1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 f2fs_build_fault_attr(sbi, 0, 0);
32 set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
58 {
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_por = !is_meta,
70 };
71 int err;
72
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
80 }
81 if (PageUptodate(page))
82 goto out;
83
84 fio.page = page;
85
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
90 }
91
92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93
94 lock_page(page);
95 if (unlikely(page->mapping != mapping)) {
96 f2fs_put_page(page, 1);
97 goto repeat;
98 }
99
100 if (unlikely(!PageUptodate(page))) {
101 f2fs_handle_page_eio(sbi, page->index, META);
102 f2fs_put_page(page, 1);
103 return ERR_PTR(-EIO);
104 }
105 out:
106 return page;
107 }
108
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)114 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 struct page *page;
117 int count = 0;
118
119 retry:
120 page = __get_meta_page(sbi, index, true);
121 if (IS_ERR(page)) {
122 if (PTR_ERR(page) == -EIO &&
123 ++count <= DEFAULT_RETRY_IO_COUNT)
124 goto retry;
125 f2fs_stop_checkpoint(sbi, false);
126 }
127 return page;
128 }
129
130 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)131 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
132 {
133 return __get_meta_page(sbi, index, false);
134 }
135
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)136 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
137 int type)
138 {
139 struct seg_entry *se;
140 unsigned int segno, offset;
141 bool exist;
142
143 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
144 return true;
145
146 segno = GET_SEGNO(sbi, blkaddr);
147 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
148 se = get_seg_entry(sbi, segno);
149
150 exist = f2fs_test_bit(offset, se->cur_valid_map);
151 if (!exist && type == DATA_GENERIC_ENHANCE) {
152 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
153 blkaddr, exist);
154 set_sbi_flag(sbi, SBI_NEED_FSCK);
155 dump_stack();
156 }
157 return exist;
158 }
159
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)160 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
161 block_t blkaddr, int type)
162 {
163 switch (type) {
164 case META_NAT:
165 break;
166 case META_SIT:
167 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
168 return false;
169 break;
170 case META_SSA:
171 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
172 blkaddr < SM_I(sbi)->ssa_blkaddr))
173 return false;
174 break;
175 case META_CP:
176 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
177 blkaddr < __start_cp_addr(sbi)))
178 return false;
179 break;
180 case META_POR:
181 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
182 blkaddr < MAIN_BLKADDR(sbi)))
183 return false;
184 break;
185 case DATA_GENERIC:
186 case DATA_GENERIC_ENHANCE:
187 case DATA_GENERIC_ENHANCE_READ:
188 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
189 blkaddr < MAIN_BLKADDR(sbi))) {
190 f2fs_warn(sbi, "access invalid blkaddr:%u",
191 blkaddr);
192 set_sbi_flag(sbi, SBI_NEED_FSCK);
193 dump_stack();
194 return false;
195 } else {
196 return __is_bitmap_valid(sbi, blkaddr, type);
197 }
198 break;
199 case META_GENERIC:
200 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
201 blkaddr >= MAIN_BLKADDR(sbi)))
202 return false;
203 break;
204 default:
205 BUG();
206 }
207
208 return true;
209 }
210
211 /*
212 * Readahead CP/NAT/SIT/SSA/POR pages
213 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)214 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
215 int type, bool sync)
216 {
217 struct page *page;
218 block_t blkno = start;
219 struct f2fs_io_info fio = {
220 .sbi = sbi,
221 .type = META,
222 .op = REQ_OP_READ,
223 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
224 .encrypted_page = NULL,
225 .in_list = false,
226 .is_por = (type == META_POR),
227 };
228 struct blk_plug plug;
229 int err;
230
231 if (unlikely(type == META_POR))
232 fio.op_flags &= ~REQ_META;
233
234 blk_start_plug(&plug);
235 for (; nrpages-- > 0; blkno++) {
236
237 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
238 goto out;
239
240 switch (type) {
241 case META_NAT:
242 if (unlikely(blkno >=
243 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
244 blkno = 0;
245 /* get nat block addr */
246 fio.new_blkaddr = current_nat_addr(sbi,
247 blkno * NAT_ENTRY_PER_BLOCK);
248 break;
249 case META_SIT:
250 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
251 goto out;
252 /* get sit block addr */
253 fio.new_blkaddr = current_sit_addr(sbi,
254 blkno * SIT_ENTRY_PER_BLOCK);
255 break;
256 case META_SSA:
257 case META_CP:
258 case META_POR:
259 fio.new_blkaddr = blkno;
260 break;
261 default:
262 BUG();
263 }
264
265 page = f2fs_grab_cache_page(META_MAPPING(sbi),
266 fio.new_blkaddr, false);
267 if (!page)
268 continue;
269 if (PageUptodate(page)) {
270 f2fs_put_page(page, 1);
271 continue;
272 }
273
274 fio.page = page;
275 err = f2fs_submit_page_bio(&fio);
276 f2fs_put_page(page, err ? 1 : 0);
277
278 if (!err)
279 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
280 }
281 out:
282 blk_finish_plug(&plug);
283 return blkno - start;
284 }
285
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)286 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
287 unsigned int ra_blocks)
288 {
289 struct page *page;
290 bool readahead = false;
291
292 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
293 return;
294
295 page = find_get_page(META_MAPPING(sbi), index);
296 if (!page || !PageUptodate(page))
297 readahead = true;
298 f2fs_put_page(page, 0);
299
300 if (readahead)
301 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
302 }
303
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)304 static int __f2fs_write_meta_page(struct page *page,
305 struct writeback_control *wbc,
306 enum iostat_type io_type)
307 {
308 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
309
310 trace_f2fs_writepage(page, META);
311
312 if (unlikely(f2fs_cp_error(sbi)))
313 goto redirty_out;
314 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
315 goto redirty_out;
316 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
317 goto redirty_out;
318
319 f2fs_do_write_meta_page(sbi, page, io_type);
320 dec_page_count(sbi, F2FS_DIRTY_META);
321
322 if (wbc->for_reclaim)
323 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
