1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33
34 static struct kmem_cache *extent_buffer_cache;
35
36 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)37 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
38 {
39 struct btrfs_fs_info *fs_info = eb->fs_info;
40 unsigned long flags;
41
42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
43 list_add(&eb->leak_list, &fs_info->allocated_ebs);
44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
45 }
46
btrfs_leak_debug_del_eb(struct extent_buffer * eb)47 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
48 {
49 struct btrfs_fs_info *fs_info = eb->fs_info;
50 unsigned long flags;
51
52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
53 list_del(&eb->leak_list);
54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
55 }
56
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)57 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
58 {
59 struct extent_buffer *eb;
60 unsigned long flags;
61
62 /*
63 * If we didn't get into open_ctree our allocated_ebs will not be
64 * initialized, so just skip this.
65 */
66 if (!fs_info->allocated_ebs.next)
67 return;
68
69 WARN_ON(!list_empty(&fs_info->allocated_ebs));
70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
71 while (!list_empty(&fs_info->allocated_ebs)) {
72 eb = list_first_entry(&fs_info->allocated_ebs,
73 struct extent_buffer, leak_list);
74 pr_err(
75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
77 btrfs_header_owner(eb));
78 list_del(&eb->leak_list);
79 kmem_cache_free(extent_buffer_cache, eb);
80 }
81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
82 }
83 #else
84 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
85 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
86 #endif
87
88 /*
89 * Structure to record info about the bio being assembled, and other info like
90 * how many bytes are there before stripe/ordered extent boundary.
91 */
92 struct btrfs_bio_ctrl {
93 struct bio *bio;
94 int mirror_num;
95 enum btrfs_compression_type compress_type;
96 u32 len_to_stripe_boundary;
97 u32 len_to_oe_boundary;
98 btrfs_bio_end_io_t end_io_func;
99 };
100
101 struct extent_page_data {
102 struct btrfs_bio_ctrl bio_ctrl;
103 /* tells writepage not to lock the state bits for this range
104 * it still does the unlocking
105 */
106 unsigned int extent_locked:1;
107
108 /* tells the submit_bio code to use REQ_SYNC */
109 unsigned int sync_io:1;
110 };
111
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)112 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
113 {
114 struct bio *bio;
115 struct bio_vec *bv;
116 struct inode *inode;
117 int mirror_num;
118
119 if (!bio_ctrl->bio)
120 return;
121
122 bio = bio_ctrl->bio;
123 bv = bio_first_bvec_all(bio);
124 inode = bv->bv_page->mapping->host;
125 mirror_num = bio_ctrl->mirror_num;
126
127 /* Caller should ensure the bio has at least some range added */
128 ASSERT(bio->bi_iter.bi_size);
129
130 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
131
132 if (!is_data_inode(inode))
133 btrfs_submit_metadata_bio(inode, bio, mirror_num);
134 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
135 btrfs_submit_data_write_bio(inode, bio, mirror_num);
136 else
137 btrfs_submit_data_read_bio(inode, bio, mirror_num,
138 bio_ctrl->compress_type);
139
140 /* The bio is owned by the end_io handler now */
141 bio_ctrl->bio = NULL;
142 }
143
144 /*
145 * Submit or fail the current bio in an extent_page_data structure.
146 */
submit_write_bio(struct extent_page_data * epd,int ret)147 static void submit_write_bio(struct extent_page_data *epd, int ret)
148 {
149 struct bio *bio = epd->bio_ctrl.bio;
150
151 if (!bio)
152 return;
153
154 if (ret) {
155 ASSERT(ret < 0);
156 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
157 /* The bio is owned by the end_io handler now */
158 epd->bio_ctrl.bio = NULL;
159 } else {
160 submit_one_bio(&epd->bio_ctrl);
161 }
162 }
163
extent_buffer_init_cachep(void)164 int __init extent_buffer_init_cachep(void)
165 {
166 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
167 sizeof(struct extent_buffer), 0,
168 SLAB_MEM_SPREAD, NULL);
169 if (!extent_buffer_cache)
170 return -ENOMEM;
171
172 return 0;
173 }
174
extent_buffer_free_cachep(void)175 void __cold extent_buffer_free_cachep(void)
176 {
177 /*
178 * Make sure all delayed rcu free are flushed before we
179 * destroy caches.
180 */
181 rcu_barrier();
182 kmem_cache_destroy(extent_buffer_cache);
183 }
184
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)185 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
186 {
187 unsigned long index = start >> PAGE_SHIFT;
188 unsigned long end_index = end >> PAGE_SHIFT;
189 struct page *page;
190
191 while (index <= end_index) {
192 page = find_get_page(inode->i_mapping, index);
193 BUG_ON(!page); /* Pages should be in the extent_io_tree */
194 clear_page_dirty_for_io(page);
195 put_page(page);
196 index++;
197 }
198 }
199
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)200 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
201 {
202 struct address_space *mapping = inode->i_mapping;
203 unsigned long index = start >> PAGE_SHIFT;
204 unsigned long end_index = end >> PAGE_SHIFT;
205 struct folio *folio;
206
207 while (index <= end_index) {
208 folio = filemap_get_folio(mapping, index);
209 filemap_dirty_folio(mapping, folio);
210 folio_account_redirty(folio);
211 index += folio_nr_pages(folio);
212 folio_put(folio);
213 }
214 }
215
216 /*
217 * Process one page for __process_pages_contig().
218 *
219 * Return >0 if we hit @page == @locked_page.
220 * Return 0 if we updated the page status.
221 * Return -EGAIN if the we need to try again.
222 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
223 */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)224 static int process_one_page(struct btrfs_fs_info *fs_info,
225 struct address_space *mapping,
226 struct page *page, struct page *locked_page,
227 unsigned long page_ops, u64 start, u64 end)
228 {
229 u32 len;
230
231 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
232 len = end + 1 - start;
233
234 if (page_ops & PAGE_SET_ORDERED)
235 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
236 if (page_ops & PAGE_SET_ERROR)
237 btrfs_page_clamp_set_error(fs_info, page, start, len);
238 if (page_ops & PAGE_START_WRITEBACK) {
239 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
240 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
241 }
242 if (page_ops & PAGE_END_WRITEBACK)
243 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
244
245 if (page == locked_page)
246 return 1;
247
248 if (page_ops & PAGE_LOCK) {
249 int ret;
250
251 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
252 if (ret)
253 return ret;
254 if (!PageDirty(page) || page->mapping != mapping) {
255 btrfs_page_end_writer_lock(fs_info, page, start, len);
256 return -EAGAIN;
257 }
258 }
259 if (page_ops & PAGE_UNLOCK)
260 btrfs_page_end_writer_lock(fs_info, page, start, len);
261 return 0;
262 }
263
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)264 static int __process_pages_contig(struct address_space *mapping,
265 struct page *locked_page,
266 u64 start, u64 end, unsigned long page_ops,
267 u64 *processed_end)
268 {
269 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
270 pgoff_t start_index = start >> PAGE_SHIFT;
271 pgoff_t end_index = end >> PAGE_SHIFT;
272 pgoff_t index = start_index;
273 unsigned long pages_processed = 0;
274 struct folio_batch fbatch;
275 int err = 0;
276 int i;
277
278 if (page_ops & PAGE_LOCK) {
279 ASSERT(page_ops == PAGE_LOCK);
280 ASSERT(processed_end && *processed_end == start);
281 }
282
283 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
284 mapping_set_error(mapping, -EIO);
285
286 folio_batch_init(&fbatch);
287 while (index <= end_index) {
288 int found_folios;
289
290 found_folios = filemap_get_folios_contig(mapping, &index,
291 end_index, &fbatch);
292
293 if (found_folios == 0) {
294 /*
295 * Only if we're going to lock these pages, we can find
296 * nothing at @index.
