1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 bool (*is_level_valid)(int level);
59 };
60
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 return index & (cc->cluster_size - 1);
64 }
65
cluster_idx(struct compress_ctx * cc,pgoff_t index)66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 return index >> cc->log_cluster_size;
69 }
70
start_idx_of_cluster(struct compress_ctx * cc)71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 return cc->cluster_idx << cc->log_cluster_size;
74 }
75
f2fs_is_compressed_page(struct page * page)76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 if (!PagePrivate(page))
79 return false;
80 if (!page_private(page))
81 return false;
82 if (page_private_nonpointer(page))
83 return false;
84
85 f2fs_bug_on(F2FS_M_SB(page->mapping),
86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 return true;
88 }
89
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)90 static void f2fs_set_compressed_page(struct page *page,
91 struct inode *inode, pgoff_t index, void *data)
92 {
93 attach_page_private(page, (void *)data);
94
95 /* i_crypto_info and iv index */
96 page->index = index;
97 page->mapping = inode->i_mapping;
98 }
99
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102 int i;
103
104 for (i = 0; i < len; i++) {
105 if (!cc->rpages[i])
106 continue;
107 if (unlock)
108 unlock_page(cc->rpages[i]);
109 else
110 put_page(cc->rpages[i]);
111 }
112 }
113
f2fs_put_rpages(struct compress_ctx * cc)114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116 f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118
f2fs_unlock_rpages(struct compress_ctx * cc,int len)119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121 f2fs_drop_rpages(cc, len, true);
122 }
123
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 struct writeback_control *wbc, bool redirty, int unlock)
126 {
127 unsigned int i;
128
129 for (i = 0; i < cc->cluster_size; i++) {
130 if (!cc->rpages[i])
131 continue;
132 if (redirty)
133 redirty_page_for_writepage(wbc, cc->rpages[i]);
134 f2fs_put_page(cc->rpages[i], unlock);
135 }
136 }
137
f2fs_compress_control_page(struct page * page)138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142
f2fs_init_compress_ctx(struct compress_ctx * cc)143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 if (cc->rpages)
146 return 0;
147
148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 return cc->rpages ? 0 : -ENOMEM;
150 }
151
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 cc->rpages = NULL;
156 cc->nr_rpages = 0;
157 cc->nr_cpages = 0;
158 cc->valid_nr_cpages = 0;
159 if (!reuse)
160 cc->cluster_idx = NULL_CLUSTER;
161 }
162
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165 unsigned int cluster_ofs;
166
167 if (!f2fs_cluster_can_merge_page(cc, page->index))
168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170 cluster_ofs = offset_in_cluster(cc, page->index);
171 cc->rpages[cluster_ofs] = page;
172 cc->nr_rpages++;
173 cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 LZO1X_MEM_COMPRESS, GFP_NOFS);
181 if (!cc->private)
182 return -ENOMEM;
183
184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 return 0;
186 }
187
lzo_destroy_compress_ctx(struct compress_ctx * cc)188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 kvfree(cc->private);
191 cc->private = NULL;
192 }
193
lzo_compress_pages(struct compress_ctx * cc)194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 int ret;
197
198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 &cc->clen, cc->private);
200 if (ret != LZO_E_OK) {
201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203 return -EIO;
204 }
205 return 0;
206 }
207
lzo_decompress_pages(struct decompress_io_ctx * dic)208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 int ret;
211
212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 dic->rbuf, &dic->rlen);
214 if (ret != LZO_E_OK) {
215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217 return -EIO;
218 }
219
220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222 "expected:%lu\n", KERN_ERR,
223 F2FS_I_SB(dic->inode)->sb->s_id,
224 dic->rlen,
225 PAGE_SIZE << dic->log_cluster_size);
226 return -EIO;
227 }
228 return 0;
229 }
230
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232 .init_compress_ctx = lzo_init_compress_ctx,
233 .destroy_compress_ctx = lzo_destroy_compress_ctx,
234 .compress_pages = lzo_compress_pages,
235 .decompress_pages = lzo_decompress_pages,
236 };
237 #endif
238
239 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242 unsigned int size = LZ4_MEM_COMPRESS;
243
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245 if (F2FS_I(cc->inode)->i_compress_level)
246 size = LZ4HC_MEM_COMPRESS;
247 #endif
248
249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250 if (!cc->private)
251 return -ENOMEM;
252
253 /*
254 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255 * adapt worst compress case, because lz4 compressor can handle
256 * output budget properly.
257 */
258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259 return 0;
260 }
261
lz4_destroy_compress_ctx(struct compress_ctx * cc)262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264 kvfree(cc->private);
265 cc->private = NULL;
266 }
267
lz4_compress_pages(struct compress_ctx * cc)268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270 int len = -EINVAL;
271 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272
273 if (!level)
274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277 else
278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 cc->clen, level, cc->private);
280 #endif
281 if (len < 0)
282 return len;
283 if (!len)
284 return -EAGAIN;
285
286 cc->clen = len;
287 return 0;
288 }
289
lz4_decompress_pages(struct decompress_io_ctx * dic)290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292 int ret;
293
294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295 dic->clen, dic->rlen);
296 if (ret < 0) {
297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299 return -EIO;
300 }
301
302 if (ret != PAGE_SIZE << dic->log_cluster_size) {
303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304 "expected:%lu\n", KERN_ERR,
305 F2FS_I_SB(dic->inode)->sb->s_id, ret,
306 PAGE_SIZE << dic->log_cluster_size);
307 return -EIO;
308 }
309 return 0;
310 }
311
lz4_is_level_valid(int lvl)312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317 return lvl == 0;
318 #endif
319 }
320
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322 .init_compress_ctx = lz4_init_compress_ctx,
323 .destroy_compress_ctx = lz4_destroy_compress_ctx,
324 .compress_pages = lz4_compress_pages,
325 .decompress_pages = lz4_decompress_pages,
326 .is_level_valid = lz4_is_level_valid,
327 };
328 #endif
329
330 #ifdef CONFIG_F2FS_FS_ZSTD
zstd_init_compress_ctx(struct compress_ctx * cc)331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333 zstd_parameters params;
334 zstd_cstream *stream;
335 void *workspace;