324
325 unlock_page(page);
326
327 if (unlikely(f2fs_cp_error(sbi)))
328 f2fs_submit_merged_write(sbi, META);
329
330 return 0;
331
332 redirty_out:
333 redirty_page_for_writepage(wbc, page);
334 return AOP_WRITEPAGE_ACTIVATE;
335 }
336
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)337 static int f2fs_write_meta_page(struct page *page,
338 struct writeback_control *wbc)
339 {
340 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
341 }
342
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)343 static int f2fs_write_meta_pages(struct address_space *mapping,
344 struct writeback_control *wbc)
345 {
346 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
347 long diff, written;
348
349 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
350 goto skip_write;
351
352 /* collect a number of dirty meta pages and write together */
353 if (wbc->sync_mode != WB_SYNC_ALL &&
354 get_pages(sbi, F2FS_DIRTY_META) <
355 nr_pages_to_skip(sbi, META))
356 goto skip_write;
357
358 /* if locked failed, cp will flush dirty pages instead */
359 if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
360 goto skip_write;
361
362 trace_f2fs_writepages(mapping->host, wbc, META);
363 diff = nr_pages_to_write(sbi, META, wbc);
364 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
365 f2fs_up_write(&sbi->cp_global_sem);
366 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
367 return 0;
368
369 skip_write:
370 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
371 trace_f2fs_writepages(mapping->host, wbc, META);
372 return 0;
373 }
374
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)375 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
376 long nr_to_write, enum iostat_type io_type)
377 {
378 struct address_space *mapping = META_MAPPING(sbi);
379 pgoff_t index = 0, prev = ULONG_MAX;
380 struct pagevec pvec;
381 long nwritten = 0;
382 int nr_pages;
383 struct writeback_control wbc = {
384 .for_reclaim = 0,
385 };
386 struct blk_plug plug;
387
388 pagevec_init(&pvec);
389
390 blk_start_plug(&plug);
391
392 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 PAGECACHE_TAG_DIRTY))) {
394 int i;
395
396 for (i = 0; i < nr_pages; i++) {
397 struct page *page = pvec.pages[i];
398
399 if (prev == ULONG_MAX)
400 prev = page->index - 1;
401 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
402 pagevec_release(&pvec);
403 goto stop;
404 }
405
406 lock_page(page);
407
408 if (unlikely(page->mapping != mapping)) {
409 continue_unlock:
410 unlock_page(page);
411 continue;
412 }
413 if (!PageDirty(page)) {
414 /* someone wrote it for us */
415 goto continue_unlock;
416 }
417
418 f2fs_wait_on_page_writeback(page, META, true, true);
419
420 if (!clear_page_dirty_for_io(page))
421 goto continue_unlock;
422
423 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
424 unlock_page(page);
425 break;
426 }
427 nwritten++;
428 prev = page->index;
429 if (unlikely(nwritten >= nr_to_write))
430 break;
431 }
432 pagevec_release(&pvec);
433 cond_resched();
434 }
435 stop:
436 if (nwritten)
437 f2fs_submit_merged_write(sbi, type);
438
439 blk_finish_plug(&plug);
440
441 return nwritten;
442 }
443
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)444 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
445 struct folio *folio)
446 {
447 trace_f2fs_set_page_dirty(&folio->page, META);
448
449 if (!folio_test_uptodate(folio))
450 folio_mark_uptodate(folio);
451 if (!folio_test_dirty(folio)) {
452 filemap_dirty_folio(mapping, folio);
453 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
454 set_page_private_reference(&folio->page);
455 return true;
456 }
457 return false;
458 }
459
460 const struct address_space_operations f2fs_meta_aops = {
461 .writepage = f2fs_write_meta_page,
462 .writepages = f2fs_write_meta_pages,
463 .dirty_folio = f2fs_dirty_meta_folio,
464 .invalidate_folio = f2fs_invalidate_folio,
465 .release_folio = f2fs_release_folio,
466 #ifdef CONFIG_MIGRATION
467 .migratepage = f2fs_migrate_page,
468 #endif
469 };
470
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)471 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
472 unsigned int devidx, int type)
473 {
474 struct inode_management *im = &sbi->im[type];
475 struct ino_entry *e = NULL, *new = NULL;
476
477 if (type == FLUSH_INO) {
478 rcu_read_lock();
479 e = radix_tree_lookup(&im->ino_root, ino);
480 rcu_read_unlock();
481 }
482
483 retry:
484 if (!e)
485 new = f2fs_kmem_cache_alloc(ino_entry_slab,
486 GFP_NOFS, true, NULL);
487
488 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
489
490 spin_lock(&im->ino_lock);
491 e = radix_tree_lookup(&im->ino_root, ino);
492 if (!e) {
493 if (!new) {
494 spin_unlock(&im->ino_lock);
495 goto retry;
496 }
497 e = new;
498 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
499 f2fs_bug_on(sbi, 1);
500
501 memset(e, 0, sizeof(struct ino_entry));
502 e->ino = ino;
503
504 list_add_tail(&e->list, &im->ino_list);
505 if (type != ORPHAN_INO)
506 im->ino_num++;
507 }
508
509 if (type == FLUSH_INO)
510 f2fs_set_bit(devidx, (char *)&e->dirty_device);
511
512 spin_unlock(&im->ino_lock);
513 radix_tree_preload_end();
514
515 if (new && e != new)
516 kmem_cache_free(ino_entry_slab, new);
517 }
518
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)519 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
520 {
521 struct inode_management *im = &sbi->im[type];
522 struct ino_entry *e;
523
524 spin_lock(&im->ino_lock);
525 e = radix_tree_lookup(&im->ino_root, ino);
526 if (e) {
527 list_del(&e->list);
528 radix_tree_delete(&im->ino_root, ino);
529 im->ino_num--;
530 spin_unlock(&im->ino_lock);
531 kmem_cache_free(ino_entry_slab, e);
532 return;
533 }
534 spin_unlock(&im->ino_lock);
535 }
536
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)537 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
538 {
539 /* add new dirty ino entry into list */
540 __add_ino_entry(sbi, ino, 0, type);
541 }
542
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)543 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
544 {
545 /* remove dirty ino entry from list */
546 __remove_ino_entry(sbi, ino, type);
547 }
548
549 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)550 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
551 {
552 struct inode_management *im = &sbi->im[mode];
553 struct ino_entry *e;
554
555 spin_lock(&im->ino_lock);