297 */
298 ASSERT(page_ops & PAGE_LOCK);
299 err = -EAGAIN;
300 goto out;
301 }
302
303 for (i = 0; i < found_folios; i++) {
304 int process_ret;
305 struct folio *folio = fbatch.folios[i];
306 process_ret = process_one_page(fs_info, mapping,
307 &folio->page, locked_page, page_ops,
308 start, end);
309 if (process_ret < 0) {
310 err = -EAGAIN;
311 folio_batch_release(&fbatch);
312 goto out;
313 }
314 pages_processed += folio_nr_pages(folio);
315 }
316 folio_batch_release(&fbatch);
317 cond_resched();
318 }
319 out:
320 if (err && processed_end) {
321 /*
322 * Update @processed_end. I know this is awful since it has
323 * two different return value patterns (inclusive vs exclusive).
324 *
325 * But the exclusive pattern is necessary if @start is 0, or we
326 * underflow and check against processed_end won't work as
327 * expected.
328 */
329 if (pages_processed)
330 *processed_end = min(end,
331 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
332 else
333 *processed_end = start;
334 }
335 return err;
336 }
337
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)338 static noinline void __unlock_for_delalloc(struct inode *inode,
339 struct page *locked_page,
340 u64 start, u64 end)
341 {
342 unsigned long index = start >> PAGE_SHIFT;
343 unsigned long end_index = end >> PAGE_SHIFT;
344
345 ASSERT(locked_page);
346 if (index == locked_page->index && end_index == index)
347 return;
348
349 __process_pages_contig(inode->i_mapping, locked_page, start, end,
350 PAGE_UNLOCK, NULL);
351 }
352
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)353 static noinline int lock_delalloc_pages(struct inode *inode,
354 struct page *locked_page,
355 u64 delalloc_start,
356 u64 delalloc_end)
357 {
358 unsigned long index = delalloc_start >> PAGE_SHIFT;
359 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
360 u64 processed_end = delalloc_start;
361 int ret;
362
363 ASSERT(locked_page);
364 if (index == locked_page->index && index == end_index)
365 return 0;
366
367 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
368 delalloc_end, PAGE_LOCK, &processed_end);
369 if (ret == -EAGAIN && processed_end > delalloc_start)
370 __unlock_for_delalloc(inode, locked_page, delalloc_start,
371 processed_end);
372 return ret;
373 }
374
375 /*
376 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
377 * more than @max_bytes.
378 *
379 * @start: The original start bytenr to search.
380 * Will store the extent range start bytenr.
381 * @end: The original end bytenr of the search range
382 * Will store the extent range end bytenr.
383 *
384 * Return true if we find a delalloc range which starts inside the original
385 * range, and @start/@end will store the delalloc range start/end.
386 *
387 * Return false if we can't find any delalloc range which starts inside the
388 * original range, and @start/@end will be the non-delalloc range start/end.
389 */
390 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)391 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
392 struct page *locked_page, u64 *start,
393 u64 *end)
394 {
395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
396 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
397 const u64 orig_start = *start;
398 const u64 orig_end = *end;
399 /* The sanity tests may not set a valid fs_info. */
400 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
401 u64 delalloc_start;
402 u64 delalloc_end;
403 bool found;
404 struct extent_state *cached_state = NULL;
405 int ret;
406 int loops = 0;
407
408 /* Caller should pass a valid @end to indicate the search range end */
409 ASSERT(orig_end > orig_start);
410
411 /* The range should at least cover part of the page */
412 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
413 orig_end <= page_offset(locked_page)));
414 again:
415 /* step one, find a bunch of delalloc bytes starting at start */
416 delalloc_start = *start;
417 delalloc_end = 0;
418 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
419 max_bytes, &cached_state);
420 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
421 *start = delalloc_start;
422
423 /* @delalloc_end can be -1, never go beyond @orig_end */
424 *end = min(delalloc_end, orig_end);
425 free_extent_state(cached_state);
426 return false;
427 }
428
429 /*
430 * start comes from the offset of locked_page. We have to lock
431 * pages in order, so we can't process delalloc bytes before
432 * locked_page
433 */
434 if (delalloc_start < *start)
435 delalloc_start = *start;
436
437 /*
438 * make sure to limit the number of pages we try to lock down
439 */
440 if (delalloc_end + 1 - delalloc_start > max_bytes)
441 delalloc_end = delalloc_start + max_bytes - 1;
442
443 /* step two, lock all the pages after the page that has start */
444 ret = lock_delalloc_pages(inode, locked_page,
445 delalloc_start, delalloc_end);
446 ASSERT(!ret || ret == -EAGAIN);
447 if (ret == -EAGAIN) {
448 /* some of the pages are gone, lets avoid looping by
449 * shortening the size of the delalloc range we're searching
450 */
451 free_extent_state(cached_state);
452 cached_state = NULL;
453 if (!loops) {
454 max_bytes = PAGE_SIZE;
455 loops = 1;
456 goto again;
457 } else {
458 found = false;
459 goto out_failed;
460 }
461 }
462
463 /* step three, lock the state bits for the whole range */
464 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
465
466 /* then test to make sure it is all still delalloc */
467 ret = test_range_bit(tree, delalloc_start, delalloc_end,
468 EXTENT_DELALLOC, 1, cached_state);
469 if (!ret) {
470 unlock_extent(tree, delalloc_start, delalloc_end,
471 &cached_state);
472 __unlock_for_delalloc(inode, locked_page,
473 delalloc_start, delalloc_end);
474 cond_resched();
475 goto again;
476 }
477 free_extent_state(cached_state);
478 *start = delalloc_start;
479 *end = delalloc_end;
480 out_failed:
481 return found;
482 }
483
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)484 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
485 struct page *locked_page,
486 u32 clear_bits, unsigned long page_ops)
487 {
488 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
489
490 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
491 start, end, page_ops, NULL);
492 }
493
insert_failrec(struct btrfs_inode * inode,struct io_failure_record * failrec)494 static int insert_failrec(struct btrfs_inode *inode,
495 struct io_failure_record *failrec)
496 {
497 struct rb_node *exist;
498
499 spin_lock(&inode->io_failure_lock);
500 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
501 &failrec->rb_node);
502 spin_unlock(&inode->io_failure_lock);
503
504 return (exist == NULL) ? 0 : -EEXIST;
505 }
506
get_failrec(struct btrfs_inode * inode,u64 start)507 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
508 {
509 struct rb_node *node;
510 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
511
512 spin_lock(&inode->io_failure_lock);
513 node = rb_simple_search(&inode->io_failure_tree, start);
514 if (node)
515 failrec = rb_entry(node, struct io_failure_record, rb_node);
516 spin_unlock(&inode->io_failure_lock);
517 return failrec;
518 }
519
free_io_failure(struct btrfs_inode * inode,struct io_failure_record * rec)520 static void free_io_failure(struct btrfs_inode *inode,
521 struct io_failure_record *rec)
522 {
523 spin_lock(&inode->io_failure_lock);
524 rb_erase(&rec->rb_node, &inode->io_failure_tree);
525 spin_unlock(&inode->io_failure_lock);
526
527 kfree(rec);
528 }
529
530 /*
531 * this bypasses the standard btrfs submit functions deliberately, as
532 * the standard behavior is to write all copies in a raid setup. here we only
533 * want to write the one bad copy. so we do the mapping for ourselves and issue
534 * submit_bio directly.
535 * to avoid any synchronization issues, wait for the data after writing, which
536 * actually prevents the read that triggered the error from finishing.
537 * currently, there can be no more than two copies of every data bit. thus,
538 * exactly one rewrite is required.
539 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)540 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
541 u64 length, u64 logical, struct page *page,
542 unsigned int pg_offset, int mirror_num)
543 {
544 struct btrfs_device *dev;
545 struct bio_vec bvec;
546 struct bio bio;
547 u64 map_length = 0;
548 u64 sector;
549 struct btrfs_io_context *bioc = NULL;
550 int ret = 0;
551
552 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
553 BUG_ON(!mirror_num);
554
555 if (btrfs_repair_one_zone(fs_info, logical))
556 return 0;
557
558 map_length = length;
559
560 /*
561 * Avoid races with device replace and make sure our bioc has devices
562 * associated to its stripes that don't go away while we are doing the
563 * read repair operation.