336 unsigned int workspace_size;
337 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338
339 /* Need to remain this for backward compatibility */
340 if (!level)
341 level = F2FS_ZSTD_DEFAULT_CLEVEL;
342
343 params = zstd_get_params(level, cc->rlen);
344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
345
346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347 workspace_size, GFP_NOFS);
348 if (!workspace)
349 return -ENOMEM;
350
351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
352 if (!stream) {
353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355 __func__);
356 kvfree(workspace);
357 return -EIO;
358 }
359
360 cc->private = workspace;
361 cc->private2 = stream;
362
363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364 return 0;
365 }
366
zstd_destroy_compress_ctx(struct compress_ctx * cc)367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369 kvfree(cc->private);
370 cc->private = NULL;
371 cc->private2 = NULL;
372 }
373
zstd_compress_pages(struct compress_ctx * cc)374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376 zstd_cstream *stream = cc->private2;
377 zstd_in_buffer inbuf;
378 zstd_out_buffer outbuf;
379 int src_size = cc->rlen;
380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381 int ret;
382
383 inbuf.pos = 0;
384 inbuf.src = cc->rbuf;
385 inbuf.size = src_size;
386
387 outbuf.pos = 0;
388 outbuf.dst = cc->cbuf->cdata;
389 outbuf.size = dst_size;
390
391 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392 if (zstd_is_error(ret)) {
393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395 __func__, zstd_get_error_code(ret));
396 return -EIO;
397 }
398
399 ret = zstd_end_stream(stream, &outbuf);
400 if (zstd_is_error(ret)) {
401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403 __func__, zstd_get_error_code(ret));
404 return -EIO;
405 }
406
407 /*
408 * there is compressed data remained in intermediate buffer due to
409 * no more space in cbuf.cdata
410 */
411 if (ret)
412 return -EAGAIN;
413
414 cc->clen = outbuf.pos;
415 return 0;
416 }
417
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420 zstd_dstream *stream;
421 void *workspace;
422 unsigned int workspace_size;
423 unsigned int max_window_size =
424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425
426 workspace_size = zstd_dstream_workspace_bound(max_window_size);
427
428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429 workspace_size, GFP_NOFS);
430 if (!workspace)
431 return -ENOMEM;
432
433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434 if (!stream) {
435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437 __func__);
438 kvfree(workspace);
439 return -EIO;
440 }
441
442 dic->private = workspace;
443 dic->private2 = stream;
444
445 return 0;
446 }
447
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450 kvfree(dic->private);
451 dic->private = NULL;
452 dic->private2 = NULL;
453 }
454
zstd_decompress_pages(struct decompress_io_ctx * dic)455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457 zstd_dstream *stream = dic->private2;
458 zstd_in_buffer inbuf;
459 zstd_out_buffer outbuf;
460 int ret;
461
462 inbuf.pos = 0;
463 inbuf.src = dic->cbuf->cdata;
464 inbuf.size = dic->clen;
465
466 outbuf.pos = 0;
467 outbuf.dst = dic->rbuf;
468 outbuf.size = dic->rlen;
469
470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471 if (zstd_is_error(ret)) {
472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474 __func__, zstd_get_error_code(ret));
475 return -EIO;
476 }
477
478 if (dic->rlen != outbuf.pos) {
479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480 "expected:%lu\n", KERN_ERR,
481 F2FS_I_SB(dic->inode)->sb->s_id,
482 __func__, dic->rlen,
483 PAGE_SIZE << dic->log_cluster_size);
484 return -EIO;
485 }
486
487 return 0;
488 }
489
zstd_is_level_valid(int lvl)490 static bool zstd_is_level_valid(int lvl)
491 {
492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 .init_compress_ctx = zstd_init_compress_ctx,
497 .destroy_compress_ctx = zstd_destroy_compress_ctx,
498 .compress_pages = zstd_compress_pages,
499 .init_decompress_ctx = zstd_init_decompress_ctx,
500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501 .decompress_pages = zstd_decompress_pages,
502 .is_level_valid = zstd_is_level_valid,
503 };
504 #endif
505
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 int ret;
511
512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 &cc->clen, cc->private);
514 if (ret != LZO_E_OK) {
515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 return -EIO;
518 }
519 return 0;
520 }
521
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 .init_compress_ctx = lzo_init_compress_ctx,
524 .destroy_compress_ctx = lzo_destroy_compress_ctx,
525 .compress_pages = lzorle_compress_pages,
526 .decompress_pages = lzo_decompress_pages,
527 };
528 #endif
529 #endif
530
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 &f2fs_lzo_ops,
534 #else
535 NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 &f2fs_lz4_ops,
539 #else
540 NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 &f2fs_zstd_ops,
544 #else
545 NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 &f2fs_lzorle_ops,
549 #else
550 NULL,
551 #endif
552 };
553
f2fs_is_compress_backend_ready(struct inode * inode)554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 if (!f2fs_compressed_file(inode))
557 return true;
558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560
f2fs_is_compress_level_valid(int alg,int lvl)561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564
565 if (cops->is_level_valid)
566 return cops->is_level_valid(lvl);
567
568 return lvl == 0;
569 }
570
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575 "Number of intermediate compress pages to preallocate");
576
f2fs_init_compress_mempool(void)577 int __init f2fs_init_compress_mempool(void)
578 {
579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580 return compress_page_pool ? 0 : -ENOMEM;
581 }
582
f2fs_destroy_compress_mempool(void)583 void f2fs_destroy_compress_mempool(void)
584 {
585 mempool_destroy(compress_page_pool);
586 }
587
f2fs_compress_alloc_page(void)588 static struct page *f2fs_compress_alloc_page(void)
589 {
590 struct page *page;
591
592 page = mempool_alloc(compress_page_pool, GFP_NOFS);
593 lock_page(page);
594
595 return page;
596 }
597
f2fs_compress_free_page(struct page * page)598 static void f2fs_compress_free_page(struct page *page)
599 {
600 if (!page)
601 return;
602 detach_page_private(page);
603 page->mapping = NULL;
604 unlock_page(page);
605 mempool_free(page, compress_page_pool);
606 }
607
608 #define MAX_VMAP_RETRIES 3
609
f2fs_vmap(struct page ** pages,unsigned int count)610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612 int i;
613 void *buf = NULL;
614
615 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616 buf = vm_map_ram(pages, count, -1);
617 if (buf)
618 break;
619 vm_unmap_aliases();
620 }
621 return buf;
622 }
623
