index, fio, GFP_NOIO);
1001 io->fio = *fio;
1002 }
1003
1004 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1005 __submit_merged_bio(io);
1006 goto alloc_new;
1007 }
1008
1009 if (fio->io_wbc)
1010 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1011
1012 io->last_block_in_bio = fio->new_blkaddr;
1013
1014 trace_f2fs_submit_page_write(fio->page, fio);
1015 skip:
1016 if (fio->in_list)
1017 goto next;
1018 out:
1019 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1020 !f2fs_is_checkpoint_ready(sbi))
1021 __submit_merged_bio(io);
1022 f2fs_up_write(&io->io_rwsem);
1023 }
1024
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1025 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1026 unsigned nr_pages, blk_opf_t op_flag,
1027 pgoff_t first_idx, bool for_write)
1028 {
1029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030 struct bio *bio;
1031 struct bio_post_read_ctx *ctx = NULL;
1032 unsigned int post_read_steps = 0;
1033 sector_t sector;
1034 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1035
1036 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1037 REQ_OP_READ | op_flag,
1038 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1039 if (!bio)
1040 return ERR_PTR(-ENOMEM);
1041 bio->bi_iter.bi_sector = sector;
1042 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1043 bio->bi_end_io = f2fs_read_end_io;
1044
1045 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1046 post_read_steps |= STEP_DECRYPT;
1047
1048 if (f2fs_need_verity(inode, first_idx))
1049 post_read_steps |= STEP_VERITY;
1050
1051 /*
1052 * STEP_DECOMPRESS is handled specially, since a compressed file might
1053 * contain both compressed and uncompressed clusters. We'll allocate a
1054 * bio_post_read_ctx if the file is compressed, but the caller is
1055 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1056 */
1057
1058 if (post_read_steps || f2fs_compressed_file(inode)) {
1059 /* Due to the mempool, this never fails. */
1060 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1061 ctx->bio = bio;
1062 ctx->sbi = sbi;
1063 ctx->enabled_steps = post_read_steps;
1064 ctx->fs_blkaddr = blkaddr;
1065 bio->bi_private = ctx;
1066 }
1067 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1068
1069 return bio;
1070 }
1071
1072 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1073 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1074 block_t blkaddr, blk_opf_t op_flags,
1075 bool for_write)
1076 {
1077 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1078 struct bio *bio;
1079
1080 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1081 page->index, for_write);
1082 if (IS_ERR(bio))
1083 return PTR_ERR(bio);
1084
1085 /* wait for GCed page writeback via META_MAPPING */
1086 f2fs_wait_on_block_writeback(inode, blkaddr);
1087
1088 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1089 bio_put(bio);
1090 return -EFAULT;
1091 }
1092 ClearPageError(page);
1093 inc_page_count(sbi, F2FS_RD_DATA);
1094 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1095 __submit_bio(sbi, bio, DATA);
1096 return 0;
1097 }
1098
__set_data_blkaddr(struct dnode_of_data * dn)1099 static void __set_data_blkaddr(struct dnode_of_data *dn)
1100 {
1101 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1102 __le32 *addr_array;
1103 int base = 0;
1104
1105 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1106 base = get_extra_isize(dn->inode);
1107
1108 /* Get physical address of data block */
1109 addr_array = blkaddr_in_node(rn);
1110 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1111 }
1112
1113 /*
1114 * Lock ordering for the change of data block address:
1115 * ->data_page
1116 * ->node_page
1117 * update block addresses in the node page
1118 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1119 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1120 {
1121 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1122 __set_data_blkaddr(dn);
1123 if (set_page_dirty(dn->node_page))
1124 dn->node_changed = true;
1125 }
1126
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1127 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1128 {
1129 dn->data_blkaddr = blkaddr;
1130 f2fs_set_data_blkaddr(dn);
1131 f2fs_update_extent_cache(dn);
1132 }
1133
1134 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1135 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1136 {
1137 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1138 int err;
1139
1140 if (!count)
1141 return 0;
1142
1143 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1144 return -EPERM;
1145 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1146 return err;
1147
1148 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1149 dn->ofs_in_node, count);
1150
1151 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1152
1153 for (; count > 0; dn->ofs_in_node++) {
1154 block_t blkaddr = f2fs_data_blkaddr(dn);
1155
1156 if (blkaddr == NULL_ADDR) {
1157 dn->data_blkaddr = NEW_ADDR;
1158 __set_data_blkaddr(dn);
1159 count--;
1160 }
1161 }
1162
1163 if (set_page_dirty(dn->node_page))
1164 dn->node_changed = true;
1165 return 0;
1166 }
1167
1168 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1169 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1170 {
1171 unsigned int ofs_in_node = dn->ofs_in_node;
1172 int ret;
1173
1174 ret = f2fs_reserve_new_blocks(dn, 1);
1175 dn->ofs_in_node = ofs_in_node;
1176 return ret;
1177 }
1178
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1180 {
1181 bool need_put = dn->inode_page ? false : true;
1182 int err;
1183
1184 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1185 if (err)
1186 return err;
1187
1188 if (dn->data_blkaddr == NULL_ADDR)
1189 err = f2fs_reserve_new_block(dn);
1190 if (err || need_put)
1191 f2fs_put_dnode(dn);
1192 return err;
1193 }
1194
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1196 {
1197 struct extent_info ei = {0, };
1198 struct inode *inode = dn->inode;
1199
1200 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1201 dn->data_blkaddr = ei.blk + index - ei.fofs;
1202 return 0;
1203 }
1204
1205 return f2fs_reserve_block(dn, index);
1206 }
1207
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write)1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1209 blk_opf_t op_flags, bool for_write)
1210 {
1211 struct address_space *mapping = inode->i_mapping;
1212 struct dnode_of_data dn;
1213 struct page *page;
1214 struct extent_info ei = {0, };
1215 int err;
1216
1217 page = f2fs_grab_cache_page(mapping, index, for_write);
1218 if (!page)
1219 return ERR_PTR(-ENOMEM);
1220
1221 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1222 dn.data_blkaddr = ei.blk + index - ei.fofs;
1223 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1224 DATA_GENERIC_ENHANCE_READ)) {
1225 err = -EFSCORRUPTED;
1226 f2fs_handle_error(F2FS_I_SB(inode),
1227 ERROR_INVALID_BLKADDR);
1228 goto put_err;
1229 }
1230 goto got_it;
1231 }
1232
1233 set_new_dnode(&dn, inode, NULL, NULL, 0);
1234 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1235 if (err)
1236 goto put_err;
1237 f2fs_put_dnode(&dn);
1238
1239 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1240 err = -ENOENT;
1241 goto put_err;
1242 }
1243 if (dn.data_blkaddr != NEW_ADDR &&
1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245 dn.data_blkaddr,
1246 DATA_GENERIC_ENHANCE)) {
1247 err = -EFSCORRUPTED;
1248 f2fs_handle_error(F2FS_I_SB(inode),
1249 ERROR_INVALID_BLKADDR);
1250 goto put_err;
1251 }
1252 got_it:
1253 if (PageUptodate(page)) {
1254 unlock_page(page);
1255 return page;
1256 }
1257
1258 /*
1259 * A new dentry page is allocated but not able to be written, since its
1260 * new inode page couldn't be allocated due to -ENOSPC.
1261 * In such the case, its blkaddr can be remained as NEW_ADDR.
1262 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1263 * f2fs_init_inode_metadata.
1264 */
1265 if (dn.data_blkaddr == NEW_ADDR) {
1266 zero_user_segment(page, 0, PAGE_SIZE);
1267 if (!PageUptodate(page))
1268 SetPageUptodate(page);
1269 unlock_page(page);
1270 return page;
1271 }
1272
1273 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1274 op_flags, for_write);
1275 if (err)
1276 goto put_err;
1277 return page;
1278
1279 put_err:
1280 f2fs_put_page(page, 1);
1281 return ERR_PTR(err);
1282 }
1283
f2fs_find_data_page(struct inode * inode,pgoff_t index)1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1285 {
1286 struct address_space *mapping = inode->i_mapping;
1287 struct page *page;
1288
1289 page = find_get_page(mapping, index);
1290 if (page && PageUptodate(page))
1291 return page;
1292 f2fs_put_page(page, 0);
1293
1294 page = f2fs_get_read_data_page(inode, index, 0, false);
1295 if (IS_ERR(page))
1296 return page;
1297
1298 if (PageUptodate(page))
1299 return page;
1300
1301 wait_on_page_locked(page);
1302 if (unlikely(!PageUptodate(page))) {
1303 f2fs_put_page(page, 0);
1304 return ERR_PTR(-EIO);
1305 }
1306 return page;
1307 }
1308
1309 /*
1310 * If it tries to access a hole, return an error.
1311 * Because, the callers, functions in dir.c and GC, should be able to know
1312 * whether this page exists or not.
1313 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1315 bool for_write)
1316 {
1317 struct address_space *mapping = inode->i_mapping;
1318 struct page *page;
1319 repeat:
1320 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1321 if (IS_ERR(page))
1322 return page;
1323
1324 /* wait for read completion */
1325 lock_page(page);
1326 if (unlikely(page->mapping != mapping)) {
1327 f2fs_put_page(page, 1);
1328 goto repeat;
1329 }
1330 if (unlikely(!PageUptodate(page))) {
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(-EIO);
1333 }
1334 return page;
1335 }
1336
1337 /*
1338 * Caller ensures that this data page is never allocated.
1339 * A new zero-filled data page is allocated in the page cache.
1340 *
1341 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1342 * f2fs_unlock_op().
1343 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344 * ipage should be released by this function.
1345 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 struct page *ipage, pgoff_t index, bool new_i_size)
1348 {
1349 struct address_space *mapping = inode->i_mapping;
1350 struct page *page;
1351 struct dnode_of_data dn;
1352 int err;
1353
1354 page = f2fs_grab_cache_page(mapping, index, true);
1355 if (!page) {
1356 /*
1357 * before exiting, we should make sure ipage will be released
1358 * if any error occur.
1359 */
1360 f2fs_put_page(ipage, 1);
1361 return ERR_PTR(-ENOMEM);
1362 }
1363
1364 set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 err = f2fs_reserve_block(&dn, index);
1366 if (err) {
1367 f2fs_put_page(page, 1);
1368 return ERR_PTR(err);
1369 }
1370 if (!ipage)
1371 f2fs_put_dnode(&dn);
1372
1373 if (PageUptodate(page))
1374 goto got_it;
1375
1376 if (dn.data_blkaddr == NEW_ADDR) {
1377 zero_user_segment(page, 0, PAGE_SIZE);
1378 if (!PageUptodate(page))
1379 SetPageUptodate(page);
1380 } else {
1381 f2fs_put_page(page, 1);
1382
1383 /* if ipage exists, blkaddr should be NEW_ADDR */
1384 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 page = f2fs_get_lock_data_page(inode, index, true);
1386 if (IS_ERR(page))
1387 return page;
1388 }
1389 got_it:
1390 if (new_i_size && i_size_read(inode) <
1391 ((loff_t)(index + 1) << PAGE_SHIFT))
1392 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1393 return page;
1394 }
1395
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1397 {
1398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 struct f2fs_summary sum;
1400 struct node_info ni;
1401 block_t old_blkaddr;
1402 blkcnt_t count = 1;
1403 int err;
1404
1405 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1406 return -EPERM;
1407
1408 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1409 if (err)
1410 return err;
1411
1412 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 if (dn->data_blkaddr != NULL_ADDR)
1414 goto alloc;
1415
1416 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1417 return err;
1418
1419 alloc:
1420 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1421 old_blkaddr = dn->data_blkaddr;
1422 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1423 &sum, seg_type, NULL);
1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1425 invalidate_mapping_pages(META_MAPPING(sbi),
1426 old_blkaddr, old_blkaddr);
1427 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1428 }
1429 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1430 return 0;
1431 }
1432
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1433 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1434 {
1435 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1436 if (lock)
1437 f2fs_down_read(&sbi->node_change);
1438 else
1439 f2fs_up_read(&sbi->node_change);
1440 } else {
1441 if (lock)
1442 f2fs_lock_op(sbi);
1443 else
1444 f2fs_unlock_op(sbi);
1445 }
1446 }
1447
1448 /*
1449 * f2fs_map_blocks() tries to find or build mapping relationship which
1450 * maps continuous logical blocks to physical blocks, and return such
1451 * info via f2fs_map_blocks structure.