556 e = radix_tree_lookup(&im->ino_root, ino);
557 spin_unlock(&im->ino_lock);
558 return e ? true : false;
559 }
560
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)561 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
562 {
563 struct ino_entry *e, *tmp;
564 int i;
565
566 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
567 struct inode_management *im = &sbi->im[i];
568
569 spin_lock(&im->ino_lock);
570 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
571 list_del(&e->list);
572 radix_tree_delete(&im->ino_root, e->ino);
573 kmem_cache_free(ino_entry_slab, e);
574 im->ino_num--;
575 }
576 spin_unlock(&im->ino_lock);
577 }
578 }
579
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)580 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
581 unsigned int devidx, int type)
582 {
583 __add_ino_entry(sbi, ino, devidx, type);
584 }
585
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)586 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
587 unsigned int devidx, int type)
588 {
589 struct inode_management *im = &sbi->im[type];
590 struct ino_entry *e;
591 bool is_dirty = false;
592
593 spin_lock(&im->ino_lock);
594 e = radix_tree_lookup(&im->ino_root, ino);
595 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
596 is_dirty = true;
597 spin_unlock(&im->ino_lock);
598 return is_dirty;
599 }
600
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)601 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
602 {
603 struct inode_management *im = &sbi->im[ORPHAN_INO];
604 int err = 0;
605
606 spin_lock(&im->ino_lock);
607
608 if (time_to_inject(sbi, FAULT_ORPHAN)) {
609 spin_unlock(&im->ino_lock);
610 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
611 return -ENOSPC;
612 }
613
614 if (unlikely(im->ino_num >= sbi->max_orphans))
615 err = -ENOSPC;
616 else
617 im->ino_num++;
618 spin_unlock(&im->ino_lock);
619
620 return err;
621 }
622
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)623 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
624 {
625 struct inode_management *im = &sbi->im[ORPHAN_INO];
626
627 spin_lock(&im->ino_lock);
628 f2fs_bug_on(sbi, im->ino_num == 0);
629 im->ino_num--;
630 spin_unlock(&im->ino_lock);
631 }
632
f2fs_add_orphan_inode(struct inode * inode)633 void f2fs_add_orphan_inode(struct inode *inode)
634 {
635 /* add new orphan ino entry into list */
636 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
637 f2fs_update_inode_page(inode);
638 }
639
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)640 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
641 {
642 /* remove orphan entry from orphan list */
643 __remove_ino_entry(sbi, ino, ORPHAN_INO);
644 }
645
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)646 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648 struct inode *inode;
649 struct node_info ni;
650 int err;
651
652 inode = f2fs_iget_retry(sbi->sb, ino);
653 if (IS_ERR(inode)) {
654 /*
655 * there should be a bug that we can't find the entry
656 * to orphan inode.
657 */
658 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
659 return PTR_ERR(inode);
660 }
661
662 err = f2fs_dquot_initialize(inode);
663 if (err) {
664 iput(inode);
665 goto err_out;
666 }
667
668 clear_nlink(inode);
669
670 /* truncate all the data during iput */
671 iput(inode);
672
673 err = f2fs_get_node_info(sbi, ino, &ni, false);
674 if (err)
675 goto err_out;
676
677 /* ENOMEM was fully retried in f2fs_evict_inode. */
678 if (ni.blk_addr != NULL_ADDR) {
679 err = -EIO;
680 goto err_out;
681 }
682 return 0;
683
684 err_out:
685 set_sbi_flag(sbi, SBI_NEED_FSCK);
686 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
687 __func__, ino);
688 return err;
689 }
690
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)691 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
692 {
693 block_t start_blk, orphan_blocks, i, j;
694 unsigned int s_flags = sbi->sb->s_flags;
695 int err = 0;
696 #ifdef CONFIG_QUOTA
697 int quota_enabled;
698 #endif
699
700 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
701 return 0;
702
703 if (bdev_read_only(sbi->sb->s_bdev)) {
704 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
705 return 0;
706 }
707
708 if (s_flags & SB_RDONLY) {
709 f2fs_info(sbi, "orphan cleanup on readonly fs");
710 sbi->sb->s_flags &= ~SB_RDONLY;
711 }
712
713 #ifdef CONFIG_QUOTA
714 /*
715 * Turn on quotas which were not enabled for read-only mounts if
716 * filesystem has quota feature, so that they are updated correctly.
717 */
718 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
719 #endif
720
721 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
722 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
723
724 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
725
726 for (i = 0; i < orphan_blocks; i++) {
727 struct page *page;
728 struct f2fs_orphan_block *orphan_blk;
729
730 page = f2fs_get_meta_page(sbi, start_blk + i);
731 if (IS_ERR(page)) {
732 err = PTR_ERR(page);
733 goto out;
734 }
735
736 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
737 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
738 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
739
740 err = recover_orphan_inode(sbi, ino);
741 if (err) {
742 f2fs_put_page(page, 1);
743 goto out;
744 }
745 }
746 f2fs_put_page(page, 1);
747 }
748 /* clear Orphan Flag */
749 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
750 out:
751 set_sbi_flag(sbi, SBI_IS_RECOVERED);
752
753 #ifdef CONFIG_QUOTA
754 /* Turn quotas off */
755 if (quota_enabled)
756 f2fs_quota_off_umount(sbi->sb);
757 #endif
758 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
759
760 return err;
761 }
762
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)763 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
764 {
765 struct list_head *head;
766 struct f2fs_orphan_block *orphan_blk = NULL;
767 unsigned int nentries = 0;
768 unsigned short index = 1;
769 unsigned short orphan_blocks;
770 struct page *page = NULL;
771 struct ino_entry *orphan = NULL;
772 struct inode_management *im = &sbi->im[ORPHAN_INO];
773
774 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
775
776 /*
777 * we don't need to do spin_lock(&im->ino_lock) here, since all the
778 * orphan inode operations are covered under f2fs_lock_op().
779 * And, spin_lock should be avoided due to page operations below.