564 */
565 btrfs_bio_counter_inc_blocked(fs_info);
566 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
567 /*
568 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
569 * to update all raid stripes, but here we just want to correct
570 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
571 * stripe's dev and sector.
572 */
573 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
574 &map_length, &bioc, 0);
575 if (ret)
576 goto out_counter_dec;
577 ASSERT(bioc->mirror_num == 1);
578 } else {
579 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
580 &map_length, &bioc, mirror_num);
581 if (ret)
582 goto out_counter_dec;
583 /*
584 * This happens when dev-replace is also running, and the
585 * mirror_num indicates the dev-replace target.
586 *
587 * In this case, we don't need to do anything, as the read
588 * error just means the replace progress hasn't reached our
589 * read range, and later replace routine would handle it well.
590 */
591 if (mirror_num != bioc->mirror_num)
592 goto out_counter_dec;
593 }
594
595 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
596 dev = bioc->stripes[bioc->mirror_num - 1].dev;
597 btrfs_put_bioc(bioc);
598
599 if (!dev || !dev->bdev ||
600 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
601 ret = -EIO;
602 goto out_counter_dec;
603 }
604
605 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
606 bio.bi_iter.bi_sector = sector;
607 __bio_add_page(&bio, page, length, pg_offset);
608
609 btrfsic_check_bio(&bio);
610 ret = submit_bio_wait(&bio);
611 if (ret) {
612 /* try to remap that extent elsewhere? */
613 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
614 goto out_bio_uninit;
615 }
616
617 btrfs_info_rl_in_rcu(fs_info,
618 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
619 ino, start,
620 rcu_str_deref(dev->name), sector);
621 ret = 0;
622
623 out_bio_uninit:
624 bio_uninit(&bio);
625 out_counter_dec:
626 btrfs_bio_counter_dec(fs_info);
627 return ret;
628 }
629
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)630 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
631 {
632 struct btrfs_fs_info *fs_info = eb->fs_info;
633 u64 start = eb->start;
634 int i, num_pages = num_extent_pages(eb);
635 int ret = 0;
636
637 if (sb_rdonly(fs_info->sb))
638 return -EROFS;
639
640 for (i = 0; i < num_pages; i++) {
641 struct page *p = eb->pages[i];
642
643 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
644 start - page_offset(p), mirror_num);
645 if (ret)
646 break;
647 start += PAGE_SIZE;
648 }
649
650 return ret;
651 }
652
next_mirror(const struct io_failure_record * failrec,int cur_mirror)653 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
654 {
655 if (cur_mirror == failrec->num_copies)
656 return cur_mirror + 1 - failrec->num_copies;
657 return cur_mirror + 1;
658 }
659
prev_mirror(const struct io_failure_record * failrec,int cur_mirror)660 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
661 {
662 if (cur_mirror == 1)
663 return failrec->num_copies;
664 return cur_mirror - 1;
665 }
666
667 /*
668 * each time an IO finishes, we do a fast check in the IO failure tree
669 * to see if we need to process or clean up an io_failure_record
670 */
btrfs_clean_io_failure(struct btrfs_inode * inode,u64 start,struct page * page,unsigned int pg_offset)671 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
672 struct page *page, unsigned int pg_offset)
673 {
674 struct btrfs_fs_info *fs_info = inode->root->fs_info;
675 struct extent_io_tree *io_tree = &inode->io_tree;
676 u64 ino = btrfs_ino(inode);
677 u64 locked_start, locked_end;
678 struct io_failure_record *failrec;
679 int mirror;
680 int ret;
681
682 failrec = get_failrec(inode, start);
683 if (IS_ERR(failrec))
684 return 0;
685
686 BUG_ON(!failrec->this_mirror);
687
688 if (sb_rdonly(fs_info->sb))
689 goto out;
690
691 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
692 &locked_end, EXTENT_LOCKED, NULL);
693 if (ret || locked_start > failrec->bytenr ||
694 locked_end < failrec->bytenr + failrec->len - 1)
695 goto out;
696
697 mirror = failrec->this_mirror;
698 do {
699 mirror = prev_mirror(failrec, mirror);
700 repair_io_failure(fs_info, ino, start, failrec->len,
701 failrec->logical, page, pg_offset, mirror);
702 } while (mirror != failrec->failed_mirror);
703
704 out:
705 free_io_failure(inode, failrec);
706 return 0;
707 }
708
709 /*
710 * Can be called when
711 * - hold extent lock
712 * - under ordered extent
713 * - the inode is freeing
714 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)715 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
716 {
717 struct io_failure_record *failrec;
718 struct rb_node *node, *next;
719
720 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
721 return;
722
723 spin_lock(&inode->io_failure_lock);
724 node = rb_simple_search_first(&inode->io_failure_tree, start);
725 while (node) {
726 failrec = rb_entry(node, struct io_failure_record, rb_node);
727 if (failrec->bytenr > end)
728 break;
729
730 next = rb_next(node);
731 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
732 kfree(failrec);
733
734 node = next;
735 }
736 spin_unlock(&inode->io_failure_lock);
737 }
738
btrfs_get_io_failure_record(struct inode * inode,struct btrfs_bio * bbio,unsigned int bio_offset)739 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
740 struct btrfs_bio *bbio,
741 unsigned int bio_offset)
742 {
743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
744 u64 start = bbio->file_offset + bio_offset;
745 struct io_failure_record *failrec;
746 const u32 sectorsize = fs_info->sectorsize;
747 int ret;
748
749 failrec = get_failrec(BTRFS_I(inode), start);
750 if (!IS_ERR(failrec)) {
751 btrfs_debug(fs_info,
752 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
753 failrec->logical, failrec->bytenr, failrec->len);
754 /*
755 * when data can be on disk more than twice, add to failrec here
756 * (e.g. with a list for failed_mirror) to make
757 * clean_io_failure() clean all those errors at once.
758 */
759 ASSERT(failrec->this_mirror == bbio->mirror_num);
760 ASSERT(failrec->len == fs_info->sectorsize);
761 return failrec;
762 }
763
764 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
765 if (!failrec)
766 return ERR_PTR(-ENOMEM);
767
768 RB_CLEAR_NODE(&failrec->rb_node);
769 failrec->bytenr = start;
770 failrec->len = sectorsize;
771 failrec->failed_mirror = bbio->mirror_num;
772 failrec->this_mirror = bbio->mirror_num;
773 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
774
775 btrfs_debug(fs_info,
776 "new io failure record logical %llu start %llu",
777 failrec->logical, start);
778
779 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
780 if (failrec->num_copies == 1) {
781 /*
782 * We only have a single copy of the data, so don't bother with
783 * all the retry and error correction code that follows. No
784 * matter what the error is, it is very likely to persist.
785 */
786 btrfs_debug(fs_info,
787 "cannot repair logical %llu num_copies %d",
788 failrec->logical, failrec->num_copies);
789 kfree(failrec);
790 return ERR_PTR(-EIO);
791 }
792
793 /* Set the bits in the private failure tree */
794 ret = insert_failrec(BTRFS_I(inode), failrec);
795 if (ret) {
796 kfree(failrec);
797 return ERR_PTR(ret);
798 }
799
800 return failrec;
801 }
802
btrfs_repair_one_sector(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,struct page * page,unsigned int pgoff,submit_bio_hook_t * submit_bio_hook)803 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
804 u32 bio_offset, struct page *page, unsigned int pgoff,
805 submit_bio_hook_t *submit_bio_hook)
806 {
807 u64 start = failed_bbio->file_offset + bio_offset;
808 struct io_failure_record *failrec;
809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
810 struct bio *failed_bio = &failed_bbio->bio;
811 const int icsum = bio_offset >> fs_info->sectorsize_bits;
812 struct bio *repair_bio;
813 struct btrfs_bio *repair_bbio;
814
815 btrfs_debug(fs_info,
816 "repair read error: read error at %llu", start);
817
818 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
819
820 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
821 if (IS_ERR(failrec))
822 return PTR_ERR(failrec);
823
824 /*
825 * There are two premises:
826 * a) deliver good data to the caller
827 * b) correct the bad sectors on disk
828 *
829 * Since we're only doing repair for one sector, we only need to get
830 * a good copy of the failed sector and if we succeed, we have setup
831 * everything for repair_io_failure to do the rest for us.