1452 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1453 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1454 int create, int flag)
1455 {
1456 unsigned int maxblocks = map->m_len;
1457 struct dnode_of_data dn;
1458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1460 pgoff_t pgofs, end_offset, end;
1461 int err = 0, ofs = 1;
1462 unsigned int ofs_in_node, last_ofs_in_node;
1463 blkcnt_t prealloc;
1464 struct extent_info ei = {0, };
1465 block_t blkaddr;
1466 unsigned int start_pgofs;
1467 int bidx = 0;
1468
1469 if (!maxblocks)
1470 return 0;
1471
1472 map->m_bdev = inode->i_sb->s_bdev;
1473 map->m_multidev_dio =
1474 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1475
1476 map->m_len = 0;
1477 map->m_flags = 0;
1478
1479 /* it only supports block size == page size */
1480 pgofs = (pgoff_t)map->m_lblk;
1481 end = pgofs + maxblocks;
1482
1483 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1484 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1485 map->m_may_create)
1486 goto next_dnode;
1487
1488 map->m_pblk = ei.blk + pgofs - ei.fofs;
1489 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1490 map->m_flags = F2FS_MAP_MAPPED;
1491 if (map->m_next_extent)
1492 *map->m_next_extent = pgofs + map->m_len;
1493
1494 /* for hardware encryption, but to avoid potential issue in future */
1495 if (flag == F2FS_GET_BLOCK_DIO)
1496 f2fs_wait_on_block_writeback_range(inode,
1497 map->m_pblk, map->m_len);
1498
1499 if (map->m_multidev_dio) {
1500 block_t blk_addr = map->m_pblk;
1501
1502 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1503
1504 map->m_bdev = FDEV(bidx).bdev;
1505 map->m_pblk -= FDEV(bidx).start_blk;
1506 map->m_len = min(map->m_len,
1507 FDEV(bidx).end_blk + 1 - map->m_pblk);
1508
1509 if (map->m_may_create)
1510 f2fs_update_device_state(sbi, inode->i_ino,
1511 blk_addr, map->m_len);
1512 }
1513 goto out;
1514 }
1515
1516 next_dnode:
1517 if (map->m_may_create)
1518 f2fs_do_map_lock(sbi, flag, true);
1519
1520 /* When reading holes, we need its node page */
1521 set_new_dnode(&dn, inode, NULL, NULL, 0);
1522 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1523 if (err) {
1524 if (flag == F2FS_GET_BLOCK_BMAP)
1525 map->m_pblk = 0;
1526
1527 if (err == -ENOENT) {
1528 /*
1529 * There is one exceptional case that read_node_page()
1530 * may return -ENOENT due to filesystem has been
1531 * shutdown or cp_error, so force to convert error
1532 * number to EIO for such case.
1533 */
1534 if (map->m_may_create &&
1535 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1536 f2fs_cp_error(sbi))) {
1537 err = -EIO;
1538 goto unlock_out;
1539 }
1540
1541 err = 0;
1542 if (map->m_next_pgofs)
1543 *map->m_next_pgofs =
1544 f2fs_get_next_page_offset(&dn, pgofs);
1545 if (map->m_next_extent)
1546 *map->m_next_extent =
1547 f2fs_get_next_page_offset(&dn, pgofs);
1548 }
1549 goto unlock_out;
1550 }
1551
1552 start_pgofs = pgofs;
1553 prealloc = 0;
1554 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1555 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1556
1557 next_block:
1558 blkaddr = f2fs_data_blkaddr(&dn);
1559
1560 if (__is_valid_data_blkaddr(blkaddr) &&
1561 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1562 err = -EFSCORRUPTED;
1563 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1564 goto sync_out;
1565 }
1566
1567 if (__is_valid_data_blkaddr(blkaddr)) {
1568 /* use out-place-update for driect IO under LFS mode */
1569 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1570 map->m_may_create) {
1571 err = __allocate_data_block(&dn, map->m_seg_type);
1572 if (err)
1573 goto sync_out;
1574 blkaddr = dn.data_blkaddr;
1575 set_inode_flag(inode, FI_APPEND_WRITE);
1576 }
1577 } else {
1578 if (create) {
1579 if (unlikely(f2fs_cp_error(sbi))) {
1580 err = -EIO;
1581 goto sync_out;
1582 }
1583 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1584 if (blkaddr == NULL_ADDR) {
1585 prealloc++;
1586 last_ofs_in_node = dn.ofs_in_node;
1587 }
1588 } else {
1589 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1590 flag != F2FS_GET_BLOCK_DIO);
1591 err = __allocate_data_block(&dn,
1592 map->m_seg_type);
1593 if (!err) {
1594 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1595 file_need_truncate(inode);
1596 set_inode_flag(inode, FI_APPEND_WRITE);
1597 }
1598 }
1599 if (err)
1600 goto sync_out;
1601 map->m_flags |= F2FS_MAP_NEW;
1602 blkaddr = dn.data_blkaddr;
1603 } else {
1604 if (f2fs_compressed_file(inode) &&
1605 f2fs_sanity_check_cluster(&dn) &&
1606 (flag != F2FS_GET_BLOCK_FIEMAP ||
1607 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1608 err = -EFSCORRUPTED;
1609 f2fs_handle_error(sbi,
1610 ERROR_CORRUPTED_CLUSTER);
1611 goto sync_out;
1612 }
1613 if (flag == F2FS_GET_BLOCK_BMAP) {
1614 map->m_pblk = 0;
1615 goto sync_out;
1616 }
1617 if (flag == F2FS_GET_BLOCK_PRECACHE)
1618 goto sync_out;
1619 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1620 blkaddr == NULL_ADDR) {
1621 if (map->m_next_pgofs)
1622 *map->m_next_pgofs = pgofs + 1;
1623 goto sync_out;
1624 }
1625 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1626 /* for defragment case */
1627 if (map->m_next_pgofs)
1628 *map->m_next_pgofs = pgofs + 1;
1629 goto sync_out;
1630 }
1631 }
1632 }
1633
1634 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1635 goto skip;
1636
1637 if (map->m_multidev_dio)
1638 bidx = f2fs_target_device_index(sbi, blkaddr);
1639
1640 if (map->m_len == 0) {
1641 /* preallocated unwritten block should be mapped for fiemap. */
1642 if (blkaddr == NEW_ADDR)
1643 map->m_flags |= F2FS_MAP_UNWRITTEN;
1644 map->m_flags |= F2FS_MAP_MAPPED;
1645
1646 map->m_pblk = blkaddr;
1647 map->m_len = 1;
1648
1649 if (map->m_multidev_dio)
1650 map->m_bdev = FDEV(bidx).bdev;
1651 } else if ((map->m_pblk != NEW_ADDR &&
1652 blkaddr == (map->m_pblk + ofs)) ||
1653 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1654 flag == F2FS_GET_BLOCK_PRE_DIO) {
1655 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1656 goto sync_out;
1657 ofs++;
1658 map->m_len++;
1659 } else {
1660 goto sync_out;
1661 }
1662
1663 skip:
1664 dn.ofs_in_node++;
1665 pgofs++;
1666
1667 /* preallocate blocks in batch for one dnode page */
1668 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1669 (pgofs == end || dn.ofs_in_node == end_offset)) {
1670
1671 dn.ofs_in_node = ofs_in_node;
1672 err = f2fs_reserve_new_blocks(&dn, prealloc);
1673 if (err)
1674 goto sync_out;
1675
1676 map->m_len += dn.ofs_in_node - ofs_in_node;
1677 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1678 err = -ENOSPC;
1679 goto sync_out;
1680 }
1681 dn.ofs_in_node = end_offset;
1682 }
1683
1684 if (pgofs >= end)
1685 goto sync_out;
1686 else if (dn.ofs_in_node < end_offset)
1687 goto next_block;
1688
1689 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1690 if (map->m_flags & F2FS_MAP_MAPPED) {
1691 unsigned int ofs = start_pgofs - map->m_lblk;
1692
1693 f2fs_update_extent_cache_range(&dn,
1694 start_pgofs, map->m_pblk + ofs,
1695 map->m_len - ofs);
1696 }
1697 }
1698
1699 f2fs_put_dnode(&dn);
1700
1701 if (map->m_may_create) {
1702 f2fs_do_map_lock(sbi, flag, false);
1703 f2fs_balance_fs(sbi, dn.node_changed);
1704 }
1705 goto next_dnode;
1706
1707 sync_out:
1708
1709 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1710 /*
1711 * for hardware encryption, but to avoid potential issue
1712 * in future
1713 */
1714 f2fs_wait_on_block_writeback_range(inode,
1715 map->m_pblk, map->m_len);
1716
1717 if (map->m_multidev_dio) {
1718 block_t blk_addr = map->m_pblk;
1719
1720 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1721
1722 map->m_bdev = FDEV(bidx).bdev;
1723 map->m_pblk -= FDEV(bidx).start_blk;
1724
1725 if (map->m_may_create)
1726 f2fs_update_device_state(sbi, inode->i_ino,
1727 blk_addr, map->m_len);
1728
1729 f2fs_bug_on(sbi, blk_addr + map->m_len >
1730 FDEV(bidx).end_blk + 1);
1731 }
1732 }
1733
1734 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1735 if (map->m_flags & F2FS_MAP_MAPPED) {
1736 unsigned int ofs = start_pgofs - map->m_lblk;
1737
1738 f2fs_update_extent_cache_range(&dn,
1739 start_pgofs, map->m_pblk + ofs,
1740 map->m_len - ofs);
1741 }
1742 if (map->m_next_extent)
1743 *map->m_next_extent = pgofs + 1;
1744 }
1745 f2fs_put_dnode(&dn);
1746 unlock_out:
1747 if (map->m_may_create) {
1748 f2fs_do_map_lock(sbi, flag, false);
1749 f2fs_balance_fs(sbi, dn.node_changed);
1750 }
1751 out:
1752 trace_f2fs_map_blocks(inode, map, create, flag, err);
1753 return err;
1754 }
1755
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1756 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1757 {
1758 struct f2fs_map_blocks map;
1759 block_t last_lblk;
1760 int err;
1761
1762 if (pos + len > i_size_read(inode))
1763 return false;
1764
1765 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1766 map.m_next_pgofs = NULL;
1767 map.m_next_extent = NULL;
1768 map.m_seg_type = NO_CHECK_TYPE;
1769 map.m_may_create = false;
1770 last_lblk = F2FS_BLK_ALIGN(pos + len);
1771
1772 while (map.m_lblk < last_lblk) {
1773 map.m_len = last_lblk - map.m_lblk;
1774 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1775 if (err || map.m_len == 0)
1776 return false;
1777 map.m_lblk += map.m_len;
1778 }
1779 return true;
1780 }
1781
bytes_to_blks(struct inode * inode,u64 bytes)1782 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1783 {
1784 return (bytes >> inode->i_blkbits);
1785 }
1786
blks_to_bytes(struct inode * inode,u64 blks)1787 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1788 {
