1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
__is_cp_guaranteed(struct page * page)53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct inode *inode;
57 struct f2fs_sb_info *sbi;
58
59 if (!mapping)
60 return false;
61
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
64
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
68 return true;
69
70 if (f2fs_is_compressed_page(page))
71 return false;
72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 page_private_gcing(page))
74 return true;
75 return false;
76 }
77
__read_io_type(struct page * page)78 static enum count_type __read_io_type(struct page *page)
79 {
80 struct address_space *mapping = page_file_mapping(page);
81
82 if (mapping) {
83 struct inode *inode = mapping->host;
84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85
86 if (inode->i_ino == F2FS_META_INO(sbi))
87 return F2FS_RD_META;
88
89 if (inode->i_ino == F2FS_NODE_INO(sbi))
90 return F2FS_RD_NODE;
91 }
92 return F2FS_RD_DATA;
93 }
94
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 STEP_DECRYPT = 1 << 0,
99 #else
100 STEP_DECRYPT = 0, /* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 STEP_DECOMPRESS = 1 << 1,
104 #else
105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108 STEP_VERITY = 1 << 2,
109 #else
110 STEP_VERITY = 0, /* compile out the verity-related code */
111 #endif
112 };
113
114 struct bio_post_read_ctx {
115 struct bio *bio;
116 struct f2fs_sb_info *sbi;
117 struct work_struct work;
118 unsigned int enabled_steps;
119 block_t fs_blkaddr;
120 };
121
f2fs_finish_read_bio(struct bio * bio)122 static void f2fs_finish_read_bio(struct bio *bio)
123 {
124 struct bio_vec *bv;
125 struct bvec_iter_all iter_all;
126
127 /*
128 * Update and unlock the bio's pagecache pages, and put the
129 * decompression context for any compressed pages.
130 */
131 bio_for_each_segment_all(bv, bio, iter_all) {
132 struct page *page = bv->bv_page;
133
134 if (f2fs_is_compressed_page(page)) {
135 if (bio->bi_status)
136 f2fs_end_read_compressed_page(page, true, 0);
137 f2fs_put_page_dic(page);
138 continue;
139 }
140
141 /* PG_error was set if decryption or verity failed. */
142 if (bio->bi_status || PageError(page)) {
143 ClearPageUptodate(page);
144 /* will re-read again later */
145 ClearPageError(page);
146 } else {
147 SetPageUptodate(page);
148 }
149 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
150 unlock_page(page);
151 }
152
153 if (bio->bi_private)
154 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
155 bio_put(bio);
156 }
157
f2fs_verify_bio(struct work_struct * work)158 static void f2fs_verify_bio(struct work_struct *work)
159 {
160 struct bio_post_read_ctx *ctx =
161 container_of(work, struct bio_post_read_ctx, work);
162 struct bio *bio = ctx->bio;
163 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
164
165 /*
166 * fsverity_verify_bio() may call readahead() again, and while verity
167 * will be disabled for this, decryption and/or decompression may still
168 * be needed, resulting in another bio_post_read_ctx being allocated.
169 * So to prevent deadlocks we need to release the current ctx to the
170 * mempool first. This assumes that verity is the last post-read step.
171 */
172 mempool_free(ctx, bio_post_read_ctx_pool);
173 bio->bi_private = NULL;
174
175 /*
176 * Verify the bio's pages with fs-verity. Exclude compressed pages,
177 * as those were handled separately by f2fs_end_read_compressed_page().
178 */
179 if (may_have_compressed_pages) {
180 struct bio_vec *bv;
181 struct bvec_iter_all iter_all;
182
183 bio_for_each_segment_all(bv, bio, iter_all) {
184 struct page *page = bv->bv_page;
185
186 if (!f2fs_is_compressed_page(page) &&
187 !PageError(page) && !fsverity_verify_page(page))
188 SetPageError(page);
189 }
190 } else {
191 fsverity_verify_bio(bio);
192 }
193
194 f2fs_finish_read_bio(bio);
195 }
196
197 /*
198 * If the bio's data needs to be verified with fs-verity, then enqueue the
199 * verity work for the bio. Otherwise finish the bio now.
200 *
201 * Note that to avoid deadlocks, the verity work can't be done on the
202 * decryption/decompression workqueue. This is because verifying the data pages
203 * can involve reading verity metadata pages from the file, and these verity
204 * metadata pages may be encrypted and/or compressed.
205 */
f2fs_verify_and_finish_bio(struct bio * bio)206 static void f2fs_verify_and_finish_bio(struct bio *bio)
207 {
208 struct bio_post_read_ctx *ctx = bio->bi_private;
209
210 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
211 INIT_WORK(&ctx->work, f2fs_verify_bio);
212 fsverity_enqueue_verify_work(&ctx->work);
213 } else {
214 f2fs_finish_read_bio(bio);
215 }
216 }
217
218 /*
219 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
220 * remaining page was read by @ctx->bio.
221 *
222 * Note that a bio may span clusters (even a mix of compressed and uncompressed
223 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
224 * that the bio includes at least one compressed page. The actual decompression
225 * is done on a per-cluster basis, not a per-bio basis.
226 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx)227 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
228 {
229 struct bio_vec *bv;
230 struct bvec_iter_all iter_all;
231 bool all_compressed = true;
232 block_t blkaddr = ctx->fs_blkaddr;
233
234 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
235 struct page *page = bv->bv_page;
236
237 /* PG_error was set if decryption failed. */
238 if (f2fs_is_compressed_page(page))
239 f2fs_end_read_compressed_page(page, PageError(page),
240 blkaddr);
241 else
242 all_compressed = false;
243
244 blkaddr++;
245 }
246
247 /*
248 * Optimization: if all the bio's pages are compressed, then scheduling
249 * the per-bio verity work is unnecessary, as verity will be fully
250 * handled at the compression cluster level.
251 */
252 if (all_compressed)
253 ctx->enabled_steps &= ~STEP_VERITY;
254 }
255
f2fs_post_read_work(struct work_struct * work)256 static void f2fs_post_read_work(struct work_struct *work)
257 {
258 struct bio_post_read_ctx *ctx =
259 container_of(work, struct bio_post_read_ctx, work);
260
261 if (ctx->enabled_steps & STEP_DECRYPT)
262 fscrypt_decrypt_bio(ctx->bio);
263
264 if (ctx->enabled_steps & STEP_DECOMPRESS)
265 f2fs_handle_step_decompress(ctx);
266
267 f2fs_verify_and_finish_bio(ctx->bio);
268 }
269
f2fs_read_end_io(struct bio * bio)270 static void f2fs_read_end_io(struct bio *bio)
271 {
272 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
273 struct bio_post_read_ctx *ctx;
274
275 iostat_update_and_unbind_ctx(bio, 0);
276 ctx = bio->bi_private;
277
278 if (time_to_inject(sbi, FAULT_READ_IO)) {
279 f2fs_show_injection_info(sbi, FAULT_READ_IO);
280 bio->bi_status = BLK_STS_IOERR;
281 }
282
283 if (bio->bi_status) {
284 f2fs_finish_read_bio(bio);
285 return;
286 }
287
288 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
289 INIT_WORK(&ctx->work, f2fs_post_read_work);
290 queue_work(ctx->sbi->post_read_wq, &ctx->work);
291 } else {
292 f2fs_verify_and_finish_bio(bio);
293 }
294 }
295
f2fs_write_end_io(struct bio * bio)296 static void f2fs_write_end_io(struct bio *bio)
297 {
298 struct f2fs_sb_info *sbi;
299 struct bio_vec *bvec;
300 struct bvec_iter_all iter_all;
301
302 iostat_update_and_unbind_ctx(bio, 1);
303 sbi = bio->bi_private;
304
305 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
306 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
307 bio->bi_status = BLK_STS_IOERR;
308 }
309
310 bio_for_each_segment_all(bvec, bio, iter_all) {
311 struct page *page = bvec->bv_page;
312 enum count_type type = WB_DATA_TYPE(page);
313
314 if (page_private_dummy(page)) {
315 clear_page_private_dummy(page);
316 unlock_page(page);
317 mempool_free(page, sbi->write_io_dummy);
318
319 if (unlikely(bio->bi_status))
320 f2fs_stop_checkpoint(sbi, true);
321 continue;
322 }
323
324 fscrypt_finalize_bounce_page(&page);
325
326 #ifdef CONFIG_F2FS_FS_COMPRESSION
327 if (f2fs_is_compressed_page(page)) {
328 f2fs_compress_write_end_io(bio, page);
329 continue;
330 }
331 #endif
332
333 if (unlikely(bio->bi_status)) {
334 mapping_set_error(page->mapping, -EIO);
335 if (type == F2FS_WB_CP_DATA)
336 f2fs_stop_checkpoint(sbi, true);
337 }
338
339 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
340 page->index != nid_of_node(page));
341
342 dec_page_count(sbi, type);
343 if (f2fs_in_warm_node_list(sbi, page))
344 f2fs_del_fsync_node_entry(sbi, page);
345 clear_page_private_gcing(page);
346 end_page_writeback(page);
347 }
348 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
349 wq_has_sleeper(&sbi->cp_wait))
350 wake_up(&sbi->cp_wait);
351
352 bio_put(bio);
353 }
354
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)355 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
356 block_t blk_addr, sector_t *sector)
357 {
358 struct block_device *bdev = sbi->sb->s_bdev;
359 int i;
360
361 if (f2fs_is_multi_device(sbi)) {
362 for (i = 0; i < sbi->s_ndevs; i++) {
363 if (FDEV(i).start_blk <= blk_addr &&
364 FDEV(i).end_blk >= blk_addr) {
365 blk_addr -= FDEV(i).start_blk;
366 bdev = FDEV(i).bdev;
367 break;
368 }
369 }
370 }
371
372 if (sector)
373 *sector = SECTOR_FROM_BLOCK(blk_addr);
374 return bdev;
375 }
376
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)377 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
378 {
379 int i;
380
381 if (!f2fs_is_multi_device(sbi))
382 return 0;
383
384 for (i = 0; i < sbi->s_ndevs; i++)
385 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
386 return i;
387 return 0;
388 }
389
f2fs_io_flags(struct f2fs_io_info * fio)390 static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
391 {
392 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
393 unsigned int fua_flag, meta_flag, io_flag;
394 unsigned int op_flags = 0;
395
396 if (fio->op != REQ_OP_WRITE)
397 return 0;
398 if (fio->type == DATA)
399 io_flag = fio->sbi->data_io_flag;
400 else if (fio->type == NODE)
401 io_flag = fio->sbi->node_io_flag;
402 else
403 return 0;
404
405 fua_flag = io_flag & temp_mask;
406 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
407
408 /*
409 * data/node io flag bits per temp:
410 * REQ_META | REQ_FUA |
411 * 5 | 4 | 3 | 2 | 1 | 0 |
412 * Cold | Warm | Hot | Cold | Warm | Hot |
413 */
414 if ((1 << fio->temp) & meta_flag)
415 op_flags |= REQ_META;
416 if ((1 << fio->temp) & fua_flag)
417 op_flags |= REQ_FUA;
418 return op_flags;
419 }
420
__bio_alloc(struct f2fs_io_info * fio,int npages)421 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
422 {
423 struct f2fs_sb_info *sbi = fio->sbi;
424 struct block_device *bdev;
425 sector_t sector;
426 struct bio *bio;
427
428 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
429 bio = bio_alloc_bioset(bdev, npages,
430 fio->op | fio->op_flags | f2fs_io_flags(fio),
431 GFP_NOIO, &f2fs_bioset);
432 bio->bi_iter.bi_sector = sector;
433 if (is_read_io(fio->op)) {
434 bio->bi_end_io = f2fs_read_end_io;
435 bio->bi_private = NULL;
436 } else {
437 bio->bi_end_io = f2fs_write_end_io;
438 bio->bi_private = sbi;
439 }
440 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
441
442 if (fio->io_wbc)
443 wbc_init_bio(fio->io_wbc, bio);
444
445 return bio;
446 }
447
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)448 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
449 pgoff_t first_idx,
450 const struct f2fs_io_info *fio,
451 gfp_t gfp_mask)
452 {
453 /*
454 * The f2fs garbage collector sets ->encrypted_page when it wants to
455 * read/write raw data without encryption.
456 */
457 if (!fio || !fio->encrypted_page)
458 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
459 }
460
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)461 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
462 pgoff_t next_idx,
463 const struct f2fs_io_info *fio)
464 {
465 /*
466 * The f2fs garbage collector sets ->encrypted_page when it wants to
467 * read/write raw data without encryption.
468 */
469 if (fio && fio->encrypted_page)
470 return !bio_has_crypt_ctx(bio);
471
472 return fscrypt_mergeable_bio(bio, inode, next_idx);
473 }
474
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)475 static inline void __submit_bio(struct f2fs_sb_info *sbi,
476 struct bio *bio, enum page_type type)
477 {
478 if (!is_read_io(bio_op(bio))) {
479 unsigned int start;
480
481 if (type != DATA && type != NODE)
482 goto submit_io;
483
484 if (f2fs_lfs_mode(sbi) && current->plug)
485 blk_finish_plug(current->plug);
486
487 if (!F2FS_IO_ALIGNED(sbi))
488 goto submit_io;
489
490 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
491 start %= F2FS_IO_SIZE(sbi);
492
493 if (start == 0)
494 goto submit_io;
495
496 /* fill dummy pages */
497 for (; start < F2FS_IO_SIZE(sbi); start++) {
498 struct page *page =
499 mempool_alloc(sbi->write_io_dummy,
500 GFP_NOIO | __GFP_NOFAIL);
501 f2fs_bug_on(sbi, !page);
502
503 lock_page(page);
504
505 zero_user_segment(page, 0, PAGE_SIZE);
506 set_page_private_dummy(page);
507
508 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
509 f2fs_bug_on(sbi, 1);
510 }
511 /*
512 * In the NODE case, we lose next block address chain. So, we
513 * need to do checkpoint in f2fs_sync_file.