f2fs_compress_pages(struct compress_ctx * cc)624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627 const struct f2fs_compress_ops *cops =
628 f2fs_cops[fi->i_compress_algorithm];
629 unsigned int max_len, new_nr_cpages;
630 u32 chksum = 0;
631 int i, ret;
632
633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634 cc->cluster_size, fi->i_compress_algorithm);
635
636 if (cops->init_compress_ctx) {
637 ret = cops->init_compress_ctx(cc);
638 if (ret)
639 goto out;
640 }
641
642 max_len = COMPRESS_HEADER_SIZE + cc->clen;
643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644 cc->valid_nr_cpages = cc->nr_cpages;
645
646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647 if (!cc->cpages) {
648 ret = -ENOMEM;
649 goto destroy_compress_ctx;
650 }
651
652 for (i = 0; i < cc->nr_cpages; i++)
653 cc->cpages[i] = f2fs_compress_alloc_page();
654
655 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
656 if (!cc->rbuf) {
657 ret = -ENOMEM;
658 goto out_free_cpages;
659 }
660
661 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
662 if (!cc->cbuf) {
663 ret = -ENOMEM;
664 goto out_vunmap_rbuf;
665 }
666
667 ret = cops->compress_pages(cc);
668 if (ret)
669 goto out_vunmap_cbuf;
670
671 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
672
673 if (cc->clen > max_len) {
674 ret = -EAGAIN;
675 goto out_vunmap_cbuf;
676 }
677
678 cc->cbuf->clen = cpu_to_le32(cc->clen);
679
680 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
681 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
682 cc->cbuf->cdata, cc->clen);
683 cc->cbuf->chksum = cpu_to_le32(chksum);
684
685 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
686 cc->cbuf->reserved[i] = cpu_to_le32(0);
687
688 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
689
690 /* zero out any unused part of the last page */
691 memset(&cc->cbuf->cdata[cc->clen], 0,
692 (new_nr_cpages * PAGE_SIZE) -
693 (cc->clen + COMPRESS_HEADER_SIZE));
694
695 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
696 vm_unmap_ram(cc->rbuf, cc->cluster_size);
697
698 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
699 f2fs_compress_free_page(cc->cpages[i]);
700 cc->cpages[i] = NULL;
701 }
702
703 if (cops->destroy_compress_ctx)
704 cops->destroy_compress_ctx(cc);
705
706 cc->valid_nr_cpages = new_nr_cpages;
707
708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
709 cc->clen, ret);
710 return 0;
711
712 out_vunmap_cbuf:
713 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
714 out_vunmap_rbuf:
715 vm_unmap_ram(cc->rbuf, cc->cluster_size);
716 out_free_cpages:
717 for (i = 0; i < cc->nr_cpages; i++) {
718 if (cc->cpages[i])
719 f2fs_compress_free_page(cc->cpages[i]);
720 }
721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
722 cc->cpages = NULL;
723 destroy_compress_ctx:
724 if (cops->destroy_compress_ctx)
725 cops->destroy_compress_ctx(cc);
726 out:
727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
728 cc->clen, ret);
729 return ret;
730 }
731
732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
733 bool pre_alloc);
734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
735 bool bypass_destroy_callback, bool pre_alloc);
736
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
738 {
739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
740 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
741 const struct f2fs_compress_ops *cops =
742 f2fs_cops[fi->i_compress_algorithm];
743 bool bypass_callback = false;
744 int ret;
745
746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
747 dic->cluster_size, fi->i_compress_algorithm);
748
749 if (dic->failed) {
750 ret = -EIO;
751 goto out_end_io;
752 }
753
754 ret = f2fs_prepare_decomp_mem(dic, false);
755 if (ret) {
756 bypass_callback = true;
757 goto out_release;
758 }
759
760 dic->clen = le32_to_cpu(dic->cbuf->clen);
761 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
762
763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
764 ret = -EFSCORRUPTED;
765
766 /* Avoid f2fs_commit_super in irq context */
767 if (!in_task)
768 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
769 else
770 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
771 goto out_release;
772 }
773
774 ret = cops->decompress_pages(dic);
775
776 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
777 u32 provided = le32_to_cpu(dic->cbuf->chksum);
778 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
779
780 if (provided != calculated) {
781 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
782 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
783 printk_ratelimited(
784 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
785 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
786 provided, calculated);
787 }
788 set_sbi_flag(sbi, SBI_NEED_FSCK);
789 }
790 }
791
792 out_release:
793 f2fs_release_decomp_mem(dic, bypass_callback, false);
794
795 out_end_io:
796 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
797 dic->clen, ret);
798 f2fs_decompress_end_io(dic, ret, in_task);
799 }
800
801 /*
802 * This is called when a page of a compressed cluster has been read from disk
803 * (or failed to be read from disk). It checks whether this page was the last
804 * page being waited on in the cluster, and if so, it decompresses the cluster
805 * (or in the case of a failure, cleans up without actually decompressing).
806 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)807 void f2fs_end_read_compressed_page(struct page *page, bool failed,
808 block_t blkaddr, bool in_task)
809 {
810 struct decompress_io_ctx *dic =
811 (struct decompress_io_ctx *)page_private(page);
812 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
813
814 dec_page_count(sbi, F2FS_RD_DATA);
815
816 if (failed)
817 WRITE_ONCE(dic->failed, true);
818 else if (blkaddr && in_task)
819 f2fs_cache_compressed_page(sbi, page,
820 dic->inode->i_ino, blkaddr);
821
822 if (atomic_dec_and_test(&dic->remaining_pages))
823 f2fs_decompress_cluster(dic, in_task);
824 }
825
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
827 {
828 if (cc->cluster_idx == NULL_CLUSTER)
829 return true;
830 return cc->cluster_idx == cluster_idx(cc, index);
831 }
832
f2fs_cluster_is_empty(struct compress_ctx * cc)833 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
834 {
835 return cc->nr_rpages == 0;
836 }
837
f2fs_cluster_is_full(struct compress_ctx * cc)838 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
839 {
840 return cc->cluster_size == cc->nr_rpages;
841 }
842
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
844 {
845 if (f2fs_cluster_is_empty(cc))
846 return true;
847 return is_page_in_cluster(cc, index);
848 }
849
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
851 int index, int nr_pages, bool uptodate)
852 {
853 unsigned long pgidx = pages[index]->index;
854 int i = uptodate ? 0 : 1;
855
856 /*
857 * when uptodate set to true, try to check all pages in cluster is
858 * uptodate or not.