1789 return (blks << inode->i_blkbits);
1790 }
1791
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1792 static int f2fs_xattr_fiemap(struct inode *inode,
1793 struct fiemap_extent_info *fieinfo)
1794 {
1795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1796 struct page *page;
1797 struct node_info ni;
1798 __u64 phys = 0, len;
1799 __u32 flags;
1800 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1801 int err = 0;
1802
1803 if (f2fs_has_inline_xattr(inode)) {
1804 int offset;
1805
1806 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1807 inode->i_ino, false);
1808 if (!page)
1809 return -ENOMEM;
1810
1811 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1812 if (err) {
1813 f2fs_put_page(page, 1);
1814 return err;
1815 }
1816
1817 phys = blks_to_bytes(inode, ni.blk_addr);
1818 offset = offsetof(struct f2fs_inode, i_addr) +
1819 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1820 get_inline_xattr_addrs(inode));
1821
1822 phys += offset;
1823 len = inline_xattr_size(inode);
1824
1825 f2fs_put_page(page, 1);
1826
1827 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1828
1829 if (!xnid)
1830 flags |= FIEMAP_EXTENT_LAST;
1831
1832 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1833 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1834 if (err)
1835 return err;
1836 }
1837
1838 if (xnid) {
1839 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1840 if (!page)
1841 return -ENOMEM;
1842
1843 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1844 if (err) {
1845 f2fs_put_page(page, 1);
1846 return err;
1847 }
1848
1849 phys = blks_to_bytes(inode, ni.blk_addr);
1850 len = inode->i_sb->s_blocksize;
1851
1852 f2fs_put_page(page, 1);
1853
1854 flags = FIEMAP_EXTENT_LAST;
1855 }
1856
1857 if (phys) {
1858 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1859 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1860 }
1861
1862 return (err < 0 ? err : 0);
1863 }
1864
max_inode_blocks(struct inode * inode)1865 static loff_t max_inode_blocks(struct inode *inode)
1866 {
1867 loff_t result = ADDRS_PER_INODE(inode);
1868 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1869
1870 /* two direct node blocks */
1871 result += (leaf_count * 2);
1872
1873 /* two indirect node blocks */
1874 leaf_count *= NIDS_PER_BLOCK;
1875 result += (leaf_count * 2);
1876
1877 /* one double indirect node block */
1878 leaf_count *= NIDS_PER_BLOCK;
1879 result += leaf_count;
1880
1881 return result;
1882 }
1883
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1884 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1885 u64 start, u64 len)
1886 {
1887 struct f2fs_map_blocks map;
1888 sector_t start_blk, last_blk;
1889 pgoff_t next_pgofs;
1890 u64 logical = 0, phys = 0, size = 0;
1891 u32 flags = 0;
1892 int ret = 0;
1893 bool compr_cluster = false, compr_appended;
1894 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1895 unsigned int count_in_cluster = 0;
1896 loff_t maxbytes;
1897
1898 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1899 ret = f2fs_precache_extents(inode);
1900 if (ret)
1901 return ret;
1902 }
1903
1904 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1905 if (ret)
1906 return ret;
1907
1908 inode_lock(inode);
1909
1910 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1911 if (start > maxbytes) {
1912 ret = -EFBIG;
1913 goto out;
1914 }
1915
1916 if (len > maxbytes || (maxbytes - len) < start)
1917 len = maxbytes - start;
1918
1919 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1920 ret = f2fs_xattr_fiemap(inode, fieinfo);
1921 goto out;
1922 }
1923
1924 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1925 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1926 if (ret != -EAGAIN)
1927 goto out;
1928 }
1929
1930 if (bytes_to_blks(inode, len) == 0)
1931 len = blks_to_bytes(inode, 1);
1932
1933 start_blk = bytes_to_blks(inode, start);
1934 last_blk = bytes_to_blks(inode, start + len - 1);
1935
1936 next:
1937 memset(&map, 0, sizeof(map));
1938 map.m_lblk = start_blk;
1939 map.m_len = bytes_to_blks(inode, len);
1940 map.m_next_pgofs = &next_pgofs;
1941 map.m_seg_type = NO_CHECK_TYPE;
1942
1943 if (compr_cluster) {
1944 map.m_lblk += 1;
1945 map.m_len = cluster_size - count_in_cluster;
1946 }
1947
1948 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1949 if (ret)
1950 goto out;
1951
1952 /* HOLE */
1953 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1954 start_blk = next_pgofs;
1955
1956 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1957 max_inode_blocks(inode)))
1958 goto prep_next;
1959
1960 flags |= FIEMAP_EXTENT_LAST;
1961 }
1962
1963 compr_appended = false;
1964 /* In a case of compressed cluster, append this to the last extent */
1965 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1966 !(map.m_flags & F2FS_MAP_FLAGS))) {
1967 compr_appended = true;
1968 goto skip_fill;
1969 }
1970
1971 if (size) {
1972 flags |= FIEMAP_EXTENT_MERGED;
1973 if (IS_ENCRYPTED(inode))
1974 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1975
1976 ret = fiemap_fill_next_extent(fieinfo, logical,
1977 phys, size, flags);
1978 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1979 if (ret)
1980 goto out;
1981 size = 0;
1982 }
1983
1984 if (start_blk > last_blk)
1985 goto out;
1986
1987 skip_fill:
1988 if (map.m_pblk == COMPRESS_ADDR) {
1989 compr_cluster = true;
1990 count_in_cluster = 1;
1991 } else if (compr_appended) {
1992 unsigned int appended_blks = cluster_size -
1993 count_in_cluster + 1;
1994 size += blks_to_bytes(inode, appended_blks);
1995 start_blk += appended_blks;
1996 compr_cluster = false;
1997 } else {
1998 logical = blks_to_bytes(inode, start_blk);
1999 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2000 blks_to_bytes(inode, map.m_pblk) : 0;
2001 size = blks_to_bytes(inode, map.m_len);
2002 flags = 0;
2003
2004 if (compr_cluster) {
2005 flags = FIEMAP_EXTENT_ENCODED;
2006 count_in_cluster += map.m_len;
2007 if (count_in_cluster == cluster_size) {
2008 compr_cluster = false;
2009 size += blks_to_bytes(inode, 1);
2010 }
2011 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2012 flags = FIEMAP_EXTENT_UNWRITTEN;
2013 }
2014
2015 start_blk += bytes_to_blks(inode, size);
2016 }
2017
2018 prep_next:
2019 cond_resched();
2020 if (fatal_signal_pending(current))
2021 ret = -EINTR;
2022 else
2023 goto next;
2024 out:
2025 if (ret == 1)
2026 ret = 0;
2027
2028 inode_unlock(inode);
2029 return ret;
2030 }
2031
f2fs_readpage_limit(struct inode * inode)2032 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2033 {
2034 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2035 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2036 return inode->i_sb->s_maxbytes;
2037
2038 return i_size_read(inode);
2039 }
2040
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2041 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2042 unsigned nr_pages,
2043 struct f2fs_map_blocks *map,
2044 struct bio **bio_ret,
2045 sector_t *last_block_in_bio,
2046 bool is_readahead)
2047 {
2048 struct bio *bio = *bio_ret;
2049 const unsigned blocksize = blks_to_bytes(inode, 1);
2050 sector_t block_in_file;
2051 sector_t last_block;
2052 sector_t last_block_in_file;
2053 sector_t block_nr;
2054 int ret = 0;
2055
2056 block_in_file = (sector_t)page_index(page);
2057 last_block = block_in_file + nr_pages;
2058 last_block_in_file = bytes_to_blks(inode,
2059 f2fs_readpage_limit(inode) + blocksize - 1);
2060 if (last_block > last_block_in_file)
2061 last_block = last_block_in_file;
2062
2063 /* just zeroing out page which is beyond EOF */
2064 if (block_in_file >= last_block)
2065 goto zero_out;
2066 /*
2067 * Map blocks using the previous result first.
2068 */
2069 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2070 block_in_file > map->m_lblk &&
2071 block_in_file < (map->m_lblk + map->m_len))
2072 goto got_it;
2073
2074 /*
2075 * Then do more f2fs_map_blocks() calls until we are
2076 * done with this page.
2077 */
2078 map->m_lblk = block_in_file;
2079 map->m_len = last_block - block_in_file;
2080
2081 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2082 if (ret)
2083 goto out;
2084 got_it:
2085 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2086 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2087 SetPageMappedToDisk(page);
2088
2089 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2090 DATA_GENERIC_ENHANCE_READ)) {
2091 ret = -EFSCORRUPTED;
2092 f2fs_handle_error(F2FS_I_SB(inode),
2093 ERROR_INVALID_BLKADDR);
2094 goto out;
2095 }
2096 } else {
2097 zero_out:
2098 zero_user_segment(page, 0, PAGE_SIZE);
2099 if (f2fs_need_verity(inode, page->index) &&
2100 !fsverity_verify_page(page)) {
2101 ret = -EIO;
2102 goto out;
2103 }
2104 if (!PageUptodate(page))
2105 SetPageUptodate(page);
2106 unlock_page(page);
2107 goto out;
2108 }
2109
2110 /*
2111 * This page will go to BIO. Do we need to send this
2112 * BIO off first?
2113 */
2114 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2115 *last_block_in_bio, block_nr) ||
2116 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2117 submit_and_realloc:
2118 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2119 bio = NULL;
2120 }
2121 if (bio == NULL) {
2122 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2123 is_readahead ? REQ_RAHEAD : 0, page->index,
2124 false);
2125 if (IS_ERR(bio)) {
2126 ret = PTR_ERR(bio);
2127 bio = NULL;
2128 goto out;
2129 }
2130 }
2131
2132 /*
2133 * If the page is under writeback, we need to wait for
2134 * its completion to see the correct decrypted data.