514 */
515 if (type == NODE)
516 set_sbi_flag(sbi, SBI_NEED_CP);
517 }
518 submit_io:
519 if (is_read_io(bio_op(bio)))
520 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
521 else
522 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523
524 iostat_update_submit_ctx(bio, type);
525 submit_bio(bio);
526 }
527
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)528 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
529 struct bio *bio, enum page_type type)
530 {
531 __submit_bio(sbi, bio, type);
532 }
533
__submit_merged_bio(struct f2fs_bio_info * io)534 static void __submit_merged_bio(struct f2fs_bio_info *io)
535 {
536 struct f2fs_io_info *fio = &io->fio;
537
538 if (!io->bio)
539 return;
540
541 if (is_read_io(fio->op))
542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543 else
544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546 __submit_bio(io->sbi, io->bio, fio->type);
547 io->bio = NULL;
548 }
549
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 struct page *page, nid_t ino)
552 {
553 struct bio_vec *bvec;
554 struct bvec_iter_all iter_all;
555
556 if (!bio)
557 return false;
558
559 if (!inode && !page && !ino)
560 return true;
561
562 bio_for_each_segment_all(bvec, bio, iter_all) {
563 struct page *target = bvec->bv_page;
564
565 if (fscrypt_is_bounce_page(target)) {
566 target = fscrypt_pagecache_page(target);
567 if (IS_ERR(target))
568 continue;
569 }
570 if (f2fs_is_compressed_page(target)) {
571 target = f2fs_compress_control_page(target);
572 if (IS_ERR(target))
573 continue;
574 }
575
576 if (inode && inode == target->mapping->host)
577 return true;
578 if (page && page == target)
579 return true;
580 if (ino && ino == ino_of_node(target))
581 return true;
582 }
583
584 return false;
585 }
586
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)587 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
588 {
589 int i;
590
591 for (i = 0; i < NR_PAGE_TYPE; i++) {
592 int n = (i == META) ? 1 : NR_TEMP_TYPE;
593 int j;
594
595 sbi->write_io[i] = f2fs_kmalloc(sbi,
596 array_size(n, sizeof(struct f2fs_bio_info)),
597 GFP_KERNEL);
598 if (!sbi->write_io[i])
599 return -ENOMEM;
600
601 for (j = HOT; j < n; j++) {
602 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
603 sbi->write_io[i][j].sbi = sbi;
604 sbi->write_io[i][j].bio = NULL;
605 spin_lock_init(&sbi->write_io[i][j].io_lock);
606 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
607 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
608 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
609 }
610 }
611
612 return 0;
613 }
614
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)615 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
616 enum page_type type, enum temp_type temp)
617 {
618 enum page_type btype = PAGE_TYPE_OF_BIO(type);
619 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
620
621 f2fs_down_write(&io->io_rwsem);
622
623 /* change META to META_FLUSH in the checkpoint procedure */
624 if (type >= META_FLUSH) {
625 io->fio.type = META_FLUSH;
626 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
627 if (!test_opt(sbi, NOBARRIER))
628 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
629 }
630 __submit_merged_bio(io);
631 f2fs_up_write(&io->io_rwsem);
632 }
633
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)634 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
635 struct inode *inode, struct page *page,
636 nid_t ino, enum page_type type, bool force)
637 {
638 enum temp_type temp;
639 bool ret = true;
640
641 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
642 if (!force) {
643 enum page_type btype = PAGE_TYPE_OF_BIO(type);
644 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
645
646 f2fs_down_read(&io->io_rwsem);
647 ret = __has_merged_page(io->bio, inode, page, ino);
648 f2fs_up_read(&io->io_rwsem);
649 }
650 if (ret)
651 __f2fs_submit_merged_write(sbi, type, temp);
652
653 /* TODO: use HOT temp only for meta pages now. */
654 if (type >= META)
655 break;
656 }
657 }
658
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)659 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
660 {
661 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
662 }
663
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)664 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
665 struct inode *inode, struct page *page,
666 nid_t ino, enum page_type type)
667 {
668 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
669 }
670
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)671 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
672 {
673 f2fs_submit_merged_write(sbi, DATA);
674 f2fs_submit_merged_write(sbi, NODE);
675 f2fs_submit_merged_write(sbi, META);
676 }
677
678 /*
679 * Fill the locked page with data located in the block address.
680 * A caller needs to unlock the page on failure.
681 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)682 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
683 {
684 struct bio *bio;
685 struct page *page = fio->encrypted_page ?
686 fio->encrypted_page : fio->page;
687
688 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
689 fio->is_por ? META_POR : (__is_meta_io(fio) ?
690 META_GENERIC : DATA_GENERIC_ENHANCE)))
691 return -EFSCORRUPTED;
692
693 trace_f2fs_submit_page_bio(page, fio);
694
695 /* Allocate a new bio */
696 bio = __bio_alloc(fio, 1);
697
698 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
699 fio->page->index, fio, GFP_NOIO);
700
701 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
702 bio_put(bio);
703 return -EFAULT;
704 }
705
706 if (fio->io_wbc && !is_read_io(fio->op))
707 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
708
709 inc_page_count(fio->sbi, is_read_io(fio->op) ?
710 __read_io_type(page): WB_DATA_TYPE(fio->page));
711
712 __submit_bio(fio->sbi, bio, fio->type);
713 return 0;
714 }
715
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)716 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
717 block_t last_blkaddr, block_t cur_blkaddr)
718 {
719 if (unlikely(sbi->max_io_bytes &&
720 bio->bi_iter.bi_size >= sbi->max_io_bytes))
721 return false;
722 if (last_blkaddr + 1 != cur_blkaddr)
723 return false;
724 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
725 }
726
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)727 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
728 struct f2fs_io_info *fio)
729 {
730 if (io->fio.op != fio->op)
731 return false;
732 return io->fio.op_flags == fio->op_flags;
733 }
734
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)735 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
736 struct f2fs_bio_info *io,
737 struct f2fs_io_info *fio,
738 block_t last_blkaddr,
739 block_t cur_blkaddr)
740 {
741 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
742 unsigned int filled_blocks =
743 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
744 unsigned int io_size = F2FS_IO_SIZE(sbi);
745 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
746
747 /* IOs in bio is aligned and left space of vectors is not enough */
748 if (!(filled_blocks % io_size) && left_vecs < io_size)
749 return false;
750 }
751 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 return false;
753 return io_type_is_mergeable(io, fio);
754 }
755
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 struct page *page, enum temp_type temp)
758 {
759 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 struct bio_entry *be;
761
762 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 be->bio = bio;
764 bio_get(bio);
765
766 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767 f2fs_bug_on(sbi, 1);
768
769 f2fs_down_write(&io->bio_list_lock);
770 list_add_tail(&be->list, &io->bio_list);
771 f2fs_up_write(&io->bio_list_lock);
772 }
773
del_bio_entry(struct bio_entry * be)774 static void del_bio_entry(struct bio_entry *be)
775 {
776 list_del(&be->list);
777 kmem_cache_free(bio_entry_slab, be);
778 }
779
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781 struct page *page)
782 {
783 struct f2fs_sb_info *sbi = fio->sbi;
784 enum temp_type temp;
785 bool found = false;
786 int ret = -EAGAIN;
787
788 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 struct list_head *head = &io->bio_list;
791 struct bio_entry *be;
792
793 f2fs_down_write(&io->bio_list_lock);
794 list_for_each_entry(be, head, list) {
795 if (be->bio != *bio)
796 continue;
797
798 found = true;
799
800 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 *fio->last_block,
802 fio->new_blkaddr));
803 if (f2fs_crypt_mergeable_bio(*bio,
804 fio->page->mapping->host,
805 fio->page->index, fio) &&
806 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 PAGE_SIZE) {
808 ret = 0;
809 break;
810 }
811
812 /* page can't be merged into bio; submit the bio */
813 del_bio_entry(be);
814 __submit_bio(sbi, *bio, DATA);
815 break;
816 }
817 f2fs_up_write(&io->bio_list_lock);
818 }
819
820 if (ret) {
821 bio_put(*bio);
822 *bio = NULL;
823 }
824
825 return ret;
826 }
827
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 struct bio **bio, struct page *page)
830 {
831 enum temp_type temp;
832 bool found = false;
833 struct bio *target = bio ? *bio : NULL;
834
835 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 struct list_head *head = &io->bio_list;
838 struct bio_entry *be;
839
840 if (list_empty(head))
841 continue;
842
843 f2fs_down_read(&io->bio_list_lock);
844 list_for_each_entry(be, head, list) {
845 if (target)
846 found = (target == be->bio);
847 else
848 found = __has_merged_page(be->bio, NULL,
849 page, 0);
850 if (found)
851 break;
852 }
853 f2fs_up_read(&io->bio_list_lock);
854
855 if (!found)
856 continue;
857
858 found = false;
859
860 f2fs_down_write(&io->bio_list_lock);
861 list_for_each_entry(be, head, list) {
862 if (target)
863 found = (target == be->bio);
864 else
865 found = __has_merged_page(be->bio, NULL,
866 page, 0);
867 if (found) {
868 target = be->bio;
869 del_bio_entry(be);
870 break;
871 }
872 }
873 f2fs_up_write(&io->bio_list_lock);
874 }
875
876 if (found)
877 __submit_bio(sbi, target, DATA);
878 if (bio && *bio) {
879 bio_put(*bio);
880 *bio = NULL;
881 }
882 }
883
f2fs_merge_page_bio(struct f2fs_io_info * fio)884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 struct bio *bio = *fio->bio;
887 struct page *page = fio->encrypted_page ?
888 fio->encrypted_page : fio->page;
889
890 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
892 return -EFSCORRUPTED;
893
894 trace_f2fs_submit_page_bio(page, fio);
895
896 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
897 fio->new_blkaddr))
898 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
899 alloc_new:
900 if (!bio) {
901 bio = __bio_alloc(fio, BIO_MAX_VECS);
902 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
903 fio->page->index, fio, GFP_NOIO);
904
905 add_bio_entry(fio->sbi, bio, page, fio->temp);
906 } else {
907 if (add_ipu_page(fio, &bio, page))
908 goto alloc_new;
909 }
910
911 if (fio->io_wbc)
912 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
913
914 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
915
916 *fio->last_block = fio->new_blkaddr;
917 *fio->bio = bio;
918
919 return 0;
920 }
921
f2fs_submit_page_write(struct f2fs_io_info * fio)922 void f2fs_submit_page_write(struct f2fs_io_info *fio)
923 {
924 struct f2fs_sb_info *sbi = fio->sbi;
925 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
926 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
927 struct page *bio_page;
928
929 f2fs_bug_on(sbi, is_read_io(fio->op));
930
931 f2fs_down_write(&io->io_rwsem);
932 next:
933 if (fio->in_list) {
934 spin_lock(&io->io_lock);
935 if (list_empty(&io->io_list)) {
936 spin_unlock(&io->io_lock);
937 goto out;
938 }
939 fio = list_first_entry(&io->io_list,
940 struct f2fs_io_info, list);
941 list_del(&fio->list);
942 spin_unlock(&io->io_lock);
943 }
944
945 verify_fio_blkaddr(fio);
946
947 if (fio->encrypted_page)
948 bio_page = fio->encrypted_page;
949 else if (fio->compressed_page)
950 bio_page = fio->compressed_page;
951 else
952 bio_page = fio->page;
953
954 /* set submitted = true as a return value */
955 fio->submitted = true;
956
957 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
958
959 if (io->bio &&
960 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
961 fio->new_blkaddr) ||
962 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
963 bio_page->index, fio)))
964 __submit_merged_bio(io);
965 alloc_new:
966 if (io->bio == NULL) {
967 if (F2FS_IO_ALIGNED(sbi) &&
968 (fio->type == DATA || fio->type == NODE) &&
969 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
970 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
971 fio->retry = true;
972 goto skip;
973 }
974 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
975 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
976 bio_page->index, fio, GFP_NOIO);
977 io->fio = *fio;
978 }
979
980 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
981 __submit_merged_bio(io);
982 goto alloc_new;
983 }
984
985 if (fio->io_wbc)
986 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
987
988 io->last_block_in_bio = fio->new_blkaddr;
989
990 trace_f2fs_submit_page_write(fio->page, fio);
991 skip:
992 if (fio->in_list)
993 goto next;
994 out:
995 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
996 !f2fs_is_checkpoint_ready(sbi))
997 __submit_merged_bio(io);
998 f2fs_up_write(&io->io_rwsem);
999 }
1000
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1001 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1002 unsigned nr_pages, unsigned op_flag,
1003 pgoff_t first_idx, bool for_write)
1004 {
1005 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1006 struct bio *bio;
1007 struct bio_post_read_ctx *ctx = NULL;
1008 unsigned int post_read_steps = 0;
1009 sector_t sector;
1010 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1011
1012 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1013 REQ_OP_READ | op_flag,
1014 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1015 if (!bio)
1016 return ERR_PTR(-ENOMEM);
1017 bio->bi_iter.bi_sector = sector;
1018 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1019 bio->bi_end_io = f2fs_read_end_io;
1020
1021 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1022 post_read_steps |= STEP_DECRYPT;
1023
1024 if (f2fs_need_verity(inode, first_idx))
1025 post_read_steps |= STEP_VERITY;
1026
1027 /*
1028 * STEP_DECOMPRESS is handled specially, since a compressed file might
1029 * contain both compressed and uncompressed clusters. We'll allocate a
1030 * bio_post_read_ctx if the file is compressed, but the caller is
1031 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1032 */
1033
1034 if (post_read_steps || f2fs_compressed_file(inode)) {
1035 /* Due to the mempool, this never fails. */
1036 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1037 ctx->bio = bio;
1038 ctx->sbi = sbi;
1039 ctx->enabled_steps = post_read_steps;
1040 ctx->fs_blkaddr = blkaddr;
1041 bio->bi_private = ctx;
1042 }
1043 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1044
1045 return bio;
1046 }
1047
1048 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1049 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1050 block_t blkaddr, int op_flags, bool for_write)
1051 {
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 struct bio *bio;
1054
1055 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1056 page->index, for_write);
1057 if (IS_ERR(bio))
1058 return PTR_ERR(bio);
1059
1060 /* wait for GCed page writeback via META_MAPPING */
1061 f2fs_wait_on_block_writeback(inode, blkaddr);
1062
1063 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1064 bio_put(bio);
1065 return -EFAULT;
1066 }
1067 ClearPageError(page);
1068 inc_page_count(sbi, F2FS_RD_DATA);
1069 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1070 __submit_bio(sbi, bio, DATA);
1071 return 0;
1072 }
1073
__set_data_blkaddr(struct dnode_of_data * dn)1074 static void __set_data_blkaddr(struct dnode_of_data *dn)
1075 {
1076 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1077 __le32 *addr_array;
1078 int base = 0;
1079
1080 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1081 base = get_extra_isize(dn->inode);
1082
1083 /* Get physical address of data block */
1084 addr_array = blkaddr_in_node(rn);
1085 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1086 }
1087
1088 /*
1089 * Lock ordering for the change of data block address:
1090 * ->data_page
1091 * ->node_page
1092 * update block addresses in the node page
1093 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1094 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1095 {
1096 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1097 __set_data_blkaddr(dn);
1098 if (set_page_dirty(dn->node_page))
1099 dn->node_changed = true;
1100 }
1101
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1102 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1103 {
1104 dn->data_blkaddr = blkaddr;
1105 f2fs_set_data_blkaddr(dn);
1106 f2fs_update_extent_cache(dn);
1107 }
1108
1109 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1110 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1111 {
1112 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1113 int err;
1114
1115 if (!count)
1116 return 0;
1117
1118 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1119 return -EPERM;
1120 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1121 return err;
1122
1123 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1124 dn->ofs_in_node, count);
1125
1126 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1127
1128 for (; count > 0; dn->ofs_in_node++) {
1129 block_t blkaddr = f2fs_data_blkaddr(dn);
1130
1131 if (blkaddr == NULL_ADDR) {
1132 dn->data_blkaddr = NEW_ADDR;
1133 __set_data_blkaddr(dn);
1134 count--;
1135 }
1136 }
1137
1138 if (set_page_dirty(dn->node_page))
1139 dn->node_changed = true;
1140 return 0;
1141 }
1142
1143 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1144 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1145 {
1146 unsigned int ofs_in_node = dn->ofs_in_node;
1147 int ret;
1148
1149 ret = f2fs_reserve_new_blocks(dn, 1);
1150 dn->ofs_in_node = ofs_in_node;
1151 return ret;
1152 }
1153
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1154 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1155 {
1156 bool need_put = dn->inode_page ? false : true;
1157 int err;
1158
1159 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1160 if (err)
1161 return err;
1162
1163 if (dn->data_blkaddr == NULL_ADDR)
1164 err = f2fs_reserve_new_block(dn);
1165 if (err || need_put)
1166 f2fs_put_dnode(dn);
1167 return err;
1168 }
1169
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1170 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1171 {
1172 struct extent_info ei = {0, };
1173 struct inode *inode = dn->inode;
1174
1175 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1176 dn->data_blkaddr = ei.blk + index - ei.fofs;
1177 return 0;
1178 }
1179
1180 return f2fs_reserve_block(dn, index);
1181 }
1182
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1183 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1184 int op_flags, bool for_write)
1185 {
1186 struct address_space *mapping = inode->i_mapping;
1187 struct dnode_of_data dn;
1188 struct page *page;
1189 struct extent_info ei = {0, };
1190 int err;
1191
1192 page = f2fs_grab_cache_page(mapping, index, for_write);
1193 if (!page)
1194 return ERR_PTR(-ENOMEM);
1195
1196 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1197 dn.data_blkaddr = ei.blk + index - ei.fofs;
1198 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1199 DATA_GENERIC_ENHANCE_READ)) {
1200 err = -EFSCORRUPTED;
1201 goto put_err;
1202 }
1203 goto got_it;
1204 }
1205
1206 set_new_dnode(&dn, inode, NULL, NULL, 0);
1207 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1208 if (err)
1209 goto put_err;
1210 f2fs_put_dnode(&dn);
1211
1212 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1213 err = -ENOENT;
1214 goto put_err;
1215 }
1216 if (dn.data_blkaddr != NEW_ADDR &&
1217 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1218 dn.data_blkaddr,
1219 DATA_GENERIC_ENHANCE)) {
1220 err = -EFSCORRUPTED;
1221 goto put_err;
1222 }
1223 got_it:
1224 if (PageUptodate(page)) {
1225 unlock_page(page);
1226 return page;
1227 }
1228
1229 /*
1230 * A new dentry page is allocated but not able to be written, since its
1231 * new inode page couldn't be allocated due to -ENOSPC.