832 */
833 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
834 if (failrec->this_mirror == failrec->failed_mirror) {
835 btrfs_debug(fs_info,
836 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
837 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
838 free_io_failure(BTRFS_I(inode), failrec);
839 return -EIO;
840 }
841
842 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
843 failed_bbio->private);
844 repair_bbio = btrfs_bio(repair_bio);
845 repair_bbio->file_offset = start;
846 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
847
848 if (failed_bbio->csum) {
849 const u32 csum_size = fs_info->csum_size;
850
851 repair_bbio->csum = repair_bbio->csum_inline;
852 memcpy(repair_bbio->csum,
853 failed_bbio->csum + csum_size * icsum, csum_size);
854 }
855
856 bio_add_page(repair_bio, page, failrec->len, pgoff);
857 repair_bbio->iter = repair_bio->bi_iter;
858
859 btrfs_debug(btrfs_sb(inode->i_sb),
860 "repair read error: submitting new read to mirror %d",
861 failrec->this_mirror);
862
863 /*
864 * At this point we have a bio, so any errors from submit_bio_hook()
865 * will be handled by the endio on the repair_bio, so we can't return an
866 * error here.
867 */
868 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
869 return BLK_STS_OK;
870 }
871
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)872 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
873 {
874 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
875
876 ASSERT(page_offset(page) <= start &&
877 start + len <= page_offset(page) + PAGE_SIZE);
878
879 if (uptodate) {
880 if (fsverity_active(page->mapping->host) &&
881 !PageError(page) &&
882 !PageUptodate(page) &&
883 start < i_size_read(page->mapping->host) &&
884 !fsverity_verify_page(page)) {
885 btrfs_page_set_error(fs_info, page, start, len);
886 } else {
887 btrfs_page_set_uptodate(fs_info, page, start, len);
888 }
889 } else {
890 btrfs_page_clear_uptodate(fs_info, page, start, len);
891 btrfs_page_set_error(fs_info, page, start, len);
892 }
893
894 if (!btrfs_is_subpage(fs_info, page))
895 unlock_page(page);
896 else
897 btrfs_subpage_end_reader(fs_info, page, start, len);
898 }
899
end_sector_io(struct page * page,u64 offset,bool uptodate)900 static void end_sector_io(struct page *page, u64 offset, bool uptodate)
901 {
902 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
903 const u32 sectorsize = inode->root->fs_info->sectorsize;
904 struct extent_state *cached = NULL;
905
906 end_page_read(page, uptodate, offset, sectorsize);
907 if (uptodate)
908 set_extent_uptodate(&inode->io_tree, offset,
909 offset + sectorsize - 1, &cached, GFP_ATOMIC);
910 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1,
911 &cached);
912 }
913
submit_data_read_repair(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,const struct bio_vec * bvec,unsigned int error_bitmap)914 static void submit_data_read_repair(struct inode *inode,
915 struct btrfs_bio *failed_bbio,
916 u32 bio_offset, const struct bio_vec *bvec,
917 unsigned int error_bitmap)
918 {
919 const unsigned int pgoff = bvec->bv_offset;
920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
921 struct page *page = bvec->bv_page;
922 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
923 const u64 end = start + bvec->bv_len - 1;
924 const u32 sectorsize = fs_info->sectorsize;
925 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
926 int i;
927
928 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
929
930 /* This repair is only for data */
931 ASSERT(is_data_inode(inode));
932
933 /* We're here because we had some read errors or csum mismatch */
934 ASSERT(error_bitmap);
935
936 /*
937 * We only get called on buffered IO, thus page must be mapped and bio
938 * must not be cloned.
939 */
940 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
941
942 /* Iterate through all the sectors in the range */
943 for (i = 0; i < nr_bits; i++) {
944 const unsigned int offset = i * sectorsize;
945 bool uptodate = false;
946 int ret;
947
948 if (!(error_bitmap & (1U << i))) {
949 /*
950 * This sector has no error, just end the page read
951 * and unlock the range.
952 */
953 uptodate = true;
954 goto next;
955 }
956
957 ret = btrfs_repair_one_sector(inode, failed_bbio,
958 bio_offset + offset, page, pgoff + offset,
959 btrfs_submit_data_read_bio);
960 if (!ret) {
961 /*
962 * We have submitted the read repair, the page release
963 * will be handled by the endio function of the
964 * submitted repair bio.
965 * Thus we don't need to do any thing here.
966 */
967 continue;
968 }
969 /*
970 * Continue on failed repair, otherwise the remaining sectors
971 * will not be properly unlocked.
972 */
973 next:
974 end_sector_io(page, start + offset, uptodate);
975 }
976 }
977
978 /* lots and lots of room for performance fixes in the end_bio funcs */
979
end_extent_writepage(struct page * page,int err,u64 start,u64 end)980 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
981 {
982 struct btrfs_inode *inode;
983 const bool uptodate = (err == 0);
984 int ret = 0;
985
986 ASSERT(page && page->mapping);
987 inode = BTRFS_I(page->mapping->host);
988 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
989
990 if (!uptodate) {
991 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
992 u32 len;
993
994 ASSERT(end + 1 - start <= U32_MAX);
995 len = end + 1 - start;
996
997 btrfs_page_clear_uptodate(fs_info, page, start, len);
998 btrfs_page_set_error(fs_info, page, start, len);
999 ret = err < 0 ? err : -EIO;
1000 mapping_set_error(page->mapping, ret);
1001 }
1002 }
1003
1004 /*
1005 * after a writepage IO is done, we need to:
1006 * clear the uptodate bits on error
1007 * clear the writeback bits in the extent tree for this IO
1008 * end_page_writeback if the page has no more pending IO
1009 *
1010 * Scheduling is not allowed, so the extent state tree is expected
1011 * to have one and only one object corresponding to this IO.
1012 */
end_bio_extent_writepage(struct btrfs_bio * bbio)1013 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
1014 {
1015 struct bio *bio = &bbio->bio;
1016 int error = blk_status_to_errno(bio->bi_status);
1017 struct bio_vec *bvec;
1018 u64 start;
1019 u64 end;
1020 struct bvec_iter_all iter_all;
1021 bool first_bvec = true;
1022
1023 ASSERT(!bio_flagged(bio, BIO_CLONED));
1024 bio_for_each_segment_all(bvec, bio, iter_all) {
1025 struct page *page = bvec->bv_page;
1026 struct inode *inode = page->mapping->host;
1027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1028 const u32 sectorsize = fs_info->sectorsize;
1029
1030 /* Our read/write should always be sector aligned. */
1031 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1032 btrfs_err(fs_info,
1033 "partial page write in btrfs with offset %u and length %u",
1034 bvec->bv_offset, bvec->bv_len);
1035 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
1036 btrfs_info(fs_info,
1037 "incomplete page write with offset %u and length %u",
1038 bvec->bv_offset, bvec->bv_len);
1039
1040 start = page_offset(page) + bvec->bv_offset;
1041 end = start + bvec->bv_len - 1;
1042
1043 if (first_bvec) {
1044 btrfs_record_physical_zoned(inode, start, bio);
1045 first_bvec = false;
1046 }
1047
1048 end_extent_writepage(page, error, start, end);
1049
1050 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
1051 }
1052
1053 bio_put(bio);
1054 }
1055
1056 /*
1057 * Record previously processed extent range
1058 *
1059 * For endio_readpage_release_extent() to handle a full extent range, reducing
1060 * the extent io operations.
1061 */
1062 struct processed_extent {
1063 struct btrfs_inode *inode;
1064 /* Start of the range in @inode */
1065 u64 start;
1066 /* End of the range in @inode */
1067 u64 end;
1068 bool uptodate;
1069 };
1070
1071 /*
1072 * Try to release processed extent range
1073 *
1074 * May not release the extent range right now if the current range is
1075 * contiguous to processed extent.
1076 *
1077 * Will release processed extent when any of @inode, @uptodate, the range is
1078 * no longer contiguous to the processed range.
