1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
44 }
45
f2fs_destroy_bioset(void)46 void f2fs_destroy_bioset(void)
47 {
48 bioset_exit(&f2fs_bioset);
49 }
50
__is_cp_guaranteed(struct page * page)51 static bool __is_cp_guaranteed(struct page *page)
52 {
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if (f2fs_is_compressed_page(page))
69 return false;
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
72 return true;
73 return false;
74 }
75
__read_io_type(struct page * page)76 static enum count_type __read_io_type(struct page *page)
77 {
78 struct address_space *mapping = page_file_mapping(page);
79
80 if (mapping) {
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84 if (inode->i_ino == F2FS_META_INO(sbi))
85 return F2FS_RD_META;
86
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
88 return F2FS_RD_NODE;
89 }
90 return F2FS_RD_DATA;
91 }
92
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = BIT(0),
97 #else
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = BIT(1),
102 #else
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106 STEP_VERITY = BIT(2),
107 #else
108 STEP_VERITY = 0, /* compile out the verity-related code */
109 #endif
110 };
111
112 struct bio_post_read_ctx {
113 struct bio *bio;
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
117 /*
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
121 */
122 bool decompression_attempted;
123 block_t fs_blkaddr;
124 };
125
126 /*
127 * Update and unlock a bio's pages, and free the bio.
128 *
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
131 *
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
139 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142 struct bio_vec *bv;
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
145
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
148
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
152 in_task);
153 f2fs_put_page_dic(page, in_task);
154 continue;
155 }
156
157 if (bio->bi_status)
158 ClearPageUptodate(page);
159 else
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 unlock_page(page);
163 }
164
165 if (ctx)
166 mempool_free(ctx, bio_post_read_ctx_pool);
167 bio_put(bio);
168 }
169
f2fs_verify_bio(struct work_struct * work)170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177 /*
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
183 */
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
186
187 /*
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
190 */
191 if (may_have_compressed_pages) {
192 struct bio_vec *bv;
193 struct bvec_iter_all iter_all;
194
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
201 break;
202 }
203 }
204 } else {
205 fsverity_verify_bio(bio);
206 }
207
208 f2fs_finish_read_bio(bio, true);
209 }
210
211 /*
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
214 *
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
219 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222 struct bio_post_read_ctx *ctx = bio->bi_private;
223
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
227 } else {
228 f2fs_finish_read_bio(bio, in_task);
229 }
230 }
231
232 /*
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
235 *
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
240 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 bool in_task)
243 {
244 struct bio_vec *bv;
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
248
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
251
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
254 in_task);
255 else
256 all_compressed = false;
257
258 blkaddr++;
259 }
260
261 ctx->decompression_attempted = true;
262
263 /*
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
267 */
268 if (all_compressed)
269 ctx->enabled_steps &= ~STEP_VERITY;
270 }
271
f2fs_post_read_work(struct work_struct * work)272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
277
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
280 return;
281 }
282
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
285
286 f2fs_verify_and_finish_bio(bio, true);
287 }
288
f2fs_read_end_io(struct bio * bio)289 static void f2fs_read_end_io(struct bio *bio)
290 {
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
294
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
297
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
300
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
303 return;
304 }
305
306 if (ctx) {
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
309
310 /*
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
313 */
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 return;
321 }
322 }
323
324 f2fs_verify_and_finish_bio(bio, intask);
325 }
326
f2fs_write_end_io(struct bio * bio)327 static void f2fs_write_end_io(struct bio *bio)
328 {
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
332
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
335
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
338
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page);
342
343 if (page_private_dummy(page)) {
344 clear_page_private_dummy(page);
345 unlock_page(page);
346 mempool_free(page, sbi->write_io_dummy);
347
348 if (unlikely(bio->bi_status))
349 f2fs_stop_checkpoint(sbi, true,
350 STOP_CP_REASON_WRITE_FAIL);
351 continue;
352 }
353
354 fscrypt_finalize_bounce_page(&page);
355
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357 if (f2fs_is_compressed_page(page)) {
358 f2fs_compress_write_end_io(bio, page);
359 continue;
360 }
361 #endif
362
363 if (unlikely(bio->bi_status)) {
364 mapping_set_error(page->mapping, -EIO);
365 if (type == F2FS_WB_CP_DATA)
366 f2fs_stop_checkpoint(sbi, true,
367 STOP_CP_REASON_WRITE_FAIL);
368 }
369
370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 page->index != nid_of_node(page));
372
373 dec_page_count(sbi, type);
374 if (f2fs_in_warm_node_list(sbi, page))
375 f2fs_del_fsync_node_entry(sbi, page);
376 clear_page_private_gcing(page);
377 end_page_writeback(page);
378 }
379 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 wq_has_sleeper(&sbi->cp_wait))
381 wake_up(&sbi->cp_wait);
382
383 bio_put(bio);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)387 static void f2fs_zone_write_end_io(struct bio *bio)
388 {
389 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391 bio->bi_private = io->bi_private;
392 complete(&io->zone_wait);
393 f2fs_write_end_io(bio);
394 }
395 #endif
396
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398 block_t blk_addr, sector_t *sector)
399 {
400 struct block_device *bdev = sbi->sb->s_bdev;
401 int i;
402
403 if (f2fs_is_multi_device(sbi)) {
404 for (i = 0; i < sbi->s_ndevs; i++) {
405 if (FDEV(i).start_blk <= blk_addr &&
406 FDEV(i).end_blk >= blk_addr) {
407 blk_addr -= FDEV(i).start_blk;
408 bdev = FDEV(i).bdev;
409 break;
410 }
411 }
412 }
413
414 if (sector)
415 *sector = SECTOR_FROM_BLOCK(blk_addr);
416 return bdev;
417 }
418
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420 {
421 int i;
422
423 if (!f2fs_is_multi_device(sbi))
424 return 0;
425
426 for (i = 0; i < sbi->s_ndevs; i++)
427 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428 return i;
429 return 0;
430 }
431
f2fs_io_flags(struct f2fs_io_info * fio)432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433 {
434 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435 unsigned int fua_flag, meta_flag, io_flag;
436 blk_opf_t op_flags = 0;
437
438 if (fio->op != REQ_OP_WRITE)
439 return 0;
440 if (fio->type == DATA)
441 io_flag = fio->sbi->data_io_flag;
442 else if (fio->type == NODE)
443 io_flag = fio->sbi->node_io_flag;
444 else
445 return 0;
446
447 fua_flag = io_flag & temp_mask;
448 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450 /*
451 * data/node io flag bits per temp:
452 * REQ_META | REQ_FUA |
453 * 5 | 4 | 3 | 2 | 1 | 0 |
454 * Cold | Warm | Hot | Cold | Warm | Hot |
455 */
456 if (BIT(fio->temp) & meta_flag)
457 op_flags |= REQ_META;
458 if (BIT(fio->temp) & fua_flag)
459 op_flags |= REQ_FUA;
460 return op_flags;
461 }
462
__bio_alloc(struct f2fs_io_info * fio,int npages)463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464 {
465 struct f2fs_sb_info *sbi = fio->sbi;
466 struct block_device *bdev;
467 sector_t sector;
468 struct bio *bio;
469
470 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
471 bio = bio_alloc_bioset(bdev, npages,
472 fio->op | fio->op_flags | f2fs_io_flags(fio),
473 GFP_NOIO, &f2fs_bioset);
474 bio->bi_iter.bi_sector = sector;
475 if (is_read_io(fio->op)) {
476 bio->bi_end_io = f2fs_read_end_io;
477 bio->bi_private = NULL;
478 } else {
479 bio->bi_end_io = f2fs_write_end_io;
480 bio->bi_private = sbi;
481 }
482 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484 if (fio->io_wbc)
485 wbc_init_bio(fio->io_wbc, bio);
486
487 return bio;
488 }
489
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491 pgoff_t first_idx,
492 const struct f2fs_io_info *fio,
493 gfp_t gfp_mask)
494 {
495 /*
496 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 * read/write raw data without encryption.
498 */
499 if (!fio || !fio->encrypted_page)
500 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501 }
502
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504 pgoff_t next_idx,
505 const struct f2fs_io_info *fio)
506 {
507 /*
508 * The f2fs garbage collector sets ->encrypted_page when it wants to
509 * read/write raw data without encryption.
510 */
511 if (fio && fio->encrypted_page)
512 return !bio_has_crypt_ctx(bio);
513
514 return fscrypt_mergeable_bio(bio, inode, next_idx);
515 }
516
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518 enum page_type type)
519 {
520 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523 iostat_update_submit_ctx(bio, type);
524 submit_bio(bio);
525 }
526
f2fs_align_write_bio(struct f2fs_sb_info * sbi,struct bio * bio)527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528 {
529 unsigned int start =
530 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532 if (start == 0)
533 return;
534
535 /* fill dummy pages */
536 for (; start < F2FS_IO_SIZE(sbi); start++) {
537 struct page *page =
538 mempool_alloc(sbi->write_io_dummy,
539 GFP_NOIO | __GFP_NOFAIL);
540 f2fs_bug_on(sbi, !page);
541
542 lock_page(page);
543
544 zero_user_segment(page, 0, PAGE_SIZE);
545 set_page_private_dummy(page);
546
547 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548 f2fs_bug_on(sbi, 1);
549 }
550 }
551
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553 enum page_type type)
554 {
555 WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557 if (type == DATA || type == NODE) {
558 if (f2fs_lfs_mode(sbi) && current->plug)
559 blk_finish_plug(current->plug);
560
561 if (F2FS_IO_ALIGNED(sbi)) {
562 f2fs_align_write_bio(sbi, bio);
563 /*
564 * In the NODE case, we lose next block address chain.
565 * So, we need to do checkpoint in f2fs_sync_file.
566 */
567 if (type == NODE)
568 set_sbi_flag(sbi, SBI_NEED_CP);
569 }
570 }
571
572 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573 iostat_update_submit_ctx(bio, type);
574 submit_bio(bio);
575 }
576
__submit_merged_bio(struct f2fs_bio_info * io)577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579 struct f2fs_io_info *fio = &io->fio;
580
581 if (!io->bio)
582 return;
583
584 if (is_read_io(fio->op)) {
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587 } else {
588 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590 }
591 io->bio = NULL;
592 }
593
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)594 static bool __has_merged_page(struct bio *bio, struct inode *inode,
595 struct page *page, nid_t ino)
596 {
597 struct bio_vec *bvec;
598 struct bvec_iter_all iter_all;
599
600 if (!bio)
601 return false;
602
603 if (!inode && !page && !ino)
604 return true;
605
606 bio_for_each_segment_all(bvec, bio, iter_all) {
607 struct page *target = bvec->bv_page;
608
609 if (fscrypt_is_bounce_page(target)) {
610 target = fscrypt_pagecache_page(target);
611 if (IS_ERR(target))
612 continue;
613 }
614 if (f2fs_is_compressed_page(target)) {
615 target = f2fs_compress_control_page(target);
616 if (IS_ERR(target))
617 continue;
618 }
619
620 if (inode && inode == target->mapping->host)
621 return true;
622 if (page && page == target)
623 return true;
624 if (ino && ino == ino_of_node(target))
625 return true;
626 }
627
628 return false;
629 }
630
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632 {
633 int i;
634
635 for (i = 0; i < NR_PAGE_TYPE; i++) {
636 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637 int j;
638
639 sbi->write_io[i] = f2fs_kmalloc(sbi,
640 array_size(n, sizeof(struct f2fs_bio_info)),
641 GFP_KERNEL);
642 if (!sbi->write_io[i])
643 return -ENOMEM;
644
645 for (j = HOT; j < n; j++) {
646 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647 sbi->write_io[i][j].sbi = sbi;
648 sbi->write_io[i][j].bio = NULL;
649 spin_lock_init(&sbi->write_io[i][j].io_lock);
650 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653 #ifdef CONFIG_BLK_DEV_ZONED
654 init_completion(&sbi->write_io[i][j].zone_wait);
655 sbi->write_io[i][j].zone_pending_bio = NULL;
656 sbi->write_io[i][j].bi_private = NULL;
657 #endif
658 }
659 }
660
661 return 0;
662 }
663
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665 enum page_type type, enum temp_type temp)
666 {
667 enum page_type btype = PAGE_TYPE_OF_BIO(type);
668 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670 f2fs_down_write(&io->io_rwsem);
671
672 if (!io->bio)
673 goto unlock_out;
674
675 /* change META to META_FLUSH in the checkpoint procedure */
676 if (type >= META_FLUSH) {
677 io->fio.type = META_FLUSH;
678 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679 if (!test_opt(sbi, NOBARRIER))
680 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681 }
682 __submit_merged_bio(io);
683 unlock_out:
684 f2fs_up_write(&io->io_rwsem);
685 }
686
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688 struct inode *inode, struct page *page,
689 nid_t ino, enum page_type type, bool force)
690 {
691 enum temp_type temp;
692 bool ret = true;
693
694 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695 if (!force) {
696 enum page_type btype = PAGE_TYPE_OF_BIO(type);
697 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699 f2fs_down_read(&io->io_rwsem);
700 ret = __has_merged_page(io->bio, inode, page, ino);
701 f2fs_up_read(&io->io_rwsem);
702 }
703 if (ret)
704 __f2fs_submit_merged_write(sbi, type, temp);
705
706 /* TODO: use HOT temp only for meta pages now. */
707 if (type >= META)
708 break;
709 }
710 }
711
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713 {
714 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715 }
716
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718 struct inode *inode, struct page *page,
719 nid_t ino, enum page_type type)
720 {
721 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722 }
723
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725 {
726 f2fs_submit_merged_write(sbi, DATA);
727 f2fs_submit_merged_write(sbi, NODE);
728 f2fs_submit_merged_write(sbi, META);
729 }
730
731 /*
732 * Fill the locked page with data located in the block address.
733 * A caller needs to unlock the page on failure.
734 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)735 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736 {
737 struct bio *bio;
738 struct page *page = fio->encrypted_page ?
739 fio->encrypted_page : fio->page;
740
741 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742 fio->is_por ? META_POR : (__is_meta_io(fio) ?
743 META_GENERIC : DATA_GENERIC_ENHANCE))) {
744 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745 return -EFSCORRUPTED;
746 }
747
748 trace_f2fs_submit_page_bio(page, fio);
749
750 /* Allocate a new bio */
751 bio = __bio_alloc(fio, 1);
752
753 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754 fio->page->index, fio, GFP_NOIO);
755
756 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757 bio_put(bio);
758 return -EFAULT;
759 }
760
761 if (fio->io_wbc && !is_read_io(fio->op))
762 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764 inc_page_count(fio->sbi, is_read_io(fio->op) ?