1232 * In such the case, its blkaddr can be remained as NEW_ADDR.
1233 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1234 * f2fs_init_inode_metadata.
1235 */
1236 if (dn.data_blkaddr == NEW_ADDR) {
1237 zero_user_segment(page, 0, PAGE_SIZE);
1238 if (!PageUptodate(page))
1239 SetPageUptodate(page);
1240 unlock_page(page);
1241 return page;
1242 }
1243
1244 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1245 op_flags, for_write);
1246 if (err)
1247 goto put_err;
1248 return page;
1249
1250 put_err:
1251 f2fs_put_page(page, 1);
1252 return ERR_PTR(err);
1253 }
1254
f2fs_find_data_page(struct inode * inode,pgoff_t index)1255 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1256 {
1257 struct address_space *mapping = inode->i_mapping;
1258 struct page *page;
1259
1260 page = find_get_page(mapping, index);
1261 if (page && PageUptodate(page))
1262 return page;
1263 f2fs_put_page(page, 0);
1264
1265 page = f2fs_get_read_data_page(inode, index, 0, false);
1266 if (IS_ERR(page))
1267 return page;
1268
1269 if (PageUptodate(page))
1270 return page;
1271
1272 wait_on_page_locked(page);
1273 if (unlikely(!PageUptodate(page))) {
1274 f2fs_put_page(page, 0);
1275 return ERR_PTR(-EIO);
1276 }
1277 return page;
1278 }
1279
1280 /*
1281 * If it tries to access a hole, return an error.
1282 * Because, the callers, functions in dir.c and GC, should be able to know
1283 * whether this page exists or not.
1284 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1285 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1286 bool for_write)
1287 {
1288 struct address_space *mapping = inode->i_mapping;
1289 struct page *page;
1290 repeat:
1291 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1292 if (IS_ERR(page))
1293 return page;
1294
1295 /* wait for read completion */
1296 lock_page(page);
1297 if (unlikely(page->mapping != mapping)) {
1298 f2fs_put_page(page, 1);
1299 goto repeat;
1300 }
1301 if (unlikely(!PageUptodate(page))) {
1302 f2fs_put_page(page, 1);
1303 return ERR_PTR(-EIO);
1304 }
1305 return page;
1306 }
1307
1308 /*
1309 * Caller ensures that this data page is never allocated.
1310 * A new zero-filled data page is allocated in the page cache.
1311 *
1312 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1313 * f2fs_unlock_op().
1314 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1315 * ipage should be released by this function.
1316 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1317 struct page *f2fs_get_new_data_page(struct inode *inode,
1318 struct page *ipage, pgoff_t index, bool new_i_size)
1319 {
1320 struct address_space *mapping = inode->i_mapping;
1321 struct page *page;
1322 struct dnode_of_data dn;
1323 int err;
1324
1325 page = f2fs_grab_cache_page(mapping, index, true);
1326 if (!page) {
1327 /*
1328 * before exiting, we should make sure ipage will be released
1329 * if any error occur.
1330 */
1331 f2fs_put_page(ipage, 1);
1332 return ERR_PTR(-ENOMEM);
1333 }
1334
1335 set_new_dnode(&dn, inode, ipage, NULL, 0);
1336 err = f2fs_reserve_block(&dn, index);
1337 if (err) {
1338 f2fs_put_page(page, 1);
1339 return ERR_PTR(err);
1340 }
1341 if (!ipage)
1342 f2fs_put_dnode(&dn);
1343
1344 if (PageUptodate(page))
1345 goto got_it;
1346
1347 if (dn.data_blkaddr == NEW_ADDR) {
1348 zero_user_segment(page, 0, PAGE_SIZE);
1349 if (!PageUptodate(page))
1350 SetPageUptodate(page);
1351 } else {
1352 f2fs_put_page(page, 1);
1353
1354 /* if ipage exists, blkaddr should be NEW_ADDR */
1355 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1356 page = f2fs_get_lock_data_page(inode, index, true);
1357 if (IS_ERR(page))
1358 return page;
1359 }
1360 got_it:
1361 if (new_i_size && i_size_read(inode) <
1362 ((loff_t)(index + 1) << PAGE_SHIFT))
1363 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1364 return page;
1365 }
1366
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1367 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1368 {
1369 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1370 struct f2fs_summary sum;
1371 struct node_info ni;
1372 block_t old_blkaddr;
1373 blkcnt_t count = 1;
1374 int err;
1375
1376 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1377 return -EPERM;
1378
1379 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1380 if (err)
1381 return err;
1382
1383 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1384 if (dn->data_blkaddr != NULL_ADDR)
1385 goto alloc;
1386
1387 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1388 return err;
1389
1390 alloc:
1391 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1392 old_blkaddr = dn->data_blkaddr;
1393 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1394 &sum, seg_type, NULL);
1395 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1396 invalidate_mapping_pages(META_MAPPING(sbi),
1397 old_blkaddr, old_blkaddr);
1398 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1399 }
1400 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1401 return 0;
1402 }
1403
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1404 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1405 {
1406 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1407 if (lock)
1408 f2fs_down_read(&sbi->node_change);
1409 else
1410 f2fs_up_read(&sbi->node_change);
1411 } else {
1412 if (lock)
1413 f2fs_lock_op(sbi);
1414 else
1415 f2fs_unlock_op(sbi);
1416 }
1417 }
1418
1419 /*
1420 * f2fs_map_blocks() tries to find or build mapping relationship which
1421 * maps continuous logical blocks to physical blocks, and return such
1422 * info via f2fs_map_blocks structure.
1423 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1424 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1425 int create, int flag)
1426 {
1427 unsigned int maxblocks = map->m_len;
1428 struct dnode_of_data dn;
1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1430 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1431 pgoff_t pgofs, end_offset, end;
1432 int err = 0, ofs = 1;
1433 unsigned int ofs_in_node, last_ofs_in_node;
1434 blkcnt_t prealloc;
1435 struct extent_info ei = {0, };
1436 block_t blkaddr;
1437 unsigned int start_pgofs;
1438 int bidx = 0;
1439
1440 if (!maxblocks)
1441 return 0;
1442
1443 map->m_bdev = inode->i_sb->s_bdev;
1444 map->m_multidev_dio =
1445 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1446
1447 map->m_len = 0;
1448 map->m_flags = 0;
1449
1450 /* it only supports block size == page size */
1451 pgofs = (pgoff_t)map->m_lblk;
1452 end = pgofs + maxblocks;
1453
1454 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1455 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1456 map->m_may_create)
1457 goto next_dnode;
1458
1459 map->m_pblk = ei.blk + pgofs - ei.fofs;
1460 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1461 map->m_flags = F2FS_MAP_MAPPED;
1462 if (map->m_next_extent)
1463 *map->m_next_extent = pgofs + map->m_len;
1464
1465 /* for hardware encryption, but to avoid potential issue in future */
1466 if (flag == F2FS_GET_BLOCK_DIO) {
1467 f2fs_wait_on_block_writeback_range(inode,
1468 map->m_pblk, map->m_len);
1469 invalidate_mapping_pages(META_MAPPING(sbi),
1470 map->m_pblk, map->m_pblk + map->m_len - 1);
1471 }
1472
1473 if (map->m_multidev_dio) {
1474 block_t blk_addr = map->m_pblk;
1475
1476 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1477
1478 map->m_bdev = FDEV(bidx).bdev;
1479 map->m_pblk -= FDEV(bidx).start_blk;
1480 map->m_len = min(map->m_len,
1481 FDEV(bidx).end_blk + 1 - map->m_pblk);
1482
1483 if (map->m_may_create)
1484 f2fs_update_device_state(sbi, inode->i_ino,
1485 blk_addr, map->m_len);
1486 }
1487 goto out;
1488 }
1489
1490 next_dnode:
1491 if (map->m_may_create)
1492 f2fs_do_map_lock(sbi, flag, true);
1493
1494 /* When reading holes, we need its node page */
1495 set_new_dnode(&dn, inode, NULL, NULL, 0);
1496 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1497 if (err) {
1498 if (flag == F2FS_GET_BLOCK_BMAP)
1499 map->m_pblk = 0;
1500
1501 if (err == -ENOENT) {
1502 /*
1503 * There is one exceptional case that read_node_page()
1504 * may return -ENOENT due to filesystem has been
1505 * shutdown or cp_error, so force to convert error
1506 * number to EIO for such case.
1507 */
1508 if (map->m_may_create &&
1509 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1510 f2fs_cp_error(sbi))) {
1511 err = -EIO;
1512 goto unlock_out;
1513 }
1514
1515 err = 0;
1516 if (map->m_next_pgofs)
1517 *map->m_next_pgofs =
1518 f2fs_get_next_page_offset(&dn, pgofs);
1519 if (map->m_next_extent)
1520 *map->m_next_extent =
1521 f2fs_get_next_page_offset(&dn, pgofs);
1522 }
1523 goto unlock_out;
1524 }
1525
1526 start_pgofs = pgofs;
1527 prealloc = 0;
1528 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1529 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1530
1531 next_block:
1532 blkaddr = f2fs_data_blkaddr(&dn);
1533
1534 if (__is_valid_data_blkaddr(blkaddr) &&
1535 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1536 err = -EFSCORRUPTED;
1537 goto sync_out;
1538 }
1539
1540 if (__is_valid_data_blkaddr(blkaddr)) {
1541 /* use out-place-update for driect IO under LFS mode */
1542 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1543 map->m_may_create) {
1544 err = __allocate_data_block(&dn, map->m_seg_type);
1545 if (err)
1546 goto sync_out;
1547 blkaddr = dn.data_blkaddr;
1548 set_inode_flag(inode, FI_APPEND_WRITE);
1549 }
1550 } else {
1551 if (create) {
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 err = -EIO;
1554 goto sync_out;
1555 }
1556 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1557 if (blkaddr == NULL_ADDR) {
1558 prealloc++;
1559 last_ofs_in_node = dn.ofs_in_node;
1560 }
1561 } else {
1562 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1563 flag != F2FS_GET_BLOCK_DIO);
1564 err = __allocate_data_block(&dn,
1565 map->m_seg_type);
1566 if (!err) {
1567 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1568 file_need_truncate(inode);
1569 set_inode_flag(inode, FI_APPEND_WRITE);
1570 }
1571 }
1572 if (err)
1573 goto sync_out;
1574 map->m_flags |= F2FS_MAP_NEW;
1575 blkaddr = dn.data_blkaddr;
1576 } else {
1577 if (f2fs_compressed_file(inode) &&
1578 f2fs_sanity_check_cluster(&dn) &&
1579 (flag != F2FS_GET_BLOCK_FIEMAP ||
1580 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1581 err = -EFSCORRUPTED;
1582 goto sync_out;
1583 }
1584 if (flag == F2FS_GET_BLOCK_BMAP) {
1585 map->m_pblk = 0;
1586 goto sync_out;
1587 }
1588 if (flag == F2FS_GET_BLOCK_PRECACHE)
1589 goto sync_out;
1590 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1591 blkaddr == NULL_ADDR) {
1592 if (map->m_next_pgofs)
1593 *map->m_next_pgofs = pgofs + 1;
1594 goto sync_out;
1595 }
1596 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1597 /* for defragment case */
1598 if (map->m_next_pgofs)
1599 *map->m_next_pgofs = pgofs + 1;
1600 goto sync_out;
1601 }
1602 }
1603 }
1604
1605 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1606 goto skip;
1607
1608 if (map->m_multidev_dio)
1609 bidx = f2fs_target_device_index(sbi, blkaddr);
1610
1611 if (map->m_len == 0) {
1612 /* preallocated unwritten block should be mapped for fiemap. */
1613 if (blkaddr == NEW_ADDR)
1614 map->m_flags |= F2FS_MAP_UNWRITTEN;
1615 map->m_flags |= F2FS_MAP_MAPPED;
1616
1617 map->m_pblk = blkaddr;
1618 map->m_len = 1;
1619
1620 if (map->m_multidev_dio)
1621 map->m_bdev = FDEV(bidx).bdev;
1622 } else if ((map->m_pblk != NEW_ADDR &&
1623 blkaddr == (map->m_pblk + ofs)) ||
1624 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1625 flag == F2FS_GET_BLOCK_PRE_DIO) {
1626 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1627 goto sync_out;
1628 ofs++;
1629 map->m_len++;
1630 } else {
1631 goto sync_out;
1632 }
1633
1634 skip:
1635 dn.ofs_in_node++;
1636 pgofs++;
1637
1638 /* preallocate blocks in batch for one dnode page */
1639 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1640 (pgofs == end || dn.ofs_in_node == end_offset)) {
1641
1642 dn.ofs_in_node = ofs_in_node;
1643 err = f2fs_reserve_new_blocks(&dn, prealloc);
1644 if (err)
1645 goto sync_out;
1646
1647 map->m_len += dn.ofs_in_node - ofs_in_node;
1648 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1649 err = -ENOSPC;
1650 goto sync_out;
1651 }
1652 dn.ofs_in_node = end_offset;
1653 }
1654
1655 if (pgofs >= end)
1656 goto sync_out;
1657 else if (dn.ofs_in_node < end_offset)