859 */
860 if (uptodate && (pgidx % cc->cluster_size))
861 return false;
862
863 if (nr_pages - index < cc->cluster_size)
864 return false;
865
866 for (; i < cc->cluster_size; i++) {
867 if (pages[index + i]->index != pgidx + i)
868 return false;
869 if (uptodate && !PageUptodate(pages[index + i]))
870 return false;
871 }
872
873 return true;
874 }
875
cluster_has_invalid_data(struct compress_ctx * cc)876 static bool cluster_has_invalid_data(struct compress_ctx *cc)
877 {
878 loff_t i_size = i_size_read(cc->inode);
879 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
880 int i;
881
882 for (i = 0; i < cc->cluster_size; i++) {
883 struct page *page = cc->rpages[i];
884
885 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
886
887 /* beyond EOF */
888 if (page->index >= nr_pages)
889 return true;
890 }
891 return false;
892 }
893
f2fs_sanity_check_cluster(struct dnode_of_data * dn)894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
895 {
896 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
897 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
898 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
899 int cluster_end = 0;
900 int i;
901 char *reason = "";
902
903 if (!compressed)
904 return false;
905
906 /* [..., COMPR_ADDR, ...] */
907 if (dn->ofs_in_node % cluster_size) {
908 reason = "[*|C|*|*]";
909 goto out;
910 }
911
912 for (i = 1; i < cluster_size; i++) {
913 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
914 dn->ofs_in_node + i);
915
916 /* [COMPR_ADDR, ..., COMPR_ADDR] */
917 if (blkaddr == COMPRESS_ADDR) {
918 reason = "[C|*|C|*]";
919 goto out;
920 }
921 if (!__is_valid_data_blkaddr(blkaddr)) {
922 if (!cluster_end)
923 cluster_end = i;
924 continue;
925 }
926 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
927 if (cluster_end) {
928 reason = "[C|N|N|V]";
929 goto out;
930 }
931 }
932 return false;
933 out:
934 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
935 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
936 set_sbi_flag(sbi, SBI_NEED_FSCK);
937 return true;
938 }
939
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)940 static int __f2fs_cluster_blocks(struct inode *inode,
941 unsigned int cluster_idx, bool compr)
942 {
943 struct dnode_of_data dn;
944 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
945 unsigned int start_idx = cluster_idx <<
946 F2FS_I(inode)->i_log_cluster_size;
947 int ret;
948
949 set_new_dnode(&dn, inode, NULL, NULL, 0);
950 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
951 if (ret) {
952 if (ret == -ENOENT)
953 ret = 0;
954 goto fail;
955 }
956
957 if (f2fs_sanity_check_cluster(&dn)) {
958 ret = -EFSCORRUPTED;
959 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
960 goto fail;
961 }
962
963 if (dn.data_blkaddr == COMPRESS_ADDR) {
964 int i;
965
966 ret = 1;
967 for (i = 1; i < cluster_size; i++) {
968 block_t blkaddr;
969
970 blkaddr = data_blkaddr(dn.inode,
971 dn.node_page, dn.ofs_in_node + i);
972 if (compr) {
973 if (__is_valid_data_blkaddr(blkaddr))
974 ret++;
975 } else {
976 if (blkaddr != NULL_ADDR)
977 ret++;
978 }
979 }
980
981 f2fs_bug_on(F2FS_I_SB(inode),
982 !compr && ret != cluster_size &&
983 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
984 }
985 fail:
986 f2fs_put_dnode(&dn);
987 return ret;
988 }
989
990 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)991 static int f2fs_compressed_blocks(struct compress_ctx *cc)
992 {
993 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
994 }
995
996 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)997 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
998 {
999 return __f2fs_cluster_blocks(inode,
1000 index >> F2FS_I(inode)->i_log_cluster_size,
1001 false);
1002 }
1003
cluster_may_compress(struct compress_ctx * cc)1004 static bool cluster_may_compress(struct compress_ctx *cc)
1005 {
1006 if (!f2fs_need_compress_data(cc->inode))
1007 return false;
1008 if (f2fs_is_atomic_file(cc->inode))
1009 return false;
1010 if (!f2fs_cluster_is_full(cc))
1011 return false;
1012 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1013 return false;
1014 return !cluster_has_invalid_data(cc);
1015 }
1016
set_cluster_writeback(struct compress_ctx * cc)1017 static void set_cluster_writeback(struct compress_ctx *cc)
1018 {
1019 int i;
1020
1021 for (i = 0; i < cc->cluster_size; i++) {
1022 if (cc->rpages[i])
1023 set_page_writeback(cc->rpages[i]);
1024 }
1025 }
1026
set_cluster_dirty(struct compress_ctx * cc)1027 static void set_cluster_dirty(struct compress_ctx *cc)
1028 {
1029 int i;
1030
1031 for (i = 0; i < cc->cluster_size; i++)
1032 if (cc->rpages[i]) {
1033 set_page_dirty(cc->rpages[i]);
1034 set_page_private_gcing(cc->rpages[i]);
1035 }
1036 }
1037
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1038 static int prepare_compress_overwrite(struct compress_ctx *cc,
1039 struct page **pagep, pgoff_t index, void **fsdata)
1040 {
1041 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1042 struct address_space *mapping = cc->inode->i_mapping;
1043 struct page *page;
1044 sector_t last_block_in_bio;
1045 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1046 pgoff_t start_idx = start_idx_of_cluster(cc);
1047 int i, ret;
1048
1049 retry:
1050 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1051 if (ret <= 0)
1052 return ret;
1053
1054 ret = f2fs_init_compress_ctx(cc);
1055 if (ret)
1056 return ret;
1057
1058 /* keep page reference to avoid page reclaim */
1059 for (i = 0; i < cc->cluster_size; i++) {
1060 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1061 fgp_flag, GFP_NOFS);
1062 if (!page) {
1063 ret = -ENOMEM;
1064 goto unlock_pages;
1065 }
1066
1067 if (PageUptodate(page))
1068 f2fs_put_page(page, 1);
1069 else
1070 f2fs_compress_ctx_add_page(cc, page);
1071 }
1072
1073 if (!f2fs_cluster_is_empty(cc)) {
1074 struct bio *bio = NULL;
1075
1076 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1077 &last_block_in_bio, false, true);