765 __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767 if (is_read_io(bio_op(bio)))
768 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769 else
770 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771 return 0;
772 }
773
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775 block_t last_blkaddr, block_t cur_blkaddr)
776 {
777 if (unlikely(sbi->max_io_bytes &&
778 bio->bi_iter.bi_size >= sbi->max_io_bytes))
779 return false;
780 if (last_blkaddr + 1 != cur_blkaddr)
781 return false;
782 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783 }
784
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)785 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786 struct f2fs_io_info *fio)
787 {
788 if (io->fio.op != fio->op)
789 return false;
790 return io->fio.op_flags == fio->op_flags;
791 }
792
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794 struct f2fs_bio_info *io,
795 struct f2fs_io_info *fio,
796 block_t last_blkaddr,
797 block_t cur_blkaddr)
798 {
799 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800 unsigned int filled_blocks =
801 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802 unsigned int io_size = F2FS_IO_SIZE(sbi);
803 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805 /* IOs in bio is aligned and left space of vectors is not enough */
806 if (!(filled_blocks % io_size) && left_vecs < io_size)
807 return false;
808 }
809 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810 return false;
811 return io_type_is_mergeable(io, fio);
812 }
813
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815 struct page *page, enum temp_type temp)
816 {
817 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818 struct bio_entry *be;
819
820 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821 be->bio = bio;
822 bio_get(bio);
823
824 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825 f2fs_bug_on(sbi, 1);
826
827 f2fs_down_write(&io->bio_list_lock);
828 list_add_tail(&be->list, &io->bio_list);
829 f2fs_up_write(&io->bio_list_lock);
830 }
831
del_bio_entry(struct bio_entry * be)832 static void del_bio_entry(struct bio_entry *be)
833 {
834 list_del(&be->list);
835 kmem_cache_free(bio_entry_slab, be);
836 }
837
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839 struct page *page)
840 {
841 struct f2fs_sb_info *sbi = fio->sbi;
842 enum temp_type temp;
843 bool found = false;
844 int ret = -EAGAIN;
845
846 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848 struct list_head *head = &io->bio_list;
849 struct bio_entry *be;
850
851 f2fs_down_write(&io->bio_list_lock);
852 list_for_each_entry(be, head, list) {
853 if (be->bio != *bio)
854 continue;
855
856 found = true;
857
858 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859 *fio->last_block,
860 fio->new_blkaddr));
861 if (f2fs_crypt_mergeable_bio(*bio,
862 fio->page->mapping->host,
863 fio->page->index, fio) &&
864 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865 PAGE_SIZE) {
866 ret = 0;
867 break;
868 }
869
870 /* page can't be merged into bio; submit the bio */
871 del_bio_entry(be);
872 f2fs_submit_write_bio(sbi, *bio, DATA);
873 break;
874 }
875 f2fs_up_write(&io->bio_list_lock);
876 }
877
878 if (ret) {
879 bio_put(*bio);
880 *bio = NULL;
881 }
882
883 return ret;
884 }
885
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887 struct bio **bio, struct page *page)
888 {
889 enum temp_type temp;
890 bool found = false;
891 struct bio *target = bio ? *bio : NULL;
892
893 f2fs_bug_on(sbi, !target && !page);
894
895 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897 struct list_head *head = &io->bio_list;
898 struct bio_entry *be;
899
900 if (list_empty(head))
901 continue;
902
903 f2fs_down_read(&io->bio_list_lock);
904 list_for_each_entry(be, head, list) {
905 if (target)
906 found = (target == be->bio);
907 else
908 found = __has_merged_page(be->bio, NULL,
909 page, 0);
910 if (found)
911 break;
912 }
913 f2fs_up_read(&io->bio_list_lock);
914
915 if (!found)
916 continue;
917
918 found = false;
919
920 f2fs_down_write(&io->bio_list_lock);
921 list_for_each_entry(be, head, list) {
922 if (target)
923 found = (target == be->bio);
924 else
925 found = __has_merged_page(be->bio, NULL,
926 page, 0);
927 if (found) {
928 target = be->bio;
929 del_bio_entry(be);
930 break;
931 }
932 }
933 f2fs_up_write(&io->bio_list_lock);
934 }
935
936 if (found)
937 f2fs_submit_write_bio(sbi, target, DATA);
938 if (bio && *bio) {
939 bio_put(*bio);
940 *bio = NULL;
941 }
942 }
943
f2fs_merge_page_bio(struct f2fs_io_info * fio)944 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945 {
946 struct bio *bio = *fio->bio;
947 struct page *page = fio->encrypted_page ?
948 fio->encrypted_page : fio->page;
949
950 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953 return -EFSCORRUPTED;
954 }
955
956 trace_f2fs_submit_page_bio(page, fio);
957
958 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959 fio->new_blkaddr))
960 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961 alloc_new:
962 if (!bio) {
963 bio = __bio_alloc(fio, BIO_MAX_VECS);
964 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965 fio->page->index, fio, GFP_NOIO);
966
967 add_bio_entry(fio->sbi, bio, page, fio->temp);
968 } else {
969 if (add_ipu_page(fio, &bio, page))
970 goto alloc_new;
971 }
972
973 if (fio->io_wbc)
974 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978 *fio->last_block = fio->new_blkaddr;
979 *fio->bio = bio;
980
981 return 0;
982 }
983
984 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986 {
987 int devi = 0;
988
989 if (f2fs_is_multi_device(sbi)) {
990 devi = f2fs_target_device_index(sbi, blkaddr);
991 if (blkaddr < FDEV(devi).start_blk ||
992 blkaddr > FDEV(devi).end_blk) {
993 f2fs_err(sbi, "Invalid block %x", blkaddr);
994 return false;
995 }
996 blkaddr -= FDEV(devi).start_blk;
997 }
998 return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001 }
1002 #endif
1003
f2fs_submit_page_write(struct f2fs_io_info * fio)1004 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005 {
1006 struct f2fs_sb_info *sbi = fio->sbi;
1007 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009 struct page *bio_page;
1010
1011 f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013 f2fs_down_write(&io->io_rwsem);
1014
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017 wait_for_completion_io(&io->zone_wait);
1018 bio_put(io->zone_pending_bio);
1019 io->zone_pending_bio = NULL;
1020 io->bi_private = NULL;
1021 }
1022 #endif
1023
1024 next:
1025 if (fio->in_list) {
1026 spin_lock(&io->io_lock);
1027 if (list_empty(&io->io_list)) {
1028 spin_unlock(&io->io_lock);
1029 goto out;
1030 }
1031 fio = list_first_entry(&io->io_list,
1032 struct f2fs_io_info, list);
1033 list_del(&fio->list);
1034 spin_unlock(&io->io_lock);
1035 }
1036
1037 verify_fio_blkaddr(fio);
1038
1039 if (fio->encrypted_page)
1040 bio_page = fio->encrypted_page;
1041 else if (fio->compressed_page)
1042 bio_page = fio->compressed_page;
1043 else
1044 bio_page = fio->page;
1045
1046 /* set submitted = true as a return value */
1047 fio->submitted = 1;
1048
1049 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051 if (io->bio &&
1052 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053 fio->new_blkaddr) ||
1054 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055 bio_page->index, fio)))
1056 __submit_merged_bio(io);
1057 alloc_new:
1058 if (io->bio == NULL) {
1059 if (F2FS_IO_ALIGNED(sbi) &&
1060 (fio->type == DATA || fio->type == NODE) &&
1061 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063 fio->retry = 1;
1064 goto skip;
1065 }
1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068 bio_page->index, fio, GFP_NOIO);
1069 io->fio = *fio;
1070 }
1071
1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073 __submit_merged_bio(io);
1074 goto alloc_new;
1075 }
1076
1077 if (fio->io_wbc)
1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080 io->last_block_in_bio = fio->new_blkaddr;
1081
1082 trace_f2fs_submit_page_write(fio->page, fio);
1083 skip:
1084 if (fio->in_list)
1085 goto next;
1086 out:
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090 bio_get(io->bio);
1091 reinit_completion(&io->zone_wait);
1092 io->bi_private = io->bio->bi_private;
1093 io->bio->bi_private = io;
1094 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095 io->zone_pending_bio = io->bio;
1096 __submit_merged_bio(io);
1097 }
1098 #endif
1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100 !f2fs_is_checkpoint_ready(sbi))
1101 __submit_merged_bio(io);
1102 f2fs_up_write(&io->io_rwsem);
1103 }
1104
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106 unsigned nr_pages, blk_opf_t op_flag,
1107 pgoff_t first_idx, bool for_write)
1108 {
1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110 struct bio *bio;
1111 struct bio_post_read_ctx *ctx = NULL;
1112 unsigned int post_read_steps = 0;
1113 sector_t sector;
1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1115
1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117 REQ_OP_READ | op_flag,
1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119 if (!bio)
1120 return ERR_PTR(-ENOMEM);
1121 bio->bi_iter.bi_sector = sector;
1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123 bio->bi_end_io = f2fs_read_end_io;
1124
1125 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126 post_read_steps |= STEP_DECRYPT;
1127
1128 if (f2fs_need_verity(inode, first_idx))
1129 post_read_steps |= STEP_VERITY;
1130
1131 /*
1132 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133 * contain both compressed and uncompressed clusters. We'll allocate a
1134 * bio_post_read_ctx if the file is compressed, but the caller is
1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136 */
1137
1138 if (post_read_steps || f2fs_compressed_file(inode)) {
1139 /* Due to the mempool, this never fails. */
1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141 ctx->bio = bio;
1142 ctx->sbi = sbi;
1143 ctx->enabled_steps = post_read_steps;
1144 ctx->fs_blkaddr = blkaddr;
1145 ctx->decompression_attempted = false;
1146 bio->bi_private = ctx;
1147 }
1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150 return bio;
1151 }
1152
1153 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155 block_t blkaddr, blk_opf_t op_flags,
1156 bool for_write)
1157 {
1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 struct bio *bio;
1160
1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162 page->index, for_write);
1163 if (IS_ERR(bio))
1164 return PTR_ERR(bio);
1165
1166 /* wait for GCed page writeback via META_MAPPING */
1167 f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170 iostat_update_and_unbind_ctx(bio);
1171 if (bio->bi_private)
1172 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173 bio_put(bio);
1174 return -EFAULT;
1175 }
1176 inc_page_count(sbi, F2FS_RD_DATA);
1177 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178 f2fs_submit_read_bio(sbi, bio, DATA);
1179 return 0;
1180 }
1181
__set_data_blkaddr(struct dnode_of_data * dn)1182 static void __set_data_blkaddr(struct dnode_of_data *dn)
1183 {
1184 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1185 __le32 *addr_array;
1186 int base = 0;
1187
1188 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1189 base = get_extra_isize(dn->inode);
1190
1191 /* Get physical address of data block */
1192 addr_array = blkaddr_in_node(rn);
1193 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1194 }
1195
1196 /*
1197 * Lock ordering for the change of data block address:
1198 * ->data_page
1199 * ->node_page
1200 * update block addresses in the node page
1201 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1203 {
1204 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1205 __set_data_blkaddr(dn);
1206 if (set_page_dirty(dn->node_page))
1207 dn->node_changed = true;
1208 }
1209
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1210 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1211 {
1212 dn->data_blkaddr = blkaddr;
1213 f2fs_set_data_blkaddr(dn);
1214 f2fs_update_read_extent_cache(dn);
1215 }
1216
1217 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1218 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1219 {
1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 int err;
1222
1223 if (!count)
1224 return 0;
1225
1226 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227 return -EPERM;
1228 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1229 return err;
1230
1231 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1232 dn->ofs_in_node, count);
1233
1234 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1235
1236 for (; count > 0; dn->ofs_in_node++) {
1237 block_t blkaddr = f2fs_data_blkaddr(dn);
1238
1239 if (blkaddr == NULL_ADDR) {
1240 dn->data_blkaddr = NEW_ADDR;
1241 __set_data_blkaddr(dn);
1242 count--;
1243 }
1244 }
1245
1246 if (set_page_dirty(dn->node_page))
1247 dn->node_changed = true;
1248 return 0;
1249 }
1250
1251 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1252 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1253 {
1254 unsigned int ofs_in_node = dn->ofs_in_node;
1255 int ret;
1256
1257 ret = f2fs_reserve_new_blocks(dn, 1);
1258 dn->ofs_in_node = ofs_in_node;
1259 return ret;
1260 }
1261
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1262 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1263 {
1264 bool need_put = dn->inode_page ? false : true;
1265 int err;
1266
1267 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1268 if (err)
1269 return err;
1270
1271 if (dn->data_blkaddr == NULL_ADDR)
1272 err = f2fs_reserve_new_block(dn);
1273 if (err || need_put)
1274 f2fs_put_dnode(dn);
1275 return err;
1276 }
1277
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1278 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1279 blk_opf_t op_flags, bool for_write,
1280 pgoff_t *next_pgofs)
1281 {
1282 struct address_space *mapping = inode->i_mapping;
1283 struct dnode_of_data dn;
1284 struct page *page;
1285 int err;
1286
1287 page = f2fs_grab_cache_page(mapping, index, for_write);
1288 if (!page)
1289 return ERR_PTR(-ENOMEM);
1290
1291 if (f2fs_lookup_read_extent_cache_block(inode, index,
1292 &dn.data_blkaddr)) {
1293 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1294 DATA_GENERIC_ENHANCE_READ)) {
1295 err = -EFSCORRUPTED;
1296 f2fs_handle_error(F2FS_I_SB(inode),
1297 ERROR_INVALID_BLKADDR);
1298 goto put_err;
1299 }
1300 goto got_it;
1301 }
1302
1303 set_new_dnode(&dn, inode, NULL, NULL, 0);
1304 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1305 if (err) {
1306 if (err == -ENOENT && next_pgofs)
1307 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1308 goto put_err;
1309 }
1310 f2fs_put_dnode(&dn);
1311
1312 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1313 err = -ENOENT;
1314 if (next_pgofs)
1315 *next_pgofs = index + 1;
1316 goto put_err;
1317 }
1318 if (dn.data_blkaddr != NEW_ADDR &&
1319 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1320 dn.data_blkaddr,
1321 DATA_GENERIC_ENHANCE)) {
1322 err = -EFSCORRUPTED;
1323 f2fs_handle_error(F2FS_I_SB(inode),
1324 ERROR_INVALID_BLKADDR);
1325 goto put_err;
1326 }
1327 got_it:
1328 if (PageUptodate(page)) {
1329 unlock_page(page);
1330 return page;
1331 }
1332
1333 /*
1334 * A new dentry page is allocated but not able to be written, since its
1335 * new inode page couldn't be allocated due to -ENOSPC.
1336 * In such the case, its blkaddr can be remained as NEW_ADDR.
1337 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1338 * f2fs_init_inode_metadata.