1658 goto next_block;
1659
1660 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1661 if (map->m_flags & F2FS_MAP_MAPPED) {
1662 unsigned int ofs = start_pgofs - map->m_lblk;
1663
1664 f2fs_update_extent_cache_range(&dn,
1665 start_pgofs, map->m_pblk + ofs,
1666 map->m_len - ofs);
1667 }
1668 }
1669
1670 f2fs_put_dnode(&dn);
1671
1672 if (map->m_may_create) {
1673 f2fs_do_map_lock(sbi, flag, false);
1674 f2fs_balance_fs(sbi, dn.node_changed);
1675 }
1676 goto next_dnode;
1677
1678 sync_out:
1679
1680 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1681 /*
1682 * for hardware encryption, but to avoid potential issue
1683 * in future
1684 */
1685 f2fs_wait_on_block_writeback_range(inode,
1686 map->m_pblk, map->m_len);
1687 invalidate_mapping_pages(META_MAPPING(sbi),
1688 map->m_pblk, map->m_pblk + map->m_len - 1);
1689
1690 if (map->m_multidev_dio) {
1691 block_t blk_addr = map->m_pblk;
1692
1693 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1694
1695 map->m_bdev = FDEV(bidx).bdev;
1696 map->m_pblk -= FDEV(bidx).start_blk;
1697
1698 if (map->m_may_create)
1699 f2fs_update_device_state(sbi, inode->i_ino,
1700 blk_addr, map->m_len);
1701
1702 f2fs_bug_on(sbi, blk_addr + map->m_len >
1703 FDEV(bidx).end_blk + 1);
1704 }
1705 }
1706
1707 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1708 if (map->m_flags & F2FS_MAP_MAPPED) {
1709 unsigned int ofs = start_pgofs - map->m_lblk;
1710
1711 f2fs_update_extent_cache_range(&dn,
1712 start_pgofs, map->m_pblk + ofs,
1713 map->m_len - ofs);
1714 }
1715 if (map->m_next_extent)
1716 *map->m_next_extent = pgofs + 1;
1717 }
1718 f2fs_put_dnode(&dn);
1719 unlock_out:
1720 if (map->m_may_create) {
1721 f2fs_do_map_lock(sbi, flag, false);
1722 f2fs_balance_fs(sbi, dn.node_changed);
1723 }
1724 out:
1725 trace_f2fs_map_blocks(inode, map, create, flag, err);
1726 return err;
1727 }
1728
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1729 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1730 {
1731 struct f2fs_map_blocks map;
1732 block_t last_lblk;
1733 int err;
1734
1735 if (pos + len > i_size_read(inode))
1736 return false;
1737
1738 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1739 map.m_next_pgofs = NULL;
1740 map.m_next_extent = NULL;
1741 map.m_seg_type = NO_CHECK_TYPE;
1742 map.m_may_create = false;
1743 last_lblk = F2FS_BLK_ALIGN(pos + len);
1744
1745 while (map.m_lblk < last_lblk) {
1746 map.m_len = last_lblk - map.m_lblk;
1747 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1748 if (err || map.m_len == 0)
1749 return false;
1750 map.m_lblk += map.m_len;
1751 }
1752 return true;
1753 }
1754
bytes_to_blks(struct inode * inode,u64 bytes)1755 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1756 {
1757 return (bytes >> inode->i_blkbits);
1758 }
1759
blks_to_bytes(struct inode * inode,u64 blks)1760 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1761 {
1762 return (blks << inode->i_blkbits);
1763 }
1764
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1765 static int f2fs_xattr_fiemap(struct inode *inode,
1766 struct fiemap_extent_info *fieinfo)
1767 {
1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 struct page *page;
1770 struct node_info ni;
1771 __u64 phys = 0, len;
1772 __u32 flags;
1773 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1774 int err = 0;
1775
1776 if (f2fs_has_inline_xattr(inode)) {
1777 int offset;
1778
1779 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1780 inode->i_ino, false);
1781 if (!page)
1782 return -ENOMEM;
1783
1784 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1785 if (err) {
1786 f2fs_put_page(page, 1);
1787 return err;
1788 }
1789
1790 phys = blks_to_bytes(inode, ni.blk_addr);
1791 offset = offsetof(struct f2fs_inode, i_addr) +
1792 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1793 get_inline_xattr_addrs(inode));
1794
1795 phys += offset;
1796 len = inline_xattr_size(inode);
1797
1798 f2fs_put_page(page, 1);
1799
1800 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1801
1802 if (!xnid)
1803 flags |= FIEMAP_EXTENT_LAST;
1804
1805 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1806 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1807 if (err || err == 1)
1808 return err;
1809 }
1810
1811 if (xnid) {
1812 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1813 if (!page)
1814 return -ENOMEM;
1815
1816 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1817 if (err) {
1818 f2fs_put_page(page, 1);
1819 return err;
1820 }
1821
1822 phys = blks_to_bytes(inode, ni.blk_addr);
1823 len = inode->i_sb->s_blocksize;
1824
1825 f2fs_put_page(page, 1);
1826
1827 flags = FIEMAP_EXTENT_LAST;
1828 }
1829
1830 if (phys) {
1831 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1832 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1833 }
1834
1835 return (err < 0 ? err : 0);
1836 }
1837
max_inode_blocks(struct inode * inode)1838 static loff_t max_inode_blocks(struct inode *inode)
1839 {
1840 loff_t result = ADDRS_PER_INODE(inode);
1841 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1842
1843 /* two direct node blocks */
1844 result += (leaf_count * 2);
1845
1846 /* two indirect node blocks */
1847 leaf_count *= NIDS_PER_BLOCK;
1848 result += (leaf_count * 2);
1849
1850 /* one double indirect node block */
1851 leaf_count *= NIDS_PER_BLOCK;
1852 result += leaf_count;
1853
1854 return result;
1855 }
1856
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1857 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1858 u64 start, u64 len)
1859 {
1860 struct f2fs_map_blocks map;
1861 sector_t start_blk, last_blk;
1862 pgoff_t next_pgofs;
1863 u64 logical = 0, phys = 0, size = 0;
1864 u32 flags = 0;
1865 int ret = 0;
1866 bool compr_cluster = false, compr_appended;
1867 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1868 unsigned int count_in_cluster = 0;
1869 loff_t maxbytes;
1870
1871 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1872 ret = f2fs_precache_extents(inode);
1873 if (ret)
1874 return ret;
1875 }
1876
1877 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1878 if (ret)
1879 return ret;
1880
1881 inode_lock(inode);
1882
1883 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1884 if (start > maxbytes) {
1885 ret = -EFBIG;
1886 goto out;
1887 }
1888
1889 if (len > maxbytes || (maxbytes - len) < start)
1890 len = maxbytes - start;
1891
1892 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1893 ret = f2fs_xattr_fiemap(inode, fieinfo);
1894 goto out;
1895 }
1896
1897 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1898 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1899 if (ret != -EAGAIN)
1900 goto out;
1901 }
1902
1903 if (bytes_to_blks(inode, len) == 0)
1904 len = blks_to_bytes(inode, 1);
1905
1906 start_blk = bytes_to_blks(inode, start);
1907 last_blk = bytes_to_blks(inode, start + len - 1);
1908
1909 next:
1910 memset(&map, 0, sizeof(map));
1911 map.m_lblk = start_blk;
1912 map.m_len = bytes_to_blks(inode, len);
1913 map.m_next_pgofs = &next_pgofs;
1914 map.m_seg_type = NO_CHECK_TYPE;
1915
1916 if (compr_cluster) {
1917 map.m_lblk += 1;
1918 map.m_len = cluster_size - count_in_cluster;
1919 }
1920
1921 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1922 if (ret)
1923 goto out;
1924
1925 /* HOLE */
1926 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1927 start_blk = next_pgofs;
1928
1929 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1930 max_inode_blocks(inode)))
1931 goto prep_next;
1932
1933 flags |= FIEMAP_EXTENT_LAST;
1934 }
1935
1936 compr_appended = false;
1937 /* In a case of compressed cluster, append this to the last extent */
1938 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1939 !(map.m_flags & F2FS_MAP_FLAGS))) {
1940 compr_appended = true;
1941 goto skip_fill;
1942 }
1943
1944 if (size) {
1945 flags |= FIEMAP_EXTENT_MERGED;
1946 if (IS_ENCRYPTED(inode))
1947 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1948
1949 ret = fiemap_fill_next_extent(fieinfo, logical,
1950 phys, size, flags);
1951 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1952 if (ret)
1953 goto out;
1954 size = 0;
1955 }
1956
1957 if (start_blk > last_blk)
1958 goto out;
1959
1960 skip_fill:
1961 if (map.m_pblk == COMPRESS_ADDR) {
1962 compr_cluster = true;
1963 count_in_cluster = 1;
1964 } else if (compr_appended) {
1965 unsigned int appended_blks = cluster_size -
1966 count_in_cluster + 1;
1967 size += blks_to_bytes(inode, appended_blks);
1968 start_blk += appended_blks;
1969 compr_cluster = false;
1970 } else {
1971 logical = blks_to_bytes(inode, start_blk);
1972 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1973 blks_to_bytes(inode, map.m_pblk) : 0;
1974 size = blks_to_bytes(inode, map.m_len);
1975 flags = 0;
1976
1977 if (compr_cluster) {
1978 flags = FIEMAP_EXTENT_ENCODED;
1979 count_in_cluster += map.m_len;
1980 if (count_in_cluster == cluster_size) {
1981 compr_cluster = false;
1982 size += blks_to_bytes(inode, 1);
1983 }
1984 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1985 flags = FIEMAP_EXTENT_UNWRITTEN;
1986 }
1987
1988 start_blk += bytes_to_blks(inode, size);
1989 }
1990
1991 prep_next:
1992 cond_resched();
1993 if (fatal_signal_pending(current))
1994 ret = -EINTR;
1995 else
1996 goto next;
1997 out:
1998 if (ret == 1)
1999 ret = 0;
2000
2001 inode_unlock(inode);
2002 return ret;
2003 }
2004
f2fs_readpage_limit(struct inode * inode)2005 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2006 {
2007 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2008 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2009 return inode->i_sb->s_maxbytes;
2010
2011 return i_size_read(inode);
2012 }
2013
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2014 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2015 unsigned nr_pages,
2016 struct f2fs_map_blocks *map,
2017 struct bio **bio_ret,
2018 sector_t *last_block_in_bio,
2019 bool is_readahead)
2020 {
2021 struct bio *bio = *bio_ret;
2022 const unsigned blocksize = blks_to_bytes(inode, 1);
2023 sector_t block_in_file;
2024 sector_t last_block;
2025 sector_t last_block_in_file;
2026 sector_t block_nr;
2027 int ret = 0;
2028
2029 block_in_file = (sector_t)page_index(page);
2030 last_block = block_in_file + nr_pages;
2031 last_block_in_file = bytes_to_blks(inode,
2032 f2fs_readpage_limit(inode) + blocksize - 1);
2033 if (last_block > last_block_in_file)
2034 last_block = last_block_in_file;
2035
2036 /* just zeroing out page which is beyond EOF */
2037 if (block_in_file >= last_block)
2038 goto zero_out;
2039 /*
2040 * Map blocks using the previous result first.
2041 */
2042 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2043 block_in_file > map->m_lblk &&
2044 block_in_file < (map->m_lblk + map->m_len))
2045 goto got_it;
2046
2047 /*
2048 * Then do more f2fs_map_blocks() calls until we are
2049 * done with this page.
2050 */
2051 map->m_lblk = block_in_file;
2052 map->m_len = last_block - block_in_file;
2053
2054 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2055 if (ret)
2056 goto out;
2057 got_it:
2058 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2059 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2060 SetPageMappedToDisk(page);
2061
2062 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2063 DATA_GENERIC_ENHANCE_READ)) {
2064 ret = -EFSCORRUPTED;
2065 goto out;
2066 }
2067 } else {
2068 zero_out:
2069 zero_user_segment(page, 0, PAGE_SIZE);
2070 if (f2fs_need_verity(inode, page->index) &&
2071 !fsverity_verify_page(page)) {
2072 ret = -EIO;
2073 goto out;
2074 }
2075 if (!PageUptodate(page))
2076 SetPageUptodate(page);
2077 unlock_page(page);
2078 goto out;
2079 }
2080
2081 /*
2082 * This page will go to BIO. Do we need to send this
2083 * BIO off first?
2084 */
2085 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2086 *last_block_in_bio, block_nr) ||
2087 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2088 submit_and_realloc:
2089 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2090 bio = NULL;
2091 }
2092 if (bio == NULL) {
2093 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2094 is_readahead ? REQ_RAHEAD : 0, page->index,
2095 false);
2096 if (IS_ERR(bio)) {
2097 ret = PTR_ERR(bio);
2098 bio = NULL;
2099 goto out;
2100 }
2101 }
2102
2103 /*
2104 * If the page is under writeback, we need to wait for
2105 * its completion to see the correct decrypted data.