2135 */
2136 f2fs_wait_on_block_writeback(inode, block_nr);
2137
2138 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2139 goto submit_and_realloc;
2140
2141 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2142 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2143 F2FS_BLKSIZE);
2144 ClearPageError(page);
2145 *last_block_in_bio = block_nr;
2146 goto out;
2147 out:
2148 *bio_ret = bio;
2149 return ret;
2150 }
2151
2152 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2153 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2154 unsigned nr_pages, sector_t *last_block_in_bio,
2155 bool is_readahead, bool for_write)
2156 {
2157 struct dnode_of_data dn;
2158 struct inode *inode = cc->inode;
2159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2160 struct bio *bio = *bio_ret;
2161 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2162 sector_t last_block_in_file;
2163 const unsigned blocksize = blks_to_bytes(inode, 1);
2164 struct decompress_io_ctx *dic = NULL;
2165 struct extent_info ei = {0, };
2166 bool from_dnode = true;
2167 int i;
2168 int ret = 0;
2169
2170 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2171
2172 last_block_in_file = bytes_to_blks(inode,
2173 f2fs_readpage_limit(inode) + blocksize - 1);
2174
2175 /* get rid of pages beyond EOF */
2176 for (i = 0; i < cc->cluster_size; i++) {
2177 struct page *page = cc->rpages[i];
2178
2179 if (!page)
2180 continue;
2181 if ((sector_t)page->index >= last_block_in_file) {
2182 zero_user_segment(page, 0, PAGE_SIZE);
2183 if (!PageUptodate(page))
2184 SetPageUptodate(page);
2185 } else if (!PageUptodate(page)) {
2186 continue;
2187 }
2188 unlock_page(page);
2189 if (for_write)
2190 put_page(page);
2191 cc->rpages[i] = NULL;
2192 cc->nr_rpages--;
2193 }
2194
2195 /* we are done since all pages are beyond EOF */
2196 if (f2fs_cluster_is_empty(cc))
2197 goto out;
2198
2199 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2200 from_dnode = false;
2201
2202 if (!from_dnode)
2203 goto skip_reading_dnode;
2204
2205 set_new_dnode(&dn, inode, NULL, NULL, 0);
2206 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2207 if (ret)
2208 goto out;
2209
2210 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2211
2212 skip_reading_dnode:
2213 for (i = 1; i < cc->cluster_size; i++) {
2214 block_t blkaddr;
2215
2216 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2217 dn.ofs_in_node + i) :
2218 ei.blk + i - 1;
2219
2220 if (!__is_valid_data_blkaddr(blkaddr))
2221 break;
2222
2223 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2224 ret = -EFAULT;
2225 goto out_put_dnode;
2226 }
2227 cc->nr_cpages++;
2228
2229 if (!from_dnode && i >= ei.c_len)
2230 break;
2231 }
2232
2233 /* nothing to decompress */
2234 if (cc->nr_cpages == 0) {
2235 ret = 0;
2236 goto out_put_dnode;
2237 }
2238
2239 dic = f2fs_alloc_dic(cc);
2240 if (IS_ERR(dic)) {
2241 ret = PTR_ERR(dic);
2242 goto out_put_dnode;
2243 }
2244
2245 for (i = 0; i < cc->nr_cpages; i++) {
2246 struct page *page = dic->cpages[i];
2247 block_t blkaddr;
2248 struct bio_post_read_ctx *ctx;
2249
2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2251 dn.ofs_in_node + i + 1) :
2252 ei.blk + i;
2253
2254 f2fs_wait_on_block_writeback(inode, blkaddr);
2255
2256 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2257 if (atomic_dec_and_test(&dic->remaining_pages))
2258 f2fs_decompress_cluster(dic, true);
2259 continue;
2260 }
2261
2262 if (bio && (!page_is_mergeable(sbi, bio,
2263 *last_block_in_bio, blkaddr) ||
2264 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2265 submit_and_realloc:
2266 __submit_bio(sbi, bio, DATA);
2267 bio = NULL;
2268 }
2269
2270 if (!bio) {
2271 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2272 is_readahead ? REQ_RAHEAD : 0,
2273 page->index, for_write);
2274 if (IS_ERR(bio)) {
2275 ret = PTR_ERR(bio);
2276 f2fs_decompress_end_io(dic, ret, true);
2277 f2fs_put_dnode(&dn);
2278 *bio_ret = NULL;
2279 return ret;
2280 }
2281 }
2282
2283 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2284 goto submit_and_realloc;
2285
2286 ctx = get_post_read_ctx(bio);
2287 ctx->enabled_steps |= STEP_DECOMPRESS;
2288 refcount_inc(&dic->refcnt);
2289
2290 inc_page_count(sbi, F2FS_RD_DATA);
2291 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2292 ClearPageError(page);
2293 *last_block_in_bio = blkaddr;
2294 }
2295
2296 if (from_dnode)
2297 f2fs_put_dnode(&dn);
2298
2299 *bio_ret = bio;
2300 return 0;
2301
2302 out_put_dnode:
2303 if (from_dnode)
2304 f2fs_put_dnode(&dn);
2305 out:
2306 for (i = 0; i < cc->cluster_size; i++) {
2307 if (cc->rpages[i]) {
2308 ClearPageUptodate(cc->rpages[i]);
2309 ClearPageError(cc->rpages[i]);
2310 unlock_page(cc->rpages[i]);
2311 }
2312 }
2313 *bio_ret = bio;
2314 return ret;
2315 }
2316 #endif
2317
2318 /*
2319 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2320 * Major change was from block_size == page_size in f2fs by default.
2321 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2322 static int f2fs_mpage_readpages(struct inode *inode,
2323 struct readahead_control *rac, struct page *page)
2324 {
2325 struct bio *bio = NULL;
2326 sector_t last_block_in_bio = 0;
2327 struct f2fs_map_blocks map;
2328 #ifdef CONFIG_F2FS_FS_COMPRESSION
2329 struct compress_ctx cc = {
2330 .inode = inode,
2331 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2332 .cluster_size = F2FS_I(inode)->i_cluster_size,
2333 .cluster_idx = NULL_CLUSTER,
2334 .rpages = NULL,
2335 .cpages = NULL,
2336 .nr_rpages = 0,
2337 .nr_cpages = 0,
2338 };
2339 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2340 #endif
2341 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2342 unsigned max_nr_pages = nr_pages;
2343 int ret = 0;
2344
2345 map.m_pblk = 0;
2346 map.m_lblk = 0;
2347 map.m_len = 0;
2348 map.m_flags = 0;
2349 map.m_next_pgofs = NULL;
2350 map.m_next_extent = NULL;
2351 map.m_seg_type = NO_CHECK_TYPE;
2352 map.m_may_create = false;
2353
2354 for (; nr_pages; nr_pages--) {
2355 if (rac) {
2356 page = readahead_page(rac);
2357 prefetchw(&page->flags);
2358 }
2359
2360 #ifdef CONFIG_F2FS_FS_COMPRESSION
2361 if (f2fs_compressed_file(inode)) {
2362 /* there are remained comressed pages, submit them */
2363 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2364 ret = f2fs_read_multi_pages(&cc, &bio,
2365 max_nr_pages,
2366 &last_block_in_bio,
2367 rac != NULL, false);
2368 f2fs_destroy_compress_ctx(&cc, false);
2369 if (ret)
2370 goto set_error_page;
2371 }
2372 if (cc.cluster_idx == NULL_CLUSTER) {
2373 if (nc_cluster_idx ==
2374 page->index >> cc.log_cluster_size) {
2375 goto read_single_page;
2376 }
2377
2378 ret = f2fs_is_compressed_cluster(inode, page->index);
2379 if (ret < 0)
2380 goto set_error_page;
2381 else if (!ret) {
2382 nc_cluster_idx =
2383 page->index >> cc.log_cluster_size;
2384 goto read_single_page;
2385 }
2386
2387 nc_cluster_idx = NULL_CLUSTER;
2388 }
2389 ret = f2fs_init_compress_ctx(&cc);
2390 if (ret)
2391 goto set_error_page;
2392
2393 f2fs_compress_ctx_add_page(&cc, page);
2394
2395 goto next_page;
2396 }
2397 read_single_page:
2398 #endif
2399
2400 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2401 &bio, &last_block_in_bio, rac);
2402 if (ret) {
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 set_error_page:
2405 #endif
2406 SetPageError(page);
2407 zero_user_segment(page, 0, PAGE_SIZE);
2408 unlock_page(page);
2409 }
2410 #ifdef CONFIG_F2FS_FS_COMPRESSION
2411 next_page:
2412 #endif
2413 if (rac)
2414 put_page(page);
2415
2416 #ifdef CONFIG_F2FS_FS_COMPRESSION
2417 if (f2fs_compressed_file(inode)) {
2418 /* last page */
2419 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2420 ret = f2fs_read_multi_pages(&cc, &bio,
2421 max_nr_pages,
2422 &last_block_in_bio,
2423 rac != NULL, false);
2424 f2fs_destroy_compress_ctx(&cc, false);
2425 }
2426 }
2427 #endif
2428 }
2429 if (bio)
2430 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2431 return ret;
2432 }
2433
f2fs_read_data_folio(struct file * file,struct folio * folio)2434 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2435 {
2436 struct page *page = &folio->page;
2437 struct inode *inode = page_file_mapping(page)->host;
2438 int ret = -EAGAIN;
2439
2440 trace_f2fs_readpage(page, DATA);
2441
2442 if (!f2fs_is_compress_backend_ready(inode)) {
2443 unlock_page(page);
2444 return -EOPNOTSUPP;
2445 }
2446
2447 /* If the file has inline data, try to read it directly */
2448 if (f2fs_has_inline_data(inode))
2449 ret = f2fs_read_inline_data(inode, page);
2450 if (ret == -EAGAIN)
2451 ret = f2fs_mpage_readpages(inode, NULL, page);
2452 return ret;
2453 }
2454
f2fs_readahead(struct readahead_control * rac)2455 static void f2fs_readahead(struct readahead_control *rac)
2456 {
2457 struct inode *inode = rac->mapping->host;
2458
2459 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2460
2461 if (!f2fs_is_compress_backend_ready(inode))
2462 return;
2463
2464 /* If the file has inline data, skip readahead */
2465 if (f2fs_has_inline_data(inode))
2466 return;
2467
2468 f2fs_mpage_readpages(inode, rac, NULL);
2469 }
2470
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2471 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2472 {
2473 struct inode *inode = fio->page->mapping->host;
2474 struct page *mpage, *page;
2475 gfp_t gfp_flags = GFP_NOFS;
2476
2477 if (!f2fs_encrypted_file(inode))
2478 return 0;
2479
2480 page = fio->compressed_page ? fio->compressed_page : fio->page;
2481
2482 /* wait for GCed page writeback via META_MAPPING */
2483 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2484
2485 if (fscrypt_inode_uses_inline_crypto(inode))
2486 return 0;
2487
2488 retry_encrypt:
2489 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490 PAGE_SIZE, 0, gfp_flags);
2491 if (IS_ERR(fio->encrypted_page)) {
2492 /* flush pending IOs and wait for a while in the ENOMEM case */
2493 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2494 f2fs_flush_merged_writes(fio->sbi);
2495 memalloc_retry_wait(GFP_NOFS);
2496 gfp_flags |= __GFP_NOFAIL;
2497 goto retry_encrypt;
2498 }
2499 return PTR_ERR(fio->encrypted_page);
2500 }
2501
2502 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2503 if (mpage) {
2504 if (PageUptodate(mpage))
2505 memcpy(page_address(mpage),
2506 page_address(fio->encrypted_page), PAGE_SIZE);
2507 f2fs_put_page(mpage, 1);
2508 }
2509 return 0;
2510 }
2511
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2512 static inline bool check_inplace_update_policy(struct inode *inode,
2513 struct f2fs_io_info *fio)
2514 {
2515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516 unsigned int policy = SM_I(sbi)->ipu_policy;
2517
2518 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2519 is_inode_flag_set(inode, FI_OPU_WRITE))
2520 return false;
2521 if (policy & (0x1 << F2FS_IPU_FORCE))
2522 return true;
2523 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2524 return true;
2525 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2526 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2527 return true;
2528 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2529 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2530 return true;
2531
2532 /*
2533 * IPU for rewrite async pages
2534 */
2535 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2536 fio && fio->op == REQ_OP_WRITE &&
2537 !(fio->op_flags & REQ_SYNC) &&
2538 !IS_ENCRYPTED(inode))
2539 return true;
2540
2541 /* this is only set during fdatasync */
2542 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2543 is_inode_flag_set(inode, FI_NEED_IPU))
2544 return true;
2545
2546 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2547 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2548 return true;
2549
2550 return false;
2551 }
2552
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2553 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2554 {
2555 /* swap file is migrating in aligned write mode */
2556 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2557 return false;
2558
2559 if (f2fs_is_pinned_file(inode))
2560 return true;
2561
2562 /* if this is cold file, we should overwrite to avoid fragmentation */
2563 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2564 return true;
2565
2566 return check_inplace_update_policy(inode, fio);
2567 }
2568
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2569 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2570 {
2571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2572
2573 /* The below cases were checked when setting it. */
2574 if (f2fs_is_pinned_file(inode))
2575 return false;
2576 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2577 return true;
2578 if (f2fs_lfs_mode(sbi))
2579 return true;
2580 if (S_ISDIR(inode->i_mode))
2581 return true;
2582 if (IS_NOQUOTA(inode))
2583 return true;
2584 if (f2fs_is_atomic_file(inode))
2585 return true;
2586
2587 /* swap file is migrating in aligned write mode */
2588 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2589 return true;
2590
2591 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2592 return true;
2593
2594 if (fio) {
2595 if (page_private_gcing(fio->page))
2596 return true;
2597 if (page_private_dummy(fio->page))
2598 return true;
2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2600 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2601 return true;
2602 }
2603 return false;
2604 }
2605
need_inplace_update(struct f2fs_io_info * fio)2606 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2607 {
2608 struct inode *inode = fio->page->mapping->host;
2609
2610 if (f2fs_should_update_outplace(inode, fio))
2611 return false;
2612
2613 return f2fs_should_update_inplace(inode, fio);
2614 }
2615
f2fs_do_write_data_page(struct f2fs_io_info * fio)2616 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2617 {
2618 struct page *page = fio->page;
2619 struct inode *inode = page->mapping->host;
2620 struct dnode_of_data dn;
2621 struct extent_info ei = {0, };
2622 struct node_info ni;
2623 bool ipu_force = false;
2624 int err = 0;
2625
2626 /* Use COW inode to make dnode_of_data for atomic write */
2627 if (f2fs_is_atomic_file(inode))
2628 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2629 else
2630 set_new_dnode(&dn, inode, NULL, NULL, 0);
2631
2632 if (need_inplace_update(fio) &&
2633 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2634 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2635
2636 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2637 DATA_GENERIC_ENHANCE)) {
2638 f2fs_handle_error(fio->sbi,
2639 ERROR_INVALID_BLKADDR);
2640 return -EFSCORRUPTED;
2641 }
2642
2643 ipu_force = true;
2644 fio->need_lock = LOCK_DONE;
2645 goto got_it;
2646 }
2647
2648 /* Deadlock due to between page->lock and f2fs_lock_op */
2649 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2650 return -EAGAIN;
2651
2652 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2653 if (err)
2654 goto out;
2655
2656 fio->old_blkaddr = dn.data_blkaddr;
2657
2658 /* This page is already truncated */
2659 if (fio->old_blkaddr == NULL_ADDR) {
2660 ClearPageUptodate(page);
2661 clear_page_private_gcing(page);
2662 goto out_writepage;
2663 }
2664 got_it:
2665 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2666 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2667 DATA_GENERIC_ENHANCE)) {
2668 err = -EFSCORRUPTED;
2669 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2670 goto out_writepage;
2671 }
2672
2673 /*
2674 * If current allocation needs SSR,
2675 * it had better in-place writes for updated data.