1339 */
1340 if (dn.data_blkaddr == NEW_ADDR) {
1341 zero_user_segment(page, 0, PAGE_SIZE);
1342 if (!PageUptodate(page))
1343 SetPageUptodate(page);
1344 unlock_page(page);
1345 return page;
1346 }
1347
1348 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1349 op_flags, for_write);
1350 if (err)
1351 goto put_err;
1352 return page;
1353
1354 put_err:
1355 f2fs_put_page(page, 1);
1356 return ERR_PTR(err);
1357 }
1358
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1359 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1360 pgoff_t *next_pgofs)
1361 {
1362 struct address_space *mapping = inode->i_mapping;
1363 struct page *page;
1364
1365 page = find_get_page(mapping, index);
1366 if (page && PageUptodate(page))
1367 return page;
1368 f2fs_put_page(page, 0);
1369
1370 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1371 if (IS_ERR(page))
1372 return page;
1373
1374 if (PageUptodate(page))
1375 return page;
1376
1377 wait_on_page_locked(page);
1378 if (unlikely(!PageUptodate(page))) {
1379 f2fs_put_page(page, 0);
1380 return ERR_PTR(-EIO);
1381 }
1382 return page;
1383 }
1384
1385 /*
1386 * If it tries to access a hole, return an error.
1387 * Because, the callers, functions in dir.c and GC, should be able to know
1388 * whether this page exists or not.
1389 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1390 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1391 bool for_write)
1392 {
1393 struct address_space *mapping = inode->i_mapping;
1394 struct page *page;
1395
1396 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1397 if (IS_ERR(page))
1398 return page;
1399
1400 /* wait for read completion */
1401 lock_page(page);
1402 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1403 f2fs_put_page(page, 1);
1404 return ERR_PTR(-EIO);
1405 }
1406 return page;
1407 }
1408
1409 /*
1410 * Caller ensures that this data page is never allocated.
1411 * A new zero-filled data page is allocated in the page cache.
1412 *
1413 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1414 * f2fs_unlock_op().
1415 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1416 * ipage should be released by this function.
1417 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1418 struct page *f2fs_get_new_data_page(struct inode *inode,
1419 struct page *ipage, pgoff_t index, bool new_i_size)
1420 {
1421 struct address_space *mapping = inode->i_mapping;
1422 struct page *page;
1423 struct dnode_of_data dn;
1424 int err;
1425
1426 page = f2fs_grab_cache_page(mapping, index, true);
1427 if (!page) {
1428 /*
1429 * before exiting, we should make sure ipage will be released
1430 * if any error occur.
1431 */
1432 f2fs_put_page(ipage, 1);
1433 return ERR_PTR(-ENOMEM);
1434 }
1435
1436 set_new_dnode(&dn, inode, ipage, NULL, 0);
1437 err = f2fs_reserve_block(&dn, index);
1438 if (err) {
1439 f2fs_put_page(page, 1);
1440 return ERR_PTR(err);
1441 }
1442 if (!ipage)
1443 f2fs_put_dnode(&dn);
1444
1445 if (PageUptodate(page))
1446 goto got_it;
1447
1448 if (dn.data_blkaddr == NEW_ADDR) {
1449 zero_user_segment(page, 0, PAGE_SIZE);
1450 if (!PageUptodate(page))
1451 SetPageUptodate(page);
1452 } else {
1453 f2fs_put_page(page, 1);
1454
1455 /* if ipage exists, blkaddr should be NEW_ADDR */
1456 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1457 page = f2fs_get_lock_data_page(inode, index, true);
1458 if (IS_ERR(page))
1459 return page;
1460 }
1461 got_it:
1462 if (new_i_size && i_size_read(inode) <
1463 ((loff_t)(index + 1) << PAGE_SHIFT))
1464 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1465 return page;
1466 }
1467
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1468 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1469 {
1470 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471 struct f2fs_summary sum;
1472 struct node_info ni;
1473 block_t old_blkaddr;
1474 blkcnt_t count = 1;
1475 int err;
1476
1477 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1478 return -EPERM;
1479
1480 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1481 if (err)
1482 return err;
1483
1484 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1485 if (dn->data_blkaddr == NULL_ADDR) {
1486 err = inc_valid_block_count(sbi, dn->inode, &count);
1487 if (unlikely(err))
1488 return err;
1489 }
1490
1491 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1492 old_blkaddr = dn->data_blkaddr;
1493 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1494 &sum, seg_type, NULL);
1495 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1496 invalidate_mapping_pages(META_MAPPING(sbi),
1497 old_blkaddr, old_blkaddr);
1498 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1499 }
1500 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1501 return 0;
1502 }
1503
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1504 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1505 {
1506 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1507 f2fs_down_read(&sbi->node_change);
1508 else
1509 f2fs_lock_op(sbi);
1510 }
1511
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1512 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1513 {
1514 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1515 f2fs_up_read(&sbi->node_change);
1516 else
1517 f2fs_unlock_op(sbi);
1518 }
1519
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1520 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1521 {
1522 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1523 int err = 0;
1524
1525 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1526 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1527 &dn->data_blkaddr))
1528 err = f2fs_reserve_block(dn, index);
1529 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1530
1531 return err;
1532 }
1533
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1534 static int f2fs_map_no_dnode(struct inode *inode,
1535 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1536 pgoff_t pgoff)
1537 {
1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1539
1540 /*
1541 * There is one exceptional case that read_node_page() may return
1542 * -ENOENT due to filesystem has been shutdown or cp_error, return
1543 * -EIO in that case.
1544 */
1545 if (map->m_may_create &&
1546 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1547 return -EIO;
1548
1549 if (map->m_next_pgofs)
1550 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1551 if (map->m_next_extent)
1552 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1553 return 0;
1554 }
1555
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1556 static bool f2fs_map_blocks_cached(struct inode *inode,
1557 struct f2fs_map_blocks *map, int flag)
1558 {
1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1560 unsigned int maxblocks = map->m_len;
1561 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1562 struct extent_info ei = {};
1563
1564 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1565 return false;
1566
1567 map->m_pblk = ei.blk + pgoff - ei.fofs;
1568 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1569 map->m_flags = F2FS_MAP_MAPPED;
1570 if (map->m_next_extent)
1571 *map->m_next_extent = pgoff + map->m_len;
1572
1573 /* for hardware encryption, but to avoid potential issue in future */
1574 if (flag == F2FS_GET_BLOCK_DIO)
1575 f2fs_wait_on_block_writeback_range(inode,
1576 map->m_pblk, map->m_len);
1577
1578 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1579 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1580 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1581
1582 map->m_bdev = dev->bdev;
1583 map->m_pblk -= dev->start_blk;
1584 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1585 } else {
1586 map->m_bdev = inode->i_sb->s_bdev;
1587 }
1588 return true;
1589 }
1590
1591 /*
1592 * f2fs_map_blocks() tries to find or build mapping relationship which
1593 * maps continuous logical blocks to physical blocks, and return such
1594 * info via f2fs_map_blocks structure.
1595 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1596 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1597 {
1598 unsigned int maxblocks = map->m_len;
1599 struct dnode_of_data dn;
1600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1602 pgoff_t pgofs, end_offset, end;
1603 int err = 0, ofs = 1;
1604 unsigned int ofs_in_node, last_ofs_in_node;
1605 blkcnt_t prealloc;
1606 block_t blkaddr;
1607 unsigned int start_pgofs;
1608 int bidx = 0;
1609 bool is_hole;
1610
1611 if (!maxblocks)
1612 return 0;
1613
1614 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1615 goto out;
1616
1617 map->m_bdev = inode->i_sb->s_bdev;
1618 map->m_multidev_dio =
1619 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1620
1621 map->m_len = 0;
1622 map->m_flags = 0;
1623
1624 /* it only supports block size == page size */
1625 pgofs = (pgoff_t)map->m_lblk;
1626 end = pgofs + maxblocks;
1627
1628 next_dnode:
1629 if (map->m_may_create)
1630 f2fs_map_lock(sbi, flag);
1631
1632 /* When reading holes, we need its node page */
1633 set_new_dnode(&dn, inode, NULL, NULL, 0);
1634 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1635 if (err) {
1636 if (flag == F2FS_GET_BLOCK_BMAP)
1637 map->m_pblk = 0;
1638 if (err == -ENOENT)
1639 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1640 goto unlock_out;
1641 }
1642
1643 start_pgofs = pgofs;
1644 prealloc = 0;
1645 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1646 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1647
1648 next_block:
1649 blkaddr = f2fs_data_blkaddr(&dn);
1650 is_hole = !__is_valid_data_blkaddr(blkaddr);
1651 if (!is_hole &&
1652 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1653 err = -EFSCORRUPTED;
1654 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1655 goto sync_out;
1656 }
1657
1658 /* use out-place-update for direct IO under LFS mode */
1659 if (map->m_may_create &&
1660 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1661 if (unlikely(f2fs_cp_error(sbi))) {
1662 err = -EIO;
1663 goto sync_out;
1664 }
1665
1666 switch (flag) {
1667 case F2FS_GET_BLOCK_PRE_AIO:
1668 if (blkaddr == NULL_ADDR) {
1669 prealloc++;
1670 last_ofs_in_node = dn.ofs_in_node;
1671 }
1672 break;
1673 case F2FS_GET_BLOCK_PRE_DIO:
1674 case F2FS_GET_BLOCK_DIO:
1675 err = __allocate_data_block(&dn, map->m_seg_type);
1676 if (err)
1677 goto sync_out;
1678 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1679 file_need_truncate(inode);
1680 set_inode_flag(inode, FI_APPEND_WRITE);
1681 break;
1682 default:
1683 WARN_ON_ONCE(1);
1684 err = -EIO;
1685 goto sync_out;
1686 }
1687
1688 blkaddr = dn.data_blkaddr;
1689 if (is_hole)
1690 map->m_flags |= F2FS_MAP_NEW;
1691 } else if (is_hole) {
1692 if (f2fs_compressed_file(inode) &&
1693 f2fs_sanity_check_cluster(&dn) &&
1694 (flag != F2FS_GET_BLOCK_FIEMAP ||
1695 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1696 err = -EFSCORRUPTED;
1697 f2fs_handle_error(sbi,
1698 ERROR_CORRUPTED_CLUSTER);
1699 goto sync_out;
1700 }
1701
1702 switch (flag) {
1703 case F2FS_GET_BLOCK_PRECACHE:
1704 goto sync_out;
1705 case F2FS_GET_BLOCK_BMAP:
1706 map->m_pblk = 0;
1707 goto sync_out;
1708 case F2FS_GET_BLOCK_FIEMAP:
1709 if (blkaddr == NULL_ADDR) {
1710 if (map->m_next_pgofs)
1711 *map->m_next_pgofs = pgofs + 1;
1712 goto sync_out;
1713 }
1714 break;
1715 default:
1716 /* for defragment case */
1717 if (map->m_next_pgofs)
1718 *map->m_next_pgofs = pgofs + 1;
1719 goto sync_out;
1720 }
1721 }
1722
1723 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1724 goto skip;
1725
1726 if (map->m_multidev_dio)
1727 bidx = f2fs_target_device_index(sbi, blkaddr);
1728
1729 if (map->m_len == 0) {
1730 /* reserved delalloc block should be mapped for fiemap. */
1731 if (blkaddr == NEW_ADDR)
1732 map->m_flags |= F2FS_MAP_DELALLOC;
1733 map->m_flags |= F2FS_MAP_MAPPED;
1734
1735 map->m_pblk = blkaddr;
1736 map->m_len = 1;
1737
1738 if (map->m_multidev_dio)
1739 map->m_bdev = FDEV(bidx).bdev;
1740 } else if ((map->m_pblk != NEW_ADDR &&
1741 blkaddr == (map->m_pblk + ofs)) ||
1742 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1743 flag == F2FS_GET_BLOCK_PRE_DIO) {
1744 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1745 goto sync_out;
1746 ofs++;
1747 map->m_len++;
1748 } else {
1749 goto sync_out;
1750 }
1751
1752 skip:
1753 dn.ofs_in_node++;
1754 pgofs++;
1755
1756 /* preallocate blocks in batch for one dnode page */
1757 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1758 (pgofs == end || dn.ofs_in_node == end_offset)) {
1759
1760 dn.ofs_in_node = ofs_in_node;
1761 err = f2fs_reserve_new_blocks(&dn, prealloc);
1762 if (err)
1763 goto sync_out;
1764
1765 map->m_len += dn.ofs_in_node - ofs_in_node;
1766 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1767 err = -ENOSPC;
1768 goto sync_out;
1769 }
1770 dn.ofs_in_node = end_offset;
1771 }
1772
1773 if (pgofs >= end)
1774 goto sync_out;
1775 else if (dn.ofs_in_node < end_offset)
1776 goto next_block;
1777
1778 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1779 if (map->m_flags & F2FS_MAP_MAPPED) {
1780 unsigned int ofs = start_pgofs - map->m_lblk;
1781
1782 f2fs_update_read_extent_cache_range(&dn,
1783 start_pgofs, map->m_pblk + ofs,
1784 map->m_len - ofs);
1785 }
1786 }
1787
1788 f2fs_put_dnode(&dn);
1789
1790 if (map->m_may_create) {
1791 f2fs_map_unlock(sbi, flag);
1792 f2fs_balance_fs(sbi, dn.node_changed);
1793 }
1794 goto next_dnode;
1795
1796 sync_out:
1797
1798 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1799 /*
1800 * for hardware encryption, but to avoid potential issue
1801 * in future
1802 */
1803 f2fs_wait_on_block_writeback_range(inode,
1804 map->m_pblk, map->m_len);
1805
1806 if (map->m_multidev_dio) {
1807 block_t blk_addr = map->m_pblk;
1808
1809 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1810
1811 map->m_bdev = FDEV(bidx).bdev;
1812 map->m_pblk -= FDEV(bidx).start_blk;
1813
1814 if (map->m_may_create)
1815 f2fs_update_device_state(sbi, inode->i_ino,
1816 blk_addr, map->m_len);
1817
1818 f2fs_bug_on(sbi, blk_addr + map->m_len >
1819 FDEV(bidx).end_blk + 1);
1820 }
1821 }
1822
1823 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1824 if (map->m_flags & F2FS_MAP_MAPPED) {
1825 unsigned int ofs = start_pgofs - map->m_lblk;
1826
1827 f2fs_update_read_extent_cache_range(&dn,
1828 start_pgofs, map->m_pblk + ofs,
1829 map->m_len - ofs);
1830 }
1831 if (map->m_next_extent)
1832 *map->m_next_extent = pgofs + 1;
1833 }
1834 f2fs_put_dnode(&dn);
1835 unlock_out:
1836 if (map->m_may_create) {
1837 f2fs_map_unlock(sbi, flag);
1838 f2fs_balance_fs(sbi, dn.node_changed);
1839 }
1840 out:
1841 trace_f2fs_map_blocks(inode, map, flag, err);
1842 return err;
1843 }
1844
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1845 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1846 {
1847 struct f2fs_map_blocks map;
1848 block_t last_lblk;
1849 int err;
1850
1851 if (pos + len > i_size_read(inode))
1852 return false;
1853
1854 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1855 map.m_next_pgofs = NULL;
1856 map.m_next_extent = NULL;