2106 */
2107 f2fs_wait_on_block_writeback(inode, block_nr);
2108
2109 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2110 goto submit_and_realloc;
2111
2112 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2113 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2114 ClearPageError(page);
2115 *last_block_in_bio = block_nr;
2116 goto out;
2117 out:
2118 *bio_ret = bio;
2119 return ret;
2120 }
2121
2122 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2123 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2124 unsigned nr_pages, sector_t *last_block_in_bio,
2125 bool is_readahead, bool for_write)
2126 {
2127 struct dnode_of_data dn;
2128 struct inode *inode = cc->inode;
2129 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2130 struct bio *bio = *bio_ret;
2131 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2132 sector_t last_block_in_file;
2133 const unsigned blocksize = blks_to_bytes(inode, 1);
2134 struct decompress_io_ctx *dic = NULL;
2135 struct extent_info ei = {0, };
2136 bool from_dnode = true;
2137 int i;
2138 int ret = 0;
2139
2140 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2141
2142 last_block_in_file = bytes_to_blks(inode,
2143 f2fs_readpage_limit(inode) + blocksize - 1);
2144
2145 /* get rid of pages beyond EOF */
2146 for (i = 0; i < cc->cluster_size; i++) {
2147 struct page *page = cc->rpages[i];
2148
2149 if (!page)
2150 continue;
2151 if ((sector_t)page->index >= last_block_in_file) {
2152 zero_user_segment(page, 0, PAGE_SIZE);
2153 if (!PageUptodate(page))
2154 SetPageUptodate(page);
2155 } else if (!PageUptodate(page)) {
2156 continue;
2157 }
2158 unlock_page(page);
2159 if (for_write)
2160 put_page(page);
2161 cc->rpages[i] = NULL;
2162 cc->nr_rpages--;
2163 }
2164
2165 /* we are done since all pages are beyond EOF */
2166 if (f2fs_cluster_is_empty(cc))
2167 goto out;
2168
2169 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2170 from_dnode = false;
2171
2172 if (!from_dnode)
2173 goto skip_reading_dnode;
2174
2175 set_new_dnode(&dn, inode, NULL, NULL, 0);
2176 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2177 if (ret)
2178 goto out;
2179
2180 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2181
2182 skip_reading_dnode:
2183 for (i = 1; i < cc->cluster_size; i++) {
2184 block_t blkaddr;
2185
2186 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2187 dn.ofs_in_node + i) :
2188 ei.blk + i - 1;
2189
2190 if (!__is_valid_data_blkaddr(blkaddr))
2191 break;
2192
2193 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2194 ret = -EFAULT;
2195 goto out_put_dnode;
2196 }
2197 cc->nr_cpages++;
2198
2199 if (!from_dnode && i >= ei.c_len)
2200 break;
2201 }
2202
2203 /* nothing to decompress */
2204 if (cc->nr_cpages == 0) {
2205 ret = 0;
2206 goto out_put_dnode;
2207 }
2208
2209 dic = f2fs_alloc_dic(cc);
2210 if (IS_ERR(dic)) {
2211 ret = PTR_ERR(dic);
2212 goto out_put_dnode;
2213 }
2214
2215 for (i = 0; i < cc->nr_cpages; i++) {
2216 struct page *page = dic->cpages[i];
2217 block_t blkaddr;
2218 struct bio_post_read_ctx *ctx;
2219
2220 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2221 dn.ofs_in_node + i + 1) :
2222 ei.blk + i;
2223
2224 f2fs_wait_on_block_writeback(inode, blkaddr);
2225
2226 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2227 if (atomic_dec_and_test(&dic->remaining_pages))
2228 f2fs_decompress_cluster(dic);
2229 continue;
2230 }
2231
2232 if (bio && (!page_is_mergeable(sbi, bio,
2233 *last_block_in_bio, blkaddr) ||
2234 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2235 submit_and_realloc:
2236 __submit_bio(sbi, bio, DATA);
2237 bio = NULL;
2238 }
2239
2240 if (!bio) {
2241 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2242 is_readahead ? REQ_RAHEAD : 0,
2243 page->index, for_write);
2244 if (IS_ERR(bio)) {
2245 ret = PTR_ERR(bio);
2246 f2fs_decompress_end_io(dic, ret);
2247 f2fs_put_dnode(&dn);
2248 *bio_ret = NULL;
2249 return ret;
2250 }
2251 }
2252
2253 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2254 goto submit_and_realloc;
2255
2256 ctx = get_post_read_ctx(bio);
2257 ctx->enabled_steps |= STEP_DECOMPRESS;
2258 refcount_inc(&dic->refcnt);
2259
2260 inc_page_count(sbi, F2FS_RD_DATA);
2261 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2262 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2263 ClearPageError(page);
2264 *last_block_in_bio = blkaddr;
2265 }
2266
2267 if (from_dnode)
2268 f2fs_put_dnode(&dn);
2269
2270 *bio_ret = bio;
2271 return 0;
2272
2273 out_put_dnode:
2274 if (from_dnode)
2275 f2fs_put_dnode(&dn);
2276 out:
2277 for (i = 0; i < cc->cluster_size; i++) {
2278 if (cc->rpages[i]) {
2279 ClearPageUptodate(cc->rpages[i]);
2280 ClearPageError(cc->rpages[i]);
2281 unlock_page(cc->rpages[i]);
2282 }
2283 }
2284 *bio_ret = bio;
2285 return ret;
2286 }
2287 #endif
2288
2289 /*
2290 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2291 * Major change was from block_size == page_size in f2fs by default.
2292 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2293 static int f2fs_mpage_readpages(struct inode *inode,
2294 struct readahead_control *rac, struct page *page)
2295 {
2296 struct bio *bio = NULL;
2297 sector_t last_block_in_bio = 0;
2298 struct f2fs_map_blocks map;
2299 #ifdef CONFIG_F2FS_FS_COMPRESSION
2300 struct compress_ctx cc = {
2301 .inode = inode,
2302 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2303 .cluster_size = F2FS_I(inode)->i_cluster_size,
2304 .cluster_idx = NULL_CLUSTER,
2305 .rpages = NULL,
2306 .cpages = NULL,
2307 .nr_rpages = 0,
2308 .nr_cpages = 0,
2309 };
2310 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2311 #endif
2312 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2313 unsigned max_nr_pages = nr_pages;
2314 int ret = 0;
2315
2316 map.m_pblk = 0;
2317 map.m_lblk = 0;
2318 map.m_len = 0;
2319 map.m_flags = 0;
2320 map.m_next_pgofs = NULL;
2321 map.m_next_extent = NULL;
2322 map.m_seg_type = NO_CHECK_TYPE;
2323 map.m_may_create = false;
2324
2325 for (; nr_pages; nr_pages--) {
2326 if (rac) {
2327 page = readahead_page(rac);
2328 prefetchw(&page->flags);
2329 }
2330
2331 #ifdef CONFIG_F2FS_FS_COMPRESSION
2332 if (f2fs_compressed_file(inode)) {
2333 /* there are remained comressed pages, submit them */
2334 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2335 ret = f2fs_read_multi_pages(&cc, &bio,
2336 max_nr_pages,
2337 &last_block_in_bio,
2338 rac != NULL, false);
2339 f2fs_destroy_compress_ctx(&cc, false);
2340 if (ret)
2341 goto set_error_page;
2342 }
2343 if (cc.cluster_idx == NULL_CLUSTER) {
2344 if (nc_cluster_idx ==
2345 page->index >> cc.log_cluster_size) {
2346 goto read_single_page;
2347 }
2348
2349 ret = f2fs_is_compressed_cluster(inode, page->index);
2350 if (ret < 0)
2351 goto set_error_page;
2352 else if (!ret) {
2353 nc_cluster_idx =
2354 page->index >> cc.log_cluster_size;
2355 goto read_single_page;
2356 }
2357
2358 nc_cluster_idx = NULL_CLUSTER;
2359 }
2360 ret = f2fs_init_compress_ctx(&cc);
2361 if (ret)
2362 goto set_error_page;
2363
2364 f2fs_compress_ctx_add_page(&cc, page);
2365
2366 goto next_page;
2367 }
2368 read_single_page:
2369 #endif
2370
2371 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2372 &bio, &last_block_in_bio, rac);
2373 if (ret) {
2374 #ifdef CONFIG_F2FS_FS_COMPRESSION
2375 set_error_page:
2376 #endif
2377 SetPageError(page);
2378 zero_user_segment(page, 0, PAGE_SIZE);
2379 unlock_page(page);
2380 }
2381 #ifdef CONFIG_F2FS_FS_COMPRESSION
2382 next_page:
2383 #endif
2384 if (rac)
2385 put_page(page);
2386
2387 #ifdef CONFIG_F2FS_FS_COMPRESSION
2388 if (f2fs_compressed_file(inode)) {
2389 /* last page */
2390 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2391 ret = f2fs_read_multi_pages(&cc, &bio,
2392 max_nr_pages,
2393 &last_block_in_bio,
2394 rac != NULL, false);
2395 f2fs_destroy_compress_ctx(&cc, false);
2396 }
2397 }
2398 #endif
2399 }
2400 if (bio)
2401 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2402 return ret;
2403 }
2404
f2fs_read_data_folio(struct file * file,struct folio * folio)2405 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2406 {
2407 struct page *page = &folio->page;
2408 struct inode *inode = page_file_mapping(page)->host;
2409 int ret = -EAGAIN;
2410
2411 trace_f2fs_readpage(page, DATA);
2412
2413 if (!f2fs_is_compress_backend_ready(inode)) {
2414 unlock_page(page);
2415 return -EOPNOTSUPP;
2416 }
2417
2418 /* If the file has inline data, try to read it directly */
2419 if (f2fs_has_inline_data(inode))
2420 ret = f2fs_read_inline_data(inode, page);
2421 if (ret == -EAGAIN)
2422 ret = f2fs_mpage_readpages(inode, NULL, page);
2423 return ret;
2424 }
2425
f2fs_readahead(struct readahead_control * rac)2426 static void f2fs_readahead(struct readahead_control *rac)
2427 {
2428 struct inode *inode = rac->mapping->host;
2429
2430 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2431
2432 if (!f2fs_is_compress_backend_ready(inode))
2433 return;
2434
2435 /* If the file has inline data, skip readahead */
2436 if (f2fs_has_inline_data(inode))
2437 return;
2438
2439 f2fs_mpage_readpages(inode, rac, NULL);
2440 }
2441
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2442 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2443 {
2444 struct inode *inode = fio->page->mapping->host;
2445 struct page *mpage, *page;
2446 gfp_t gfp_flags = GFP_NOFS;
2447
2448 if (!f2fs_encrypted_file(inode))
2449 return 0;
2450
2451 page = fio->compressed_page ? fio->compressed_page : fio->page;
2452
2453 /* wait for GCed page writeback via META_MAPPING */
2454 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2455
2456 if (fscrypt_inode_uses_inline_crypto(inode))
2457 return 0;
2458
2459 retry_encrypt:
2460 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2461 PAGE_SIZE, 0, gfp_flags);
2462 if (IS_ERR(fio->encrypted_page)) {
2463 /* flush pending IOs and wait for a while in the ENOMEM case */
2464 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2465 f2fs_flush_merged_writes(fio->sbi);
2466 memalloc_retry_wait(GFP_NOFS);
2467 gfp_flags |= __GFP_NOFAIL;
2468 goto retry_encrypt;
2469 }
2470 return PTR_ERR(fio->encrypted_page);
2471 }
2472
2473 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2474 if (mpage) {
2475 if (PageUptodate(mpage))
2476 memcpy(page_address(mpage),
2477 page_address(fio->encrypted_page), PAGE_SIZE);
2478 f2fs_put_page(mpage, 1);
2479 }
2480 return 0;
2481 }
2482
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2483 static inline bool check_inplace_update_policy(struct inode *inode,
2484 struct f2fs_io_info *fio)
2485 {
2486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2487 unsigned int policy = SM_I(sbi)->ipu_policy;
2488
2489 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2490 is_inode_flag_set(inode, FI_OPU_WRITE))
2491 return false;
2492 if (policy & (0x1 << F2FS_IPU_FORCE))
2493 return true;
2494 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2495 return true;
2496 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2497 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2498 return true;
2499 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2500 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2501 return true;
2502
2503 /*
2504 * IPU for rewrite async pages
2505 */
2506 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2507 fio && fio->op == REQ_OP_WRITE &&
2508 !(fio->op_flags & REQ_SYNC) &&
2509 !IS_ENCRYPTED(inode))
2510 return true;
2511
2512 /* this is only set during fdatasync */
2513 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2514 is_inode_flag_set(inode, FI_NEED_IPU))
2515 return true;
2516
2517 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2518 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2519 return true;
2520
2521 return false;
2522 }
2523
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2524 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2525 {
2526 /* swap file is migrating in aligned write mode */
2527 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2528 return false;
2529
2530 if (f2fs_is_pinned_file(inode))
2531 return true;
2532
2533 /* if this is cold file, we should overwrite to avoid fragmentation */
2534 if (file_is_cold(inode))
2535 return true;
2536
2537 return check_inplace_update_policy(inode, fio);
2538 }
2539
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2540 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2541 {
2542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2543
2544 /* The below cases were checked when setting it. */
2545 if (f2fs_is_pinned_file(inode))
2546 return false;
2547 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2548 return true;
2549 if (f2fs_lfs_mode(sbi))
2550 return true;
2551 if (S_ISDIR(inode->i_mode))
2552 return true;
2553 if (IS_NOQUOTA(inode))
2554 return true;
2555 if (f2fs_is_atomic_file(inode))
2556 return true;
2557
2558 /* swap file is migrating in aligned write mode */
2559 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2560 return true;
2561
2562 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2563 return true;
2564
2565 if (fio) {
2566 if (page_private_gcing(fio->page))
2567 return true;
2568 if (page_private_dummy(fio->page))
2569 return true;
2570 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2571 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2572 return true;
2573 }
2574 return false;
2575 }
2576
need_inplace_update(struct f2fs_io_info * fio)2577 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2578 {
2579 struct inode *inode = fio->page->mapping->host;
2580
2581 if (f2fs_should_update_outplace(inode, fio))
2582 return false;
2583
2584 return f2fs_should_update_inplace(inode, fio);
2585 }
2586
f2fs_do_write_data_page(struct f2fs_io_info * fio)2587 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2588 {
2589 struct page *page = fio->page;
2590 struct inode *inode = page->mapping->host;
2591 struct dnode_of_data dn;
2592 struct extent_info ei = {0, };
2593 struct node_info ni;
2594 bool ipu_force = false;
2595 int err = 0;
2596
2597 /* Use COW inode to make dnode_of_data for atomic write */
2598 if (f2fs_is_atomic_file(inode))
2599 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2600 else
2601 set_new_dnode(&dn, inode, NULL, NULL, 0);
2602
2603 if (need_inplace_update(fio) &&
2604 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2605 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2606
2607 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2608 DATA_GENERIC_ENHANCE))
2609 return -EFSCORRUPTED;
2610
2611 ipu_force = true;
2612 fio->need_lock = LOCK_DONE;
2613 goto got_it;
2614 }
2615
2616 /* Deadlock due to between page->lock and f2fs_lock_op */
2617 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2618 return -EAGAIN;
2619
2620 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2621 if (err)
2622 goto out;
2623
2624 fio->old_blkaddr = dn.data_blkaddr;
2625
2626 /* This page is already truncated */
2627 if (fio->old_blkaddr == NULL_ADDR) {
2628 ClearPageUptodate(page);
2629 clear_page_private_gcing(page);
2630 goto out_writepage;
2631 }
2632 got_it:
2633 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2634 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2635 DATA_GENERIC_ENHANCE)) {
2636 err = -EFSCORRUPTED;
2637 goto out_writepage;
2638 }
2639
2640 /*
2641 * If current allocation needs SSR,
2642 * it had better in-place writes for updated data.