1078 f2fs_put_rpages(cc);
1079 f2fs_destroy_compress_ctx(cc, true);
1080 if (ret)
1081 goto out;
1082 if (bio)
1083 f2fs_submit_read_bio(sbi, bio, DATA);
1084
1085 ret = f2fs_init_compress_ctx(cc);
1086 if (ret)
1087 goto out;
1088 }
1089
1090 for (i = 0; i < cc->cluster_size; i++) {
1091 f2fs_bug_on(sbi, cc->rpages[i]);
1092
1093 page = find_lock_page(mapping, start_idx + i);
1094 if (!page) {
1095 /* page can be truncated */
1096 goto release_and_retry;
1097 }
1098
1099 f2fs_wait_on_page_writeback(page, DATA, true, true);
1100 f2fs_compress_ctx_add_page(cc, page);
1101
1102 if (!PageUptodate(page)) {
1103 release_and_retry:
1104 f2fs_put_rpages(cc);
1105 f2fs_unlock_rpages(cc, i + 1);
1106 f2fs_destroy_compress_ctx(cc, true);
1107 goto retry;
1108 }
1109 }
1110
1111 if (likely(!ret)) {
1112 *fsdata = cc->rpages;
1113 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1114 return cc->cluster_size;
1115 }
1116
1117 unlock_pages:
1118 f2fs_put_rpages(cc);
1119 f2fs_unlock_rpages(cc, i);
1120 f2fs_destroy_compress_ctx(cc, true);
1121 out:
1122 return ret;
1123 }
1124
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1125 int f2fs_prepare_compress_overwrite(struct inode *inode,
1126 struct page **pagep, pgoff_t index, void **fsdata)
1127 {
1128 struct compress_ctx cc = {
1129 .inode = inode,
1130 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1131 .cluster_size = F2FS_I(inode)->i_cluster_size,
1132 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1133 .rpages = NULL,
1134 .nr_rpages = 0,
1135 };
1136
1137 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1138 }
1139
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1140 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1141 pgoff_t index, unsigned copied)
1142
1143 {
1144 struct compress_ctx cc = {
1145 .inode = inode,
1146 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1147 .cluster_size = F2FS_I(inode)->i_cluster_size,
1148 .rpages = fsdata,
1149 };
1150 bool first_index = (index == cc.rpages[0]->index);
1151
1152 if (copied)
1153 set_cluster_dirty(&cc);
1154
1155 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1156 f2fs_destroy_compress_ctx(&cc, false);
1157
1158 return first_index;
1159 }
1160
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1161 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1162 {
1163 void *fsdata = NULL;
1164 struct page *pagep;
1165 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1166 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1167 log_cluster_size;
1168 int err;
1169
1170 err = f2fs_is_compressed_cluster(inode, start_idx);
1171 if (err < 0)
1172 return err;
1173
1174 /* truncate normal cluster */
1175 if (!err)
1176 return f2fs_do_truncate_blocks(inode, from, lock);
1177
1178 /* truncate compressed cluster */
1179 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1180 start_idx, &fsdata);
1181
1182 /* should not be a normal cluster */
1183 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1184
1185 if (err <= 0)
1186 return err;
1187
1188 if (err > 0) {
1189 struct page **rpages = fsdata;
1190 int cluster_size = F2FS_I(inode)->i_cluster_size;
1191 int i;
1192
1193 for (i = cluster_size - 1; i >= 0; i--) {
1194 loff_t start = rpages[i]->index << PAGE_SHIFT;
1195
1196 if (from <= start) {
1197 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1198 } else {
1199 zero_user_segment(rpages[i], from - start,
1200 PAGE_SIZE);
1201 break;
1202 }
1203 }
1204
1205 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1206 }
1207 return 0;
1208 }
1209
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1210 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1211 int *submitted,
1212 struct writeback_control *wbc,
1213 enum iostat_type io_type)
1214 {
1215 struct inode *inode = cc->inode;
1216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1217 struct f2fs_inode_info *fi = F2FS_I(inode);
1218 struct f2fs_io_info fio = {
1219 .sbi = sbi,
1220 .ino = cc->inode->i_ino,
1221 .type = DATA,
1222 .op = REQ_OP_WRITE,
1223 .op_flags = wbc_to_write_flags(wbc),
1224 .old_blkaddr = NEW_ADDR,
1225 .page = NULL,
1226 .encrypted_page = NULL,
1227 .compressed_page = NULL,
1228 .submitted = 0,
1229 .io_type = io_type,
1230 .io_wbc = wbc,
1231 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1232 1 : 0,
1233 };
1234 struct dnode_of_data dn;
1235 struct node_info ni;
1236 struct compress_io_ctx *cic;
1237 pgoff_t start_idx = start_idx_of_cluster(cc);
1238 unsigned int last_index = cc->cluster_size - 1;
1239 loff_t psize;
1240 int i, err;
1241 bool quota_inode = IS_NOQUOTA(inode);
1242
1243 /* we should bypass data pages to proceed the kworker jobs */
1244 if (unlikely(f2fs_cp_error(sbi))) {
1245 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1246 goto out_free;
1247 }
1248
1249 if (quota_inode) {
1250 /*
1251 * We need to wait for node_write to avoid block allocation during
1252 * checkpoint. This can only happen to quota writes which can cause
1253 * the below discard race condition.
1254 */
1255 f2fs_down_read(&sbi->node_write);
1256 } else if (!f2fs_trylock_op(sbi)) {
1257 goto out_free;
1258 }
1259
1260 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1261
1262 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1263 if (err)
1264 goto out_unlock_op;
1265
1266 for (i = 0; i < cc->cluster_size; i++) {
1267 if (data_blkaddr(dn.inode, dn.node_page,
1268 dn.ofs_in_node + i) == NULL_ADDR)
1269 goto out_put_dnode;
1270 }
1271
1272 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1273
1274 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1275 if (err)
1276 goto out_put_dnode;
1277
1278 fio.version = ni.version;
1279
1280 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1281 if (!cic)
1282 goto out_put_dnode;
1283
1284 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1285 cic->inode = inode;
1286 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1287 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1288 if (!cic->rpages)