780 */
781 head = &im->ino_list;
782
783 /* loop for each orphan inode entry and write them in Jornal block */
784 list_for_each_entry(orphan, head, list) {
785 if (!page) {
786 page = f2fs_grab_meta_page(sbi, start_blk++);
787 orphan_blk =
788 (struct f2fs_orphan_block *)page_address(page);
789 memset(orphan_blk, 0, sizeof(*orphan_blk));
790 }
791
792 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
793
794 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
795 /*
796 * an orphan block is full of 1020 entries,
797 * then we need to flush current orphan blocks
798 * and bring another one in memory
799 */
800 orphan_blk->blk_addr = cpu_to_le16(index);
801 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
802 orphan_blk->entry_count = cpu_to_le32(nentries);
803 set_page_dirty(page);
804 f2fs_put_page(page, 1);
805 index++;
806 nentries = 0;
807 page = NULL;
808 }
809 }
810
811 if (page) {
812 orphan_blk->blk_addr = cpu_to_le16(index);
813 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
814 orphan_blk->entry_count = cpu_to_le32(nentries);
815 set_page_dirty(page);
816 f2fs_put_page(page, 1);
817 }
818 }
819
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)820 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
821 struct f2fs_checkpoint *ckpt)
822 {
823 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
824 __u32 chksum;
825
826 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
827 if (chksum_ofs < CP_CHKSUM_OFFSET) {
828 chksum_ofs += sizeof(chksum);
829 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
830 F2FS_BLKSIZE - chksum_ofs);
831 }
832 return chksum;
833 }
834
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)835 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
836 struct f2fs_checkpoint **cp_block, struct page **cp_page,
837 unsigned long long *version)
838 {
839 size_t crc_offset = 0;
840 __u32 crc;
841
842 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
843 if (IS_ERR(*cp_page))
844 return PTR_ERR(*cp_page);
845
846 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
847
848 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
849 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
850 crc_offset > CP_CHKSUM_OFFSET) {
851 f2fs_put_page(*cp_page, 1);
852 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
853 return -EINVAL;
854 }
855
856 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
857 if (crc != cur_cp_crc(*cp_block)) {
858 f2fs_put_page(*cp_page, 1);
859 f2fs_warn(sbi, "invalid crc value");
860 return -EINVAL;
861 }
862
863 *version = cur_cp_version(*cp_block);
864 return 0;
865 }
866
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)867 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
868 block_t cp_addr, unsigned long long *version)
869 {
870 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
871 struct f2fs_checkpoint *cp_block = NULL;
872 unsigned long long cur_version = 0, pre_version = 0;
873 unsigned int cp_blocks;
874 int err;
875
876 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
877 &cp_page_1, version);
878 if (err)
879 return NULL;
880
881 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
882
883 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
884 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
885 le32_to_cpu(cp_block->cp_pack_total_block_count));
886 goto invalid_cp;
887 }
888 pre_version = *version;
889
890 cp_addr += cp_blocks - 1;
891 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
892 &cp_page_2, version);
893 if (err)
894 goto invalid_cp;
895 cur_version = *version;
896
897 if (cur_version == pre_version) {
898 *version = cur_version;
899 f2fs_put_page(cp_page_2, 1);
900 return cp_page_1;
901 }
902 f2fs_put_page(cp_page_2, 1);
903 invalid_cp:
904 f2fs_put_page(cp_page_1, 1);
905 return NULL;
906 }
907
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)908 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
909 {
910 struct f2fs_checkpoint *cp_block;
911 struct f2fs_super_block *fsb = sbi->raw_super;
912 struct page *cp1, *cp2, *cur_page;
913 unsigned long blk_size = sbi->blocksize;
914 unsigned long long cp1_version = 0, cp2_version = 0;
915 unsigned long long cp_start_blk_no;
916 unsigned int cp_blks = 1 + __cp_payload(sbi);
917 block_t cp_blk_no;
918 int i;
919 int err;
920
921 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
922 GFP_KERNEL);
923 if (!sbi->ckpt)
924 return -ENOMEM;
925 /*
926 * Finding out valid cp block involves read both
927 * sets( cp pack 1 and cp pack 2)
928 */
929 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
930 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
931
932 /* The second checkpoint pack should start at the next segment */
933 cp_start_blk_no += ((unsigned long long)1) <<
934 le32_to_cpu(fsb->log_blocks_per_seg);
935 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
936
937 if (cp1 && cp2) {
938 if (ver_after(cp2_version, cp1_version))
939 cur_page = cp2;
940 else
941 cur_page = cp1;
942 } else if (cp1) {
943 cur_page = cp1;
944 } else if (cp2) {
945 cur_page = cp2;
946 } else {
947 err = -EFSCORRUPTED;
948 goto fail_no_cp;
949 }
950
951 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
952 memcpy(sbi->ckpt, cp_block, blk_size);
953
954 if (cur_page == cp1)
955 sbi->cur_cp_pack = 1;
956 else
957 sbi->cur_cp_pack = 2;
958
959 /* Sanity checking of checkpoint */
960 if (f2fs_sanity_check_ckpt(sbi)) {
961 err = -EFSCORRUPTED;
962 goto free_fail_no_cp;
963 }
964
965 if (cp_blks <= 1)
966 goto done;
967
968 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
969 if (cur_page == cp2)
970 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
971
972 for (i = 1; i < cp_blks; i++) {
973 void *sit_bitmap_ptr;
974 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
975
976 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
977 if (IS_ERR(cur_page)) {
978 err = PTR_ERR(cur_page);
979 goto free_fail_no_cp;
980 }
981 sit_bitmap_ptr = page_address(cur_page);
982 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
983 f2fs_put_page(cur_page, 1);
984 }
985 done:
986 f2fs_put_page(cp1, 1);
987 f2fs_put_page(cp2, 1);
988 return 0;
989
990 free_fail_no_cp:
991 f2fs_put_page(cp1, 1);
992 f2fs_put_page(cp2, 1);
993 fail_no_cp:
994 kvfree(sbi->ckpt);
995 return err;
996 }
997
__add_dirty_inode(struct inode * inode,enum inode_type type)998 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
999 {
1000 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1001 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1002
1003 if (is_inode_flag_set(inode, flag))
1004 return;
1005
1006 set_inode_flag(inode, flag);
1007 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1008 stat_inc_dirty_inode(sbi, type);
1009 }
1010
__remove_dirty_inode(struct inode * inode,enum inode_type type)1011 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1012 {
1013 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1014
1015 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1016 return;
1017
1018 list_del_init(&F2FS_I(inode)->dirty_list);
1019 clear_inode_flag(inode, flag);
1020 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1021 }
1022
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1023 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1024 {
1025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1027
1028 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1029 !S_ISLNK(inode->i_mode))
1030 return;
1031
1032 spin_lock(&sbi->inode_lock[type]);
1033 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1034 __add_dirty_inode(inode, type);
1035 inode_inc_dirty_pages(inode);
1036 spin_unlock(&sbi->inode_lock[type]);
1037
1038 set_page_private_reference(&folio->page);
1039 }
1040
f2fs_remove_dirty_inode(struct inode * inode)1041 void f2fs_remove_dirty_inode(struct inode *inode)
1042 {
1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1045
1046 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1047 !S_ISLNK(inode->i_mode))
1048 return;
1049
1050 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1051 return;
1052
1053 spin_lock(&sbi->inode_lock[type]);
1054 __remove_dirty_inode(inode, type);
1055 spin_unlock(&sbi->inode_lock[type]);
1056 }
1057
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)1058 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1059 {
1060 struct list_head *head;
1061 struct inode *inode;
1062 struct f2fs_inode_info *fi;
1063 bool is_dir = (type == DIR_INODE);
1064 unsigned long ino = 0;
1065
1066 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1067 get_pages(sbi, is_dir ?