2643 */
2644 if (ipu_force ||
2645 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2646 need_inplace_update(fio))) {
2647 err = f2fs_encrypt_one_page(fio);
2648 if (err)
2649 goto out_writepage;
2650
2651 set_page_writeback(page);
2652 ClearPageError(page);
2653 f2fs_put_dnode(&dn);
2654 if (fio->need_lock == LOCK_REQ)
2655 f2fs_unlock_op(fio->sbi);
2656 err = f2fs_inplace_write_data(fio);
2657 if (err) {
2658 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2659 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2660 if (PageWriteback(page))
2661 end_page_writeback(page);
2662 } else {
2663 set_inode_flag(inode, FI_UPDATE_WRITE);
2664 }
2665 trace_f2fs_do_write_data_page(fio->page, IPU);
2666 return err;
2667 }
2668
2669 if (fio->need_lock == LOCK_RETRY) {
2670 if (!f2fs_trylock_op(fio->sbi)) {
2671 err = -EAGAIN;
2672 goto out_writepage;
2673 }
2674 fio->need_lock = LOCK_REQ;
2675 }
2676
2677 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2678 if (err)
2679 goto out_writepage;
2680
2681 fio->version = ni.version;
2682
2683 err = f2fs_encrypt_one_page(fio);
2684 if (err)
2685 goto out_writepage;
2686
2687 set_page_writeback(page);
2688 ClearPageError(page);
2689
2690 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2691 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2692
2693 /* LFS mode write path */
2694 f2fs_outplace_write_data(&dn, fio);
2695 trace_f2fs_do_write_data_page(page, OPU);
2696 set_inode_flag(inode, FI_APPEND_WRITE);
2697 if (page->index == 0)
2698 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2699 out_writepage:
2700 f2fs_put_dnode(&dn);
2701 out:
2702 if (fio->need_lock == LOCK_REQ)
2703 f2fs_unlock_op(fio->sbi);
2704 return err;
2705 }
2706
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2707 int f2fs_write_single_data_page(struct page *page, int *submitted,
2708 struct bio **bio,
2709 sector_t *last_block,
2710 struct writeback_control *wbc,
2711 enum iostat_type io_type,
2712 int compr_blocks,
2713 bool allow_balance)
2714 {
2715 struct inode *inode = page->mapping->host;
2716 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2717 loff_t i_size = i_size_read(inode);
2718 const pgoff_t end_index = ((unsigned long long)i_size)
2719 >> PAGE_SHIFT;
2720 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2721 unsigned offset = 0;
2722 bool need_balance_fs = false;
2723 int err = 0;
2724 struct f2fs_io_info fio = {
2725 .sbi = sbi,
2726 .ino = inode->i_ino,
2727 .type = DATA,
2728 .op = REQ_OP_WRITE,
2729 .op_flags = wbc_to_write_flags(wbc),
2730 .old_blkaddr = NULL_ADDR,
2731 .page = page,
2732 .encrypted_page = NULL,
2733 .submitted = false,
2734 .compr_blocks = compr_blocks,
2735 .need_lock = LOCK_RETRY,
2736 .io_type = io_type,
2737 .io_wbc = wbc,
2738 .bio = bio,
2739 .last_block = last_block,
2740 };
2741
2742 trace_f2fs_writepage(page, DATA);
2743
2744 /* we should bypass data pages to proceed the kworkder jobs */
2745 if (unlikely(f2fs_cp_error(sbi))) {
2746 mapping_set_error(page->mapping, -EIO);
2747 /*
2748 * don't drop any dirty dentry pages for keeping lastest
2749 * directory structure.
2750 */
2751 if (S_ISDIR(inode->i_mode))
2752 goto redirty_out;
2753 goto out;
2754 }
2755
2756 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2757 goto redirty_out;
2758
2759 if (page->index < end_index ||
2760 f2fs_verity_in_progress(inode) ||
2761 compr_blocks)
2762 goto write;
2763
2764 /*
2765 * If the offset is out-of-range of file size,
2766 * this page does not have to be written to disk.
2767 */
2768 offset = i_size & (PAGE_SIZE - 1);
2769 if ((page->index >= end_index + 1) || !offset)
2770 goto out;
2771
2772 zero_user_segment(page, offset, PAGE_SIZE);
2773 write:
2774 if (f2fs_is_drop_cache(inode))
2775 goto out;
2776
2777 /* Dentry/quota blocks are controlled by checkpoint */
2778 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2779 /*
2780 * We need to wait for node_write to avoid block allocation during
2781 * checkpoint. This can only happen to quota writes which can cause
2782 * the below discard race condition.
2783 */
2784 if (IS_NOQUOTA(inode))
2785 f2fs_down_read(&sbi->node_write);
2786
2787 fio.need_lock = LOCK_DONE;
2788 err = f2fs_do_write_data_page(&fio);
2789
2790 if (IS_NOQUOTA(inode))
2791 f2fs_up_read(&sbi->node_write);
2792
2793 goto done;
2794 }
2795
2796 if (!wbc->for_reclaim)
2797 need_balance_fs = true;
2798 else if (has_not_enough_free_secs(sbi, 0, 0))
2799 goto redirty_out;
2800 else
2801 set_inode_flag(inode, FI_HOT_DATA);
2802
2803 err = -EAGAIN;
2804 if (f2fs_has_inline_data(inode)) {
2805 err = f2fs_write_inline_data(inode, page);
2806 if (!err)
2807 goto out;
2808 }
2809
2810 if (err == -EAGAIN) {
2811 err = f2fs_do_write_data_page(&fio);
2812 if (err == -EAGAIN) {
2813 fio.need_lock = LOCK_REQ;
2814 err = f2fs_do_write_data_page(&fio);
2815 }
2816 }
2817
2818 if (err) {
2819 file_set_keep_isize(inode);
2820 } else {
2821 spin_lock(&F2FS_I(inode)->i_size_lock);
2822 if (F2FS_I(inode)->last_disk_size < psize)
2823 F2FS_I(inode)->last_disk_size = psize;
2824 spin_unlock(&F2FS_I(inode)->i_size_lock);
2825 }
2826
2827 done:
2828 if (err && err != -ENOENT)
2829 goto redirty_out;
2830
2831 out:
2832 inode_dec_dirty_pages(inode);
2833 if (err) {
2834 ClearPageUptodate(page);
2835 clear_page_private_gcing(page);
2836 }
2837
2838 if (wbc->for_reclaim) {
2839 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2840 clear_inode_flag(inode, FI_HOT_DATA);
2841 f2fs_remove_dirty_inode(inode);
2842 submitted = NULL;
2843 }
2844 unlock_page(page);
2845 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2846 !F2FS_I(inode)->cp_task && allow_balance)
2847 f2fs_balance_fs(sbi, need_balance_fs);
2848
2849 if (unlikely(f2fs_cp_error(sbi))) {
2850 f2fs_submit_merged_write(sbi, DATA);
2851 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2852 submitted = NULL;
2853 }
2854
2855 if (submitted)
2856 *submitted = fio.submitted ? 1 : 0;
2857
2858 return 0;
2859
2860 redirty_out:
2861 redirty_page_for_writepage(wbc, page);
2862 /*
2863 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2864 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2865 * file_write_and_wait_range() will see EIO error, which is critical
2866 * to return value of fsync() followed by atomic_write failure to user.
2867 */
2868 if (!err || wbc->for_reclaim)
2869 return AOP_WRITEPAGE_ACTIVATE;
2870 unlock_page(page);
2871 return err;
2872 }
2873
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2874 static int f2fs_write_data_page(struct page *page,
2875 struct writeback_control *wbc)
2876 {
2877 #ifdef CONFIG_F2FS_FS_COMPRESSION
2878 struct inode *inode = page->mapping->host;
2879
2880 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2881 goto out;
2882
2883 if (f2fs_compressed_file(inode)) {
2884 if (f2fs_is_compressed_cluster(inode, page->index)) {
2885 redirty_page_for_writepage(wbc, page);
2886 return AOP_WRITEPAGE_ACTIVATE;
2887 }
2888 }
2889 out:
2890 #endif
2891
2892 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2893 wbc, FS_DATA_IO, 0, true);
2894 }
2895
2896 /*
2897 * This function was copied from write_cche_pages from mm/page-writeback.c.
2898 * The major change is making write step of cold data page separately from
2899 * warm/hot data page.
2900 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2901 static int f2fs_write_cache_pages(struct address_space *mapping,
2902 struct writeback_control *wbc,
2903 enum iostat_type io_type)
2904 {
2905 int ret = 0;
2906 int done = 0, retry = 0;
2907 struct pagevec pvec;
2908 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2909 struct bio *bio = NULL;
2910 sector_t last_block;
2911 #ifdef CONFIG_F2FS_FS_COMPRESSION
2912 struct inode *inode = mapping->host;
2913 struct compress_ctx cc = {
2914 .inode = inode,
2915 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2916 .cluster_size = F2FS_I(inode)->i_cluster_size,
2917 .cluster_idx = NULL_CLUSTER,
2918 .rpages = NULL,
2919 .nr_rpages = 0,
2920 .cpages = NULL,
2921 .valid_nr_cpages = 0,
2922 .rbuf = NULL,
2923 .cbuf = NULL,
2924 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2925 .private = NULL,
2926 };
2927 #endif
2928 int nr_pages;
2929 pgoff_t index;
2930 pgoff_t end; /* Inclusive */
2931 pgoff_t done_index;
2932 int range_whole = 0;
2933 xa_mark_t tag;
2934 int nwritten = 0;
2935 int submitted = 0;
2936 int i;
2937
2938 pagevec_init(&pvec);
2939
2940 if (get_dirty_pages(mapping->host) <=
2941 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2942 set_inode_flag(mapping->host, FI_HOT_DATA);
2943 else
2944 clear_inode_flag(mapping->host, FI_HOT_DATA);
2945
2946 if (wbc->range_cyclic) {
2947 index = mapping->writeback_index; /* prev offset */
2948 end = -1;
2949 } else {
2950 index = wbc->range_start >> PAGE_SHIFT;
2951 end = wbc->range_end >> PAGE_SHIFT;
2952 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2953 range_whole = 1;
2954 }
2955 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2956 tag = PAGECACHE_TAG_TOWRITE;
2957 else
2958 tag = PAGECACHE_TAG_DIRTY;
2959 retry:
2960 retry = 0;
2961 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2962 tag_pages_for_writeback(mapping, index, end);
2963 done_index = index;
2964 while (!done && !retry && (index <= end)) {
2965 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2966 tag);
2967 if (nr_pages == 0)
2968 break;
2969
2970 for (i = 0; i < nr_pages; i++) {
2971 struct page *page = pvec.pages[i];
2972 bool need_readd;
2973 readd:
2974 need_readd = false;
2975 #ifdef CONFIG_F2FS_FS_COMPRESSION
2976 if (f2fs_compressed_file(inode)) {
2977 void *fsdata = NULL;
2978 struct page *pagep;
2979 int ret2;
2980
2981 ret = f2fs_init_compress_ctx(&cc);
2982 if (ret) {
2983 done = 1;
2984 break;
2985 }
2986
2987 if (!f2fs_cluster_can_merge_page(&cc,
2988 page->index)) {
2989 ret = f2fs_write_multi_pages(&cc,
2990 &submitted, wbc, io_type);
2991 if (!ret)
2992 need_readd = true;
2993 goto result;
2994 }
2995
2996 if (unlikely(f2fs_cp_error(sbi)))
2997 goto lock_page;
2998
2999 if (!f2fs_cluster_is_empty(&cc))
3000 goto lock_page;
3001
3002 ret2 = f2fs_prepare_compress_overwrite(
3003 inode, &pagep,
3004 page->index, &fsdata);
3005 if (ret2 < 0) {
3006 ret = ret2;
3007 done = 1;
3008 break;
3009 } else if (ret2 &&
3010 (!f2fs_compress_write_end(inode,
3011 fsdata, page->index, 1) ||
3012 !f2fs_all_cluster_page_loaded(&cc,
3013 &pvec, i, nr_pages))) {
3014 retry = 1;
3015 break;
3016 }
3017 }
3018 #endif
3019 /* give a priority to WB_SYNC threads */
3020 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3021 wbc->sync_mode == WB_SYNC_NONE) {
3022 done = 1;
3023 break;
3024 }
3025 #ifdef CONFIG_F2FS_FS_COMPRESSION
3026 lock_page:
3027 #endif
3028 done_index = page->index;
3029 retry_write:
3030 lock_page(page);
3031
3032 if (unlikely(page->mapping != mapping)) {
3033 continue_unlock:
3034 unlock_page(page);
3035 continue;
3036 }
3037
3038 if (!PageDirty(page)) {
3039 /* someone wrote it for us */
3040 goto continue_unlock;
3041 }
3042
3043 if (PageWriteback(page)) {
3044 if (wbc->sync_mode != WB_SYNC_NONE)
3045 f2fs_wait_on_page_writeback(page,
3046 DATA, true, true);
3047 else
3048 goto continue_unlock;
3049 }
3050
3051 if (!clear_page_dirty_for_io(page))
3052 goto continue_unlock;
3053
3054 #ifdef CONFIG_F2FS_FS_COMPRESSION
3055 if (f2fs_compressed_file(inode)) {
3056 get_page(page);
3057 f2fs_compress_ctx_add_page(&cc, page);
3058 continue;
3059 }
3060 #endif
3061 ret = f2fs_write_single_data_page(page, &submitted,
3062 &bio, &last_block, wbc, io_type,
3063 0, true);
3064 if (ret == AOP_WRITEPAGE_ACTIVATE)
3065 unlock_page(page);
3066 #ifdef CONFIG_F2FS_FS_COMPRESSION
3067 result:
3068 #endif
3069 nwritten += submitted;
3070 wbc->nr_to_write -= submitted;
3071
3072 if (unlikely(ret)) {
3073 /*
3074 * keep nr_to_write, since vfs uses this to
3075 * get # of written pages.
3076 */
3077 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3078 ret = 0;
3079 goto next;
3080 } else if (ret == -EAGAIN) {
3081 ret = 0;
3082 if (wbc->sync_mode == WB_SYNC_ALL) {
3083 f2fs_io_schedule_timeout(
3084 DEFAULT_IO_TIMEOUT);
3085 goto retry_write;
3086 }
3087 goto next;
3088 }
3089 done_index = page->index + 1;
3090 done = 1;
3091 break;
3092 }
3093
3094 if (wbc->nr_to_write <= 0 &&
3095 wbc->sync_mode == WB_SYNC_NONE) {
3096 done = 1;
3097 break;
3098 }
3099 next:
3100 if (need_readd)
3101 goto readd;
3102 }
3103 pagevec_release(&pvec);
3104 cond_resched();
3105 }
3106 #ifdef CONFIG_F2FS_FS_COMPRESSION
3107 /* flush remained pages in compress cluster */
3108 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3109 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3110 nwritten += submitted;
3111 wbc->nr_to_write -= submitted;
3112 if (ret) {
3113 done = 1;
3114 retry = 0;
3115 }
3116 }
3117 if (f2fs_compressed_file(inode))
3118 f2fs_destroy_compress_ctx(&cc, false);
3119 #endif
3120 if (retry) {
3121 index = 0;
3122 end = -1;
3123 goto retry;
3124 }
3125 if (wbc->range_cyclic && !done)
3126 done_index = 0;
3127 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3128 mapping->writeback_index = done_index;
3129
3130 if (nwritten)
3131 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3132 NULL, 0, DATA);
3133 /* submit cached bio of IPU write */
3134 if (bio)
3135 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3136
3137 return ret;
3138 }
3139
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3140 static inline bool __should_serialize_io(struct inode *inode,
3141 struct writeback_control *wbc)
3142 {
3143 /* to avoid deadlock in path of data flush */
3144 if (F2FS_I(inode)->cp_task)
3145 return false;
3146
3147 if (!S_ISREG(inode->i_mode))
3148 return false;
3149 if (IS_NOQUOTA(inode))
3150 return false;
3151
3152 if (f2fs_need_compress_data(inode))
3153 return true;
3154 if (wbc->sync_mode != WB_SYNC_ALL)
3155 return true;
3156 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3157 return true;
3158 return false;
3159 }
3160
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3161 static int __f2fs_write_data_pages(struct address_space *mapping,
3162 struct writeback_control *wbc,
3163 enum iostat_type io_type)
3164 {
3165 struct inode *inode = mapping->host;
3166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167 struct blk_plug plug;
3168 int ret;
3169 bool locked = false;
3170
3171 /* deal with chardevs and other special file */
3172 if (!mapping->a_ops->writepage)
3173 return 0;
3174
3175 /* skip writing if there is no dirty page in this inode */
3176 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3177 return 0;
3178
3179 /* during POR, we don't need to trigger writepage at all. */
3180 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3181 goto skip_write;
3182
3183 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3184 wbc->sync_mode == WB_SYNC_NONE &&
3185 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3186 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3187 goto skip_write;
3188
3189 /* skip writing in file defragment preparing stage */
3190 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3191 goto skip_write;
3192
3193 trace_f2fs_writepages(mapping->host, wbc, DATA);
3194
3195 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3196 if (wbc->sync_mode == WB_SYNC_ALL)
3197 atomic_inc(&sbi->wb_sync_req[DATA]);
3198 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3199 /* to avoid potential deadlock */
3200 if (current->plug)
3201 blk_finish_plug(current->plug);
3202 goto skip_write;
3203 }
3204
3205 if (__should_serialize_io(inode, wbc)) {
3206 mutex_lock(&sbi->writepages);
3207 locked = true;
3208 }
3209
3210 blk_start_plug(&plug);
3211 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3212 blk_finish_plug(&plug);
3213
3214 if (locked)
3215 mutex_unlock(&sbi->writepages);
3216
3217 if (wbc->sync_mode == WB_SYNC_ALL)
3218 atomic_dec(&sbi->wb_sync_req[DATA]);
3219 /*
3220 * if some pages were truncated, we cannot guarantee its mapping->host
3221 * to detect pending bios.