1079 *
1080 * Passing @inode == NULL will force processed extent to be released.
1081 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)1082 static void endio_readpage_release_extent(struct processed_extent *processed,
1083 struct btrfs_inode *inode, u64 start, u64 end,
1084 bool uptodate)
1085 {
1086 struct extent_state *cached = NULL;
1087 struct extent_io_tree *tree;
1088
1089 /* The first extent, initialize @processed */
1090 if (!processed->inode)
1091 goto update;
1092
1093 /*
1094 * Contiguous to processed extent, just uptodate the end.
1095 *
1096 * Several things to notice:
1097 *
1098 * - bio can be merged as long as on-disk bytenr is contiguous
1099 * This means we can have page belonging to other inodes, thus need to
1100 * check if the inode still matches.
1101 * - bvec can contain range beyond current page for multi-page bvec
1102 * Thus we need to do processed->end + 1 >= start check
1103 */
1104 if (processed->inode == inode && processed->uptodate == uptodate &&
1105 processed->end + 1 >= start && end >= processed->end) {
1106 processed->end = end;
1107 return;
1108 }
1109
1110 tree = &processed->inode->io_tree;
1111 /*
1112 * Now we don't have range contiguous to the processed range, release
1113 * the processed range now.
1114 */
1115 unlock_extent_atomic(tree, processed->start, processed->end, &cached);
1116
1117 update:
1118 /* Update processed to current range */
1119 processed->inode = inode;
1120 processed->start = start;
1121 processed->end = end;
1122 processed->uptodate = uptodate;
1123 }
1124
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)1125 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1126 {
1127 ASSERT(PageLocked(page));
1128 if (!btrfs_is_subpage(fs_info, page))
1129 return;
1130
1131 ASSERT(PagePrivate(page));
1132 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1133 }
1134
1135 /*
1136 * Find extent buffer for a givne bytenr.
1137 *
1138 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1139 * in endio context.
1140 */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)1141 static struct extent_buffer *find_extent_buffer_readpage(
1142 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1143 {
1144 struct extent_buffer *eb;
1145
1146 /*
1147 * For regular sectorsize, we can use page->private to grab extent
1148 * buffer
1149 */
1150 if (fs_info->nodesize >= PAGE_SIZE) {
1151 ASSERT(PagePrivate(page) && page->private);
1152 return (struct extent_buffer *)page->private;
1153 }
1154
1155 /* For subpage case, we need to lookup buffer radix tree */
1156 rcu_read_lock();
1157 eb = radix_tree_lookup(&fs_info->buffer_radix,
1158 bytenr >> fs_info->sectorsize_bits);
1159 rcu_read_unlock();
1160 ASSERT(eb);
1161 return eb;
1162 }
1163
1164 /*
1165 * after a readpage IO is done, we need to:
1166 * clear the uptodate bits on error
1167 * set the uptodate bits if things worked
1168 * set the page up to date if all extents in the tree are uptodate
1169 * clear the lock bit in the extent tree
1170 * unlock the page if there are no other extents locked for it
1171 *
1172 * Scheduling is not allowed, so the extent state tree is expected
1173 * to have one and only one object corresponding to this IO.
1174 */
end_bio_extent_readpage(struct btrfs_bio * bbio)1175 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1176 {
1177 struct bio *bio = &bbio->bio;
1178 struct bio_vec *bvec;
1179 struct processed_extent processed = { 0 };
1180 /*
1181 * The offset to the beginning of a bio, since one bio can never be
1182 * larger than UINT_MAX, u32 here is enough.
1183 */
1184 u32 bio_offset = 0;
1185 int mirror;
1186 struct bvec_iter_all iter_all;
1187
1188 ASSERT(!bio_flagged(bio, BIO_CLONED));
1189 bio_for_each_segment_all(bvec, bio, iter_all) {
1190 bool uptodate = !bio->bi_status;
1191 struct page *page = bvec->bv_page;
1192 struct inode *inode = page->mapping->host;
1193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1194 const u32 sectorsize = fs_info->sectorsize;
1195 unsigned int error_bitmap = (unsigned int)-1;
1196 bool repair = false;
1197 u64 start;
1198 u64 end;
1199 u32 len;
1200
1201 btrfs_debug(fs_info,
1202 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1203 bio->bi_iter.bi_sector, bio->bi_status,
1204 bbio->mirror_num);
1205
1206 /*
1207 * We always issue full-sector reads, but if some block in a
1208 * page fails to read, blk_update_request() will advance
1209 * bv_offset and adjust bv_len to compensate. Print a warning
1210 * for unaligned offsets, and an error if they don't add up to
1211 * a full sector.
1212 */
1213 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1214 btrfs_err(fs_info,
1215 "partial page read in btrfs with offset %u and length %u",
1216 bvec->bv_offset, bvec->bv_len);
1217 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1218 sectorsize))
1219 btrfs_info(fs_info,
1220 "incomplete page read with offset %u and length %u",
1221 bvec->bv_offset, bvec->bv_len);
1222
1223 start = page_offset(page) + bvec->bv_offset;
1224 end = start + bvec->bv_len - 1;
1225 len = bvec->bv_len;
1226
1227 mirror = bbio->mirror_num;
1228 if (likely(uptodate)) {
1229 if (is_data_inode(inode)) {
1230 error_bitmap = btrfs_verify_data_csum(bbio,
1231 bio_offset, page, start, end);
1232 if (error_bitmap)
1233 uptodate = false;
1234 } else {
1235 if (btrfs_validate_metadata_buffer(bbio,
1236 page, start, end, mirror))
1237 uptodate = false;
1238 }
1239 }
1240
1241 if (likely(uptodate)) {
1242 loff_t i_size = i_size_read(inode);
1243 pgoff_t end_index = i_size >> PAGE_SHIFT;
1244
1245 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1246
1247 /*
1248 * Zero out the remaining part if this range straddles
1249 * i_size.
1250 *
1251 * Here we should only zero the range inside the bvec,
1252 * not touch anything else.
1253 *
1254 * NOTE: i_size is exclusive while end is inclusive.
1255 */
1256 if (page->index == end_index && i_size <= end) {
1257 u32 zero_start = max(offset_in_page(i_size),
1258 offset_in_page(start));
1259
1260 zero_user_segment(page, zero_start,
1261 offset_in_page(end) + 1);
1262 }
1263 } else if (is_data_inode(inode)) {
1264 /*
1265 * Only try to repair bios that actually made it to a
1266 * device. If the bio failed to be submitted mirror
1267 * is 0 and we need to fail it without retrying.
1268 *
1269 * This also includes the high level bios for compressed
1270 * extents - these never make it to a device and repair
1271 * is already handled on the lower compressed bio.
1272 */
1273 if (mirror > 0)
1274 repair = true;
1275 } else {
1276 struct extent_buffer *eb;
1277
1278 eb = find_extent_buffer_readpage(fs_info, page, start);
1279 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1280 eb->read_mirror = mirror;
1281 atomic_dec(&eb->io_pages);
1282 }
1283
1284 if (repair) {
1285 /*
1286 * submit_data_read_repair() will handle all the good
1287 * and bad sectors, we just continue to the next bvec.
1288 */
1289 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1290 error_bitmap);
1291 } else {
1292 /* Update page status and unlock */
1293 end_page_read(page, uptodate, start, len);
1294 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1295 start, end, PageUptodate(page));
1296 }
1297
1298 ASSERT(bio_offset + len > bio_offset);
1299 bio_offset += len;
1300
1301 }
1302 /* Release the last extent */
1303 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1304 btrfs_bio_free_csum(bbio);
1305 bio_put(bio);
1306 }
1307
1308 /**
1309 * Populate every free slot in a provided array with pages.
1310 *
1311 * @nr_pages: number of pages to allocate
1312 * @page_array: the array to fill with pages; any existing non-null entries in
1313 * the array will be skipped
1314 *
1315 * Return: 0 if all pages were able to be allocated;
1316 * -ENOMEM otherwise, and the caller is responsible for freeing all
1317 * non-null page pointers in the array.