1068 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1069 retry:
1070 if (unlikely(f2fs_cp_error(sbi))) {
1071 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1072 get_pages(sbi, is_dir ?
1073 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1074 return -EIO;
1075 }
1076
1077 spin_lock(&sbi->inode_lock[type]);
1078
1079 head = &sbi->inode_list[type];
1080 if (list_empty(head)) {
1081 spin_unlock(&sbi->inode_lock[type]);
1082 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1083 get_pages(sbi, is_dir ?
1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1085 return 0;
1086 }
1087 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1088 inode = igrab(&fi->vfs_inode);
1089 spin_unlock(&sbi->inode_lock[type]);
1090 if (inode) {
1091 unsigned long cur_ino = inode->i_ino;
1092
1093 F2FS_I(inode)->cp_task = current;
1094
1095 filemap_fdatawrite(inode->i_mapping);
1096
1097 F2FS_I(inode)->cp_task = NULL;
1098
1099 iput(inode);
1100 /* We need to give cpu to another writers. */
1101 if (ino == cur_ino)
1102 cond_resched();
1103 else
1104 ino = cur_ino;
1105 } else {
1106 /*
1107 * We should submit bio, since it exists several
1108 * wribacking dentry pages in the freeing inode.
1109 */
1110 f2fs_submit_merged_write(sbi, DATA);
1111 cond_resched();
1112 }
1113 goto retry;
1114 }
1115
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1116 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1117 {
1118 struct list_head *head = &sbi->inode_list[DIRTY_META];
1119 struct inode *inode;
1120 struct f2fs_inode_info *fi;
1121 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1122
1123 while (total--) {
1124 if (unlikely(f2fs_cp_error(sbi)))
1125 return -EIO;
1126
1127 spin_lock(&sbi->inode_lock[DIRTY_META]);
1128 if (list_empty(head)) {
1129 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1130 return 0;
1131 }
1132 fi = list_first_entry(head, struct f2fs_inode_info,
1133 gdirty_list);
1134 inode = igrab(&fi->vfs_inode);
1135 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1136 if (inode) {
1137 sync_inode_metadata(inode, 0);
1138
1139 /* it's on eviction */
1140 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1141 f2fs_update_inode_page(inode);
1142 iput(inode);
1143 }
1144 }
1145 return 0;
1146 }
1147
__prepare_cp_block(struct f2fs_sb_info * sbi)1148 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1149 {
1150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1151 struct f2fs_nm_info *nm_i = NM_I(sbi);
1152 nid_t last_nid = nm_i->next_scan_nid;
1153
1154 next_free_nid(sbi, &last_nid);
1155 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1156 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1157 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1158 ckpt->next_free_nid = cpu_to_le32(last_nid);
1159 }
1160
__need_flush_quota(struct f2fs_sb_info * sbi)1161 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1162 {
1163 bool ret = false;
1164
1165 if (!is_journalled_quota(sbi))
1166 return false;
1167
1168 if (!f2fs_down_write_trylock(&sbi->quota_sem))
1169 return true;
1170 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1171 ret = false;
1172 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1173 ret = false;
1174 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1175 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1176 ret = true;
1177 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1178 ret = true;
1179 }
1180 f2fs_up_write(&sbi->quota_sem);
1181 return ret;
1182 }
1183
1184 /*
1185 * Freeze all the FS-operations for checkpoint.
1186 */
block_operations(struct f2fs_sb_info * sbi)1187 static int block_operations(struct f2fs_sb_info *sbi)
1188 {
1189 struct writeback_control wbc = {
1190 .sync_mode = WB_SYNC_ALL,
1191 .nr_to_write = LONG_MAX,
1192 .for_reclaim = 0,
1193 };
1194 int err = 0, cnt = 0;
1195
1196 /*
1197 * Let's flush inline_data in dirty node pages.
1198 */
1199 f2fs_flush_inline_data(sbi);
1200
1201 retry_flush_quotas:
1202 f2fs_lock_all(sbi);
1203 if (__need_flush_quota(sbi)) {
1204 int locked;
1205
1206 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1207 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1208 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1209 goto retry_flush_dents;
1210 }
1211 f2fs_unlock_all(sbi);
1212
1213 /* only failed during mount/umount/freeze/quotactl */
1214 locked = down_read_trylock(&sbi->sb->s_umount);
1215 f2fs_quota_sync(sbi->sb, -1);
1216 if (locked)
1217 up_read(&sbi->sb->s_umount);
1218 cond_resched();
1219 goto retry_flush_quotas;
1220 }
1221
1222 retry_flush_dents:
1223 /* write all the dirty dentry pages */
1224 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1225 f2fs_unlock_all(sbi);
1226 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1227 if (err)
1228 return err;
1229 cond_resched();
1230 goto retry_flush_quotas;
1231 }
1232
1233 /*
1234 * POR: we should ensure that there are no dirty node pages
1235 * until finishing nat/sit flush. inode->i_blocks can be updated.
1236 */
1237 f2fs_down_write(&sbi->node_change);
1238
1239 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1240 f2fs_up_write(&sbi->node_change);
1241 f2fs_unlock_all(sbi);
1242 err = f2fs_sync_inode_meta(sbi);
1243 if (err)
1244 return err;
1245 cond_resched();
1246 goto retry_flush_quotas;
1247 }
1248
1249 retry_flush_nodes:
1250 f2fs_down_write(&sbi->node_write);
1251
1252 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1253 f2fs_up_write(&sbi->node_write);
1254 atomic_inc(&sbi->wb_sync_req[NODE]);
1255 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1256 atomic_dec(&sbi->wb_sync_req[NODE]);
1257 if (err) {
1258 f2fs_up_write(&sbi->node_change);
1259 f2fs_unlock_all(sbi);
1260 return err;
1261 }
1262 cond_resched();
1263 goto retry_flush_nodes;
1264 }
1265
1266 /*
1267 * sbi->node_change is used only for AIO write_begin path which produces
1268 * dirty node blocks and some checkpoint values by block allocation.