2676 */
2677 if (ipu_force ||
2678 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2679 need_inplace_update(fio))) {
2680 err = f2fs_encrypt_one_page(fio);
2681 if (err)
2682 goto out_writepage;
2683
2684 set_page_writeback(page);
2685 ClearPageError(page);
2686 f2fs_put_dnode(&dn);
2687 if (fio->need_lock == LOCK_REQ)
2688 f2fs_unlock_op(fio->sbi);
2689 err = f2fs_inplace_write_data(fio);
2690 if (err) {
2691 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2692 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2693 if (PageWriteback(page))
2694 end_page_writeback(page);
2695 } else {
2696 set_inode_flag(inode, FI_UPDATE_WRITE);
2697 }
2698 trace_f2fs_do_write_data_page(fio->page, IPU);
2699 return err;
2700 }
2701
2702 if (fio->need_lock == LOCK_RETRY) {
2703 if (!f2fs_trylock_op(fio->sbi)) {
2704 err = -EAGAIN;
2705 goto out_writepage;
2706 }
2707 fio->need_lock = LOCK_REQ;
2708 }
2709
2710 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2711 if (err)
2712 goto out_writepage;
2713
2714 fio->version = ni.version;
2715
2716 err = f2fs_encrypt_one_page(fio);
2717 if (err)
2718 goto out_writepage;
2719
2720 set_page_writeback(page);
2721 ClearPageError(page);
2722
2723 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2724 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2725
2726 /* LFS mode write path */
2727 f2fs_outplace_write_data(&dn, fio);
2728 trace_f2fs_do_write_data_page(page, OPU);
2729 set_inode_flag(inode, FI_APPEND_WRITE);
2730 if (page->index == 0)
2731 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2732 out_writepage:
2733 f2fs_put_dnode(&dn);
2734 out:
2735 if (fio->need_lock == LOCK_REQ)
2736 f2fs_unlock_op(fio->sbi);
2737 return err;
2738 }
2739
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2740 int f2fs_write_single_data_page(struct page *page, int *submitted,
2741 struct bio **bio,
2742 sector_t *last_block,
2743 struct writeback_control *wbc,
2744 enum iostat_type io_type,
2745 int compr_blocks,
2746 bool allow_balance)
2747 {
2748 struct inode *inode = page->mapping->host;
2749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2750 loff_t i_size = i_size_read(inode);
2751 const pgoff_t end_index = ((unsigned long long)i_size)
2752 >> PAGE_SHIFT;
2753 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2754 unsigned offset = 0;
2755 bool need_balance_fs = false;
2756 int err = 0;
2757 struct f2fs_io_info fio = {
2758 .sbi = sbi,
2759 .ino = inode->i_ino,
2760 .type = DATA,
2761 .op = REQ_OP_WRITE,
2762 .op_flags = wbc_to_write_flags(wbc),
2763 .old_blkaddr = NULL_ADDR,
2764 .page = page,
2765 .encrypted_page = NULL,
2766 .submitted = false,
2767 .compr_blocks = compr_blocks,
2768 .need_lock = LOCK_RETRY,
2769 .post_read = f2fs_post_read_required(inode),
2770 .io_type = io_type,
2771 .io_wbc = wbc,
2772 .bio = bio,
2773 .last_block = last_block,
2774 };
2775
2776 trace_f2fs_writepage(page, DATA);
2777
2778 /* we should bypass data pages to proceed the kworkder jobs */
2779 if (unlikely(f2fs_cp_error(sbi))) {
2780 mapping_set_error(page->mapping, -EIO);
2781 /*
2782 * don't drop any dirty dentry pages for keeping lastest
2783 * directory structure.
2784 */
2785 if (S_ISDIR(inode->i_mode))
2786 goto redirty_out;
2787 goto out;
2788 }
2789
2790 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2791 goto redirty_out;
2792
2793 if (page->index < end_index ||
2794 f2fs_verity_in_progress(inode) ||
2795 compr_blocks)
2796 goto write;
2797
2798 /*
2799 * If the offset is out-of-range of file size,
2800 * this page does not have to be written to disk.
2801 */
2802 offset = i_size & (PAGE_SIZE - 1);
2803 if ((page->index >= end_index + 1) || !offset)
2804 goto out;
2805
2806 zero_user_segment(page, offset, PAGE_SIZE);
2807 write:
2808 if (f2fs_is_drop_cache(inode))
2809 goto out;
2810
2811 /* Dentry/quota blocks are controlled by checkpoint */
2812 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2813 /*
2814 * We need to wait for node_write to avoid block allocation during
2815 * checkpoint. This can only happen to quota writes which can cause
2816 * the below discard race condition.
2817 */
2818 if (IS_NOQUOTA(inode))
2819 f2fs_down_read(&sbi->node_write);
2820
2821 fio.need_lock = LOCK_DONE;
2822 err = f2fs_do_write_data_page(&fio);
2823
2824 if (IS_NOQUOTA(inode))
2825 f2fs_up_read(&sbi->node_write);
2826
2827 goto done;
2828 }
2829
2830 if (!wbc->for_reclaim)
2831 need_balance_fs = true;
2832 else if (has_not_enough_free_secs(sbi, 0, 0))
2833 goto redirty_out;
2834 else
2835 set_inode_flag(inode, FI_HOT_DATA);
2836
2837 err = -EAGAIN;
2838 if (f2fs_has_inline_data(inode)) {
2839 err = f2fs_write_inline_data(inode, page);
2840 if (!err)
2841 goto out;
2842 }
2843
2844 if (err == -EAGAIN) {
2845 err = f2fs_do_write_data_page(&fio);
2846 if (err == -EAGAIN) {
2847 fio.need_lock = LOCK_REQ;
2848 err = f2fs_do_write_data_page(&fio);
2849 }
2850 }
2851
2852 if (err) {
2853 file_set_keep_isize(inode);
2854 } else {
2855 spin_lock(&F2FS_I(inode)->i_size_lock);
2856 if (F2FS_I(inode)->last_disk_size < psize)
2857 F2FS_I(inode)->last_disk_size = psize;
2858 spin_unlock(&F2FS_I(inode)->i_size_lock);
2859 }
2860
2861 done:
2862 if (err && err != -ENOENT)
2863 goto redirty_out;
2864
2865 out:
2866 inode_dec_dirty_pages(inode);
2867 if (err) {
2868 ClearPageUptodate(page);
2869 clear_page_private_gcing(page);
2870 }
2871
2872 if (wbc->for_reclaim) {
2873 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2874 clear_inode_flag(inode, FI_HOT_DATA);
2875 f2fs_remove_dirty_inode(inode);
2876 submitted = NULL;
2877 }
2878 unlock_page(page);
2879 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2880 !F2FS_I(inode)->wb_task && allow_balance)
2881 f2fs_balance_fs(sbi, need_balance_fs);
2882
2883 if (unlikely(f2fs_cp_error(sbi))) {
2884 f2fs_submit_merged_write(sbi, DATA);
2885 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2886 submitted = NULL;
2887 }
2888
2889 if (submitted)
2890 *submitted = fio.submitted ? 1 : 0;
2891
2892 return 0;
2893
2894 redirty_out:
2895 redirty_page_for_writepage(wbc, page);
2896 /*
2897 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2898 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2899 * file_write_and_wait_range() will see EIO error, which is critical
2900 * to return value of fsync() followed by atomic_write failure to user.
2901 */
2902 if (!err || wbc->for_reclaim)
2903 return AOP_WRITEPAGE_ACTIVATE;
2904 unlock_page(page);
2905 return err;
2906 }
2907
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2908 static int f2fs_write_data_page(struct page *page,
2909 struct writeback_control *wbc)
2910 {
2911 #ifdef CONFIG_F2FS_FS_COMPRESSION
2912 struct inode *inode = page->mapping->host;
2913
2914 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2915 goto out;
2916
2917 if (f2fs_compressed_file(inode)) {
2918 if (f2fs_is_compressed_cluster(inode, page->index)) {
2919 redirty_page_for_writepage(wbc, page);
2920 return AOP_WRITEPAGE_ACTIVATE;
2921 }
2922 }
2923 out:
2924 #endif
2925
2926 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2927 wbc, FS_DATA_IO, 0, true);
2928 }
2929
2930 /*
2931 * This function was copied from write_cche_pages from mm/page-writeback.c.
2932 * The major change is making write step of cold data page separately from
2933 * warm/hot data page.