1289 goto out_put_cic;
1290
1291 cic->nr_rpages = cc->cluster_size;
1292
1293 for (i = 0; i < cc->valid_nr_cpages; i++) {
1294 f2fs_set_compressed_page(cc->cpages[i], inode,
1295 cc->rpages[i + 1]->index, cic);
1296 fio.compressed_page = cc->cpages[i];
1297
1298 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1299 dn.ofs_in_node + i + 1);
1300
1301 /* wait for GCed page writeback via META_MAPPING */
1302 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1303
1304 if (fio.encrypted) {
1305 fio.page = cc->rpages[i + 1];
1306 err = f2fs_encrypt_one_page(&fio);
1307 if (err)
1308 goto out_destroy_crypt;
1309 cc->cpages[i] = fio.encrypted_page;
1310 }
1311 }
1312
1313 set_cluster_writeback(cc);
1314
1315 for (i = 0; i < cc->cluster_size; i++)
1316 cic->rpages[i] = cc->rpages[i];
1317
1318 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1319 block_t blkaddr;
1320
1321 blkaddr = f2fs_data_blkaddr(&dn);
1322 fio.page = cc->rpages[i];
1323 fio.old_blkaddr = blkaddr;
1324
1325 /* cluster header */
1326 if (i == 0) {
1327 if (blkaddr == COMPRESS_ADDR)
1328 fio.compr_blocks++;
1329 if (__is_valid_data_blkaddr(blkaddr))
1330 f2fs_invalidate_blocks(sbi, blkaddr);
1331 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1332 goto unlock_continue;
1333 }
1334
1335 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1336 fio.compr_blocks++;
1337
1338 if (i > cc->valid_nr_cpages) {
1339 if (__is_valid_data_blkaddr(blkaddr)) {
1340 f2fs_invalidate_blocks(sbi, blkaddr);
1341 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1342 }
1343 goto unlock_continue;
1344 }
1345
1346 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1347
1348 if (fio.encrypted)
1349 fio.encrypted_page = cc->cpages[i - 1];
1350 else
1351 fio.compressed_page = cc->cpages[i - 1];
1352
1353 cc->cpages[i - 1] = NULL;
1354 f2fs_outplace_write_data(&dn, &fio);
1355 (*submitted)++;
1356 unlock_continue:
1357 inode_dec_dirty_pages(cc->inode);
1358 unlock_page(fio.page);
1359 }
1360
1361 if (fio.compr_blocks)
1362 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1363 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1364 add_compr_block_stat(inode, cc->valid_nr_cpages);
1365
1366 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1367 if (cc->cluster_idx == 0)
1368 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1369
1370 f2fs_put_dnode(&dn);
1371 if (quota_inode)
1372 f2fs_up_read(&sbi->node_write);
1373 else
1374 f2fs_unlock_op(sbi);
1375
1376 spin_lock(&fi->i_size_lock);
1377 if (fi->last_disk_size < psize)
1378 fi->last_disk_size = psize;
1379 spin_unlock(&fi->i_size_lock);
1380
1381 f2fs_put_rpages(cc);
1382 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1383 cc->cpages = NULL;
1384 f2fs_destroy_compress_ctx(cc, false);
1385 return 0;
1386
1387 out_destroy_crypt:
1388 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1389
1390 for (--i; i >= 0; i--)
1391 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1392 out_put_cic:
1393 kmem_cache_free(cic_entry_slab, cic);
1394 out_put_dnode:
1395 f2fs_put_dnode(&dn);
1396 out_unlock_op:
1397 if (quota_inode)
1398 f2fs_up_read(&sbi->node_write);
1399 else
1400 f2fs_unlock_op(sbi);
1401 out_free:
1402 for (i = 0; i < cc->valid_nr_cpages; i++) {
1403 f2fs_compress_free_page(cc->cpages[i]);
1404 cc->cpages[i] = NULL;
1405 }
1406 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1407 cc->cpages = NULL;
1408 return -EAGAIN;
1409 }
1410
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1411 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1412 {
1413 struct f2fs_sb_info *sbi = bio->bi_private;
1414 struct compress_io_ctx *cic =
1415 (struct compress_io_ctx *)page_private(page);
1416 int i;
1417
1418 if (unlikely(bio->bi_status))
1419 mapping_set_error(cic->inode->i_mapping, -EIO);
1420
1421 f2fs_compress_free_page(page);
1422
1423 dec_page_count(sbi, F2FS_WB_DATA);
1424
1425 if (atomic_dec_return(&cic->pending_pages))
1426 return;
1427
1428 for (i = 0; i < cic->nr_rpages; i++) {
1429 WARN_ON(!cic->rpages[i]);
1430 clear_page_private_gcing(cic->rpages[i]);
1431 end_page_writeback(cic->rpages[i]);
1432 }
1433
1434 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1435 kmem_cache_free(cic_entry_slab, cic);
1436 }
1437
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1438 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1439 int *submitted,
1440 struct writeback_control *wbc,
1441 enum iostat_type io_type)
1442 {
1443 struct address_space *mapping = cc->inode->i_mapping;
1444 int _submitted, compr_blocks, ret, i;
1445
1446 compr_blocks = f2fs_compressed_blocks(cc);
1447
1448 for (i = 0; i < cc->cluster_size; i++) {
1449 if (!cc->rpages[i])
1450 continue;
1451
1452 redirty_page_for_writepage(wbc, cc->rpages[i]);
1453 unlock_page(cc->rpages[i]);
1454 }
1455
1456 if (compr_blocks < 0)
1457 return compr_blocks;
1458
1459 for (i = 0; i < cc->cluster_size; i++) {
1460 if (!cc->rpages[i])
1461 continue;
1462 retry_write:
1463 lock_page(cc->rpages[i]);
1464
1465 if (cc->rpages[i]->mapping != mapping) {
1466 continue_unlock:
1467 unlock_page(cc->rpages[i]);
1468 continue;
1469 }
1470
1471 if (!PageDirty(cc->rpages[i]))
1472 goto continue_unlock;
1473
1474 if (PageWriteback(cc->rpages[i])) {
1475 if (wbc->sync_mode == WB_SYNC_NONE)
1476 goto continue_unlock;
1477 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1478 }
1479
1480 if (!clear_page_dirty_for_io(cc->rpages[i]))
1481 goto continue_unlock;
1482
1483 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1484 NULL, NULL, wbc, io_type,
1485 compr_blocks, false);
1486 if (ret) {
1487 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1488 unlock_page(cc->rpages[i]);
1489 ret = 0;
1490 } else if (ret == -EAGAIN) {
1491 /*
1492 * for quota file, just redirty left pages to
1493 * avoid deadlock caused by cluster update race
1494 * from foreground operation.