1857 map.m_seg_type = NO_CHECK_TYPE;
1858 map.m_may_create = false;
1859 last_lblk = F2FS_BLK_ALIGN(pos + len);
1860
1861 while (map.m_lblk < last_lblk) {
1862 map.m_len = last_lblk - map.m_lblk;
1863 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1864 if (err || map.m_len == 0)
1865 return false;
1866 map.m_lblk += map.m_len;
1867 }
1868 return true;
1869 }
1870
bytes_to_blks(struct inode * inode,u64 bytes)1871 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1872 {
1873 return (bytes >> inode->i_blkbits);
1874 }
1875
blks_to_bytes(struct inode * inode,u64 blks)1876 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1877 {
1878 return (blks << inode->i_blkbits);
1879 }
1880
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1881 static int f2fs_xattr_fiemap(struct inode *inode,
1882 struct fiemap_extent_info *fieinfo)
1883 {
1884 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1885 struct page *page;
1886 struct node_info ni;
1887 __u64 phys = 0, len;
1888 __u32 flags;
1889 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1890 int err = 0;
1891
1892 if (f2fs_has_inline_xattr(inode)) {
1893 int offset;
1894
1895 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1896 inode->i_ino, false);
1897 if (!page)
1898 return -ENOMEM;
1899
1900 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1901 if (err) {
1902 f2fs_put_page(page, 1);
1903 return err;
1904 }
1905
1906 phys = blks_to_bytes(inode, ni.blk_addr);
1907 offset = offsetof(struct f2fs_inode, i_addr) +
1908 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1909 get_inline_xattr_addrs(inode));
1910
1911 phys += offset;
1912 len = inline_xattr_size(inode);
1913
1914 f2fs_put_page(page, 1);
1915
1916 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1917
1918 if (!xnid)
1919 flags |= FIEMAP_EXTENT_LAST;
1920
1921 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1922 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1923 if (err)
1924 return err;
1925 }
1926
1927 if (xnid) {
1928 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1929 if (!page)
1930 return -ENOMEM;
1931
1932 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1933 if (err) {
1934 f2fs_put_page(page, 1);
1935 return err;
1936 }
1937
1938 phys = blks_to_bytes(inode, ni.blk_addr);
1939 len = inode->i_sb->s_blocksize;
1940
1941 f2fs_put_page(page, 1);
1942
1943 flags = FIEMAP_EXTENT_LAST;
1944 }
1945
1946 if (phys) {
1947 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1948 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1949 }
1950
1951 return (err < 0 ? err : 0);
1952 }
1953
max_inode_blocks(struct inode * inode)1954 static loff_t max_inode_blocks(struct inode *inode)
1955 {
1956 loff_t result = ADDRS_PER_INODE(inode);
1957 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1958
1959 /* two direct node blocks */
1960 result += (leaf_count * 2);
1961
1962 /* two indirect node blocks */
1963 leaf_count *= NIDS_PER_BLOCK;
1964 result += (leaf_count * 2);
1965
1966 /* one double indirect node block */
1967 leaf_count *= NIDS_PER_BLOCK;
1968 result += leaf_count;
1969
1970 return result;
1971 }
1972
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1973 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1974 u64 start, u64 len)
1975 {
1976 struct f2fs_map_blocks map;
1977 sector_t start_blk, last_blk;
1978 pgoff_t next_pgofs;
1979 u64 logical = 0, phys = 0, size = 0;
1980 u32 flags = 0;
1981 int ret = 0;
1982 bool compr_cluster = false, compr_appended;
1983 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1984 unsigned int count_in_cluster = 0;
1985 loff_t maxbytes;
1986
1987 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1988 ret = f2fs_precache_extents(inode);
1989 if (ret)
1990 return ret;
1991 }
1992
1993 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1994 if (ret)
1995 return ret;
1996
1997 inode_lock(inode);
1998
1999 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2000 if (start > maxbytes) {
2001 ret = -EFBIG;
2002 goto out;
2003 }
2004
2005 if (len > maxbytes || (maxbytes - len) < start)
2006 len = maxbytes - start;
2007
2008 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2009 ret = f2fs_xattr_fiemap(inode, fieinfo);
2010 goto out;
2011 }
2012
2013 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2014 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2015 if (ret != -EAGAIN)
2016 goto out;
2017 }
2018
2019 if (bytes_to_blks(inode, len) == 0)
2020 len = blks_to_bytes(inode, 1);
2021
2022 start_blk = bytes_to_blks(inode, start);
2023 last_blk = bytes_to_blks(inode, start + len - 1);
2024
2025 next:
2026 memset(&map, 0, sizeof(map));
2027 map.m_lblk = start_blk;
2028 map.m_len = bytes_to_blks(inode, len);
2029 map.m_next_pgofs = &next_pgofs;
2030 map.m_seg_type = NO_CHECK_TYPE;
2031
2032 if (compr_cluster) {
2033 map.m_lblk += 1;
2034 map.m_len = cluster_size - count_in_cluster;
2035 }
2036
2037 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2038 if (ret)
2039 goto out;
2040
2041 /* HOLE */
2042 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2043 start_blk = next_pgofs;
2044
2045 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2046 max_inode_blocks(inode)))
2047 goto prep_next;
2048
2049 flags |= FIEMAP_EXTENT_LAST;
2050 }
2051
2052 compr_appended = false;
2053 /* In a case of compressed cluster, append this to the last extent */
2054 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2055 !(map.m_flags & F2FS_MAP_FLAGS))) {
2056 compr_appended = true;
2057 goto skip_fill;
2058 }
2059
2060 if (size) {
2061 flags |= FIEMAP_EXTENT_MERGED;
2062 if (IS_ENCRYPTED(inode))
2063 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2064
2065 ret = fiemap_fill_next_extent(fieinfo, logical,
2066 phys, size, flags);
2067 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2068 if (ret)
2069 goto out;
2070 size = 0;
2071 }
2072
2073 if (start_blk > last_blk)
2074 goto out;
2075
2076 skip_fill:
2077 if (map.m_pblk == COMPRESS_ADDR) {
2078 compr_cluster = true;
2079 count_in_cluster = 1;
2080 } else if (compr_appended) {
2081 unsigned int appended_blks = cluster_size -
2082 count_in_cluster + 1;
2083 size += blks_to_bytes(inode, appended_blks);
2084 start_blk += appended_blks;
2085 compr_cluster = false;
2086 } else {
2087 logical = blks_to_bytes(inode, start_blk);
2088 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2089 blks_to_bytes(inode, map.m_pblk) : 0;
2090 size = blks_to_bytes(inode, map.m_len);
2091 flags = 0;
2092
2093 if (compr_cluster) {
2094 flags = FIEMAP_EXTENT_ENCODED;
2095 count_in_cluster += map.m_len;
2096 if (count_in_cluster == cluster_size) {
2097 compr_cluster = false;
2098 size += blks_to_bytes(inode, 1);
2099 }
2100 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2101 flags = FIEMAP_EXTENT_UNWRITTEN;
2102 }
2103
2104 start_blk += bytes_to_blks(inode, size);
2105 }
2106
2107 prep_next:
2108 cond_resched();
2109 if (fatal_signal_pending(current))
2110 ret = -EINTR;
2111 else
2112 goto next;
2113 out:
2114 if (ret == 1)
2115 ret = 0;
2116
2117 inode_unlock(inode);
2118 return ret;
2119 }
2120
f2fs_readpage_limit(struct inode * inode)2121 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2122 {
2123 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2124 return inode->i_sb->s_maxbytes;
2125
2126 return i_size_read(inode);
2127 }
2128
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2129 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2130 unsigned nr_pages,
2131 struct f2fs_map_blocks *map,
2132 struct bio **bio_ret,
2133 sector_t *last_block_in_bio,
2134 bool is_readahead)
2135 {
2136 struct bio *bio = *bio_ret;
2137 const unsigned blocksize = blks_to_bytes(inode, 1);
2138 sector_t block_in_file;
2139 sector_t last_block;
2140 sector_t last_block_in_file;
2141 sector_t block_nr;
2142 int ret = 0;
2143
2144 block_in_file = (sector_t)page_index(page);
2145 last_block = block_in_file + nr_pages;
2146 last_block_in_file = bytes_to_blks(inode,
2147 f2fs_readpage_limit(inode) + blocksize - 1);
2148 if (last_block > last_block_in_file)
2149 last_block = last_block_in_file;
2150
2151 /* just zeroing out page which is beyond EOF */
2152 if (block_in_file >= last_block)
2153 goto zero_out;
2154 /*
2155 * Map blocks using the previous result first.
2156 */
2157 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2158 block_in_file > map->m_lblk &&
2159 block_in_file < (map->m_lblk + map->m_len))
2160 goto got_it;
2161
2162 /*
2163 * Then do more f2fs_map_blocks() calls until we are
2164 * done with this page.
2165 */
2166 map->m_lblk = block_in_file;
2167 map->m_len = last_block - block_in_file;
2168
2169 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2170 if (ret)
2171 goto out;
2172 got_it:
2173 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2174 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2175 SetPageMappedToDisk(page);
2176
2177 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2178 DATA_GENERIC_ENHANCE_READ)) {
2179 ret = -EFSCORRUPTED;
2180 f2fs_handle_error(F2FS_I_SB(inode),
2181 ERROR_INVALID_BLKADDR);
2182 goto out;
2183 }
2184 } else {
2185 zero_out:
2186 zero_user_segment(page, 0, PAGE_SIZE);
2187 if (f2fs_need_verity(inode, page->index) &&
2188 !fsverity_verify_page(page)) {
2189 ret = -EIO;
2190 goto out;
2191 }
2192 if (!PageUptodate(page))
2193 SetPageUptodate(page);
2194 unlock_page(page);
2195 goto out;
2196 }
2197
2198 /*
2199 * This page will go to BIO. Do we need to send this
2200 * BIO off first?
2201 */
2202 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2203 *last_block_in_bio, block_nr) ||
2204 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2205 submit_and_realloc:
2206 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2207 bio = NULL;
2208 }
2209 if (bio == NULL) {
2210 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2211 is_readahead ? REQ_RAHEAD : 0, page->index,
2212 false);
2213 if (IS_ERR(bio)) {
2214 ret = PTR_ERR(bio);
2215 bio = NULL;
2216 goto out;
2217 }
2218 }
2219
2220 /*
2221 * If the page is under writeback, we need to wait for
2222 * its completion to see the correct decrypted data.
2223 */
2224 f2fs_wait_on_block_writeback(inode, block_nr);
2225
2226 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2227 goto submit_and_realloc;
2228
2229 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2230 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2231 F2FS_BLKSIZE);
2232 *last_block_in_bio = block_nr;
2233 out:
2234 *bio_ret = bio;
2235 return ret;
2236 }
2237
2238 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2239 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2240 unsigned nr_pages, sector_t *last_block_in_bio,
2241 bool is_readahead, bool for_write)
2242 {
2243 struct dnode_of_data dn;
2244 struct inode *inode = cc->inode;
2245 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2246 struct bio *bio = *bio_ret;
2247 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2248 sector_t last_block_in_file;
2249 const unsigned blocksize = blks_to_bytes(inode, 1);
2250 struct decompress_io_ctx *dic = NULL;
2251 struct extent_info ei = {};
2252 bool from_dnode = true;
2253 int i;
2254 int ret = 0;
2255
2256 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2257
2258 last_block_in_file = bytes_to_blks(inode,
2259 f2fs_readpage_limit(inode) + blocksize - 1);
2260
2261 /* get rid of pages beyond EOF */
2262 for (i = 0; i < cc->cluster_size; i++) {
2263 struct page *page = cc->rpages[i];
2264
2265 if (!page)
2266 continue;
2267 if ((sector_t)page->index >= last_block_in_file) {
2268 zero_user_segment(page, 0, PAGE_SIZE);
2269 if (!PageUptodate(page))
2270 SetPageUptodate(page);
2271 } else if (!PageUptodate(page)) {
2272 continue;
2273 }
2274 unlock_page(page);
2275 if (for_write)
2276 put_page(page);
2277 cc->rpages[i] = NULL;
2278 cc->nr_rpages--;
2279 }
2280
2281 /* we are done since all pages are beyond EOF */
2282 if (f2fs_cluster_is_empty(cc))
2283 goto out;
2284
2285 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2286 from_dnode = false;
2287
2288 if (!from_dnode)
2289 goto skip_reading_dnode;
2290
2291 set_new_dnode(&dn, inode, NULL, NULL, 0);
2292 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2293 if (ret)
2294 goto out;
2295
2296 if (unlikely(f2fs_cp_error(sbi))) {
2297 ret = -EIO;
2298 goto out_put_dnode;
2299 }
2300 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2301
2302 skip_reading_dnode:
2303 for (i = 1; i < cc->cluster_size; i++) {
2304 block_t blkaddr;
2305
2306 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2307 dn.ofs_in_node + i) :
2308 ei.blk + i - 1;
2309
2310 if (!__is_valid_data_blkaddr(blkaddr))
2311 break;
2312
2313 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2314 ret = -EFAULT;
2315 goto out_put_dnode;
2316 }
2317 cc->nr_cpages++;
2318
2319 if (!from_dnode && i >= ei.c_len)
2320 break;
2321 }
2322
2323 /* nothing to decompress */
2324 if (cc->nr_cpages == 0) {
2325 ret = 0;
2326 goto out_put_dnode;
2327 }
2328
2329 dic = f2fs_alloc_dic(cc);
2330 if (IS_ERR(dic)) {
2331 ret = PTR_ERR(dic);
2332 goto out_put_dnode;
2333 }
2334
2335 for (i = 0; i < cc->nr_cpages; i++) {
2336 struct page *page = dic->cpages[i];
2337 block_t blkaddr;
2338 struct bio_post_read_ctx *ctx;
2339
2340 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2341 dn.ofs_in_node + i + 1) :
2342 ei.blk + i;
2343
2344 f2fs_wait_on_block_writeback(inode, blkaddr);
2345
2346 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2347 if (atomic_dec_and_test(&dic->remaining_pages)) {
2348 f2fs_decompress_cluster(dic, true);
2349 break;
2350 }
2351 continue;
2352 }
2353
2354 if (bio && (!page_is_mergeable(sbi, bio,
2355 *last_block_in_bio, blkaddr) ||
2356 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2357 submit_and_realloc:
2358 f2fs_submit_read_bio(sbi, bio, DATA);
2359 bio = NULL;
2360 }
2361
2362 if (!bio) {
2363 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2364 is_readahead ? REQ_RAHEAD : 0,
2365 page->index, for_write);
2366 if (IS_ERR(bio)) {
2367 ret = PTR_ERR(bio);
2368 f2fs_decompress_end_io(dic, ret, true);
2369 f2fs_put_dnode(&dn);
2370 *bio_ret = NULL;
2371 return ret;
2372 }
2373 }
2374
2375 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2376 goto submit_and_realloc;
2377
2378 ctx = get_post_read_ctx(bio);
2379 ctx->enabled_steps |= STEP_DECOMPRESS;
2380 refcount_inc(&dic->refcnt);
2381
2382 inc_page_count(sbi, F2FS_RD_DATA);
2383 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2384 *last_block_in_bio = blkaddr;
2385 }
2386
2387 if (from_dnode)
2388 f2fs_put_dnode(&dn);
2389
2390 *bio_ret = bio;
2391 return 0;
2392
2393 out_put_dnode:
2394 if (from_dnode)
2395 f2fs_put_dnode(&dn);
2396 out:
2397 for (i = 0; i < cc->cluster_size; i++) {
2398 if (cc->rpages[i]) {
2399 ClearPageUptodate(cc->rpages[i]);
2400 unlock_page(cc->rpages[i]);
2401 }
2402 }
2403 *bio_ret = bio;
2404 return ret;
2405 }
2406 #endif
2407
2408 /*
2409 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2410 * Major change was from block_size == page_size in f2fs by default.