1318 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)1319 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1320 {
1321 unsigned int allocated;
1322
1323 for (allocated = 0; allocated < nr_pages;) {
1324 unsigned int last = allocated;
1325
1326 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1327
1328 if (allocated == nr_pages)
1329 return 0;
1330
1331 /*
1332 * During this iteration, no page could be allocated, even
1333 * though alloc_pages_bulk_array() falls back to alloc_page()
1334 * if it could not bulk-allocate. So we must be out of memory.
1335 */
1336 if (allocated == last)
1337 return -ENOMEM;
1338
1339 memalloc_retry_wait(GFP_NOFS);
1340 }
1341 return 0;
1342 }
1343
1344 /**
1345 * Attempt to add a page to bio
1346 *
1347 * @bio_ctrl: record both the bio, and its bio_flags
1348 * @page: page to add to the bio
1349 * @disk_bytenr: offset of the new bio or to check whether we are adding
1350 * a contiguous page to the previous one
1351 * @size: portion of page that we want to write
1352 * @pg_offset: starting offset in the page
1353 * @compress_type: compression type of the current bio to see if we can merge them
1354 *
1355 * Attempt to add a page to bio considering stripe alignment etc.
1356 *
1357 * Return >= 0 for the number of bytes added to the bio.
1358 * Can return 0 if the current bio is already at stripe/zone boundary.
1359 * Return <0 for error.
1360 */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,enum btrfs_compression_type compress_type)1361 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1362 struct page *page,
1363 u64 disk_bytenr, unsigned int size,
1364 unsigned int pg_offset,
1365 enum btrfs_compression_type compress_type)
1366 {
1367 struct bio *bio = bio_ctrl->bio;
1368 u32 bio_size = bio->bi_iter.bi_size;
1369 u32 real_size;
1370 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1371 bool contig = false;
1372 int ret;
1373
1374 ASSERT(bio);
1375 /* The limit should be calculated when bio_ctrl->bio is allocated */
1376 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1377 if (bio_ctrl->compress_type != compress_type)
1378 return 0;
1379
1380
1381 if (bio->bi_iter.bi_size == 0) {
1382 /* We can always add a page into an empty bio. */
1383 contig = true;
1384 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1385 struct bio_vec *bvec = bio_last_bvec_all(bio);
1386
1387 /*
1388 * The contig check requires the following conditions to be met:
1389 * 1) The pages are belonging to the same inode
1390 * This is implied by the call chain.
1391 *
1392 * 2) The range has adjacent logical bytenr
1393 *
1394 * 3) The range has adjacent file offset
1395 * This is required for the usage of btrfs_bio->file_offset.
1396 */
1397 if (bio_end_sector(bio) == sector &&
1398 page_offset(bvec->bv_page) + bvec->bv_offset +
1399 bvec->bv_len == page_offset(page) + pg_offset)
1400 contig = true;
1401 } else {
1402 /*
1403 * For compression, all IO should have its logical bytenr
1404 * set to the starting bytenr of the compressed extent.
1405 */
1406 contig = bio->bi_iter.bi_sector == sector;
1407 }
1408
1409 if (!contig)
1410 return 0;
1411
1412 real_size = min(bio_ctrl->len_to_oe_boundary,
1413 bio_ctrl->len_to_stripe_boundary) - bio_size;
1414 real_size = min(real_size, size);
1415
1416 /*
1417 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1418 * bio will still execute its endio function on the page!
1419 */
1420 if (real_size == 0)
1421 return 0;
1422
1423 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1424 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1425 else
1426 ret = bio_add_page(bio, page, real_size, pg_offset);
1427
1428 return ret;
1429 }
1430
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)1431 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1432 struct btrfs_inode *inode, u64 file_offset)
1433 {
1434 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1435 struct btrfs_io_geometry geom;
1436 struct btrfs_ordered_extent *ordered;
1437 struct extent_map *em;
1438 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1439 int ret;
1440
1441 /*
1442 * Pages for compressed extent are never submitted to disk directly,
1443 * thus it has no real boundary, just set them to U32_MAX.
1444 *
1445 * The split happens for real compressed bio, which happens in
1446 * btrfs_submit_compressed_read/write().
1447 */
1448 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1449 bio_ctrl->len_to_oe_boundary = U32_MAX;
1450 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1451 return 0;
1452 }
1453 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1454 if (IS_ERR(em))
1455 return PTR_ERR(em);
1456 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1457 logical, &geom);
1458 free_extent_map(em);
1459 if (ret < 0) {
1460 return ret;
1461 }
1462 if (geom.len > U32_MAX)
1463 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1464 else
1465 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1466
1467 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1468 bio_ctrl->len_to_oe_boundary = U32_MAX;
1469 return 0;
1470 }
1471
1472 /* Ordered extent not yet created, so we're good */
1473 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1474 if (!ordered) {
1475 bio_ctrl->len_to_oe_boundary = U32_MAX;
1476 return 0;
1477 }
1478
1479 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1480 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1481 btrfs_put_ordered_extent(ordered);
1482 return 0;
1483 }
1484
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,blk_opf_t opf,u64 disk_bytenr,u32 offset,u64 file_offset,enum btrfs_compression_type compress_type)1485 static int alloc_new_bio(struct btrfs_inode *inode,
1486 struct btrfs_bio_ctrl *bio_ctrl,
1487 struct writeback_control *wbc,
1488 blk_opf_t opf,
1489 u64 disk_bytenr, u32 offset, u64 file_offset,
1490 enum btrfs_compression_type compress_type)
1491 {
1492 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1493 struct bio *bio;
1494 int ret;
1495
1496 ASSERT(bio_ctrl->end_io_func);
1497
1498 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1499 /*
1500 * For compressed page range, its disk_bytenr is always @disk_bytenr
1501 * passed in, no matter if we have added any range into previous bio.
1502 */
1503 if (compress_type != BTRFS_COMPRESS_NONE)
1504 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1505 else
1506 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1507 bio_ctrl->bio = bio;
1508 bio_ctrl->compress_type = compress_type;
1509 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1510 if (ret < 0)
1511 goto error;
1512
1513 if (wbc) {
1514 /*
1515 * For Zone append we need the correct block_device that we are
1516 * going to write to set in the bio to be able to respect the
1517 * hardware limitation. Look it up here:
1518 */
1519 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1520 struct btrfs_device *dev;
1521
1522 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1523 fs_info->sectorsize);
1524 if (IS_ERR(dev)) {
1525 ret = PTR_ERR(dev);
1526 goto error;
1527 }
1528
1529 bio_set_dev(bio, dev->bdev);
1530 } else {
1531 /*
1532 * Otherwise pick the last added device to support
1533 * cgroup writeback. For multi-device file systems this
1534 * means blk-cgroup policies have to always be set on the
1535 * last added/replaced device. This is a bit odd but has
1536 * been like that for a long time.
1537 */
1538 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1539 }
1540 wbc_init_bio(wbc, bio);
1541 } else {
1542 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1543 }
1544 return 0;
1545 error:
1546 bio_ctrl->bio = NULL;
1547 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1548 return ret;
1549 }
1550
1551 /*
1552 * @opf: bio REQ_OP_* and REQ_* flags as one value
1553 * @wbc: optional writeback control for io accounting
1554 * @disk_bytenr: logical bytenr where the write will be
1555 * @page: page to add to the bio
1556 * @size: portion of page that we want to write to
1557 * @pg_offset: offset of the new bio or to check whether we are adding
1558 * a contiguous page to the previous one
1559 * @compress_type: compress type for current bio
1560 *
1561 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1562 * new one in @bio_ctrl->bio.
1563 * The mirror number for this IO should already be initizlied in
1564 * @bio_ctrl->mirror_num.