1495 */
1496 if (IS_NOQUOTA(cc->inode))
1497 return 0;
1498 ret = 0;
1499 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1500 goto retry_write;
1501 }
1502 return ret;
1503 }
1504
1505 *submitted += _submitted;
1506 }
1507
1508 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1509
1510 return 0;
1511 }
1512
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1513 int f2fs_write_multi_pages(struct compress_ctx *cc,
1514 int *submitted,
1515 struct writeback_control *wbc,
1516 enum iostat_type io_type)
1517 {
1518 int err;
1519
1520 *submitted = 0;
1521 if (cluster_may_compress(cc)) {
1522 err = f2fs_compress_pages(cc);
1523 if (err == -EAGAIN) {
1524 add_compr_block_stat(cc->inode, cc->cluster_size);
1525 goto write;
1526 } else if (err) {
1527 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1528 goto destroy_out;
1529 }
1530
1531 err = f2fs_write_compressed_pages(cc, submitted,
1532 wbc, io_type);
1533 if (!err)
1534 return 0;
1535 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1536 }
1537 write:
1538 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1539
1540 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1541 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1542 destroy_out:
1543 f2fs_destroy_compress_ctx(cc, false);
1544 return err;
1545 }
1546
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1547 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1548 bool pre_alloc)
1549 {
1550 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1551 }
1552
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1553 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1554 bool pre_alloc)
1555 {
1556 const struct f2fs_compress_ops *cops =
1557 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1558 int i;
1559
1560 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1561 return 0;
1562
1563 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1564 if (!dic->tpages)
1565 return -ENOMEM;
1566
1567 for (i = 0; i < dic->cluster_size; i++) {
1568 if (dic->rpages[i]) {
1569 dic->tpages[i] = dic->rpages[i];
1570 continue;
1571 }
1572
1573 dic->tpages[i] = f2fs_compress_alloc_page();
1574 }
1575
1576 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1577 if (!dic->rbuf)
1578 return -ENOMEM;
1579
1580 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1581 if (!dic->cbuf)
1582 return -ENOMEM;
1583
1584 if (cops->init_decompress_ctx)
1585 return cops->init_decompress_ctx(dic);
1586
1587 return 0;
1588 }
1589
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1590 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1591 bool bypass_destroy_callback, bool pre_alloc)
1592 {
1593 const struct f2fs_compress_ops *cops =
1594 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1595
1596 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1597 return;
1598
1599 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1600 cops->destroy_decompress_ctx(dic);
1601
1602 if (dic->cbuf)
1603 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1604
1605 if (dic->rbuf)
1606 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1607 }
1608
1609 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1610 bool bypass_destroy_callback);
1611
f2fs_alloc_dic(struct compress_ctx * cc)1612 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1613 {
1614 struct decompress_io_ctx *dic;
1615 pgoff_t start_idx = start_idx_of_cluster(cc);
1616 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1617 int i, ret;
1618
1619 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1620 if (!dic)
1621 return ERR_PTR(-ENOMEM);
1622
1623 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1624 if (!dic->rpages) {
1625 kmem_cache_free(dic_entry_slab, dic);
1626 return ERR_PTR(-ENOMEM);
1627 }
1628
1629 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1630 dic->inode = cc->inode;
1631 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1632 dic->cluster_idx = cc->cluster_idx;
1633 dic->cluster_size = cc->cluster_size;
1634 dic->log_cluster_size = cc->log_cluster_size;
1635 dic->nr_cpages = cc->nr_cpages;
1636 refcount_set(&dic->refcnt, 1);
1637 dic->failed = false;
1638 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1639
1640 for (i = 0; i < dic->cluster_size; i++)
1641 dic->rpages[i] = cc->rpages[i];
1642 dic->nr_rpages = cc->cluster_size;
1643
1644 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1645 if (!dic->cpages) {
1646 ret = -ENOMEM;
1647 goto out_free;
1648 }
1649
1650 for (i = 0; i < dic->nr_cpages; i++) {
1651 struct page *page;
1652
1653 page = f2fs_compress_alloc_page();
1654 f2fs_set_compressed_page(page, cc->inode,
1655 start_idx + i + 1, dic);
1656 dic->cpages[i] = page;
1657 }
1658
1659 ret = f2fs_prepare_decomp_mem(dic, true);
1660 if (ret)
1661 goto out_free;
1662
1663 return dic;
1664
1665 out_free:
1666 f2fs_free_dic(dic, true);
1667 return ERR_PTR(ret);
1668 }
1669
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1670 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1671 bool bypass_destroy_callback)
1672 {
1673 int i;
1674
1675 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1676
1677 if (dic->tpages) {
1678 for (i = 0; i < dic->cluster_size; i++) {
1679 if (dic->rpages[i])
1680 continue;
1681 if (!dic->tpages[i])
1682 continue;
1683 f2fs_compress_free_page(dic->tpages[i]);
1684 }
1685 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1686 }
1687
1688 if (dic->cpages) {
1689 for (i = 0; i < dic->nr_cpages; i++) {
1690 if (!dic->cpages[i])
1691 continue;
1692 f2fs_compress_free_page(dic->cpages[i]);
1693 }
1694 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1695 }
1696
1697 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1698 kmem_cache_free(dic_entry_slab, dic);
1699 }
1700
f2fs_late_free_dic(struct work_struct * work)1701 static void f2fs_late_free_dic(struct work_struct *work)
1702 {
1703 struct decompress_io_ctx *dic =
1704 container_of(work, struct decompress_io_ctx, free_work);
1705
1706 f2fs_free_dic(dic, false);
1707 }
1708
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1709 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1710 {
1711 if (refcount_dec_and_test(&dic->refcnt)) {
1712 if (in_task) {
1713 f2fs_free_dic(dic, false);
1714 } else {
1715 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1716 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1717 &dic->free_work);
1718 }
1719 }
1720 }
1721
f2fs_verify_cluster(struct work_struct * work)1722 static void f2fs_verify_cluster(struct work_struct *work)
1723 {
1724 struct decompress_io_ctx *dic =
1725 container_of(work, struct decompress_io_ctx, verity_work);
1726 int i;
1727
1728 /* Verify, update, and unlock the decompressed pages. */
1729 for (i = 0; i < dic->cluster_size; i++) {
1730 struct page *rpage = dic->rpages[i];
1731
1732 if (!rpage)
1733 continue;
1734
1735 if (fsverity_verify_page(rpage))
1736 SetPageUptodate(rpage);
1737 else
1738 ClearPageUptodate(rpage);
1739 unlock_page(rpage);
1740 }
1741
1742 f2fs_put_dic(dic, true);
1743 }
1744
1745 /*
1746 * This is called when a compressed cluster has been decompressed
1747 * (or failed to be read and/or decompressed).
1748 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1749 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1750 bool in_task)
1751 {
1752 int i;
1753
1754 if (!failed && dic->need_verity) {
1755 /*
1756 * Note that to avoid deadlocks, the verity work can't be done
1757 * on the decompression workqueue. This is because verifying
1758 * the data pages can involve reading metadata pages from the
1759 * file, and these metadata pages may be compressed.
1760 */
1761 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1762 fsverity_enqueue_verify_work(&dic->verity_work);
1763 return;
1764 }
1765
1766 /* Update and unlock the cluster's pagecache pages. */
1767 for (i = 0; i < dic->cluster_size; i++) {
1768 struct page *rpage = dic->rpages[i];
1769
1770 if (!rpage)
1771 continue;
1772
1773 if (failed)
1774 ClearPageUptodate(rpage);
1775 else
1776 SetPageUptodate(rpage);
1777 unlock_page(rpage);
1778 }
1779
1780 /*
1781 * Release the reference to the decompress_io_ctx that was being held
1782 * for I/O completion.