2411 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2412 static int f2fs_mpage_readpages(struct inode *inode,
2413 struct readahead_control *rac, struct page *page)
2414 {
2415 struct bio *bio = NULL;
2416 sector_t last_block_in_bio = 0;
2417 struct f2fs_map_blocks map;
2418 #ifdef CONFIG_F2FS_FS_COMPRESSION
2419 struct compress_ctx cc = {
2420 .inode = inode,
2421 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2422 .cluster_size = F2FS_I(inode)->i_cluster_size,
2423 .cluster_idx = NULL_CLUSTER,
2424 .rpages = NULL,
2425 .cpages = NULL,
2426 .nr_rpages = 0,
2427 .nr_cpages = 0,
2428 };
2429 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2430 #endif
2431 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2432 unsigned max_nr_pages = nr_pages;
2433 int ret = 0;
2434
2435 map.m_pblk = 0;
2436 map.m_lblk = 0;
2437 map.m_len = 0;
2438 map.m_flags = 0;
2439 map.m_next_pgofs = NULL;
2440 map.m_next_extent = NULL;
2441 map.m_seg_type = NO_CHECK_TYPE;
2442 map.m_may_create = false;
2443
2444 for (; nr_pages; nr_pages--) {
2445 if (rac) {
2446 page = readahead_page(rac);
2447 prefetchw(&page->flags);
2448 }
2449
2450 #ifdef CONFIG_F2FS_FS_COMPRESSION
2451 if (f2fs_compressed_file(inode)) {
2452 /* there are remained compressed pages, submit them */
2453 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2454 ret = f2fs_read_multi_pages(&cc, &bio,
2455 max_nr_pages,
2456 &last_block_in_bio,
2457 rac != NULL, false);
2458 f2fs_destroy_compress_ctx(&cc, false);
2459 if (ret)
2460 goto set_error_page;
2461 }
2462 if (cc.cluster_idx == NULL_CLUSTER) {
2463 if (nc_cluster_idx ==
2464 page->index >> cc.log_cluster_size) {
2465 goto read_single_page;
2466 }
2467
2468 ret = f2fs_is_compressed_cluster(inode, page->index);
2469 if (ret < 0)
2470 goto set_error_page;
2471 else if (!ret) {
2472 nc_cluster_idx =
2473 page->index >> cc.log_cluster_size;
2474 goto read_single_page;
2475 }
2476
2477 nc_cluster_idx = NULL_CLUSTER;
2478 }
2479 ret = f2fs_init_compress_ctx(&cc);
2480 if (ret)
2481 goto set_error_page;
2482
2483 f2fs_compress_ctx_add_page(&cc, page);
2484
2485 goto next_page;
2486 }
2487 read_single_page:
2488 #endif
2489
2490 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2491 &bio, &last_block_in_bio, rac);
2492 if (ret) {
2493 #ifdef CONFIG_F2FS_FS_COMPRESSION
2494 set_error_page:
2495 #endif
2496 zero_user_segment(page, 0, PAGE_SIZE);
2497 unlock_page(page);
2498 }
2499 #ifdef CONFIG_F2FS_FS_COMPRESSION
2500 next_page:
2501 #endif
2502 if (rac)
2503 put_page(page);
2504
2505 #ifdef CONFIG_F2FS_FS_COMPRESSION
2506 if (f2fs_compressed_file(inode)) {
2507 /* last page */
2508 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2509 ret = f2fs_read_multi_pages(&cc, &bio,
2510 max_nr_pages,
2511 &last_block_in_bio,
2512 rac != NULL, false);
2513 f2fs_destroy_compress_ctx(&cc, false);
2514 }
2515 }
2516 #endif
2517 }
2518 if (bio)
2519 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2520 return ret;
2521 }
2522
f2fs_read_data_folio(struct file * file,struct folio * folio)2523 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2524 {
2525 struct page *page = &folio->page;
2526 struct inode *inode = page_file_mapping(page)->host;
2527 int ret = -EAGAIN;
2528
2529 trace_f2fs_readpage(page, DATA);
2530
2531 if (!f2fs_is_compress_backend_ready(inode)) {
2532 unlock_page(page);
2533 return -EOPNOTSUPP;
2534 }
2535
2536 /* If the file has inline data, try to read it directly */
2537 if (f2fs_has_inline_data(inode))
2538 ret = f2fs_read_inline_data(inode, page);
2539 if (ret == -EAGAIN)
2540 ret = f2fs_mpage_readpages(inode, NULL, page);
2541 return ret;
2542 }
2543
f2fs_readahead(struct readahead_control * rac)2544 static void f2fs_readahead(struct readahead_control *rac)
2545 {
2546 struct inode *inode = rac->mapping->host;
2547
2548 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2549
2550 if (!f2fs_is_compress_backend_ready(inode))
2551 return;
2552
2553 /* If the file has inline data, skip readahead */
2554 if (f2fs_has_inline_data(inode))
2555 return;
2556
2557 f2fs_mpage_readpages(inode, rac, NULL);
2558 }
2559
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2560 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2561 {
2562 struct inode *inode = fio->page->mapping->host;
2563 struct page *mpage, *page;
2564 gfp_t gfp_flags = GFP_NOFS;
2565
2566 if (!f2fs_encrypted_file(inode))
2567 return 0;
2568
2569 page = fio->compressed_page ? fio->compressed_page : fio->page;
2570
2571 if (fscrypt_inode_uses_inline_crypto(inode))
2572 return 0;
2573
2574 retry_encrypt:
2575 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2576 PAGE_SIZE, 0, gfp_flags);
2577 if (IS_ERR(fio->encrypted_page)) {
2578 /* flush pending IOs and wait for a while in the ENOMEM case */
2579 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2580 f2fs_flush_merged_writes(fio->sbi);
2581 memalloc_retry_wait(GFP_NOFS);
2582 gfp_flags |= __GFP_NOFAIL;
2583 goto retry_encrypt;
2584 }
2585 return PTR_ERR(fio->encrypted_page);
2586 }
2587
2588 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2589 if (mpage) {
2590 if (PageUptodate(mpage))
2591 memcpy(page_address(mpage),
2592 page_address(fio->encrypted_page), PAGE_SIZE);
2593 f2fs_put_page(mpage, 1);
2594 }
2595 return 0;
2596 }
2597
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2598 static inline bool check_inplace_update_policy(struct inode *inode,
2599 struct f2fs_io_info *fio)
2600 {
2601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2602
2603 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2604 is_inode_flag_set(inode, FI_OPU_WRITE))
2605 return false;
2606 if (IS_F2FS_IPU_FORCE(sbi))
2607 return true;
2608 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2609 return true;
2610 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2611 return true;
2612 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2613 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2614 return true;
2615
2616 /*
2617 * IPU for rewrite async pages
2618 */
2619 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2620 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2621 return true;
2622
2623 /* this is only set during fdatasync */
2624 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2625 return true;
2626
2627 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2628 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2629 return true;
2630
2631 return false;
2632 }
2633
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2634 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2635 {
2636 /* swap file is migrating in aligned write mode */
2637 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2638 return false;
2639
2640 if (f2fs_is_pinned_file(inode))
2641 return true;
2642
2643 /* if this is cold file, we should overwrite to avoid fragmentation */
2644 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2645 return true;
2646
2647 return check_inplace_update_policy(inode, fio);
2648 }
2649
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2650 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2651 {
2652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2653
2654 /* The below cases were checked when setting it. */
2655 if (f2fs_is_pinned_file(inode))
2656 return false;
2657 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2658 return true;
2659 if (f2fs_lfs_mode(sbi))
2660 return true;
2661 if (S_ISDIR(inode->i_mode))
2662 return true;
2663 if (IS_NOQUOTA(inode))
2664 return true;
2665 if (f2fs_is_atomic_file(inode))
2666 return true;
2667
2668 /* swap file is migrating in aligned write mode */
2669 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2670 return true;
2671
2672 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2673 return true;
2674
2675 if (fio) {
2676 if (page_private_gcing(fio->page))
2677 return true;
2678 if (page_private_dummy(fio->page))
2679 return true;
2680 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2681 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2682 return true;
2683 }
2684 return false;
2685 }
2686
need_inplace_update(struct f2fs_io_info * fio)2687 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2688 {
2689 struct inode *inode = fio->page->mapping->host;
2690
2691 if (f2fs_should_update_outplace(inode, fio))
2692 return false;
2693
2694 return f2fs_should_update_inplace(inode, fio);
2695 }
2696
f2fs_do_write_data_page(struct f2fs_io_info * fio)2697 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2698 {
2699 struct page *page = fio->page;
2700 struct inode *inode = page->mapping->host;
2701 struct dnode_of_data dn;
2702 struct node_info ni;
2703 bool ipu_force = false;
2704 int err = 0;
2705
2706 /* Use COW inode to make dnode_of_data for atomic write */
2707 if (f2fs_is_atomic_file(inode))
2708 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2709 else
2710 set_new_dnode(&dn, inode, NULL, NULL, 0);
2711
2712 if (need_inplace_update(fio) &&
2713 f2fs_lookup_read_extent_cache_block(inode, page->index,
2714 &fio->old_blkaddr)) {
2715 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2716 DATA_GENERIC_ENHANCE)) {
2717 f2fs_handle_error(fio->sbi,
2718 ERROR_INVALID_BLKADDR);
2719 return -EFSCORRUPTED;
2720 }
2721
2722 ipu_force = true;
2723 fio->need_lock = LOCK_DONE;
2724 goto got_it;
2725 }
2726
2727 /* Deadlock due to between page->lock and f2fs_lock_op */
2728 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2729 return -EAGAIN;
2730
2731 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2732 if (err)
2733 goto out;
2734
2735 fio->old_blkaddr = dn.data_blkaddr;
2736
2737 /* This page is already truncated */
2738 if (fio->old_blkaddr == NULL_ADDR) {
2739 ClearPageUptodate(page);
2740 clear_page_private_gcing(page);
2741 goto out_writepage;
2742 }
2743 got_it:
2744 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2745 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2746 DATA_GENERIC_ENHANCE)) {
2747 err = -EFSCORRUPTED;
2748 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2749 goto out_writepage;
2750 }
2751
2752 /* wait for GCed page writeback via META_MAPPING */
2753 if (fio->post_read)
2754 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2755
2756 /*
2757 * If current allocation needs SSR,
2758 * it had better in-place writes for updated data.
2759 */
2760 if (ipu_force ||
2761 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2762 need_inplace_update(fio))) {
2763 err = f2fs_encrypt_one_page(fio);
2764 if (err)
2765 goto out_writepage;
2766
2767 set_page_writeback(page);
2768 f2fs_put_dnode(&dn);
2769 if (fio->need_lock == LOCK_REQ)
2770 f2fs_unlock_op(fio->sbi);
2771 err = f2fs_inplace_write_data(fio);
2772 if (err) {
2773 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2774 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2775 if (PageWriteback(page))
2776 end_page_writeback(page);
2777 } else {
2778 set_inode_flag(inode, FI_UPDATE_WRITE);
2779 }
2780 trace_f2fs_do_write_data_page(fio->page, IPU);
2781 return err;
2782 }
2783
2784 if (fio->need_lock == LOCK_RETRY) {
2785 if (!f2fs_trylock_op(fio->sbi)) {
2786 err = -EAGAIN;
2787 goto out_writepage;
2788 }
2789 fio->need_lock = LOCK_REQ;
2790 }
2791
2792 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2793 if (err)
2794 goto out_writepage;
2795
2796 fio->version = ni.version;
2797
2798 err = f2fs_encrypt_one_page(fio);
2799 if (err)
2800 goto out_writepage;
2801
2802 set_page_writeback(page);
2803
2804 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2805 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2806
2807 /* LFS mode write path */
2808 f2fs_outplace_write_data(&dn, fio);
2809 trace_f2fs_do_write_data_page(page, OPU);
2810 set_inode_flag(inode, FI_APPEND_WRITE);
2811 if (page->index == 0)
2812 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2813 out_writepage:
2814 f2fs_put_dnode(&dn);
2815 out:
2816 if (fio->need_lock == LOCK_REQ)
2817 f2fs_unlock_op(fio->sbi);
2818 return err;
2819 }
2820
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2821 int f2fs_write_single_data_page(struct page *page, int *submitted,
2822 struct bio **bio,
2823 sector_t *last_block,
2824 struct writeback_control *wbc,
2825 enum iostat_type io_type,
2826 int compr_blocks,
2827 bool allow_balance)
2828 {
2829 struct inode *inode = page->mapping->host;
2830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2831 loff_t i_size = i_size_read(inode);
2832 const pgoff_t end_index = ((unsigned long long)i_size)
2833 >> PAGE_SHIFT;
2834 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2835 unsigned offset = 0;
2836 bool need_balance_fs = false;
2837 bool quota_inode = IS_NOQUOTA(inode);
2838 int err = 0;
2839 struct f2fs_io_info fio = {
2840 .sbi = sbi,
2841 .ino = inode->i_ino,
2842 .type = DATA,
2843 .op = REQ_OP_WRITE,
2844 .op_flags = wbc_to_write_flags(wbc),
2845 .old_blkaddr = NULL_ADDR,
2846 .page = page,
2847 .encrypted_page = NULL,
2848 .submitted = 0,
2849 .compr_blocks = compr_blocks,
2850 .need_lock = LOCK_RETRY,
2851 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2852 .io_type = io_type,
2853 .io_wbc = wbc,
2854 .bio = bio,
2855 .last_block = last_block,
2856 };
2857
2858 trace_f2fs_writepage(page, DATA);
2859
2860 /* we should bypass data pages to proceed the kworker jobs */
2861 if (unlikely(f2fs_cp_error(sbi))) {
2862 mapping_set_error(page->mapping, -EIO);
2863 /*
2864 * don't drop any dirty dentry pages for keeping lastest
2865 * directory structure.