2934 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2935 static int f2fs_write_cache_pages(struct address_space *mapping,
2936 struct writeback_control *wbc,
2937 enum iostat_type io_type)
2938 {
2939 int ret = 0;
2940 int done = 0, retry = 0;
2941 struct page *pages[F2FS_ONSTACK_PAGES];
2942 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2943 struct bio *bio = NULL;
2944 sector_t last_block;
2945 #ifdef CONFIG_F2FS_FS_COMPRESSION
2946 struct inode *inode = mapping->host;
2947 struct compress_ctx cc = {
2948 .inode = inode,
2949 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2950 .cluster_size = F2FS_I(inode)->i_cluster_size,
2951 .cluster_idx = NULL_CLUSTER,
2952 .rpages = NULL,
2953 .nr_rpages = 0,
2954 .cpages = NULL,
2955 .valid_nr_cpages = 0,
2956 .rbuf = NULL,
2957 .cbuf = NULL,
2958 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2959 .private = NULL,
2960 };
2961 #endif
2962 int nr_pages;
2963 pgoff_t index;
2964 pgoff_t end; /* Inclusive */
2965 pgoff_t done_index;
2966 int range_whole = 0;
2967 xa_mark_t tag;
2968 int nwritten = 0;
2969 int submitted = 0;
2970 int i;
2971
2972 if (get_dirty_pages(mapping->host) <=
2973 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2974 set_inode_flag(mapping->host, FI_HOT_DATA);
2975 else
2976 clear_inode_flag(mapping->host, FI_HOT_DATA);
2977
2978 if (wbc->range_cyclic) {
2979 index = mapping->writeback_index; /* prev offset */
2980 end = -1;
2981 } else {
2982 index = wbc->range_start >> PAGE_SHIFT;
2983 end = wbc->range_end >> PAGE_SHIFT;
2984 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2985 range_whole = 1;
2986 }
2987 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2988 tag = PAGECACHE_TAG_TOWRITE;
2989 else
2990 tag = PAGECACHE_TAG_DIRTY;
2991 retry:
2992 retry = 0;
2993 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2994 tag_pages_for_writeback(mapping, index, end);
2995 done_index = index;
2996 while (!done && !retry && (index <= end)) {
2997 nr_pages = find_get_pages_range_tag(mapping, &index, end,
2998 tag, F2FS_ONSTACK_PAGES, pages);
2999 if (nr_pages == 0)
3000 break;
3001
3002 for (i = 0; i < nr_pages; i++) {
3003 struct page *page = pages[i];
3004 bool need_readd;
3005 readd:
3006 need_readd = false;
3007 #ifdef CONFIG_F2FS_FS_COMPRESSION
3008 if (f2fs_compressed_file(inode)) {
3009 void *fsdata = NULL;
3010 struct page *pagep;
3011 int ret2;
3012
3013 ret = f2fs_init_compress_ctx(&cc);
3014 if (ret) {
3015 done = 1;
3016 break;
3017 }
3018
3019 if (!f2fs_cluster_can_merge_page(&cc,
3020 page->index)) {
3021 ret = f2fs_write_multi_pages(&cc,
3022 &submitted, wbc, io_type);
3023 if (!ret)
3024 need_readd = true;
3025 goto result;
3026 }
3027
3028 if (unlikely(f2fs_cp_error(sbi)))
3029 goto lock_page;
3030
3031 if (!f2fs_cluster_is_empty(&cc))
3032 goto lock_page;
3033
3034 if (f2fs_all_cluster_page_ready(&cc,
3035 pages, i, nr_pages, true))
3036 goto lock_page;
3037
3038 ret2 = f2fs_prepare_compress_overwrite(
3039 inode, &pagep,
3040 page->index, &fsdata);
3041 if (ret2 < 0) {
3042 ret = ret2;
3043 done = 1;
3044 break;
3045 } else if (ret2 &&
3046 (!f2fs_compress_write_end(inode,
3047 fsdata, page->index, 1) ||
3048 !f2fs_all_cluster_page_ready(&cc,
3049 pages, i, nr_pages, false))) {
3050 retry = 1;
3051 break;
3052 }
3053 }
3054 #endif
3055 /* give a priority to WB_SYNC threads */
3056 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3057 wbc->sync_mode == WB_SYNC_NONE) {
3058 done = 1;
3059 break;
3060 }
3061 #ifdef CONFIG_F2FS_FS_COMPRESSION
3062 lock_page:
3063 #endif
3064 done_index = page->index;
3065 retry_write:
3066 lock_page(page);
3067
3068 if (unlikely(page->mapping != mapping)) {
3069 continue_unlock:
3070 unlock_page(page);
3071 continue;
3072 }
3073
3074 if (!PageDirty(page)) {
3075 /* someone wrote it for us */
3076 goto continue_unlock;
3077 }
3078
3079 if (PageWriteback(page)) {
3080 if (wbc->sync_mode != WB_SYNC_NONE)
3081 f2fs_wait_on_page_writeback(page,
3082 DATA, true, true);
3083 else
3084 goto continue_unlock;
3085 }
3086
3087 if (!clear_page_dirty_for_io(page))
3088 goto continue_unlock;
3089
3090 #ifdef CONFIG_F2FS_FS_COMPRESSION
3091 if (f2fs_compressed_file(inode)) {
3092 get_page(page);
3093 f2fs_compress_ctx_add_page(&cc, page);
3094 continue;
3095 }
3096 #endif
3097 ret = f2fs_write_single_data_page(page, &submitted,
3098 &bio, &last_block, wbc, io_type,
3099 0, true);
3100 if (ret == AOP_WRITEPAGE_ACTIVATE)
3101 unlock_page(page);
3102 #ifdef CONFIG_F2FS_FS_COMPRESSION
3103 result:
3104 #endif
3105 nwritten += submitted;
3106 wbc->nr_to_write -= submitted;
3107
3108 if (unlikely(ret)) {
3109 /*
3110 * keep nr_to_write, since vfs uses this to
3111 * get # of written pages.
3112 */
3113 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3114 ret = 0;
3115 goto next;
3116 } else if (ret == -EAGAIN) {
3117 ret = 0;
3118 if (wbc->sync_mode == WB_SYNC_ALL) {
3119 f2fs_io_schedule_timeout(
3120 DEFAULT_IO_TIMEOUT);
3121 goto retry_write;
3122 }
3123 goto next;
3124 }
3125 done_index = page->index + 1;
3126 done = 1;
3127 break;
3128 }
3129
3130 if (wbc->nr_to_write <= 0 &&
3131 wbc->sync_mode == WB_SYNC_NONE) {
3132 done = 1;
3133 break;
3134 }
3135 next:
3136 if (need_readd)
3137 goto readd;
3138 }
3139 release_pages(pages, nr_pages);
3140 cond_resched();
3141 }
3142 #ifdef CONFIG_F2FS_FS_COMPRESSION
3143 /* flush remained pages in compress cluster */
3144 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3145 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3146 nwritten += submitted;
3147 wbc->nr_to_write -= submitted;
3148 if (ret) {
3149 done = 1;
3150 retry = 0;
3151 }
3152 }
3153 if (f2fs_compressed_file(inode))
3154 f2fs_destroy_compress_ctx(&cc, false);
3155 #endif
3156 if (retry) {
3157 index = 0;
3158 end = -1;
3159 goto retry;
3160 }
3161 if (wbc->range_cyclic && !done)
3162 done_index = 0;
3163 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3164 mapping->writeback_index = done_index;
3165
3166 if (nwritten)
3167 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3168 NULL, 0, DATA);
3169 /* submit cached bio of IPU write */
3170 if (bio)
3171 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3172
3173 return ret;
3174 }
3175
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3176 static inline bool __should_serialize_io(struct inode *inode,
3177 struct writeback_control *wbc)
3178 {
3179 /* to avoid deadlock in path of data flush */
3180 if (F2FS_I(inode)->wb_task)
3181 return false;
3182
3183 if (!S_ISREG(inode->i_mode))
3184 return false;
3185 if (IS_NOQUOTA(inode))
3186 return false;
3187
3188 if (f2fs_need_compress_data(inode))
3189 return true;
3190 if (wbc->sync_mode != WB_SYNC_ALL)
3191 return true;
3192 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3193 return true;
3194 return false;
3195 }
3196
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3197 static int __f2fs_write_data_pages(struct address_space *mapping,
3198 struct writeback_control *wbc,
3199 enum iostat_type io_type)
3200 {
3201 struct inode *inode = mapping->host;
3202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3203 struct blk_plug plug;
3204 int ret;
3205 bool locked = false;
3206
3207 /* deal with chardevs and other special file */
3208 if (!mapping->a_ops->writepage)
3209 return 0;
3210
3211 /* skip writing if there is no dirty page in this inode */
3212 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3213 return 0;
3214
3215 /* during POR, we don't need to trigger writepage at all. */
3216 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3217 goto skip_write;
3218
3219 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3220 wbc->sync_mode == WB_SYNC_NONE &&
3221 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3222 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3223 goto skip_write;
3224
3225 /* skip writing in file defragment preparing stage */
3226 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3227 goto skip_write;
3228
3229 trace_f2fs_writepages(mapping->host, wbc, DATA);
3230
3231 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3232 if (wbc->sync_mode == WB_SYNC_ALL)
3233 atomic_inc(&sbi->wb_sync_req[DATA]);
3234 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3235 /* to avoid potential deadlock */
3236 if (current->plug)
3237 blk_finish_plug(current->plug);
3238 goto skip_write;
3239 }
3240
3241 if (__should_serialize_io(inode, wbc)) {
3242 mutex_lock(&sbi->writepages);
3243 locked = true;
3244 }
3245
3246 blk_start_plug(&plug);
3247 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3248 blk_finish_plug(&plug);
3249
3250 if (locked)
3251 mutex_unlock(&sbi->writepages);
3252
3253 if (wbc->sync_mode == WB_SYNC_ALL)
3254 atomic_dec(&sbi->wb_sync_req[DATA]);
3255 /*
3256 * if some pages were truncated, we cannot guarantee its mapping->host
3257 * to detect pending bios.
3258 */
3259
3260 f2fs_remove_dirty_inode(inode);
3261 return ret;
3262
3263 skip_write:
3264 wbc->pages_skipped += get_dirty_pages(inode);
3265 trace_f2fs_writepages(mapping->host, wbc, DATA);
3266 return 0;
3267 }
3268
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3269 static int f2fs_write_data_pages(struct address_space *mapping,
3270 struct writeback_control *wbc)
3271 {
3272 struct inode *inode = mapping->host;
3273
3274 return __f2fs_write_data_pages(mapping, wbc,
3275 F2FS_I(inode)->cp_task == current ?
3276 FS_CP_DATA_IO : FS_DATA_IO);
3277 }
3278
f2fs_write_failed(struct inode * inode,loff_t to)3279 void f2fs_write_failed(struct inode *inode, loff_t to)
3280 {
3281 loff_t i_size = i_size_read(inode);
3282
3283 if (IS_NOQUOTA(inode))
3284 return;
3285
3286 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3287 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3288 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3289 filemap_invalidate_lock(inode->i_mapping);
3290
3291 truncate_pagecache(inode, i_size);
3292 f2fs_truncate_blocks(inode, i_size, true);
3293
3294 filemap_invalidate_unlock(inode->i_mapping);
3295 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3296 }
3297 }
3298
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3299 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3300 struct page *page, loff_t pos, unsigned len,
3301 block_t *blk_addr, bool *node_changed)
3302 {
3303 struct inode *inode = page->mapping->host;
3304 pgoff_t index = page->index;
3305 struct dnode_of_data dn;
3306 struct page *ipage;
3307 bool locked = false;
3308 struct extent_info ei = {0, };
3309 int err = 0;
3310 int flag;
3311
3312 /*
3313 * If a whole page is being written and we already preallocated all the
3314 * blocks, then there is no need to get a block address now.