1565 */
submit_extent_page(blk_opf_t opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset,enum btrfs_compression_type compress_type,bool force_bio_submit)1566 static int submit_extent_page(blk_opf_t opf,
1567 struct writeback_control *wbc,
1568 struct btrfs_bio_ctrl *bio_ctrl,
1569 u64 disk_bytenr, struct page *page,
1570 size_t size, unsigned long pg_offset,
1571 enum btrfs_compression_type compress_type,
1572 bool force_bio_submit)
1573 {
1574 int ret = 0;
1575 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1576 unsigned int cur = pg_offset;
1577
1578 ASSERT(bio_ctrl);
1579
1580 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1581 pg_offset + size <= PAGE_SIZE);
1582
1583 ASSERT(bio_ctrl->end_io_func);
1584
1585 if (force_bio_submit)
1586 submit_one_bio(bio_ctrl);
1587
1588 while (cur < pg_offset + size) {
1589 u32 offset = cur - pg_offset;
1590 int added;
1591
1592 /* Allocate new bio if needed */
1593 if (!bio_ctrl->bio) {
1594 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1595 disk_bytenr, offset,
1596 page_offset(page) + cur,
1597 compress_type);
1598 if (ret < 0)
1599 return ret;
1600 }
1601 /*
1602 * We must go through btrfs_bio_add_page() to ensure each
1603 * page range won't cross various boundaries.
1604 */
1605 if (compress_type != BTRFS_COMPRESS_NONE)
1606 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1607 size - offset, pg_offset + offset,
1608 compress_type);
1609 else
1610 added = btrfs_bio_add_page(bio_ctrl, page,
1611 disk_bytenr + offset, size - offset,
1612 pg_offset + offset, compress_type);
1613
1614 /* Metadata page range should never be split */
1615 if (!is_data_inode(&inode->vfs_inode))
1616 ASSERT(added == 0 || added == size - offset);
1617
1618 /* At least we added some page, update the account */
1619 if (wbc && added)
1620 wbc_account_cgroup_owner(wbc, page, added);
1621
1622 /* We have reached boundary, submit right now */
1623 if (added < size - offset) {
1624 /* The bio should contain some page(s) */
1625 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1626 submit_one_bio(bio_ctrl);
1627 }
1628 cur += added;
1629 }
1630 return 0;
1631 }
1632
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)1633 static int attach_extent_buffer_page(struct extent_buffer *eb,
1634 struct page *page,
1635 struct btrfs_subpage *prealloc)
1636 {
1637 struct btrfs_fs_info *fs_info = eb->fs_info;
1638 int ret = 0;
1639
1640 /*
1641 * If the page is mapped to btree inode, we should hold the private
1642 * lock to prevent race.
1643 * For cloned or dummy extent buffers, their pages are not mapped and
1644 * will not race with any other ebs.
1645 */
1646 if (page->mapping)
1647 lockdep_assert_held(&page->mapping->private_lock);
1648
1649 if (fs_info->nodesize >= PAGE_SIZE) {
1650 if (!PagePrivate(page))
1651 attach_page_private(page, eb);
1652 else
1653 WARN_ON(page->private != (unsigned long)eb);
1654 return 0;
1655 }
1656
1657 /* Already mapped, just free prealloc */
1658 if (PagePrivate(page)) {
1659 btrfs_free_subpage(prealloc);
1660 return 0;
1661 }
1662
1663 if (prealloc)
1664 /* Has preallocated memory for subpage */
1665 attach_page_private(page, prealloc);
1666 else
1667 /* Do new allocation to attach subpage */
1668 ret = btrfs_attach_subpage(fs_info, page,
1669 BTRFS_SUBPAGE_METADATA);
1670 return ret;
1671 }
1672
set_page_extent_mapped(struct page * page)1673 int set_page_extent_mapped(struct page *page)
1674 {
1675 struct btrfs_fs_info *fs_info;
1676
1677 ASSERT(page->mapping);
1678
1679 if (PagePrivate(page))
1680 return 0;
1681
1682 fs_info = btrfs_sb(page->mapping->host->i_sb);
1683
1684 if (btrfs_is_subpage(fs_info, page))
1685 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1686
1687 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1688 return 0;
1689 }
1690
clear_page_extent_mapped(struct page * page)1691 void clear_page_extent_mapped(struct page *page)
1692 {
1693 struct btrfs_fs_info *fs_info;
1694
1695 ASSERT(page->mapping);
1696
1697 if (!PagePrivate(page))
1698 return;
1699
1700 fs_info = btrfs_sb(page->mapping->host->i_sb);
1701 if (btrfs_is_subpage(fs_info, page))
1702 return btrfs_detach_subpage(fs_info, page);
1703
1704 detach_page_private(page);
1705 }
1706
1707 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)1708 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1709 u64 start, u64 len, struct extent_map **em_cached)
1710 {
1711 struct extent_map *em;
1712
1713 if (em_cached && *em_cached) {
1714 em = *em_cached;
1715 if (extent_map_in_tree(em) && start >= em->start &&
1716 start < extent_map_end(em)) {
1717 refcount_inc(&em->refs);
1718 return em;
1719 }
1720
1721 free_extent_map(em);
1722 *em_cached = NULL;
1723 }
1724
1725 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1726 if (em_cached && !IS_ERR(em)) {
1727 BUG_ON(*em_cached);
1728 refcount_inc(&em->refs);
1729 *em_cached = em;
1730 }
1731 return em;
1732 }
1733 /*
1734 * basic readpage implementation. Locked extent state structs are inserted
1735 * into the tree that are removed when the IO is done (by the end_io
1736 * handlers)
1737 * XXX JDM: This needs looking at to ensure proper page locking
1738 * return 0 on success, otherwise return error
1739 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,blk_opf_t read_flags,u64 * prev_em_start)1740 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1741 struct btrfs_bio_ctrl *bio_ctrl,
1742 blk_opf_t read_flags, u64 *prev_em_start)
1743 {
1744 struct inode *inode = page->mapping->host;
1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746 u64 start = page_offset(page);
1747 const u64 end = start + PAGE_SIZE - 1;
1748 u64 cur = start;
1749 u64 extent_offset;
1750 u64 last_byte = i_size_read(inode);
1751 u64 block_start;
1752 struct extent_map *em;
1753 int ret = 0;
1754 size_t pg_offset = 0;
1755 size_t iosize;
1756 size_t blocksize = inode->i_sb->s_blocksize;
1757 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1758
1759 ret = set_page_extent_mapped(page);
1760 if (ret < 0) {
1761 unlock_extent(tree, start, end, NULL);
1762 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1763 unlock_page(page);
1764 goto out;
1765 }
1766
1767 if (page->index == last_byte >> PAGE_SHIFT) {
1768 size_t zero_offset = offset_in_page(last_byte);
1769
1770 if (zero_offset) {
1771 iosize = PAGE_SIZE - zero_offset;
1772 memzero_page(page, zero_offset, iosize);
1773 }
1774 }
1775 bio_ctrl->end_io_func = end_bio_extent_readpage;
1776 begin_page_read(fs_info, page);
1777 while (cur <= end) {
1778 unsigned long this_bio_flag = 0;
1779 bool force_bio_submit = false;
1780 u64 disk_bytenr;
1781
1782 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1783 if (cur >= last_byte) {
1784 struct extent_state *cached = NULL;
1785
1786 iosize = PAGE_SIZE - pg_offset;
1787 memzero_page(page, pg_offset, iosize);
1788 set_extent_uptodate(tree, cur, cur + iosize - 1,
1789 &cached, GFP_NOFS);
1790 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1791 end_page_read(page, true, cur, iosize);
1792 break;
1793 }
1794 em = __get_extent_map(inode, page, pg_offset, cur,
1795 end - cur + 1, em_cached);
1796 if (IS_ERR(em)) {
1797 unlock_extent(tree, cur, end, NULL);
1798 end_page_read(page, false, cur, end + 1 - cur);
1799 ret = PTR_ERR(em);
1800 break;
1801 }
1802 extent_offset = cur - em->start;
1803 BUG_ON(extent_map_end(em) <= cur);
1804 BUG_ON(end < cur);
1805
1806 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1807 this_bio_flag = em->compress_type;
1808
1809 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1810 iosize = ALIGN(iosize, blocksize);
1811 if (this_bio_flag != BTRFS_COMPRESS_NONE)
1812 disk_bytenr = em->block_start;
1813 else
1814 disk_bytenr = em->block_start + extent_offset;
1815 block_start = em->block_start;
1816 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1817 block_start = EXTENT_MAP_HOLE;
1818
1819 /*
1820 * If we have a file range that points to a compressed extent
1821 * and it's followed by a consecutive file range that points
1822 * to the same compressed extent (possibly with a different
1823 * offset and/or length, so it either points to the whole extent
1824 * or only part of it), we must make sure we do not submit a
1825 * single bio to populate the pages for the 2 ranges because
1826 * this makes the compressed extent read zero out the pages
1827 * belonging to the 2nd range. Imagine the following scenario:
1828 *
1829 * File layout
1830 * [0 - 8K] [8K - 24K]
1831 * | |
1832 * | |
1833 * points to extent X, points to extent X,
1834 * offset 4K, length of 8K offset 0, length 16K
1835 *
1836 * [extent X, compressed length = 4K uncompressed length = 16K]
1837 *
1838 * If the bio to read the compressed extent covers both ranges,
1839 * it will decompress extent X into the pages belonging to the
1840 * first range and then it will stop, zeroing out the remaining
1841 * pages that belong to the other range that points to extent X.