1269 */
1270 __prepare_cp_block(sbi);
1271 f2fs_up_write(&sbi->node_change);
1272 return err;
1273 }
1274
unblock_operations(struct f2fs_sb_info * sbi)1275 static void unblock_operations(struct f2fs_sb_info *sbi)
1276 {
1277 f2fs_up_write(&sbi->node_write);
1278 f2fs_unlock_all(sbi);
1279 }
1280
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1281 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1282 {
1283 DEFINE_WAIT(wait);
1284
1285 for (;;) {
1286 if (!get_pages(sbi, type))
1287 break;
1288
1289 if (unlikely(f2fs_cp_error(sbi)))
1290 break;
1291
1292 if (type == F2FS_DIRTY_META)
1293 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1294 FS_CP_META_IO);
1295 else if (type == F2FS_WB_CP_DATA)
1296 f2fs_submit_merged_write(sbi, DATA);
1297
1298 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1299 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1300 }
1301 finish_wait(&sbi->cp_wait, &wait);
1302 }
1303
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1304 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1305 {
1306 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1307 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1308 unsigned long flags;
1309
1310 if (cpc->reason & CP_UMOUNT) {
1311 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1312 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1313 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1314 f2fs_notice(sbi, "Disable nat_bits due to no space");
1315 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1316 f2fs_nat_bitmap_enabled(sbi)) {
1317 f2fs_enable_nat_bits(sbi);
1318 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1319 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1320 }
1321 }
1322
1323 spin_lock_irqsave(&sbi->cp_lock, flags);
1324
1325 if (cpc->reason & CP_TRIMMED)
1326 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1327 else
1328 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1329
1330 if (cpc->reason & CP_UMOUNT)
1331 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1332 else
1333 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1334
1335 if (cpc->reason & CP_FASTBOOT)
1336 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1337 else
1338 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1339
1340 if (orphan_num)
1341 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1342 else
1343 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1344
1345 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1346 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1347
1348 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1349 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1350 else
1351 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1352
1353 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1354 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1355 else
1356 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1357
1358 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1359 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1360 else
1361 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1362
1363 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1364 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1365 else
1366 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1367
1368 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1369 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1370
1371 /* set this flag to activate crc|cp_ver for recovery */
1372 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1373 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1374
1375 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1376 }
1377
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1378 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1379 void *src, block_t blk_addr)
1380 {
1381 struct writeback_control wbc = {
1382 .for_reclaim = 0,
1383 };
1384
1385 /*
1386 * pagevec_lookup_tag and lock_page again will take
1387 * some extra time. Therefore, f2fs_update_meta_pages and
1388 * f2fs_sync_meta_pages are combined in this function.
1389 */
1390 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1391 int err;
1392
1393 f2fs_wait_on_page_writeback(page, META, true, true);
1394
1395 memcpy(page_address(page), src, PAGE_SIZE);
1396
1397 set_page_dirty(page);
1398 if (unlikely(!clear_page_dirty_for_io(page)))
1399 f2fs_bug_on(sbi, 1);
1400
1401 /* writeout cp pack 2 page */
1402 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1403 if (unlikely(err && f2fs_cp_error(sbi))) {
1404 f2fs_put_page(page, 1);
1405 return;
1406 }
1407
1408 f2fs_bug_on(sbi, err);
1409 f2fs_put_page(page, 0);
1410
1411 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1412 f2fs_submit_merged_write(sbi, META_FLUSH);
1413 }
1414
get_sectors_written(struct block_device * bdev)1415 static inline u64 get_sectors_written(struct block_device *bdev)
1416 {
1417 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1418 }
1419
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1420 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1421 {
1422 if (f2fs_is_multi_device(sbi)) {
1423 u64 sectors = 0;
1424 int i;
1425
1426 for (i = 0; i < sbi->s_ndevs; i++)
1427 sectors += get_sectors_written(FDEV(i).bdev);
1428
1429 return sectors;
1430 }
1431
1432 return get_sectors_written(sbi->sb->s_bdev);
1433 }
1434
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1435 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1436 {
1437 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1438 struct f2fs_nm_info *nm_i = NM_I(sbi);
1439 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1440 block_t start_blk;
1441 unsigned int data_sum_blocks, orphan_blocks;
1442 __u32 crc32 = 0;
1443 int i;
1444 int cp_payload_blks = __cp_payload(sbi);
1445 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1446 u64 kbytes_written;
1447 int err;
1448
1449 /* Flush all the NAT/SIT pages */
1450 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1451
1452 /* start to update checkpoint, cp ver is already updated previously */
1453 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1454 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1455 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1456 ckpt->cur_node_segno[i] =
1457 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1458 ckpt->cur_node_blkoff[i] =
1459 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1460 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1461 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1462 }
1463 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1464 ckpt->cur_data_segno[i] =
1465 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1466 ckpt->cur_data_blkoff[i] =
1467 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1468 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1469 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1470 }
1471
1472 /* 2 cp + n data seg summary + orphan inode blocks */