3222 */
3223
3224 f2fs_remove_dirty_inode(inode);
3225 return ret;
3226
3227 skip_write:
3228 wbc->pages_skipped += get_dirty_pages(inode);
3229 trace_f2fs_writepages(mapping->host, wbc, DATA);
3230 return 0;
3231 }
3232
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3233 static int f2fs_write_data_pages(struct address_space *mapping,
3234 struct writeback_control *wbc)
3235 {
3236 struct inode *inode = mapping->host;
3237
3238 return __f2fs_write_data_pages(mapping, wbc,
3239 F2FS_I(inode)->cp_task == current ?
3240 FS_CP_DATA_IO : FS_DATA_IO);
3241 }
3242
f2fs_write_failed(struct inode * inode,loff_t to)3243 void f2fs_write_failed(struct inode *inode, loff_t to)
3244 {
3245 loff_t i_size = i_size_read(inode);
3246
3247 if (IS_NOQUOTA(inode))
3248 return;
3249
3250 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3251 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3252 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3253 filemap_invalidate_lock(inode->i_mapping);
3254
3255 truncate_pagecache(inode, i_size);
3256 f2fs_truncate_blocks(inode, i_size, true);
3257
3258 filemap_invalidate_unlock(inode->i_mapping);
3259 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3260 }
3261 }
3262
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3263 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3264 struct page *page, loff_t pos, unsigned len,
3265 block_t *blk_addr, bool *node_changed)
3266 {
3267 struct inode *inode = page->mapping->host;
3268 pgoff_t index = page->index;
3269 struct dnode_of_data dn;
3270 struct page *ipage;
3271 bool locked = false;
3272 struct extent_info ei = {0, };
3273 int err = 0;
3274 int flag;
3275
3276 /*
3277 * If a whole page is being written and we already preallocated all the
3278 * blocks, then there is no need to get a block address now.
3279 */
3280 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3281 return 0;
3282
3283 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3284 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3285 flag = F2FS_GET_BLOCK_DEFAULT;
3286 else
3287 flag = F2FS_GET_BLOCK_PRE_AIO;
3288
3289 if (f2fs_has_inline_data(inode) ||
3290 (pos & PAGE_MASK) >= i_size_read(inode)) {
3291 f2fs_do_map_lock(sbi, flag, true);
3292 locked = true;
3293 }
3294
3295 restart:
3296 /* check inline_data */
3297 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3298 if (IS_ERR(ipage)) {
3299 err = PTR_ERR(ipage);
3300 goto unlock_out;
3301 }
3302
3303 set_new_dnode(&dn, inode, ipage, ipage, 0);
3304
3305 if (f2fs_has_inline_data(inode)) {
3306 if (pos + len <= MAX_INLINE_DATA(inode)) {
3307 f2fs_do_read_inline_data(page, ipage);
3308 set_inode_flag(inode, FI_DATA_EXIST);
3309 if (inode->i_nlink)
3310 set_page_private_inline(ipage);
3311 } else {
3312 err = f2fs_convert_inline_page(&dn, page);
3313 if (err)
3314 goto out;
3315 if (dn.data_blkaddr == NULL_ADDR)
3316 err = f2fs_get_block(&dn, index);
3317 }
3318 } else if (locked) {
3319 err = f2fs_get_block(&dn, index);
3320 } else {
3321 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3322 dn.data_blkaddr = ei.blk + index - ei.fofs;
3323 } else {
3324 /* hole case */
3325 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3326 if (err || dn.data_blkaddr == NULL_ADDR) {
3327 f2fs_put_dnode(&dn);
3328 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3329 true);
3330 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3331 locked = true;
3332 goto restart;
3333 }
3334 }
3335 }
3336
3337 /* convert_inline_page can make node_changed */
3338 *blk_addr = dn.data_blkaddr;
3339 *node_changed = dn.node_changed;
3340 out:
3341 f2fs_put_dnode(&dn);
3342 unlock_out:
3343 if (locked)
3344 f2fs_do_map_lock(sbi, flag, false);
3345 return err;
3346 }
3347
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3348 static int __find_data_block(struct inode *inode, pgoff_t index,
3349 block_t *blk_addr)
3350 {
3351 struct dnode_of_data dn;
3352 struct page *ipage;
3353 struct extent_info ei = {0, };
3354 int err = 0;
3355
3356 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3357 if (IS_ERR(ipage))
3358 return PTR_ERR(ipage);
3359
3360 set_new_dnode(&dn, inode, ipage, ipage, 0);
3361
3362 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3363 dn.data_blkaddr = ei.blk + index - ei.fofs;
3364 } else {
3365 /* hole case */
3366 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3367 if (err) {
3368 dn.data_blkaddr = NULL_ADDR;
3369 err = 0;
3370 }
3371 }
3372 *blk_addr = dn.data_blkaddr;
3373 f2fs_put_dnode(&dn);
3374 return err;
3375 }
3376
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3377 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3378 block_t *blk_addr, bool *node_changed)
3379 {
3380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3381 struct dnode_of_data dn;
3382 struct page *ipage;
3383 int err = 0;
3384
3385 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3386
3387 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3388 if (IS_ERR(ipage)) {
3389 err = PTR_ERR(ipage);
3390 goto unlock_out;
3391 }
3392 set_new_dnode(&dn, inode, ipage, ipage, 0);
3393
3394 err = f2fs_get_block(&dn, index);
3395
3396 *blk_addr = dn.data_blkaddr;
3397 *node_changed = dn.node_changed;
3398 f2fs_put_dnode(&dn);
3399
3400 unlock_out:
3401 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3402 return err;
3403 }
3404
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3405 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3406 struct page *page, loff_t pos, unsigned int len,
3407 block_t *blk_addr, bool *node_changed)
3408 {
3409 struct inode *inode = page->mapping->host;
3410 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3411 pgoff_t index = page->index;
3412 int err = 0;
3413 block_t ori_blk_addr;
3414
3415 /* If pos is beyond the end of file, reserve a new block in COW inode */
3416 if ((pos & PAGE_MASK) >= i_size_read(inode))
3417 return __reserve_data_block(cow_inode, index, blk_addr,
3418 node_changed);
3419
3420 /* Look for the block in COW inode first */
3421 err = __find_data_block(cow_inode, index, blk_addr);
3422 if (err)
3423 return err;
3424 else if (*blk_addr != NULL_ADDR)
3425 return 0;
3426
3427 /* Look for the block in the original inode */
3428 err = __find_data_block(inode, index, &ori_blk_addr);
3429 if (err)
3430 return err;
3431
3432 /* Finally, we should reserve a new block in COW inode for the update */
3433 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3434 if (err)
3435 return err;
3436
3437 if (ori_blk_addr != NULL_ADDR)
3438 *blk_addr = ori_blk_addr;
3439 return 0;
3440 }
3441
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3442 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3443 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3444 {
3445 struct inode *inode = mapping->host;
3446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3447 struct page *page = NULL;
3448 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3449 bool need_balance = false;
3450 block_t blkaddr = NULL_ADDR;
3451 int err = 0;
3452
3453 trace_f2fs_write_begin(inode, pos, len);
3454
3455 if (!f2fs_is_checkpoint_ready(sbi)) {
3456 err = -ENOSPC;
3457 goto fail;
3458 }
3459
3460 /*
3461 * We should check this at this moment to avoid deadlock on inode page
3462 * and #0 page. The locking rule for inline_data conversion should be:
3463 * lock_page(page #0) -> lock_page(inode_page)
3464 */
3465 if (index != 0) {
3466 err = f2fs_convert_inline_inode(inode);
3467 if (err)
3468 goto fail;
3469 }
3470
3471 #ifdef CONFIG_F2FS_FS_COMPRESSION
3472 if (f2fs_compressed_file(inode)) {
3473 int ret;
3474
3475 *fsdata = NULL;
3476
3477 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3478 goto repeat;
3479
3480 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3481 index, fsdata);
3482 if (ret < 0) {
3483 err = ret;
3484 goto fail;
3485 } else if (ret) {
3486 return 0;
3487 }
3488 }
3489 #endif
3490
3491 repeat:
3492 /*
3493 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3494 * wait_for_stable_page. Will wait that below with our IO control.
3495 */
3496 page = f2fs_pagecache_get_page(mapping, index,
3497 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3498 if (!page) {
3499 err = -ENOMEM;
3500 goto fail;
3501 }
3502
3503 /* TODO: cluster can be compressed due to race with .writepage */
3504
3505 *pagep = page;
3506
3507 if (f2fs_is_atomic_file(inode))
3508 err = prepare_atomic_write_begin(sbi, page, pos, len,
3509 &blkaddr, &need_balance);
3510 else
3511 err = prepare_write_begin(sbi, page, pos, len,
3512 &blkaddr, &need_balance);
3513 if (err)
3514 goto fail;
3515
3516 if (need_balance && !IS_NOQUOTA(inode) &&
3517 has_not_enough_free_secs(sbi, 0, 0)) {
3518 unlock_page(page);
3519 f2fs_balance_fs(sbi, true);
3520 lock_page(page);
3521 if (page->mapping != mapping) {
3522 /* The page got truncated from under us */
3523 f2fs_put_page(page, 1);
3524 goto repeat;
3525 }
3526 }
3527
3528 f2fs_wait_on_page_writeback(page, DATA, false, true);
3529
3530 if (len == PAGE_SIZE || PageUptodate(page))
3531 return 0;
3532
3533 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3534 !f2fs_verity_in_progress(inode)) {
3535 zero_user_segment(page, len, PAGE_SIZE);
3536 return 0;
3537 }
3538
3539 if (blkaddr == NEW_ADDR) {
3540 zero_user_segment(page, 0, PAGE_SIZE);
3541 SetPageUptodate(page);
3542 } else {
3543 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3544 DATA_GENERIC_ENHANCE_READ)) {
3545 err = -EFSCORRUPTED;
3546 goto fail;
3547 }
3548 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3549 if (err)
3550 goto fail;
3551
3552 lock_page(page);
3553 if (unlikely(page->mapping != mapping)) {
3554 f2fs_put_page(page, 1);
3555 goto repeat;
3556 }
3557 if (unlikely(!PageUptodate(page))) {
3558 err = -EIO;
3559 goto fail;
3560 }
3561 }
3562 return 0;
3563
3564 fail:
3565 f2fs_put_page(page, 1);
3566 f2fs_write_failed(inode, pos + len);
3567 return err;
3568 }
3569
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3570 static int f2fs_write_end(struct file *file,
3571 struct address_space *mapping,
3572 loff_t pos, unsigned len, unsigned copied,
3573 struct page *page, void *fsdata)
3574 {
3575 struct inode *inode = page->mapping->host;
3576
3577 trace_f2fs_write_end(inode, pos, len, copied);
3578
3579 /*
3580 * This should be come from len == PAGE_SIZE, and we expect copied
3581 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3582 * let generic_perform_write() try to copy data again through copied=0.