3315 */
3316 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3317 return 0;
3318
3319 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3320 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3321 flag = F2FS_GET_BLOCK_DEFAULT;
3322 else
3323 flag = F2FS_GET_BLOCK_PRE_AIO;
3324
3325 if (f2fs_has_inline_data(inode) ||
3326 (pos & PAGE_MASK) >= i_size_read(inode)) {
3327 f2fs_do_map_lock(sbi, flag, true);
3328 locked = true;
3329 }
3330
3331 restart:
3332 /* check inline_data */
3333 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3334 if (IS_ERR(ipage)) {
3335 err = PTR_ERR(ipage);
3336 goto unlock_out;
3337 }
3338
3339 set_new_dnode(&dn, inode, ipage, ipage, 0);
3340
3341 if (f2fs_has_inline_data(inode)) {
3342 if (pos + len <= MAX_INLINE_DATA(inode)) {
3343 f2fs_do_read_inline_data(page, ipage);
3344 set_inode_flag(inode, FI_DATA_EXIST);
3345 if (inode->i_nlink)
3346 set_page_private_inline(ipage);
3347 } else {
3348 err = f2fs_convert_inline_page(&dn, page);
3349 if (err)
3350 goto out;
3351 if (dn.data_blkaddr == NULL_ADDR)
3352 err = f2fs_get_block(&dn, index);
3353 }
3354 } else if (locked) {
3355 err = f2fs_get_block(&dn, index);
3356 } else {
3357 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3358 dn.data_blkaddr = ei.blk + index - ei.fofs;
3359 } else {
3360 /* hole case */
3361 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3362 if (err || dn.data_blkaddr == NULL_ADDR) {
3363 f2fs_put_dnode(&dn);
3364 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3365 true);
3366 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3367 locked = true;
3368 goto restart;
3369 }
3370 }
3371 }
3372
3373 /* convert_inline_page can make node_changed */
3374 *blk_addr = dn.data_blkaddr;
3375 *node_changed = dn.node_changed;
3376 out:
3377 f2fs_put_dnode(&dn);
3378 unlock_out:
3379 if (locked)
3380 f2fs_do_map_lock(sbi, flag, false);
3381 return err;
3382 }
3383
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3384 static int __find_data_block(struct inode *inode, pgoff_t index,
3385 block_t *blk_addr)
3386 {
3387 struct dnode_of_data dn;
3388 struct page *ipage;
3389 struct extent_info ei = {0, };
3390 int err = 0;
3391
3392 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3393 if (IS_ERR(ipage))
3394 return PTR_ERR(ipage);
3395
3396 set_new_dnode(&dn, inode, ipage, ipage, 0);
3397
3398 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3399 dn.data_blkaddr = ei.blk + index - ei.fofs;
3400 } else {
3401 /* hole case */
3402 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3403 if (err) {
3404 dn.data_blkaddr = NULL_ADDR;
3405 err = 0;
3406 }
3407 }
3408 *blk_addr = dn.data_blkaddr;
3409 f2fs_put_dnode(&dn);
3410 return err;
3411 }
3412
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3413 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3414 block_t *blk_addr, bool *node_changed)
3415 {
3416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3417 struct dnode_of_data dn;
3418 struct page *ipage;
3419 int err = 0;
3420
3421 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3422
3423 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3424 if (IS_ERR(ipage)) {
3425 err = PTR_ERR(ipage);
3426 goto unlock_out;
3427 }
3428 set_new_dnode(&dn, inode, ipage, ipage, 0);
3429
3430 err = f2fs_get_block(&dn, index);
3431
3432 *blk_addr = dn.data_blkaddr;
3433 *node_changed = dn.node_changed;
3434 f2fs_put_dnode(&dn);
3435
3436 unlock_out:
3437 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3438 return err;
3439 }
3440
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3441 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3442 struct page *page, loff_t pos, unsigned int len,
3443 block_t *blk_addr, bool *node_changed)
3444 {
3445 struct inode *inode = page->mapping->host;
3446 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3447 pgoff_t index = page->index;
3448 int err = 0;
3449 block_t ori_blk_addr = NULL_ADDR;
3450
3451 /* If pos is beyond the end of file, reserve a new block in COW inode */
3452 if ((pos & PAGE_MASK) >= i_size_read(inode))
3453 goto reserve_block;
3454
3455 /* Look for the block in COW inode first */
3456 err = __find_data_block(cow_inode, index, blk_addr);
3457 if (err)
3458 return err;
3459 else if (*blk_addr != NULL_ADDR)
3460 return 0;
3461
3462 /* Look for the block in the original inode */
3463 err = __find_data_block(inode, index, &ori_blk_addr);
3464 if (err)
3465 return err;
3466
3467 reserve_block:
3468 /* Finally, we should reserve a new block in COW inode for the update */
3469 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3470 if (err)
3471 return err;
3472 inc_atomic_write_cnt(inode);
3473
3474 if (ori_blk_addr != NULL_ADDR)
3475 *blk_addr = ori_blk_addr;
3476 return 0;
3477 }
3478
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3479 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3480 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3481 {
3482 struct inode *inode = mapping->host;
3483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3484 struct page *page = NULL;
3485 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3486 bool need_balance = false;
3487 block_t blkaddr = NULL_ADDR;
3488 int err = 0;
3489
3490 trace_f2fs_write_begin(inode, pos, len);
3491
3492 if (!f2fs_is_checkpoint_ready(sbi)) {
3493 err = -ENOSPC;
3494 goto fail;
3495 }
3496
3497 /*
3498 * We should check this at this moment to avoid deadlock on inode page
3499 * and #0 page. The locking rule for inline_data conversion should be:
3500 * lock_page(page #0) -> lock_page(inode_page)
3501 */
3502 if (index != 0) {
3503 err = f2fs_convert_inline_inode(inode);
3504 if (err)
3505 goto fail;
3506 }
3507
3508 #ifdef CONFIG_F2FS_FS_COMPRESSION
3509 if (f2fs_compressed_file(inode)) {
3510 int ret;
3511
3512 *fsdata = NULL;
3513
3514 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3515 goto repeat;
3516
3517 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3518 index, fsdata);
3519 if (ret < 0) {
3520 err = ret;
3521 goto fail;
3522 } else if (ret) {
3523 return 0;
3524 }
3525 }
3526 #endif
3527
3528 repeat:
3529 /*
3530 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3531 * wait_for_stable_page. Will wait that below with our IO control.
3532 */
3533 page = f2fs_pagecache_get_page(mapping, index,
3534 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3535 if (!page) {
3536 err = -ENOMEM;
3537 goto fail;
3538 }
3539
3540 /* TODO: cluster can be compressed due to race with .writepage */
3541
3542 *pagep = page;
3543
3544 if (f2fs_is_atomic_file(inode))
3545 err = prepare_atomic_write_begin(sbi, page, pos, len,
3546 &blkaddr, &need_balance);
3547 else
3548 err = prepare_write_begin(sbi, page, pos, len,
3549 &blkaddr, &need_balance);
3550 if (err)
3551 goto fail;
3552
3553 if (need_balance && !IS_NOQUOTA(inode) &&
3554 has_not_enough_free_secs(sbi, 0, 0)) {
3555 unlock_page(page);
3556 f2fs_balance_fs(sbi, true);
3557 lock_page(page);
3558 if (page->mapping != mapping) {
3559 /* The page got truncated from under us */
3560 f2fs_put_page(page, 1);
3561 goto repeat;
3562 }
3563 }
3564
3565 f2fs_wait_on_page_writeback(page, DATA, false, true);
3566
3567 if (len == PAGE_SIZE || PageUptodate(page))
3568 return 0;
3569
3570 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3571 !f2fs_verity_in_progress(inode)) {
3572 zero_user_segment(page, len, PAGE_SIZE);
3573 return 0;
3574 }
3575
3576 if (blkaddr == NEW_ADDR) {
3577 zero_user_segment(page, 0, PAGE_SIZE);
3578 SetPageUptodate(page);
3579 } else {
3580 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3581 DATA_GENERIC_ENHANCE_READ)) {
3582 err = -EFSCORRUPTED;
3583 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3584 goto fail;
3585 }
3586 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3587 if (err)
3588 goto fail;
3589
3590 lock_page(page);
3591 if (unlikely(page->mapping != mapping)) {
3592 f2fs_put_page(page, 1);
3593 goto repeat;
3594 }
3595 if (unlikely(!PageUptodate(page))) {
3596 err = -EIO;
3597 goto fail;
3598 }
3599 }
3600 return 0;
3601
3602 fail:
3603 f2fs_put_page(page, 1);
3604 f2fs_write_failed(inode, pos + len);
3605 return err;
3606 }
3607
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3608 static int f2fs_write_end(struct file *file,
3609 struct address_space *mapping,
3610 loff_t pos, unsigned len, unsigned copied,
3611 struct page *page, void *fsdata)
3612 {
3613 struct inode *inode = page->mapping->host;
3614
3615 trace_f2fs_write_end(inode, pos, len, copied);
3616
3617 /*
3618 * This should be come from len == PAGE_SIZE, and we expect copied
3619 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3620 * let generic_perform_write() try to copy data again through copied=0.
3621 */
3622 if (!PageUptodate(page)) {
3623 if (unlikely(copied != len))
3624 copied = 0;
3625 else
3626 SetPageUptodate(page);
3627 }
3628
3629 #ifdef CONFIG_F2FS_FS_COMPRESSION
3630 /* overwrite compressed file */
3631 if (f2fs_compressed_file(inode) && fsdata) {
3632 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3633 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3634
3635 if (pos + copied > i_size_read(inode) &&
3636 !f2fs_verity_in_progress(inode))
3637 f2fs_i_size_write(inode, pos + copied);
3638 return copied;
3639 }
3640 #endif
3641
3642 if (!copied)
3643 goto unlock_out;
3644
3645 set_page_dirty(page);
3646
3647 if (pos + copied > i_size_read(inode) &&
3648 !f2fs_verity_in_progress(inode)) {
3649 f2fs_i_size_write(inode, pos + copied);
3650 if (f2fs_is_atomic_file(inode))
3651 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3652 pos + copied);
3653 }
3654 unlock_out:
3655 f2fs_put_page(page, 1);
3656 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3657 return copied;
3658 }
3659
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3660 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3661 {
3662 struct inode *inode = folio->mapping->host;
3663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3664
3665 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3666 (offset || length != folio_size(folio)))
3667 return;
3668
3669 if (folio_test_dirty(folio)) {
3670 if (inode->i_ino == F2FS_META_INO(sbi)) {
3671 dec_page_count(sbi, F2FS_DIRTY_META);
3672 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3673 dec_page_count(sbi, F2FS_DIRTY_NODES);
3674 } else {
3675 inode_dec_dirty_pages(inode);
3676 f2fs_remove_dirty_inode(inode);
3677 }
3678 }
3679
3680 clear_page_private_gcing(&folio->page);
3681
3682 if (test_opt(sbi, COMPRESS_CACHE) &&
3683 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3684 clear_page_private_data(&folio->page);
3685
3686 folio_detach_private(folio);
3687 }
3688
f2fs_release_folio(struct folio * folio,gfp_t wait)3689 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3690 {
3691 struct f2fs_sb_info *sbi;
3692
3693 /* If this is dirty folio, keep private data */
3694 if (folio_test_dirty(folio))
3695 return false;
3696
3697 sbi = F2FS_M_SB(folio->mapping);
3698 if (test_opt(sbi, COMPRESS_CACHE)) {
3699 struct inode *inode = folio->mapping->host;
3700
3701 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3702 clear_page_private_data(&folio->page);
3703 }
3704
3705 clear_page_private_gcing(&folio->page);
3706
3707 folio_detach_private(folio);
3708 return true;
3709 }
3710
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3711 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3712 struct folio *folio)
3713 {
3714 struct inode *inode = mapping->host;
3715
3716 trace_f2fs_set_page_dirty(&folio->page, DATA);
3717
3718 if (!folio_test_uptodate(folio))
3719 folio_mark_uptodate(folio);
3720 BUG_ON(folio_test_swapcache(folio));
3721
3722 if (filemap_dirty_folio(mapping, folio)) {
3723 f2fs_update_dirty_folio(inode, folio);
3724 return true;
3725 }
3726 return false;
3727 }
3728
3729
f2fs_bmap_compress(struct inode * inode,sector_t block)3730 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3731 {
3732 #ifdef CONFIG_F2FS_FS_COMPRESSION
3733 struct dnode_of_data dn;
3734 sector_t start_idx, blknr = 0;
3735 int ret;
3736
3737 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3738
3739 set_new_dnode(&dn, inode, NULL, NULL, 0);
3740 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3741 if (ret)
3742 return 0;
3743
3744 if (dn.data_blkaddr != COMPRESS_ADDR) {
3745 dn.ofs_in_node += block - start_idx;
3746 blknr = f2fs_data_blkaddr(&dn);
3747 if (!__is_valid_data_blkaddr(blknr))
3748 blknr = 0;
3749 }
3750
3751 f2fs_put_dnode(&dn);
3752 return blknr;
3753 #else
3754 return 0;
3755 #endif
3756 }
3757
3758
f2fs_bmap(struct address_space * mapping,sector_t block)3759 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3760 {
3761 struct inode *inode = mapping->host;
3762 sector_t blknr = 0;
3763
3764 if (f2fs_has_inline_data(inode))
3765 goto out;
3766
3767 /* make sure allocating whole blocks */
3768 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3769 filemap_write_and_wait(mapping);
3770
3771 /* Block number less than F2FS MAX BLOCKS */
3772 if (unlikely(block >= max_file_blocks(inode)))
3773 goto out;
3774
3775 if (f2fs_compressed_file(inode)) {
3776 blknr = f2fs_bmap_compress(inode, block);
3777 } else {
3778 struct f2fs_map_blocks map;
3779
3780 memset(&map, 0, sizeof(map));
3781 map.m_lblk = block;
3782 map.m_len = 1;
3783 map.m_next_pgofs = NULL;
3784 map.m_seg_type = NO_CHECK_TYPE;
3785
3786 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3787 blknr = map.m_pblk;
3788 }
3789 out:
3790 trace_f2fs_bmap(inode, block, blknr);
3791 return blknr;
3792 }
3793
3794 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3795 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3796 unsigned int blkcnt)
3797 {
3798 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3799 unsigned int blkofs;
3800 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3801 unsigned int secidx = start_blk / blk_per_sec;
3802 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3803 int ret = 0;
3804
3805 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3806 filemap_invalidate_lock(inode->i_mapping);
3807
3808 set_inode_flag(inode, FI_ALIGNED_WRITE);
3809 set_inode_flag(inode, FI_OPU_WRITE);
3810
3811 for (; secidx < end_sec; secidx++) {
3812 f2fs_down_write(&sbi->pin_sem);
3813
3814 f2fs_lock_op(sbi);
3815 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3816 f2fs_unlock_op(sbi);
3817
3818 set_inode_flag(inode, FI_SKIP_WRITES);
3819
3820 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3821 struct page *page;
3822 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3823
3824 page = f2fs_get_lock_data_page(inode, blkidx, true);
3825 if (IS_ERR(page)) {
3826 f2fs_up_write(&sbi->pin_sem);
3827 ret = PTR_ERR(page);
3828 goto done;
3829 }
3830
3831 set_page_dirty(page);
3832 f2fs_put_page(page, 1);
3833 }
3834
3835 clear_inode_flag(inode, FI_SKIP_WRITES);
3836
3837 ret = filemap_fdatawrite(inode->i_mapping);
3838
3839 f2fs_up_write(&sbi->pin_sem);
3840
3841 if (ret)
3842 break;
3843 }
3844
3845 done:
3846 clear_inode_flag(inode, FI_SKIP_WRITES);
3847 clear_inode_flag(inode, FI_OPU_WRITE);
3848 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3849
3850 filemap_invalidate_unlock(inode->i_mapping);
3851 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3852
3853 return ret;
3854 }
3855
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3856 static int check_swap_activate(struct swap_info_struct *sis,
3857 struct file *swap_file, sector_t *span)
3858 {
3859 struct address_space *mapping = swap_file->f_mapping;
3860 struct inode *inode = mapping->host;
3861 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3862 sector_t cur_lblock;
3863 sector_t last_lblock;
3864 sector_t pblock;
3865 sector_t lowest_pblock = -1;
3866 sector_t highest_pblock = 0;
3867 int nr_extents = 0;
3868 unsigned long nr_pblocks;
3869 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3870 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3871 unsigned int not_aligned = 0;
3872 int ret = 0;
3873
3874 /*
3875 * Map all the blocks into the extent list. This code doesn't try
3876 * to be very smart.