1473 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1474 spin_lock_irqsave(&sbi->cp_lock, flags);
1475 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1476 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1477 else
1478 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1479 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1480
1481 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1482 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1483 orphan_blocks);
1484
1485 if (__remain_node_summaries(cpc->reason))
1486 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1487 cp_payload_blks + data_sum_blocks +
1488 orphan_blocks + NR_CURSEG_NODE_TYPE);
1489 else
1490 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1491 cp_payload_blks + data_sum_blocks +
1492 orphan_blocks);
1493
1494 /* update ckpt flag for checkpoint */
1495 update_ckpt_flags(sbi, cpc);
1496
1497 /* update SIT/NAT bitmap */
1498 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1499 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1500
1501 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1502 *((__le32 *)((unsigned char *)ckpt +
1503 le32_to_cpu(ckpt->checksum_offset)))
1504 = cpu_to_le32(crc32);
1505
1506 start_blk = __start_cp_next_addr(sbi);
1507
1508 /* write nat bits */
1509 if ((cpc->reason & CP_UMOUNT) &&
1510 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1511 __u64 cp_ver = cur_cp_version(ckpt);
1512 block_t blk;
1513
1514 cp_ver |= ((__u64)crc32 << 32);
1515 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1516
1517 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1518 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1519 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1520 (i << F2FS_BLKSIZE_BITS), blk + i);
1521 }
1522
1523 /* write out checkpoint buffer at block 0 */
1524 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1525
1526 for (i = 1; i < 1 + cp_payload_blks; i++)
1527 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1528 start_blk++);
1529
1530 if (orphan_num) {
1531 write_orphan_inodes(sbi, start_blk);
1532 start_blk += orphan_blocks;
1533 }
1534
1535 f2fs_write_data_summaries(sbi, start_blk);
1536 start_blk += data_sum_blocks;
1537
1538 /* Record write statistics in the hot node summary */
1539 kbytes_written = sbi->kbytes_written;
1540 kbytes_written += (f2fs_get_sectors_written(sbi) -
1541 sbi->sectors_written_start) >> 1;
1542 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1543
1544 if (__remain_node_summaries(cpc->reason)) {
1545 f2fs_write_node_summaries(sbi, start_blk);
1546 start_blk += NR_CURSEG_NODE_TYPE;
1547 }
1548
1549 /* update user_block_counts */
1550 sbi->last_valid_block_count = sbi->total_valid_block_count;
1551 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1552 percpu_counter_set(&sbi->rf_node_block_count, 0);
1553
1554 /* Here, we have one bio having CP pack except cp pack 2 page */
1555 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1556 /* Wait for all dirty meta pages to be submitted for IO */
1557 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1558
1559 /* wait for previous submitted meta pages writeback */
1560 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1561
1562 /* flush all device cache */
1563 err = f2fs_flush_device_cache(sbi);
1564 if (err)
1565 return err;
1566
1567 /* barrier and flush checkpoint cp pack 2 page if it can */
1568 commit_checkpoint(sbi, ckpt, start_blk);
1569 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1570
1571 /*
1572 * invalidate intermediate page cache borrowed from meta inode which are
1573 * used for migration of encrypted, verity or compressed inode's blocks.
1574 */
1575 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1576 f2fs_sb_has_compression(sbi))
1577 invalidate_mapping_pages(META_MAPPING(sbi),
1578 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1579
1580 f2fs_release_ino_entry(sbi, false);
1581
1582 f2fs_reset_fsync_node_info(sbi);
1583
1584 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1585 clear_sbi_flag(sbi, SBI_NEED_CP);
1586 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1587
1588 spin_lock(&sbi->stat_lock);
1589 sbi->unusable_block_count = 0;
1590 spin_unlock(&sbi->stat_lock);
1591
1592 __set_cp_next_pack(sbi);
1593
1594 /*
1595 * redirty superblock if metadata like node page or inode cache is
1596 * updated during writing checkpoint.
1597 */
1598 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1599 get_pages(sbi, F2FS_DIRTY_IMETA))
1600 set_sbi_flag(sbi, SBI_IS_DIRTY);
1601
1602 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1603
1604 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1605 }
1606
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1607 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1610 unsigned long long ckpt_ver;
1611 int err = 0;
1612
1613 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1614 return -EROFS;
1615
1616 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1617 if (cpc->reason != CP_PAUSE)
1618 return 0;
1619 f2fs_warn(sbi, "Start checkpoint disabled!");
1620 }
1621 if (cpc->reason != CP_RESIZE)
1622 f2fs_down_write(&sbi->cp_global_sem);
1623
1624 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1625 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1626 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1627 goto out;
1628 if (unlikely(f2fs_cp_error(sbi))) {
1629 err = -EIO;
1630 goto out;
1631 }
1632
1633 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1634
1635 err = block_operations(sbi);
1636 if (err)
1637 goto out;
1638
1639 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1640
1641 f2fs_flush_merged_writes(sbi);
1642
1643 /* this is the case of multiple fstrims without any changes */
1644 if (cpc->reason & CP_DISCARD) {
1645 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1646 unblock_operations(sbi);
1647 goto out;
1648 }
1649
1650 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1651 SIT_I(sbi)->dirty_sentries == 0 &&
1652 prefree_segments(sbi) == 0) {
1653 f2fs_flush_sit_entries(sbi, cpc);
1654 f2fs_clear_prefree_segments(sbi, cpc);
1655 unblock_operations(sbi);
1656 goto out;
1657 }
1658 }
1659
1660 /*
1661 * update checkpoint pack index
1662 * Increase the version number so that
1663 * SIT entries and seg summaries are written at correct place
1664 */
1665 ckpt_ver = cur_cp_version(ckpt);
1666 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1667
1668 /* write cached NAT/SIT entries to NAT/SIT area */
1669 err = f2fs_flush_nat_entries(sbi, cpc);
1670 if (err) {
1671 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1672 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1673 goto stop;
1674 }
1675
1676 f2fs_flush_sit_entries(sbi, cpc);
1677
1678 /* save inmem log status */
1679 f2fs_save_inmem_curseg(sbi);
1680
1681 err = do_checkpoint(sbi, cpc);
1682 if (err) {
1683 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1684 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1685 f2fs_release_discard_addrs(sbi);
1686 } else {