2866 */
2867 if (S_ISDIR(inode->i_mode) &&
2868 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2869 goto redirty_out;
2870
2871 /* keep data pages in remount-ro mode */
2872 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2873 goto redirty_out;
2874 goto out;
2875 }
2876
2877 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2878 goto redirty_out;
2879
2880 if (page->index < end_index ||
2881 f2fs_verity_in_progress(inode) ||
2882 compr_blocks)
2883 goto write;
2884
2885 /*
2886 * If the offset is out-of-range of file size,
2887 * this page does not have to be written to disk.
2888 */
2889 offset = i_size & (PAGE_SIZE - 1);
2890 if ((page->index >= end_index + 1) || !offset)
2891 goto out;
2892
2893 zero_user_segment(page, offset, PAGE_SIZE);
2894 write:
2895 if (f2fs_is_drop_cache(inode))
2896 goto out;
2897
2898 /* Dentry/quota blocks are controlled by checkpoint */
2899 if (S_ISDIR(inode->i_mode) || quota_inode) {
2900 /*
2901 * We need to wait for node_write to avoid block allocation during
2902 * checkpoint. This can only happen to quota writes which can cause
2903 * the below discard race condition.
2904 */
2905 if (quota_inode)
2906 f2fs_down_read(&sbi->node_write);
2907
2908 fio.need_lock = LOCK_DONE;
2909 err = f2fs_do_write_data_page(&fio);
2910
2911 if (quota_inode)
2912 f2fs_up_read(&sbi->node_write);
2913
2914 goto done;
2915 }
2916
2917 if (!wbc->for_reclaim)
2918 need_balance_fs = true;
2919 else if (has_not_enough_free_secs(sbi, 0, 0))
2920 goto redirty_out;
2921 else
2922 set_inode_flag(inode, FI_HOT_DATA);
2923
2924 err = -EAGAIN;
2925 if (f2fs_has_inline_data(inode)) {
2926 err = f2fs_write_inline_data(inode, page);
2927 if (!err)
2928 goto out;
2929 }
2930
2931 if (err == -EAGAIN) {
2932 err = f2fs_do_write_data_page(&fio);
2933 if (err == -EAGAIN) {
2934 fio.need_lock = LOCK_REQ;
2935 err = f2fs_do_write_data_page(&fio);
2936 }
2937 }
2938
2939 if (err) {
2940 file_set_keep_isize(inode);
2941 } else {
2942 spin_lock(&F2FS_I(inode)->i_size_lock);
2943 if (F2FS_I(inode)->last_disk_size < psize)
2944 F2FS_I(inode)->last_disk_size = psize;
2945 spin_unlock(&F2FS_I(inode)->i_size_lock);
2946 }
2947
2948 done:
2949 if (err && err != -ENOENT)
2950 goto redirty_out;
2951
2952 out:
2953 inode_dec_dirty_pages(inode);
2954 if (err) {
2955 ClearPageUptodate(page);
2956 clear_page_private_gcing(page);
2957 }
2958
2959 if (wbc->for_reclaim) {
2960 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2961 clear_inode_flag(inode, FI_HOT_DATA);
2962 f2fs_remove_dirty_inode(inode);
2963 submitted = NULL;
2964 }
2965 unlock_page(page);
2966 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2967 !F2FS_I(inode)->wb_task && allow_balance)
2968 f2fs_balance_fs(sbi, need_balance_fs);
2969
2970 if (unlikely(f2fs_cp_error(sbi))) {
2971 f2fs_submit_merged_write(sbi, DATA);
2972 if (bio && *bio)
2973 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2974 submitted = NULL;
2975 }
2976
2977 if (submitted)
2978 *submitted = fio.submitted;
2979
2980 return 0;
2981
2982 redirty_out:
2983 redirty_page_for_writepage(wbc, page);
2984 /*
2985 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2986 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2987 * file_write_and_wait_range() will see EIO error, which is critical
2988 * to return value of fsync() followed by atomic_write failure to user.
2989 */
2990 if (!err || wbc->for_reclaim)
2991 return AOP_WRITEPAGE_ACTIVATE;
2992 unlock_page(page);
2993 return err;
2994 }
2995
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2996 static int f2fs_write_data_page(struct page *page,
2997 struct writeback_control *wbc)
2998 {
2999 #ifdef CONFIG_F2FS_FS_COMPRESSION
3000 struct inode *inode = page->mapping->host;
3001
3002 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3003 goto out;
3004
3005 if (f2fs_compressed_file(inode)) {
3006 if (f2fs_is_compressed_cluster(inode, page->index)) {
3007 redirty_page_for_writepage(wbc, page);
3008 return AOP_WRITEPAGE_ACTIVATE;
3009 }
3010 }
3011 out:
3012 #endif
3013
3014 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3015 wbc, FS_DATA_IO, 0, true);
3016 }
3017
3018 /*
3019 * This function was copied from write_cache_pages from mm/page-writeback.c.
3020 * The major change is making write step of cold data page separately from
3021 * warm/hot data page.
3022 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3023 static int f2fs_write_cache_pages(struct address_space *mapping,
3024 struct writeback_control *wbc,
3025 enum iostat_type io_type)
3026 {
3027 int ret = 0;
3028 int done = 0, retry = 0;
3029 struct page *pages_local[F2FS_ONSTACK_PAGES];
3030 struct page **pages = pages_local;
3031 struct folio_batch fbatch;
3032 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3033 struct bio *bio = NULL;
3034 sector_t last_block;
3035 #ifdef CONFIG_F2FS_FS_COMPRESSION
3036 struct inode *inode = mapping->host;
3037 struct compress_ctx cc = {
3038 .inode = inode,
3039 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3040 .cluster_size = F2FS_I(inode)->i_cluster_size,
3041 .cluster_idx = NULL_CLUSTER,
3042 .rpages = NULL,
3043 .nr_rpages = 0,
3044 .cpages = NULL,
3045 .valid_nr_cpages = 0,
3046 .rbuf = NULL,
3047 .cbuf = NULL,
3048 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3049 .private = NULL,
3050 };
3051 #endif
3052 int nr_folios, p, idx;
3053 int nr_pages;
3054 unsigned int max_pages = F2FS_ONSTACK_PAGES;
3055 pgoff_t index;
3056 pgoff_t end; /* Inclusive */
3057 pgoff_t done_index;
3058 int range_whole = 0;
3059 xa_mark_t tag;
3060 int nwritten = 0;
3061 int submitted = 0;
3062 int i;
3063
3064 #ifdef CONFIG_F2FS_FS_COMPRESSION
3065 if (f2fs_compressed_file(inode) &&
3066 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3067 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3068 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3069 max_pages = 1 << cc.log_cluster_size;
3070 }
3071 #endif
3072
3073 folio_batch_init(&fbatch);
3074
3075 if (get_dirty_pages(mapping->host) <=
3076 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3077 set_inode_flag(mapping->host, FI_HOT_DATA);
3078 else
3079 clear_inode_flag(mapping->host, FI_HOT_DATA);
3080
3081 if (wbc->range_cyclic) {
3082 index = mapping->writeback_index; /* prev offset */
3083 end = -1;
3084 } else {
3085 index = wbc->range_start >> PAGE_SHIFT;
3086 end = wbc->range_end >> PAGE_SHIFT;
3087 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3088 range_whole = 1;
3089 }
3090 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3091 tag = PAGECACHE_TAG_TOWRITE;
3092 else
3093 tag = PAGECACHE_TAG_DIRTY;
3094 retry:
3095 retry = 0;
3096 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3097 tag_pages_for_writeback(mapping, index, end);
3098 done_index = index;
3099 while (!done && !retry && (index <= end)) {
3100 nr_pages = 0;
3101 again:
3102 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3103 tag, &fbatch);
3104 if (nr_folios == 0) {
3105 if (nr_pages)
3106 goto write;
3107 break;
3108 }
3109
3110 for (i = 0; i < nr_folios; i++) {
3111 struct folio *folio = fbatch.folios[i];
3112
3113 idx = 0;
3114 p = folio_nr_pages(folio);
3115 add_more:
3116 pages[nr_pages] = folio_page(folio, idx);
3117 folio_get(folio);
3118 if (++nr_pages == max_pages) {
3119 index = folio->index + idx + 1;
3120 folio_batch_release(&fbatch);
3121 goto write;
3122 }
3123 if (++idx < p)
3124 goto add_more;
3125 }
3126 folio_batch_release(&fbatch);
3127 goto again;
3128 write:
3129 for (i = 0; i < nr_pages; i++) {
3130 struct page *page = pages[i];
3131 struct folio *folio = page_folio(page);
3132 bool need_readd;
3133 readd:
3134 need_readd = false;
3135 #ifdef CONFIG_F2FS_FS_COMPRESSION
3136 if (f2fs_compressed_file(inode)) {
3137 void *fsdata = NULL;
3138 struct page *pagep;
3139 int ret2;
3140
3141 ret = f2fs_init_compress_ctx(&cc);
3142 if (ret) {
3143 done = 1;
3144 break;
3145 }
3146
3147 if (!f2fs_cluster_can_merge_page(&cc,
3148 folio->index)) {
3149 ret = f2fs_write_multi_pages(&cc,
3150 &submitted, wbc, io_type);
3151 if (!ret)
3152 need_readd = true;
3153 goto result;
3154 }
3155
3156 if (unlikely(f2fs_cp_error(sbi)))
3157 goto lock_folio;
3158
3159 if (!f2fs_cluster_is_empty(&cc))
3160 goto lock_folio;
3161
3162 if (f2fs_all_cluster_page_ready(&cc,
3163 pages, i, nr_pages, true))
3164 goto lock_folio;
3165
3166 ret2 = f2fs_prepare_compress_overwrite(
3167 inode, &pagep,
3168 folio->index, &fsdata);
3169 if (ret2 < 0) {
3170 ret = ret2;
3171 done = 1;
3172 break;
3173 } else if (ret2 &&
3174 (!f2fs_compress_write_end(inode,
3175 fsdata, folio->index, 1) ||
3176 !f2fs_all_cluster_page_ready(&cc,
3177 pages, i, nr_pages,
3178 false))) {
3179 retry = 1;
3180 break;
3181 }
3182 }
3183 #endif
3184 /* give a priority to WB_SYNC threads */
3185 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3186 wbc->sync_mode == WB_SYNC_NONE) {
3187 done = 1;
3188 break;
3189 }
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 lock_folio:
3192 #endif
3193 done_index = folio->index;
3194 retry_write:
3195 folio_lock(folio);
3196
3197 if (unlikely(folio->mapping != mapping)) {
3198 continue_unlock:
3199 folio_unlock(folio);
3200 continue;
3201 }
3202
3203 if (!folio_test_dirty(folio)) {
3204 /* someone wrote it for us */
3205 goto continue_unlock;
3206 }
3207
3208 if (folio_test_writeback(folio)) {
3209 if (wbc->sync_mode == WB_SYNC_NONE)
3210 goto continue_unlock;
3211 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3212 }
3213
3214 if (!folio_clear_dirty_for_io(folio))
3215 goto continue_unlock;
3216
3217 #ifdef CONFIG_F2FS_FS_COMPRESSION
3218 if (f2fs_compressed_file(inode)) {
3219 folio_get(folio);
3220 f2fs_compress_ctx_add_page(&cc, &folio->page);
3221 continue;
3222 }
3223 #endif
3224 ret = f2fs_write_single_data_page(&folio->page,
3225 &submitted, &bio, &last_block,
3226 wbc, io_type, 0, true);
3227 if (ret == AOP_WRITEPAGE_ACTIVATE)
3228 folio_unlock(folio);
3229 #ifdef CONFIG_F2FS_FS_COMPRESSION
3230 result:
3231 #endif
3232 nwritten += submitted;
3233 wbc->nr_to_write -= submitted;
3234
3235 if (unlikely(ret)) {
3236 /*
3237 * keep nr_to_write, since vfs uses this to
3238 * get # of written pages.
3239 */
3240 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3241 ret = 0;
3242 goto next;
3243 } else if (ret == -EAGAIN) {
3244 ret = 0;
3245 if (wbc->sync_mode == WB_SYNC_ALL) {
3246 f2fs_io_schedule_timeout(
3247 DEFAULT_IO_TIMEOUT);
3248 goto retry_write;
3249 }
3250 goto next;
3251 }
3252 done_index = folio_next_index(folio);
3253 done = 1;
3254 break;
3255 }
3256
3257 if (wbc->nr_to_write <= 0 &&
3258 wbc->sync_mode == WB_SYNC_NONE) {
3259 done = 1;
3260 break;
3261 }
3262 next:
3263 if (need_readd)
3264 goto readd;
3265 }
3266 release_pages(pages, nr_pages);
3267 cond_resched();
3268 }
3269 #ifdef CONFIG_F2FS_FS_COMPRESSION
3270 /* flush remained pages in compress cluster */
3271 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3272 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3273 nwritten += submitted;
3274 wbc->nr_to_write -= submitted;
3275 if (ret) {
3276 done = 1;
3277 retry = 0;
3278 }
3279 }
3280 if (f2fs_compressed_file(inode))
3281 f2fs_destroy_compress_ctx(&cc, false);
3282 #endif
3283 if (retry) {
3284 index = 0;
3285 end = -1;
3286 goto retry;
3287 }
3288 if (wbc->range_cyclic && !done)
3289 done_index = 0;
3290 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3291 mapping->writeback_index = done_index;
3292
3293 if (nwritten)
3294 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3295 NULL, 0, DATA);
3296 /* submit cached bio of IPU write */
3297 if (bio)
3298 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3299
3300 #ifdef CONFIG_F2FS_FS_COMPRESSION
3301 if (pages != pages_local)
3302 kfree(pages);
3303 #endif
3304
3305 return ret;
3306 }
3307
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3308 static inline bool __should_serialize_io(struct inode *inode,
3309 struct writeback_control *wbc)
3310 {
3311 /* to avoid deadlock in path of data flush */
3312 if (F2FS_I(inode)->wb_task)
3313 return false;
3314
3315 if (!S_ISREG(inode->i_mode))
3316 return false;
3317 if (IS_NOQUOTA(inode))
3318 return false;
3319
3320 if (f2fs_need_compress_data(inode))
3321 return true;
3322 if (wbc->sync_mode != WB_SYNC_ALL)
3323 return true;
3324 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3325 return true;
3326 return false;
3327 }
3328
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3329 static int __f2fs_write_data_pages(struct address_space *mapping,
3330 struct writeback_control *wbc,
3331 enum iostat_type io_type)
3332 {
3333 struct inode *inode = mapping->host;
3334 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3335 struct blk_plug plug;
3336 int ret;
3337 bool locked = false;
3338
3339 /* deal with chardevs and other special file */
3340 if (!mapping->a_ops->writepage)
3341 return 0;
3342
3343 /* skip writing if there is no dirty page in this inode */
3344 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3345 return 0;
3346
3347 /* during POR, we don't need to trigger writepage at all. */
3348 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3349 goto skip_write;
3350
3351 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3352 wbc->sync_mode == WB_SYNC_NONE &&
3353 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3354 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3355 goto skip_write;
3356
3357 /* skip writing in file defragment preparing stage */
3358 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3359 goto skip_write;
3360
3361 trace_f2fs_writepages(mapping->host, wbc, DATA);
3362
3363 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3364 if (wbc->sync_mode == WB_SYNC_ALL)
3365 atomic_inc(&sbi->wb_sync_req[DATA]);
3366 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3367 /* to avoid potential deadlock */
3368 if (current->plug)
3369 blk_finish_plug(current->plug);
3370 goto skip_write;
3371 }
3372
3373 if (__should_serialize_io(inode, wbc)) {
3374 mutex_lock(&sbi->writepages);
3375 locked = true;
3376 }
3377
3378 blk_start_plug(&plug);
3379 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3380 blk_finish_plug(&plug);
3381
3382 if (locked)
3383 mutex_unlock(&sbi->writepages);
3384
3385 if (wbc->sync_mode == WB_SYNC_ALL)
3386 atomic_dec(&sbi->wb_sync_req[DATA]);
3387 /*
3388 * if some pages were truncated, we cannot guarantee its mapping->host
3389 * to detect pending bios.