3877 */
3878 cur_lblock = 0;
3879 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3880
3881 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3882 struct f2fs_map_blocks map;
3883 retry:
3884 cond_resched();
3885
3886 memset(&map, 0, sizeof(map));
3887 map.m_lblk = cur_lblock;
3888 map.m_len = last_lblock - cur_lblock;
3889 map.m_next_pgofs = NULL;
3890 map.m_next_extent = NULL;
3891 map.m_seg_type = NO_CHECK_TYPE;
3892 map.m_may_create = false;
3893
3894 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3895 if (ret)
3896 goto out;
3897
3898 /* hole */
3899 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3900 f2fs_err(sbi, "Swapfile has holes");
3901 ret = -EINVAL;
3902 goto out;
3903 }
3904
3905 pblock = map.m_pblk;
3906 nr_pblocks = map.m_len;
3907
3908 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3909 nr_pblocks & sec_blks_mask) {
3910 not_aligned++;
3911
3912 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3913 if (cur_lblock + nr_pblocks > sis->max)
3914 nr_pblocks -= blks_per_sec;
3915
3916 if (!nr_pblocks) {
3917 /* this extent is last one */
3918 nr_pblocks = map.m_len;
3919 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3920 goto next;
3921 }
3922
3923 ret = f2fs_migrate_blocks(inode, cur_lblock,
3924 nr_pblocks);
3925 if (ret)
3926 goto out;
3927 goto retry;
3928 }
3929 next:
3930 if (cur_lblock + nr_pblocks >= sis->max)
3931 nr_pblocks = sis->max - cur_lblock;
3932
3933 if (cur_lblock) { /* exclude the header page */
3934 if (pblock < lowest_pblock)
3935 lowest_pblock = pblock;
3936 if (pblock + nr_pblocks - 1 > highest_pblock)
3937 highest_pblock = pblock + nr_pblocks - 1;
3938 }
3939
3940 /*
3941 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3942 */
3943 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3944 if (ret < 0)
3945 goto out;
3946 nr_extents += ret;
3947 cur_lblock += nr_pblocks;
3948 }
3949 ret = nr_extents;
3950 *span = 1 + highest_pblock - lowest_pblock;
3951 if (cur_lblock == 0)
3952 cur_lblock = 1; /* force Empty message */
3953 sis->max = cur_lblock;
3954 sis->pages = cur_lblock - 1;
3955 sis->highest_bit = cur_lblock - 1;
3956 out:
3957 if (not_aligned)
3958 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3959 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3960 return ret;
3961 }
3962
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3963 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3964 sector_t *span)
3965 {
3966 struct inode *inode = file_inode(file);
3967 int ret;
3968
3969 if (!S_ISREG(inode->i_mode))
3970 return -EINVAL;
3971
3972 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3973 return -EROFS;
3974
3975 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3976 f2fs_err(F2FS_I_SB(inode),
3977 "Swapfile not supported in LFS mode");
3978 return -EINVAL;
3979 }
3980
3981 ret = f2fs_convert_inline_inode(inode);
3982 if (ret)
3983 return ret;
3984
3985 if (!f2fs_disable_compressed_file(inode))
3986 return -EINVAL;
3987
3988 f2fs_precache_extents(inode);
3989
3990 ret = check_swap_activate(sis, file, span);
3991 if (ret < 0)
3992 return ret;
3993
3994 stat_inc_swapfile_inode(inode);
3995 set_inode_flag(inode, FI_PIN_FILE);
3996 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3997 return ret;
3998 }
3999
f2fs_swap_deactivate(struct file * file)4000 static void f2fs_swap_deactivate(struct file *file)
4001 {
4002 struct inode *inode = file_inode(file);
4003
4004 stat_dec_swapfile_inode(inode);
4005 clear_inode_flag(inode, FI_PIN_FILE);
4006 }
4007 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4008 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4009 sector_t *span)
4010 {
4011 return -EOPNOTSUPP;
4012 }
4013
f2fs_swap_deactivate(struct file * file)4014 static void f2fs_swap_deactivate(struct file *file)
4015 {
4016 }
4017 #endif
4018
4019 const struct address_space_operations f2fs_dblock_aops = {
4020 .read_folio = f2fs_read_data_folio,
4021 .readahead = f2fs_readahead,
4022 .writepage = f2fs_write_data_page,
4023 .writepages = f2fs_write_data_pages,
4024 .write_begin = f2fs_write_begin,
4025 .write_end = f2fs_write_end,
4026 .dirty_folio = f2fs_dirty_data_folio,
4027 .migrate_folio = filemap_migrate_folio,
4028 .invalidate_folio = f2fs_invalidate_folio,
4029 .release_folio = f2fs_release_folio,
4030 .direct_IO = noop_direct_IO,
4031 .bmap = f2fs_bmap,
4032 .swap_activate = f2fs_swap_activate,
4033 .swap_deactivate = f2fs_swap_deactivate,
4034 };
4035
f2fs_clear_page_cache_dirty_tag(struct page * page)4036 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4037 {
4038 struct address_space *mapping = page_mapping(page);
4039 unsigned long flags;
4040
4041 xa_lock_irqsave(&mapping->i_pages, flags);
4042 __xa_clear_mark(&mapping->i_pages, page_index(page),
4043 PAGECACHE_TAG_DIRTY);
4044 xa_unlock_irqrestore(&mapping->i_pages, flags);
4045 }
4046
f2fs_init_post_read_processing(void)4047 int __init f2fs_init_post_read_processing(void)
4048 {
4049 bio_post_read_ctx_cache =
4050 kmem_cache_create("f2fs_bio_post_read_ctx",
4051 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4052 if (!bio_post_read_ctx_cache)
4053 goto fail;
4054 bio_post_read_ctx_pool =
4055 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4056 bio_post_read_ctx_cache);
4057 if (!bio_post_read_ctx_pool)
4058 goto fail_free_cache;
4059 return 0;
4060
4061 fail_free_cache:
4062 kmem_cache_destroy(bio_post_read_ctx_cache);
4063 fail:
4064 return -ENOMEM;
4065 }
4066
f2fs_destroy_post_read_processing(void)4067 void f2fs_destroy_post_read_processing(void)
4068 {
4069 mempool_destroy(bio_post_read_ctx_pool);
4070 kmem_cache_destroy(bio_post_read_ctx_cache);
4071 }
4072
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4073 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4074 {
4075 if (!f2fs_sb_has_encrypt(sbi) &&
4076 !f2fs_sb_has_verity(sbi) &&
4077 !f2fs_sb_has_compression(sbi))
4078 return 0;
4079
4080 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4081 WQ_UNBOUND | WQ_HIGHPRI,
4082 num_online_cpus());
4083 if (!sbi->post_read_wq)
4084 return -ENOMEM;
4085 return 0;
4086 }
4087
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4088 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4089 {
4090 if (sbi->post_read_wq)
4091 destroy_workqueue(sbi->post_read_wq);
4092 }
4093
f2fs_init_bio_entry_cache(void)4094 int __init f2fs_init_bio_entry_cache(void)
4095 {
4096 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4097 sizeof(struct bio_entry));
4098 if (!bio_entry_slab)
4099 return -ENOMEM;
4100 return 0;
4101 }
4102
f2fs_destroy_bio_entry_cache(void)4103 void f2fs_destroy_bio_entry_cache(void)
4104 {
4105 kmem_cache_destroy(bio_entry_slab);
4106 }
4107
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4108 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4109 unsigned int flags, struct iomap *iomap,
4110 struct iomap *srcmap)
4111 {
4112 struct f2fs_map_blocks map = {};
4113 pgoff_t next_pgofs = 0;
4114 int err;
4115
4116 map.m_lblk = bytes_to_blks(inode, offset);
4117 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4118 map.m_next_pgofs = &next_pgofs;
4119 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4120 if (flags & IOMAP_WRITE)
4121 map.m_may_create = true;
4122
4123 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4124 F2FS_GET_BLOCK_DIO);
4125 if (err)
4126 return err;
4127
4128 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4129
4130 /*
4131 * When inline encryption is enabled, sometimes I/O to an encrypted file
4132 * has to be broken up to guarantee DUN contiguity. Handle this by
4133 * limiting the length of the mapping returned.
4134 */
4135 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4136
4137 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4138 iomap->length = blks_to_bytes(inode, map.m_len);
4139 if (map.m_flags & F2FS_MAP_MAPPED) {
4140 iomap->type = IOMAP_MAPPED;
4141 iomap->flags |= IOMAP_F_MERGED;
4142 } else {
4143 iomap->type = IOMAP_UNWRITTEN;
4144 }
4145 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4146 return -EINVAL;
4147
4148 iomap->bdev = map.m_bdev;
4149 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4150 } else {
4151 iomap->length = blks_to_bytes(inode, next_pgofs) -
4152 iomap->offset;
4153 iomap->type = IOMAP_HOLE;
4154 iomap->addr = IOMAP_NULL_ADDR;
4155 }
4156
4157 if (map.m_flags & F2FS_MAP_NEW)
4158 iomap->flags |= IOMAP_F_NEW;
4159 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4160 offset + length > i_size_read(inode))
4161 iomap->flags |= IOMAP_F_DIRTY;
4162
4163 return 0;
4164 }
4165
4166 const struct iomap_ops f2fs_iomap_ops = {
4167 .iomap_begin = f2fs_iomap_begin,
4168 };
4169