1783 */
1784 f2fs_put_dic(dic, in_task);
1785 }
1786
1787 /*
1788 * Put a reference to a compressed page's decompress_io_ctx.
1789 *
1790 * This is called when the page is no longer needed and can be freed.
1791 */
f2fs_put_page_dic(struct page * page,bool in_task)1792 void f2fs_put_page_dic(struct page *page, bool in_task)
1793 {
1794 struct decompress_io_ctx *dic =
1795 (struct decompress_io_ctx *)page_private(page);
1796
1797 f2fs_put_dic(dic, in_task);
1798 }
1799
1800 /*
1801 * check whether cluster blocks are contiguous, and add extent cache entry
1802 * only if cluster blocks are logically and physically contiguous.
1803 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1804 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1805 {
1806 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1807 int i = compressed ? 1 : 0;
1808 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1809 dn->ofs_in_node + i);
1810
1811 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1812 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1813 dn->ofs_in_node + i);
1814
1815 if (!__is_valid_data_blkaddr(blkaddr))
1816 break;
1817 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1818 return 0;
1819 }
1820
1821 return compressed ? i - 1 : i;
1822 }
1823
1824 const struct address_space_operations f2fs_compress_aops = {
1825 .release_folio = f2fs_release_folio,
1826 .invalidate_folio = f2fs_invalidate_folio,
1827 .migrate_folio = filemap_migrate_folio,
1828 };
1829
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1830 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1831 {
1832 return sbi->compress_inode->i_mapping;
1833 }
1834
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1835 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1836 {
1837 if (!sbi->compress_inode)
1838 return;
1839 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1840 }
1841
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1842 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1843 nid_t ino, block_t blkaddr)
1844 {
1845 struct page *cpage;
1846 int ret;
1847
1848 if (!test_opt(sbi, COMPRESS_CACHE))
1849 return;
1850
1851 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1852 return;
1853
1854 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1855 return;
1856
1857 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1858 if (cpage) {
1859 f2fs_put_page(cpage, 0);
1860 return;
1861 }
1862
1863 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1864 if (!cpage)
1865 return;
1866
1867 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1868 blkaddr, GFP_NOFS);
1869 if (ret) {
1870 f2fs_put_page(cpage, 0);
1871 return;
1872 }
1873
1874 set_page_private_data(cpage, ino);
1875
1876 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1877 goto out;
1878
1879 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1880 SetPageUptodate(cpage);
1881 out:
1882 f2fs_put_page(cpage, 1);
1883 }
1884
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1885 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1886 block_t blkaddr)
1887 {
1888 struct page *cpage;
1889 bool hitted = false;
1890
1891 if (!test_opt(sbi, COMPRESS_CACHE))
1892 return false;
1893
1894 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1895 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1896 if (cpage) {
1897 if (PageUptodate(cpage)) {
1898 atomic_inc(&sbi->compress_page_hit);
1899 memcpy(page_address(page),
1900 page_address(cpage), PAGE_SIZE);
1901 hitted = true;
1902 }
1903 f2fs_put_page(cpage, 1);
1904 }
1905
1906 return hitted;
1907 }
1908
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1909 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1910 {
1911 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1912 struct folio_batch fbatch;
1913 pgoff_t index = 0;
1914 pgoff_t end = MAX_BLKADDR(sbi);
1915
1916 if (!mapping->nrpages)
1917 return;
1918
1919 folio_batch_init(&fbatch);
1920
1921 do {
1922 unsigned int nr, i;
1923
1924 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1925 if (!nr)
1926 break;
1927
1928 for (i = 0; i < nr; i++) {
1929 struct folio *folio = fbatch.folios[i];
1930
1931 folio_lock(folio);
1932 if (folio->mapping != mapping) {
1933 folio_unlock(folio);
1934 continue;
1935 }
1936
1937 if (ino != get_page_private_data(&folio->page)) {
1938 folio_unlock(folio);
1939 continue;
1940 }
1941
1942 generic_error_remove_page(mapping, &folio->page);
1943 folio_unlock(folio);
1944 }
1945 folio_batch_release(&fbatch);
1946 cond_resched();
1947 } while (index < end);
1948 }
1949
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1950 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1951 {
1952 struct inode *inode;
1953
1954 if (!test_opt(sbi, COMPRESS_CACHE))
1955 return 0;
1956
1957 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1958 if (IS_ERR(inode))
1959 return PTR_ERR(inode);
1960 sbi->compress_inode = inode;
1961
1962 sbi->compress_percent = COMPRESS_PERCENT;
1963 sbi->compress_watermark = COMPRESS_WATERMARK;
1964
1965 atomic_set(&sbi->compress_page_hit, 0);
1966
1967 return 0;
1968 }
1969
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1970 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1971 {
1972 if (!sbi->compress_inode)
1973 return;
1974 iput(sbi->compress_inode);
1975 sbi->compress_inode = NULL;
1976 }
1977
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1978 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1979 {
1980 dev_t dev = sbi->sb->s_bdev->bd_dev;
1981 char slab_name[35];
1982
1983 if (!f2fs_sb_has_compression(sbi))
1984 return 0;
1985
1986 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1987
1988 sbi->page_array_slab_size = sizeof(struct page *) <<
1989 F2FS_OPTION(sbi).compress_log_size;
1990
1991 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1992 sbi->page_array_slab_size);
1993 return sbi->page_array_slab ? 0 : -ENOMEM;
1994 }
1995
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1996 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1997 {
1998 kmem_cache_destroy(sbi->page_array_slab);
1999 }
2000
f2fs_init_compress_cache(void)2001 int __init f2fs_init_compress_cache(void)
2002 {
2003 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2004 sizeof(struct compress_io_ctx));
2005 if (!cic_entry_slab)
2006 return -ENOMEM;
2007 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2008 sizeof(struct decompress_io_ctx));
2009 if (!dic_entry_slab)
2010 goto free_cic;
2011 return 0;
2012 free_cic:
2013 kmem_cache_destroy(cic_entry_slab);
2014 return -ENOMEM;
2015 }
2016
f2fs_destroy_compress_cache(void)2017 void f2fs_destroy_compress_cache(void)
2018 {
2019 kmem_cache_destroy(dic_entry_slab);
2020 kmem_cache_destroy(cic_entry_slab);
2021 }
2022