3390 */
3391
3392 f2fs_remove_dirty_inode(inode);
3393 return ret;
3394
3395 skip_write:
3396 wbc->pages_skipped += get_dirty_pages(inode);
3397 trace_f2fs_writepages(mapping->host, wbc, DATA);
3398 return 0;
3399 }
3400
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3401 static int f2fs_write_data_pages(struct address_space *mapping,
3402 struct writeback_control *wbc)
3403 {
3404 struct inode *inode = mapping->host;
3405
3406 return __f2fs_write_data_pages(mapping, wbc,
3407 F2FS_I(inode)->cp_task == current ?
3408 FS_CP_DATA_IO : FS_DATA_IO);
3409 }
3410
f2fs_write_failed(struct inode * inode,loff_t to)3411 void f2fs_write_failed(struct inode *inode, loff_t to)
3412 {
3413 loff_t i_size = i_size_read(inode);
3414
3415 if (IS_NOQUOTA(inode))
3416 return;
3417
3418 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3419 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3420 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3421 filemap_invalidate_lock(inode->i_mapping);
3422
3423 truncate_pagecache(inode, i_size);
3424 f2fs_truncate_blocks(inode, i_size, true);
3425
3426 filemap_invalidate_unlock(inode->i_mapping);
3427 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3428 }
3429 }
3430
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3431 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3432 struct page *page, loff_t pos, unsigned len,
3433 block_t *blk_addr, bool *node_changed)
3434 {
3435 struct inode *inode = page->mapping->host;
3436 pgoff_t index = page->index;
3437 struct dnode_of_data dn;
3438 struct page *ipage;
3439 bool locked = false;
3440 int flag = F2FS_GET_BLOCK_PRE_AIO;
3441 int err = 0;
3442
3443 /*
3444 * If a whole page is being written and we already preallocated all the
3445 * blocks, then there is no need to get a block address now.
3446 */
3447 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3448 return 0;
3449
3450 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3451 if (f2fs_has_inline_data(inode)) {
3452 if (pos + len > MAX_INLINE_DATA(inode))
3453 flag = F2FS_GET_BLOCK_DEFAULT;
3454 f2fs_map_lock(sbi, flag);
3455 locked = true;
3456 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3457 f2fs_map_lock(sbi, flag);
3458 locked = true;
3459 }
3460
3461 restart:
3462 /* check inline_data */
3463 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3464 if (IS_ERR(ipage)) {
3465 err = PTR_ERR(ipage);
3466 goto unlock_out;
3467 }
3468
3469 set_new_dnode(&dn, inode, ipage, ipage, 0);
3470
3471 if (f2fs_has_inline_data(inode)) {
3472 if (pos + len <= MAX_INLINE_DATA(inode)) {
3473 f2fs_do_read_inline_data(page, ipage);
3474 set_inode_flag(inode, FI_DATA_EXIST);
3475 if (inode->i_nlink)
3476 set_page_private_inline(ipage);
3477 goto out;
3478 }
3479 err = f2fs_convert_inline_page(&dn, page);
3480 if (err || dn.data_blkaddr != NULL_ADDR)
3481 goto out;
3482 }
3483
3484 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3485 &dn.data_blkaddr)) {
3486 if (locked) {
3487 err = f2fs_reserve_block(&dn, index);
3488 goto out;
3489 }
3490
3491 /* hole case */
3492 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3493 if (!err && dn.data_blkaddr != NULL_ADDR)
3494 goto out;
3495 f2fs_put_dnode(&dn);
3496 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3497 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3498 locked = true;
3499 goto restart;
3500 }
3501 out:
3502 if (!err) {
3503 /* convert_inline_page can make node_changed */
3504 *blk_addr = dn.data_blkaddr;
3505 *node_changed = dn.node_changed;
3506 }
3507 f2fs_put_dnode(&dn);
3508 unlock_out:
3509 if (locked)
3510 f2fs_map_unlock(sbi, flag);
3511 return err;
3512 }
3513
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3514 static int __find_data_block(struct inode *inode, pgoff_t index,
3515 block_t *blk_addr)
3516 {
3517 struct dnode_of_data dn;
3518 struct page *ipage;
3519 int err = 0;
3520
3521 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3522 if (IS_ERR(ipage))
3523 return PTR_ERR(ipage);
3524
3525 set_new_dnode(&dn, inode, ipage, ipage, 0);
3526
3527 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3528 &dn.data_blkaddr)) {
3529 /* hole case */
3530 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3531 if (err) {
3532 dn.data_blkaddr = NULL_ADDR;
3533 err = 0;
3534 }
3535 }
3536 *blk_addr = dn.data_blkaddr;
3537 f2fs_put_dnode(&dn);
3538 return err;
3539 }
3540
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3541 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3542 block_t *blk_addr, bool *node_changed)
3543 {
3544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3545 struct dnode_of_data dn;
3546 struct page *ipage;
3547 int err = 0;
3548
3549 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3550
3551 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3552 if (IS_ERR(ipage)) {
3553 err = PTR_ERR(ipage);
3554 goto unlock_out;
3555 }
3556 set_new_dnode(&dn, inode, ipage, ipage, 0);
3557
3558 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3559 &dn.data_blkaddr))
3560 err = f2fs_reserve_block(&dn, index);
3561
3562 *blk_addr = dn.data_blkaddr;
3563 *node_changed = dn.node_changed;
3564 f2fs_put_dnode(&dn);
3565
3566 unlock_out:
3567 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3568 return err;
3569 }
3570
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3571 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3572 struct page *page, loff_t pos, unsigned int len,
3573 block_t *blk_addr, bool *node_changed, bool *use_cow)
3574 {
3575 struct inode *inode = page->mapping->host;
3576 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3577 pgoff_t index = page->index;
3578 int err = 0;
3579 block_t ori_blk_addr = NULL_ADDR;
3580
3581 /* If pos is beyond the end of file, reserve a new block in COW inode */
3582 if ((pos & PAGE_MASK) >= i_size_read(inode))
3583 goto reserve_block;
3584
3585 /* Look for the block in COW inode first */
3586 err = __find_data_block(cow_inode, index, blk_addr);
3587 if (err) {
3588 return err;
3589 } else if (*blk_addr != NULL_ADDR) {
3590 *use_cow = true;
3591 return 0;
3592 }
3593
3594 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3595 goto reserve_block;
3596
3597 /* Look for the block in the original inode */
3598 err = __find_data_block(inode, index, &ori_blk_addr);
3599 if (err)
3600 return err;
3601
3602 reserve_block:
3603 /* Finally, we should reserve a new block in COW inode for the update */
3604 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3605 if (err)
3606 return err;
3607 inc_atomic_write_cnt(inode);
3608
3609 if (ori_blk_addr != NULL_ADDR)
3610 *blk_addr = ori_blk_addr;
3611 return 0;
3612 }
3613
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3614 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3615 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3616 {
3617 struct inode *inode = mapping->host;
3618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3619 struct page *page = NULL;
3620 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3621 bool need_balance = false;
3622 bool use_cow = false;
3623 block_t blkaddr = NULL_ADDR;
3624 int err = 0;
3625
3626 trace_f2fs_write_begin(inode, pos, len);
3627
3628 if (!f2fs_is_checkpoint_ready(sbi)) {
3629 err = -ENOSPC;
3630 goto fail;
3631 }
3632
3633 /*
3634 * We should check this at this moment to avoid deadlock on inode page
3635 * and #0 page. The locking rule for inline_data conversion should be:
3636 * lock_page(page #0) -> lock_page(inode_page)
3637 */
3638 if (index != 0) {
3639 err = f2fs_convert_inline_inode(inode);
3640 if (err)
3641 goto fail;
3642 }
3643
3644 #ifdef CONFIG_F2FS_FS_COMPRESSION
3645 if (f2fs_compressed_file(inode)) {
3646 int ret;
3647
3648 *fsdata = NULL;
3649
3650 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3651 goto repeat;
3652
3653 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3654 index, fsdata);
3655 if (ret < 0) {
3656 err = ret;
3657 goto fail;
3658 } else if (ret) {
3659 return 0;
3660 }
3661 }
3662 #endif
3663
3664 repeat:
3665 /*
3666 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3667 * wait_for_stable_page. Will wait that below with our IO control.
3668 */
3669 page = f2fs_pagecache_get_page(mapping, index,
3670 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3671 if (!page) {
3672 err = -ENOMEM;
3673 goto fail;
3674 }
3675
3676 /* TODO: cluster can be compressed due to race with .writepage */
3677
3678 *pagep = page;
3679
3680 if (f2fs_is_atomic_file(inode))
3681 err = prepare_atomic_write_begin(sbi, page, pos, len,
3682 &blkaddr, &need_balance, &use_cow);
3683 else
3684 err = prepare_write_begin(sbi, page, pos, len,
3685 &blkaddr, &need_balance);
3686 if (err)
3687 goto fail;
3688
3689 if (need_balance && !IS_NOQUOTA(inode) &&
3690 has_not_enough_free_secs(sbi, 0, 0)) {
3691 unlock_page(page);
3692 f2fs_balance_fs(sbi, true);
3693 lock_page(page);
3694 if (page->mapping != mapping) {
3695 /* The page got truncated from under us */
3696 f2fs_put_page(page, 1);
3697 goto repeat;
3698 }
3699 }
3700
3701 f2fs_wait_on_page_writeback(page, DATA, false, true);
3702
3703 if (len == PAGE_SIZE || PageUptodate(page))
3704 return 0;
3705
3706 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3707 !f2fs_verity_in_progress(inode)) {
3708 zero_user_segment(page, len, PAGE_SIZE);
3709 return 0;
3710 }
3711
3712 if (blkaddr == NEW_ADDR) {
3713 zero_user_segment(page, 0, PAGE_SIZE);
3714 SetPageUptodate(page);
3715 } else {
3716 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3717 DATA_GENERIC_ENHANCE_READ)) {
3718 err = -EFSCORRUPTED;
3719 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3720 goto fail;
3721 }
3722 err = f2fs_submit_page_read(use_cow ?
3723 F2FS_I(inode)->cow_inode : inode, page,
3724 blkaddr, 0, true);
3725 if (err)
3726 goto fail;
3727
3728 lock_page(page);
3729 if (unlikely(page->mapping != mapping)) {
3730 f2fs_put_page(page, 1);
3731 goto repeat;
3732 }
3733 if (unlikely(!PageUptodate(page))) {
3734 err = -EIO;
3735 goto fail;
3736 }
3737 }
3738 return 0;
3739
3740 fail:
3741 f2fs_put_page(page, 1);
3742 f2fs_write_failed(inode, pos + len);
3743 return err;
3744 }
3745
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3746 static int f2fs_write_end(struct file *file,
3747 struct address_space *mapping,
3748 loff_t pos, unsigned len, unsigned copied,
3749 struct page *page, void *fsdata)
3750 {
3751 struct inode *inode = page->mapping->host;
3752
3753 trace_f2fs_write_end(inode, pos, len, copied);
3754
3755 /*
3756 * This should be come from len == PAGE_SIZE, and we expect copied
3757 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3758 * let generic_perform_write() try to copy data again through copied=0.