3583 */
3584 if (!PageUptodate(page)) {
3585 if (unlikely(copied != len))
3586 copied = 0;
3587 else
3588 SetPageUptodate(page);
3589 }
3590
3591 #ifdef CONFIG_F2FS_FS_COMPRESSION
3592 /* overwrite compressed file */
3593 if (f2fs_compressed_file(inode) && fsdata) {
3594 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3595 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3596
3597 if (pos + copied > i_size_read(inode) &&
3598 !f2fs_verity_in_progress(inode))
3599 f2fs_i_size_write(inode, pos + copied);
3600 return copied;
3601 }
3602 #endif
3603
3604 if (!copied)
3605 goto unlock_out;
3606
3607 set_page_dirty(page);
3608
3609 if (pos + copied > i_size_read(inode) &&
3610 !f2fs_verity_in_progress(inode)) {
3611 f2fs_i_size_write(inode, pos + copied);
3612 if (f2fs_is_atomic_file(inode))
3613 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3614 pos + copied);
3615 }
3616 unlock_out:
3617 f2fs_put_page(page, 1);
3618 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3619 return copied;
3620 }
3621
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3622 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3623 {
3624 struct inode *inode = folio->mapping->host;
3625 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3626
3627 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3628 (offset || length != folio_size(folio)))
3629 return;
3630
3631 if (folio_test_dirty(folio)) {
3632 if (inode->i_ino == F2FS_META_INO(sbi)) {
3633 dec_page_count(sbi, F2FS_DIRTY_META);
3634 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3635 dec_page_count(sbi, F2FS_DIRTY_NODES);
3636 } else {
3637 inode_dec_dirty_pages(inode);
3638 f2fs_remove_dirty_inode(inode);
3639 }
3640 }
3641
3642 clear_page_private_gcing(&folio->page);
3643
3644 if (test_opt(sbi, COMPRESS_CACHE) &&
3645 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3646 clear_page_private_data(&folio->page);
3647
3648 folio_detach_private(folio);
3649 }
3650
f2fs_release_folio(struct folio * folio,gfp_t wait)3651 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3652 {
3653 struct f2fs_sb_info *sbi;
3654
3655 /* If this is dirty folio, keep private data */
3656 if (folio_test_dirty(folio))
3657 return false;
3658
3659 sbi = F2FS_M_SB(folio->mapping);
3660 if (test_opt(sbi, COMPRESS_CACHE)) {
3661 struct inode *inode = folio->mapping->host;
3662
3663 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3664 clear_page_private_data(&folio->page);
3665 }
3666
3667 clear_page_private_gcing(&folio->page);
3668
3669 folio_detach_private(folio);
3670 return true;
3671 }
3672
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3673 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3674 struct folio *folio)
3675 {
3676 struct inode *inode = mapping->host;
3677
3678 trace_f2fs_set_page_dirty(&folio->page, DATA);
3679
3680 if (!folio_test_uptodate(folio))
3681 folio_mark_uptodate(folio);
3682 BUG_ON(folio_test_swapcache(folio));
3683
3684 if (!folio_test_dirty(folio)) {
3685 filemap_dirty_folio(mapping, folio);
3686 f2fs_update_dirty_folio(inode, folio);
3687 return true;
3688 }
3689 return false;
3690 }
3691
3692
f2fs_bmap_compress(struct inode * inode,sector_t block)3693 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3694 {
3695 #ifdef CONFIG_F2FS_FS_COMPRESSION
3696 struct dnode_of_data dn;
3697 sector_t start_idx, blknr = 0;
3698 int ret;
3699
3700 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3701
3702 set_new_dnode(&dn, inode, NULL, NULL, 0);
3703 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3704 if (ret)
3705 return 0;
3706
3707 if (dn.data_blkaddr != COMPRESS_ADDR) {
3708 dn.ofs_in_node += block - start_idx;
3709 blknr = f2fs_data_blkaddr(&dn);
3710 if (!__is_valid_data_blkaddr(blknr))
3711 blknr = 0;
3712 }
3713
3714 f2fs_put_dnode(&dn);
3715 return blknr;
3716 #else
3717 return 0;
3718 #endif
3719 }
3720
3721
f2fs_bmap(struct address_space * mapping,sector_t block)3722 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3723 {
3724 struct inode *inode = mapping->host;
3725 sector_t blknr = 0;
3726
3727 if (f2fs_has_inline_data(inode))
3728 goto out;
3729
3730 /* make sure allocating whole blocks */
3731 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3732 filemap_write_and_wait(mapping);
3733
3734 /* Block number less than F2FS MAX BLOCKS */
3735 if (unlikely(block >= max_file_blocks(inode)))
3736 goto out;
3737
3738 if (f2fs_compressed_file(inode)) {
3739 blknr = f2fs_bmap_compress(inode, block);
3740 } else {
3741 struct f2fs_map_blocks map;
3742
3743 memset(&map, 0, sizeof(map));
3744 map.m_lblk = block;
3745 map.m_len = 1;
3746 map.m_next_pgofs = NULL;
3747 map.m_seg_type = NO_CHECK_TYPE;
3748
3749 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3750 blknr = map.m_pblk;
3751 }
3752 out:
3753 trace_f2fs_bmap(inode, block, blknr);
3754 return blknr;
3755 }
3756
3757 #ifdef CONFIG_MIGRATION
3758 #include <linux/migrate.h>
3759
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3760 int f2fs_migrate_page(struct address_space *mapping,
3761 struct page *newpage, struct page *page, enum migrate_mode mode)
3762 {
3763 int rc, extra_count = 0;
3764
3765 BUG_ON(PageWriteback(page));
3766
3767 rc = migrate_page_move_mapping(mapping, newpage,
3768 page, extra_count);
3769 if (rc != MIGRATEPAGE_SUCCESS)
3770 return rc;
3771
3772 /* guarantee to start from no stale private field */
3773 set_page_private(newpage, 0);
3774 if (PagePrivate(page)) {
3775 set_page_private(newpage, page_private(page));
3776 SetPagePrivate(newpage);
3777 get_page(newpage);
3778
3779 set_page_private(page, 0);
3780 ClearPagePrivate(page);
3781 put_page(page);
3782 }
3783
3784 if (mode != MIGRATE_SYNC_NO_COPY)
3785 migrate_page_copy(newpage, page);
3786 else
3787 migrate_page_states(newpage, page);
3788
3789 return MIGRATEPAGE_SUCCESS;
3790 }
3791 #endif
3792
3793 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3794 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3795 unsigned int blkcnt)
3796 {
3797 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3798 unsigned int blkofs;
3799 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3800 unsigned int secidx = start_blk / blk_per_sec;
3801 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3802 int ret = 0;
3803
3804 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3805 filemap_invalidate_lock(inode->i_mapping);
3806
3807 set_inode_flag(inode, FI_ALIGNED_WRITE);
3808 set_inode_flag(inode, FI_OPU_WRITE);
3809
3810 for (; secidx < end_sec; secidx++) {
3811 f2fs_down_write(&sbi->pin_sem);
3812
3813 f2fs_lock_op(sbi);
3814 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3815 f2fs_unlock_op(sbi);
3816
3817 set_inode_flag(inode, FI_SKIP_WRITES);
3818
3819 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3820 struct page *page;
3821 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3822
3823 page = f2fs_get_lock_data_page(inode, blkidx, true);
3824 if (IS_ERR(page)) {
3825 f2fs_up_write(&sbi->pin_sem);
3826 ret = PTR_ERR(page);
3827 goto done;
3828 }
3829
3830 set_page_dirty(page);
3831 f2fs_put_page(page, 1);
3832 }
3833
3834 clear_inode_flag(inode, FI_SKIP_WRITES);
3835
3836 ret = filemap_fdatawrite(inode->i_mapping);
3837
3838 f2fs_up_write(&sbi->pin_sem);
3839
3840 if (ret)
3841 break;
3842 }
3843
3844 done:
3845 clear_inode_flag(inode, FI_SKIP_WRITES);
3846 clear_inode_flag(inode, FI_OPU_WRITE);
3847 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3848
3849 filemap_invalidate_unlock(inode->i_mapping);
3850 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3851
3852 return ret;
3853 }
3854
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3855 static int check_swap_activate(struct swap_info_struct *sis,
3856 struct file *swap_file, sector_t *span)
3857 {
3858 struct address_space *mapping = swap_file->f_mapping;
3859 struct inode *inode = mapping->host;
3860 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3861 sector_t cur_lblock;
3862 sector_t last_lblock;
3863 sector_t pblock;
3864 sector_t lowest_pblock = -1;
3865 sector_t highest_pblock = 0;
3866 int nr_extents = 0;
3867 unsigned long nr_pblocks;
3868 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3869 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3870 unsigned int not_aligned = 0;
3871 int ret = 0;
3872
3873 /*
3874 * Map all the blocks into the extent list. This code doesn't try
3875 * to be very smart.
3876 */
3877 cur_lblock = 0;
3878 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3879
3880 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3881 struct f2fs_map_blocks map;
3882 retry:
3883 cond_resched();
3884
3885 memset(&map, 0, sizeof(map));
3886 map.m_lblk = cur_lblock;
3887 map.m_len = last_lblock - cur_lblock;
3888 map.m_next_pgofs = NULL;
3889 map.m_next_extent = NULL;
3890 map.m_seg_type = NO_CHECK_TYPE;
3891 map.m_may_create = false;
3892
3893 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3894 if (ret)
3895 goto out;
3896
3897 /* hole */
3898 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3899 f2fs_err(sbi, "Swapfile has holes");
3900 ret = -EINVAL;
3901 goto out;
3902 }
3903
3904 pblock = map.m_pblk;
3905 nr_pblocks = map.m_len;
3906
3907 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3908 nr_pblocks & sec_blks_mask) {
3909 not_aligned++;
3910
3911 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3912 if (cur_lblock + nr_pblocks > sis->max)
3913 nr_pblocks -= blks_per_sec;
3914
3915 if (!nr_pblocks) {
3916 /* this extent is last one */
3917 nr_pblocks = map.m_len;
3918 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3919 goto next;
3920 }
3921
3922 ret = f2fs_migrate_blocks(inode, cur_lblock,
3923 nr_pblocks);
3924 if (ret)
3925 goto out;
3926 goto retry;
3927 }
3928 next:
3929 if (cur_lblock + nr_pblocks >= sis->max)
3930 nr_pblocks = sis->max - cur_lblock;
3931
3932 if (cur_lblock) { /* exclude the header page */
3933 if (pblock < lowest_pblock)
3934 lowest_pblock = pblock;
3935 if (pblock + nr_pblocks - 1 > highest_pblock)
3936 highest_pblock = pblock + nr_pblocks - 1;
3937 }
3938
3939 /*
3940 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3941 */
3942 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3943 if (ret < 0)
3944 goto out;
3945 nr_extents += ret;
3946 cur_lblock += nr_pblocks;
3947 }
3948 ret = nr_extents;
3949 *span = 1 + highest_pblock - lowest_pblock;
3950 if (cur_lblock == 0)
3951 cur_lblock = 1; /* force Empty message */
3952 sis->max = cur_lblock;
3953 sis->pages = cur_lblock - 1;
3954 sis->highest_bit = cur_lblock - 1;
3955 out:
3956 if (not_aligned)
3957 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3958 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3959 return ret;
3960 }
3961
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3962 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3963 sector_t *span)
3964 {
3965 struct inode *inode = file_inode(file);
3966 int ret;
3967
3968 if (!S_ISREG(inode->i_mode))
3969 return -EINVAL;
3970
3971 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3972 return -EROFS;
3973
3974 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3975 f2fs_err(F2FS_I_SB(inode),
3976 "Swapfile not supported in LFS mode");
3977 return -EINVAL;
3978 }
3979
3980 ret = f2fs_convert_inline_inode(inode);
3981 if (ret)
3982 return ret;
3983
3984 if (!f2fs_disable_compressed_file(inode))
3985 return -EINVAL;
3986
3987 f2fs_precache_extents(inode);
3988
3989 ret = check_swap_activate(sis, file, span);
3990 if (ret < 0)
3991 return ret;
3992
3993 set_inode_flag(inode, FI_PIN_FILE);
3994 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3995 return ret;
3996 }
3997
f2fs_swap_deactivate(struct file * file)3998 static void f2fs_swap_deactivate(struct file *file)
3999 {
4000 struct inode *inode = file_inode(file);
4001
4002 clear_inode_flag(inode, FI_PIN_FILE);
4003 }
4004 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4005 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4006 sector_t *span)
4007 {
4008 return -EOPNOTSUPP;
4009 }
4010
f2fs_swap_deactivate(struct file * file)4011 static void f2fs_swap_deactivate(struct file *file)
4012 {
4013 }
4014 #endif
4015
4016 const struct address_space_operations f2fs_dblock_aops = {
4017 .read_folio = f2fs_read_data_folio,
4018 .readahead = f2fs_readahead,
4019 .writepage = f2fs_write_data_page,
4020 .writepages = f2fs_write_data_pages,
4021 .write_begin = f2fs_write_begin,
4022 .write_end = f2fs_write_end,
4023 .dirty_folio = f2fs_dirty_data_folio,
4024 .invalidate_folio = f2fs_invalidate_folio,
4025 .release_folio = f2fs_release_folio,
4026 .direct_IO = noop_direct_IO,
4027 .bmap = f2fs_bmap,
4028 .swap_activate = f2fs_swap_activate,
4029 .swap_deactivate = f2fs_swap_deactivate,
4030 #ifdef CONFIG_MIGRATION
4031 .migratepage = f2fs_migrate_page,
4032 #endif
4033 };
4034
f2fs_clear_page_cache_dirty_tag(struct page * page)4035 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4036 {
4037 struct address_space *mapping = page_mapping(page);
4038 unsigned long flags;
4039
4040 xa_lock_irqsave(&mapping->i_pages, flags);
4041 __xa_clear_mark(&mapping->i_pages, page_index(page),
4042 PAGECACHE_TAG_DIRTY);
4043 xa_unlock_irqrestore(&mapping->i_pages, flags);
4044 }
4045
f2fs_init_post_read_processing(void)4046 int __init f2fs_init_post_read_processing(void)
4047 {
4048 bio_post_read_ctx_cache =
4049 kmem_cache_create("f2fs_bio_post_read_ctx",
4050 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4051 if (!bio_post_read_ctx_cache)
4052 goto fail;
4053 bio_post_read_ctx_pool =
4054 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4055 bio_post_read_ctx_cache);
4056 if (!bio_post_read_ctx_pool)
4057 goto fail_free_cache;
4058 return 0;
4059
4060 fail_free_cache:
4061 kmem_cache_destroy(bio_post_read_ctx_cache);
4062 fail:
4063 return -ENOMEM;
4064 }
4065
f2fs_destroy_post_read_processing(void)4066 void f2fs_destroy_post_read_processing(void)
4067 {
4068 mempool_destroy(bio_post_read_ctx_pool);
4069 kmem_cache_destroy(bio_post_read_ctx_cache);
4070 }
4071
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4072 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4073 {
4074 if (!f2fs_sb_has_encrypt(sbi) &&
4075 !f2fs_sb_has_verity(sbi) &&
4076 !f2fs_sb_has_compression(sbi))
4077 return 0;
4078
4079 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4080 WQ_UNBOUND | WQ_HIGHPRI,
4081 num_online_cpus());
4082 if (!sbi->post_read_wq)
4083 return -ENOMEM;
4084 return 0;
4085 }
4086
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4087 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4088 {
4089 if (sbi->post_read_wq)
4090 destroy_workqueue(sbi->post_read_wq);
4091 }
4092
f2fs_init_bio_entry_cache(void)4093 int __init f2fs_init_bio_entry_cache(void)
4094 {
4095 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4096 sizeof(struct bio_entry));
4097 if (!bio_entry_slab)
4098 return -ENOMEM;
4099 return 0;
4100 }
4101
f2fs_destroy_bio_entry_cache(void)4102 void f2fs_destroy_bio_entry_cache(void)
4103 {
4104 kmem_cache_destroy(bio_entry_slab);
4105 }
4106
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4107 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4108 unsigned int flags, struct iomap *iomap,
4109 struct iomap *srcmap)
4110 {
4111 struct f2fs_map_blocks map = {};
4112 pgoff_t next_pgofs = 0;
4113 int err;
4114
4115 map.m_lblk = bytes_to_blks(inode, offset);
4116 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4117 map.m_next_pgofs = &next_pgofs;
4118 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4119 if (flags & IOMAP_WRITE)
4120 map.m_may_create = true;
4121
4122 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4123 F2FS_GET_BLOCK_DIO);
4124 if (err)
4125 return err;
4126
4127 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4128
4129 /*
4130 * When inline encryption is enabled, sometimes I/O to an encrypted file
4131 * has to be broken up to guarantee DUN contiguity. Handle this by
4132 * limiting the length of the mapping returned.
4133 */
4134 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4135
4136 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4137 iomap->length = blks_to_bytes(inode, map.m_len);
4138 if (map.m_flags & F2FS_MAP_MAPPED) {
4139 iomap->type = IOMAP_MAPPED;
4140 iomap->flags |= IOMAP_F_MERGED;
4141 } else {
4142 iomap->type = IOMAP_UNWRITTEN;
4143 }
4144 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4145 return -EINVAL;
4146
4147 iomap->bdev = map.m_bdev;
4148 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4149 } else {
4150 iomap->length = blks_to_bytes(inode, next_pgofs) -
4151 iomap->offset;
4152 iomap->type = IOMAP_HOLE;
4153 iomap->addr = IOMAP_NULL_ADDR;
4154 }
4155
4156 if (map.m_flags & F2FS_MAP_NEW)
4157 iomap->flags |= IOMAP_F_NEW;
4158 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4159 offset + length > i_size_read(inode))
4160 iomap->flags |= IOMAP_F_DIRTY;
4161
4162 return 0;
4163 }
4164
4165 const struct iomap_ops f2fs_iomap_ops = {
4166 .iomap_begin = f2fs_iomap_begin,
4167 };
4168