1687 f2fs_clear_prefree_segments(sbi, cpc);
1688 }
1689
1690 f2fs_restore_inmem_curseg(sbi);
1691 stop:
1692 unblock_operations(sbi);
1693 stat_inc_cp_count(sbi->stat_info);
1694
1695 if (cpc->reason & CP_RECOVERY)
1696 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1697
1698 /* update CP_TIME to trigger checkpoint periodically */
1699 f2fs_update_time(sbi, CP_TIME);
1700 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1701 out:
1702 if (cpc->reason != CP_RESIZE)
1703 f2fs_up_write(&sbi->cp_global_sem);
1704 return err;
1705 }
1706
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1707 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1708 {
1709 int i;
1710
1711 for (i = 0; i < MAX_INO_ENTRY; i++) {
1712 struct inode_management *im = &sbi->im[i];
1713
1714 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1715 spin_lock_init(&im->ino_lock);
1716 INIT_LIST_HEAD(&im->ino_list);
1717 im->ino_num = 0;
1718 }
1719
1720 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1721 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1722 F2FS_ORPHANS_PER_BLOCK;
1723 }
1724
f2fs_create_checkpoint_caches(void)1725 int __init f2fs_create_checkpoint_caches(void)
1726 {
1727 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1728 sizeof(struct ino_entry));
1729 if (!ino_entry_slab)
1730 return -ENOMEM;
1731 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1732 sizeof(struct inode_entry));
1733 if (!f2fs_inode_entry_slab) {
1734 kmem_cache_destroy(ino_entry_slab);
1735 return -ENOMEM;
1736 }
1737 return 0;
1738 }
1739
f2fs_destroy_checkpoint_caches(void)1740 void f2fs_destroy_checkpoint_caches(void)
1741 {
1742 kmem_cache_destroy(ino_entry_slab);
1743 kmem_cache_destroy(f2fs_inode_entry_slab);
1744 }
1745
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1746 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1747 {
1748 struct cp_control cpc = { .reason = CP_SYNC, };
1749 int err;
1750
1751 f2fs_down_write(&sbi->gc_lock);
1752 err = f2fs_write_checkpoint(sbi, &cpc);
1753 f2fs_up_write(&sbi->gc_lock);
1754
1755 return err;
1756 }
1757
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1758 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1759 {
1760 struct ckpt_req_control *cprc = &sbi->cprc_info;
1761 struct ckpt_req *req, *next;
1762 struct llist_node *dispatch_list;
1763 u64 sum_diff = 0, diff, count = 0;
1764 int ret;
1765
1766 dispatch_list = llist_del_all(&cprc->issue_list);
1767 if (!dispatch_list)
1768 return;
1769 dispatch_list = llist_reverse_order(dispatch_list);
1770
1771 ret = __write_checkpoint_sync(sbi);
1772 atomic_inc(&cprc->issued_ckpt);
1773
1774 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1775 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1776 req->ret = ret;
1777 complete(&req->wait);
1778
1779 sum_diff += diff;
1780 count++;
1781 }
1782 atomic_sub(count, &cprc->queued_ckpt);
1783 atomic_add(count, &cprc->total_ckpt);
1784
1785 spin_lock(&cprc->stat_lock);
1786 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1787 if (cprc->peak_time < cprc->cur_time)
1788 cprc->peak_time = cprc->cur_time;
1789 spin_unlock(&cprc->stat_lock);
1790 }
1791
issue_checkpoint_thread(void * data)1792 static int issue_checkpoint_thread(void *data)
1793 {
1794 struct f2fs_sb_info *sbi = data;
1795 struct ckpt_req_control *cprc = &sbi->cprc_info;
1796 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1797 repeat:
1798 if (kthread_should_stop())
1799 return 0;
1800
1801 if (!llist_empty(&cprc->issue_list))
1802 __checkpoint_and_complete_reqs(sbi);
1803
1804 wait_event_interruptible(*q,
1805 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1806 goto repeat;
1807 }
1808
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1809 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1810 struct ckpt_req *wait_req)
1811 {
1812 struct ckpt_req_control *cprc = &sbi->cprc_info;
1813
1814 if (!llist_empty(&cprc->issue_list)) {
1815 __checkpoint_and_complete_reqs(sbi);
1816 } else {
1817 /* already dispatched by issue_checkpoint_thread */
1818 if (wait_req)
1819 wait_for_completion(&wait_req->wait);
1820 }
1821 }
1822
init_ckpt_req(struct ckpt_req * req)1823 static void init_ckpt_req(struct ckpt_req *req)
1824 {
1825 memset(req, 0, sizeof(struct ckpt_req));
1826
1827 init_completion(&req->wait);
1828 req->queue_time = ktime_get();
1829 }
1830
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1831 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1832 {
1833 struct ckpt_req_control *cprc = &sbi->cprc_info;
1834 struct ckpt_req req;
1835 struct cp_control cpc;
1836
1837 cpc.reason = __get_cp_reason(sbi);
1838 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1839 int ret;
1840
1841 f2fs_down_write(&sbi->gc_lock);
1842 ret = f2fs_write_checkpoint(sbi, &cpc);
1843 f2fs_up_write(&sbi->gc_lock);
1844
1845 return ret;
1846 }
1847
1848 if (!cprc->f2fs_issue_ckpt)
1849 return __write_checkpoint_sync(sbi);
1850
1851 init_ckpt_req(&req);
1852
1853 llist_add(&req.llnode, &cprc->issue_list);
1854 atomic_inc(&cprc->queued_ckpt);
1855
1856 /*
1857 * update issue_list before we wake up issue_checkpoint thread,
1858 * this smp_mb() pairs with another barrier in ___wait_event(),
1859 * see more details in comments of waitqueue_active().
1860 */
1861 smp_mb();
1862
1863 if (waitqueue_active(&cprc->ckpt_wait_queue))
1864 wake_up(&cprc->ckpt_wait_queue);
1865
1866 if (cprc->f2fs_issue_ckpt)
1867 wait_for_completion(&req.wait);
1868 else
1869 flush_remained_ckpt_reqs(sbi, &req);
1870
1871 return req.ret;
1872 }
1873
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1874 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1875 {
1876 dev_t dev = sbi->sb->s_bdev->bd_dev;
1877 struct ckpt_req_control *cprc = &sbi->cprc_info;
1878
1879 if (cprc->f2fs_issue_ckpt)
1880 return 0;
1881
1882 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1883 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1884 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1885 cprc->f2fs_issue_ckpt = NULL;
1886 return -ENOMEM;
1887 }
1888
1889 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1890
1891 return 0;
1892 }
1893
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1894 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1895 {
1896 struct ckpt_req_control *cprc = &sbi->cprc_info;
1897
1898 if (cprc->f2fs_issue_ckpt) {
1899 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1900
1901 cprc->f2fs_issue_ckpt = NULL;
1902 kthread_stop(ckpt_task);
1903
1904 flush_remained_ckpt_reqs(sbi, NULL);
1905 }
1906 }
1907
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1908 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1909 {
1910 struct ckpt_req_control *cprc = &sbi->cprc_info;
1911
1912 atomic_set(&cprc->issued_ckpt, 0);
1913 atomic_set(&cprc->total_ckpt, 0);
1914 atomic_set(&cprc->queued_ckpt, 0);
1915 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1916 init_waitqueue_head(&cprc->ckpt_wait_queue);
1917 init_llist_head(&cprc->issue_list);
1918 spin_lock_init(&cprc->stat_lock);
1919 }
1920