3759 */
3760 if (!PageUptodate(page)) {
3761 if (unlikely(copied != len))
3762 copied = 0;
3763 else
3764 SetPageUptodate(page);
3765 }
3766
3767 #ifdef CONFIG_F2FS_FS_COMPRESSION
3768 /* overwrite compressed file */
3769 if (f2fs_compressed_file(inode) && fsdata) {
3770 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3771 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3772
3773 if (pos + copied > i_size_read(inode) &&
3774 !f2fs_verity_in_progress(inode))
3775 f2fs_i_size_write(inode, pos + copied);
3776 return copied;
3777 }
3778 #endif
3779
3780 if (!copied)
3781 goto unlock_out;
3782
3783 set_page_dirty(page);
3784
3785 if (pos + copied > i_size_read(inode) &&
3786 !f2fs_verity_in_progress(inode)) {
3787 f2fs_i_size_write(inode, pos + copied);
3788 if (f2fs_is_atomic_file(inode))
3789 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3790 pos + copied);
3791 }
3792 unlock_out:
3793 f2fs_put_page(page, 1);
3794 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3795 return copied;
3796 }
3797
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3798 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3799 {
3800 struct inode *inode = folio->mapping->host;
3801 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3802
3803 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3804 (offset || length != folio_size(folio)))
3805 return;
3806
3807 if (folio_test_dirty(folio)) {
3808 if (inode->i_ino == F2FS_META_INO(sbi)) {
3809 dec_page_count(sbi, F2FS_DIRTY_META);
3810 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3811 dec_page_count(sbi, F2FS_DIRTY_NODES);
3812 } else {
3813 inode_dec_dirty_pages(inode);
3814 f2fs_remove_dirty_inode(inode);
3815 }
3816 }
3817 clear_page_private_all(&folio->page);
3818 }
3819
f2fs_release_folio(struct folio * folio,gfp_t wait)3820 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3821 {
3822 /* If this is dirty folio, keep private data */
3823 if (folio_test_dirty(folio))
3824 return false;
3825
3826 clear_page_private_all(&folio->page);
3827 return true;
3828 }
3829
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3830 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3831 struct folio *folio)
3832 {
3833 struct inode *inode = mapping->host;
3834
3835 trace_f2fs_set_page_dirty(&folio->page, DATA);
3836
3837 if (!folio_test_uptodate(folio))
3838 folio_mark_uptodate(folio);
3839 BUG_ON(folio_test_swapcache(folio));
3840
3841 if (filemap_dirty_folio(mapping, folio)) {
3842 f2fs_update_dirty_folio(inode, folio);
3843 return true;
3844 }
3845 return false;
3846 }
3847
3848
f2fs_bmap_compress(struct inode * inode,sector_t block)3849 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3850 {
3851 #ifdef CONFIG_F2FS_FS_COMPRESSION
3852 struct dnode_of_data dn;
3853 sector_t start_idx, blknr = 0;
3854 int ret;
3855
3856 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3857
3858 set_new_dnode(&dn, inode, NULL, NULL, 0);
3859 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3860 if (ret)
3861 return 0;
3862
3863 if (dn.data_blkaddr != COMPRESS_ADDR) {
3864 dn.ofs_in_node += block - start_idx;
3865 blknr = f2fs_data_blkaddr(&dn);
3866 if (!__is_valid_data_blkaddr(blknr))
3867 blknr = 0;
3868 }
3869
3870 f2fs_put_dnode(&dn);
3871 return blknr;
3872 #else
3873 return 0;
3874 #endif
3875 }
3876
3877
f2fs_bmap(struct address_space * mapping,sector_t block)3878 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3879 {
3880 struct inode *inode = mapping->host;
3881 sector_t blknr = 0;
3882
3883 if (f2fs_has_inline_data(inode))
3884 goto out;
3885
3886 /* make sure allocating whole blocks */
3887 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3888 filemap_write_and_wait(mapping);
3889
3890 /* Block number less than F2FS MAX BLOCKS */
3891 if (unlikely(block >= max_file_blocks(inode)))
3892 goto out;
3893
3894 if (f2fs_compressed_file(inode)) {
3895 blknr = f2fs_bmap_compress(inode, block);
3896 } else {
3897 struct f2fs_map_blocks map;
3898
3899 memset(&map, 0, sizeof(map));
3900 map.m_lblk = block;
3901 map.m_len = 1;
3902 map.m_next_pgofs = NULL;
3903 map.m_seg_type = NO_CHECK_TYPE;
3904
3905 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3906 blknr = map.m_pblk;
3907 }
3908 out:
3909 trace_f2fs_bmap(inode, block, blknr);
3910 return blknr;
3911 }
3912
3913 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3914 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3915 unsigned int blkcnt)
3916 {
3917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3918 unsigned int blkofs;
3919 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3920 unsigned int secidx = start_blk / blk_per_sec;
3921 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3922 int ret = 0;
3923
3924 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3925 filemap_invalidate_lock(inode->i_mapping);
3926
3927 set_inode_flag(inode, FI_ALIGNED_WRITE);
3928 set_inode_flag(inode, FI_OPU_WRITE);
3929
3930 for (; secidx < end_sec; secidx++) {
3931 f2fs_down_write(&sbi->pin_sem);
3932
3933 f2fs_lock_op(sbi);
3934 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3935 f2fs_unlock_op(sbi);
3936
3937 set_inode_flag(inode, FI_SKIP_WRITES);
3938
3939 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3940 struct page *page;
3941 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3942
3943 page = f2fs_get_lock_data_page(inode, blkidx, true);
3944 if (IS_ERR(page)) {
3945 f2fs_up_write(&sbi->pin_sem);
3946 ret = PTR_ERR(page);
3947 goto done;
3948 }
3949
3950 set_page_dirty(page);
3951 f2fs_put_page(page, 1);
3952 }
3953
3954 clear_inode_flag(inode, FI_SKIP_WRITES);
3955
3956 ret = filemap_fdatawrite(inode->i_mapping);
3957
3958 f2fs_up_write(&sbi->pin_sem);
3959
3960 if (ret)
3961 break;
3962 }
3963
3964 done:
3965 clear_inode_flag(inode, FI_SKIP_WRITES);
3966 clear_inode_flag(inode, FI_OPU_WRITE);
3967 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3968
3969 filemap_invalidate_unlock(inode->i_mapping);
3970 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3971
3972 return ret;
3973 }
3974
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3975 static int check_swap_activate(struct swap_info_struct *sis,
3976 struct file *swap_file, sector_t *span)
3977 {
3978 struct address_space *mapping = swap_file->f_mapping;
3979 struct inode *inode = mapping->host;
3980 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3981 sector_t cur_lblock;
3982 sector_t last_lblock;
3983 sector_t pblock;
3984 sector_t lowest_pblock = -1;
3985 sector_t highest_pblock = 0;
3986 int nr_extents = 0;
3987 unsigned long nr_pblocks;
3988 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3989 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3990 unsigned int not_aligned = 0;
3991 int ret = 0;
3992
3993 /*
3994 * Map all the blocks into the extent list. This code doesn't try
3995 * to be very smart.
3996 */
3997 cur_lblock = 0;
3998 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3999
4000 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4001 struct f2fs_map_blocks map;
4002 retry:
4003 cond_resched();
4004
4005 memset(&map, 0, sizeof(map));
4006 map.m_lblk = cur_lblock;
4007 map.m_len = last_lblock - cur_lblock;
4008 map.m_next_pgofs = NULL;
4009 map.m_next_extent = NULL;
4010 map.m_seg_type = NO_CHECK_TYPE;
4011 map.m_may_create = false;
4012
4013 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4014 if (ret)
4015 goto out;
4016
4017 /* hole */
4018 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4019 f2fs_err(sbi, "Swapfile has holes");
4020 ret = -EINVAL;
4021 goto out;
4022 }
4023
4024 pblock = map.m_pblk;
4025 nr_pblocks = map.m_len;
4026
4027 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4028 nr_pblocks & sec_blks_mask) {
4029 not_aligned++;
4030
4031 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4032 if (cur_lblock + nr_pblocks > sis->max)
4033 nr_pblocks -= blks_per_sec;
4034
4035 if (!nr_pblocks) {
4036 /* this extent is last one */
4037 nr_pblocks = map.m_len;
4038 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4039 goto next;
4040 }
4041
4042 ret = f2fs_migrate_blocks(inode, cur_lblock,
4043 nr_pblocks);
4044 if (ret)
4045 goto out;
4046 goto retry;
4047 }
4048 next:
4049 if (cur_lblock + nr_pblocks >= sis->max)
4050 nr_pblocks = sis->max - cur_lblock;
4051
4052 if (cur_lblock) { /* exclude the header page */
4053 if (pblock < lowest_pblock)
4054 lowest_pblock = pblock;
4055 if (pblock + nr_pblocks - 1 > highest_pblock)
4056 highest_pblock = pblock + nr_pblocks - 1;
4057 }
4058
4059 /*
4060 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4061 */
4062 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4063 if (ret < 0)
4064 goto out;
4065 nr_extents += ret;
4066 cur_lblock += nr_pblocks;
4067 }
4068 ret = nr_extents;
4069 *span = 1 + highest_pblock - lowest_pblock;
4070 if (cur_lblock == 0)
4071 cur_lblock = 1; /* force Empty message */
4072 sis->max = cur_lblock;
4073 sis->pages = cur_lblock - 1;
4074 sis->highest_bit = cur_lblock - 1;
4075 out:
4076 if (not_aligned)
4077 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4078 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4079 return ret;
4080 }
4081
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4082 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4083 sector_t *span)
4084 {
4085 struct inode *inode = file_inode(file);
4086 int ret;
4087
4088 if (!S_ISREG(inode->i_mode))
4089 return -EINVAL;
4090
4091 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4092 return -EROFS;
4093
4094 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4095 f2fs_err(F2FS_I_SB(inode),
4096 "Swapfile not supported in LFS mode");
4097 return -EINVAL;
4098 }
4099
4100 ret = f2fs_convert_inline_inode(inode);
4101 if (ret)
4102 return ret;
4103
4104 if (!f2fs_disable_compressed_file(inode))
4105 return -EINVAL;
4106
4107 f2fs_precache_extents(inode);
4108
4109 ret = check_swap_activate(sis, file, span);
4110 if (ret < 0)
4111 return ret;
4112
4113 stat_inc_swapfile_inode(inode);
4114 set_inode_flag(inode, FI_PIN_FILE);
4115 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4116 return ret;
4117 }
4118
f2fs_swap_deactivate(struct file * file)4119 static void f2fs_swap_deactivate(struct file *file)
4120 {
4121 struct inode *inode = file_inode(file);
4122
4123 stat_dec_swapfile_inode(inode);
4124 clear_inode_flag(inode, FI_PIN_FILE);
4125 }
4126 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4127 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4128 sector_t *span)
4129 {
4130 return -EOPNOTSUPP;
4131 }
4132
f2fs_swap_deactivate(struct file * file)4133 static void f2fs_swap_deactivate(struct file *file)
4134 {
4135 }
4136 #endif
4137
4138 const struct address_space_operations f2fs_dblock_aops = {
4139 .read_folio = f2fs_read_data_folio,
4140 .readahead = f2fs_readahead,
4141 .writepage = f2fs_write_data_page,
4142 .writepages = f2fs_write_data_pages,
4143 .write_begin = f2fs_write_begin,
4144 .write_end = f2fs_write_end,
4145 .dirty_folio = f2fs_dirty_data_folio,
4146 .migrate_folio = filemap_migrate_folio,
4147 .invalidate_folio = f2fs_invalidate_folio,
4148 .release_folio = f2fs_release_folio,
4149 .bmap = f2fs_bmap,
4150 .swap_activate = f2fs_swap_activate,
4151 .swap_deactivate = f2fs_swap_deactivate,
4152 };
4153
f2fs_clear_page_cache_dirty_tag(struct page * page)4154 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4155 {
4156 struct address_space *mapping = page_mapping(page);
4157 unsigned long flags;
4158
4159 xa_lock_irqsave(&mapping->i_pages, flags);
4160 __xa_clear_mark(&mapping->i_pages, page_index(page),
4161 PAGECACHE_TAG_DIRTY);
4162 xa_unlock_irqrestore(&mapping->i_pages, flags);
4163 }
4164
f2fs_init_post_read_processing(void)4165 int __init f2fs_init_post_read_processing(void)
4166 {
4167 bio_post_read_ctx_cache =
4168 kmem_cache_create("f2fs_bio_post_read_ctx",
4169 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4170 if (!bio_post_read_ctx_cache)
4171 goto fail;
4172 bio_post_read_ctx_pool =
4173 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4174 bio_post_read_ctx_cache);
4175 if (!bio_post_read_ctx_pool)
4176 goto fail_free_cache;
4177 return 0;
4178
4179 fail_free_cache:
4180 kmem_cache_destroy(bio_post_read_ctx_cache);
4181 fail:
4182 return -ENOMEM;
4183 }
4184
f2fs_destroy_post_read_processing(void)4185 void f2fs_destroy_post_read_processing(void)
4186 {
4187 mempool_destroy(bio_post_read_ctx_pool);
4188 kmem_cache_destroy(bio_post_read_ctx_cache);
4189 }
4190
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4191 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4192 {
4193 if (!f2fs_sb_has_encrypt(sbi) &&
4194 !f2fs_sb_has_verity(sbi) &&
4195 !f2fs_sb_has_compression(sbi))
4196 return 0;
4197
4198 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4199 WQ_UNBOUND | WQ_HIGHPRI,
4200 num_online_cpus());
4201 return sbi->post_read_wq ? 0 : -ENOMEM;
4202 }
4203
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4204 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4205 {
4206 if (sbi->post_read_wq)
4207 destroy_workqueue(sbi->post_read_wq);
4208 }
4209
f2fs_init_bio_entry_cache(void)4210 int __init f2fs_init_bio_entry_cache(void)
4211 {
4212 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4213 sizeof(struct bio_entry));
4214 return bio_entry_slab ? 0 : -ENOMEM;
4215 }
4216
f2fs_destroy_bio_entry_cache(void)4217 void f2fs_destroy_bio_entry_cache(void)
4218 {
4219 kmem_cache_destroy(bio_entry_slab);
4220 }
4221
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4222 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4223 unsigned int flags, struct iomap *iomap,
4224 struct iomap *srcmap)
4225 {
4226 struct f2fs_map_blocks map = {};
4227 pgoff_t next_pgofs = 0;
4228 int err;
4229
4230 map.m_lblk = bytes_to_blks(inode, offset);
4231 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4232 map.m_next_pgofs = &next_pgofs;
4233 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4234 if (flags & IOMAP_WRITE)
4235 map.m_may_create = true;
4236
4237 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4238 if (err)
4239 return err;
4240
4241 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4242
4243 /*
4244 * When inline encryption is enabled, sometimes I/O to an encrypted file
4245 * has to be broken up to guarantee DUN contiguity. Handle this by
4246 * limiting the length of the mapping returned.
4247 */
4248 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4249
4250 /*
4251 * We should never see delalloc or compressed extents here based on
4252 * prior flushing and checks.
4253 */
4254 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4255 return -EINVAL;
4256 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4257 return -EINVAL;
4258
4259 if (map.m_pblk != NULL_ADDR) {
4260 iomap->length = blks_to_bytes(inode, map.m_len);
4261 iomap->type = IOMAP_MAPPED;
4262 iomap->flags |= IOMAP_F_MERGED;
4263 iomap->bdev = map.m_bdev;
4264 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4265 } else {
4266 if (flags & IOMAP_WRITE)
4267 return -ENOTBLK;
4268 iomap->length = blks_to_bytes(inode, next_pgofs) -
4269 iomap->offset;
4270 iomap->type = IOMAP_HOLE;
4271 iomap->addr = IOMAP_NULL_ADDR;
4272 }
4273
4274 if (map.m_flags & F2FS_MAP_NEW)
4275 iomap->flags |= IOMAP_F_NEW;
4276 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4277 offset + length > i_size_read(inode))
4278 iomap->flags |= IOMAP_F_DIRTY;
4279
4280 return 0;
4281 }
4282
4283 const struct iomap_ops f2fs_iomap_ops = {
4284 .iomap_begin = f2fs_iomap_begin,
4285 };
4286