1842 * So here we make sure we submit 2 bios, one for the first
1843 * range and another one for the third range. Both will target
1844 * the same physical extent from disk, but we can't currently
1845 * make the compressed bio endio callback populate the pages
1846 * for both ranges because each compressed bio is tightly
1847 * coupled with a single extent map, and each range can have
1848 * an extent map with a different offset value relative to the
1849 * uncompressed data of our extent and different lengths. This
1850 * is a corner case so we prioritize correctness over
1851 * non-optimal behavior (submitting 2 bios for the same extent).
1852 */
1853 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1854 prev_em_start && *prev_em_start != (u64)-1 &&
1855 *prev_em_start != em->start)
1856 force_bio_submit = true;
1857
1858 if (prev_em_start)
1859 *prev_em_start = em->start;
1860
1861 free_extent_map(em);
1862 em = NULL;
1863
1864 /* we've found a hole, just zero and go on */
1865 if (block_start == EXTENT_MAP_HOLE) {
1866 struct extent_state *cached = NULL;
1867
1868 memzero_page(page, pg_offset, iosize);
1869
1870 set_extent_uptodate(tree, cur, cur + iosize - 1,
1871 &cached, GFP_NOFS);
1872 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1873 end_page_read(page, true, cur, iosize);
1874 cur = cur + iosize;
1875 pg_offset += iosize;
1876 continue;
1877 }
1878 /* the get_extent function already copied into the page */
1879 if (block_start == EXTENT_MAP_INLINE) {
1880 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1881 end_page_read(page, true, cur, iosize);
1882 cur = cur + iosize;
1883 pg_offset += iosize;
1884 continue;
1885 }
1886
1887 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1888 bio_ctrl, disk_bytenr, page, iosize,
1889 pg_offset, this_bio_flag,
1890 force_bio_submit);
1891 if (ret) {
1892 /*
1893 * We have to unlock the remaining range, or the page
1894 * will never be unlocked.
1895 */
1896 unlock_extent(tree, cur, end, NULL);
1897 end_page_read(page, false, cur, end + 1 - cur);
1898 goto out;
1899 }
1900 cur = cur + iosize;
1901 pg_offset += iosize;
1902 }
1903 out:
1904 return ret;
1905 }
1906
btrfs_read_folio(struct file * file,struct folio * folio)1907 int btrfs_read_folio(struct file *file, struct folio *folio)
1908 {
1909 struct page *page = &folio->page;
1910 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1911 u64 start = page_offset(page);
1912 u64 end = start + PAGE_SIZE - 1;
1913 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1914 int ret;
1915
1916 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1917
1918 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1919 /*
1920 * If btrfs_do_readpage() failed we will want to submit the assembled
1921 * bio to do the cleanup.
1922 */
1923 submit_one_bio(&bio_ctrl);
1924 return ret;
1925 }
1926
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1927 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1928 u64 start, u64 end,
1929 struct extent_map **em_cached,
1930 struct btrfs_bio_ctrl *bio_ctrl,
1931 u64 *prev_em_start)
1932 {
1933 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1934 int index;
1935
1936 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1937
1938 for (index = 0; index < nr_pages; index++) {
1939 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1940 REQ_RAHEAD, prev_em_start);
1941 put_page(pages[index]);
1942 }
1943 }
1944
1945 /*
1946 * helper for __extent_writepage, doing all of the delayed allocation setup.
1947 *
1948 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1949 * to write the page (copy into inline extent). In this case the IO has
1950 * been started and the page is already unlocked.
1951 *
1952 * This returns 0 if all went well (page still locked)
1953 * This returns < 0 if there were errors (page still locked)
1954 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1955 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1956 struct page *page, struct writeback_control *wbc)
1957 {
1958 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1959 u64 delalloc_start = page_offset(page);
1960 u64 delalloc_to_write = 0;
1961 /* How many pages are started by btrfs_run_delalloc_range() */
1962 unsigned long nr_written = 0;
1963 int ret;
1964 int page_started = 0;
1965
1966 while (delalloc_start < page_end) {
1967 u64 delalloc_end = page_end;
1968 bool found;
1969
1970 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1971 &delalloc_start,
1972 &delalloc_end);
1973 if (!found) {
1974 delalloc_start = delalloc_end + 1;
1975 continue;
1976 }
1977 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1978 delalloc_end, &page_started, &nr_written, wbc);
1979 if (ret) {
1980 btrfs_page_set_error(inode->root->fs_info, page,
1981 page_offset(page), PAGE_SIZE);
1982 return ret;
1983 }
1984 /*
1985 * delalloc_end is already one less than the total length, so
1986 * we don't subtract one from PAGE_SIZE
1987 */
1988 delalloc_to_write += (delalloc_end - delalloc_start +
1989 PAGE_SIZE) >> PAGE_SHIFT;
1990 delalloc_start = delalloc_end + 1;
1991 }
1992 if (wbc->nr_to_write < delalloc_to_write) {
1993 int thresh = 8192;
1994
1995 if (delalloc_to_write < thresh * 2)
1996 thresh = delalloc_to_write;
1997 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1998 thresh);
1999 }
2000
2001 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
2002 if (page_started) {
2003 /*
2004 * We've unlocked the page, so we can't update the mapping's
2005 * writeback index, just update nr_to_write.
2006 */
2007 wbc->nr_to_write -= nr_written;
2008 return 1;
2009 }
2010
2011 return 0;
2012 }
2013
2014 /*
2015 * Find the first byte we need to write.
2016 *
2017 * For subpage, one page can contain several sectors, and
2018 * __extent_writepage_io() will just grab all extent maps in the page
2019 * range and try to submit all non-inline/non-compressed extents.
2020 *
2021 * This is a big problem for subpage, we shouldn't re-submit already written
2022 * data at all.
2023 * This function will lookup subpage dirty bit to find which range we really
2024 * need to submit.
2025 *
2026 * Return the next dirty range in [@start, @end).
2027 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
2028 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)2029 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
2030 struct page *page, u64 *start, u64 *end)
2031 {
2032 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2033 struct btrfs_subpage_info *spi = fs_info->subpage_info;
2034 u64 orig_start = *start;
2035 /* Declare as unsigned long so we can use bitmap ops */
2036 unsigned long flags;
2037 int range_start_bit;
2038 int range_end_bit;
2039
2040 /*
2041 * For regular sector size == page size case, since one page only
2042 * contains one sector, we return the page offset directly.
2043 */
2044 if (!btrfs_is_subpage(fs_info, page)) {
2045 *start = page_offset(page);
2046 *end = page_offset(page) + PAGE_SIZE;
2047 return;
2048 }
2049
2050 range_start_bit = spi->dirty_offset +
2051 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
2052
2053 /* We should have the page locked, but just in case */
2054 spin_lock_irqsave(&subpage->lock, flags);
2055 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
2056 spi->dirty_offset + spi->bitmap_nr_bits);
2057 spin_unlock_irqrestore(&subpage->lock, flags);
2058
2059 range_start_bit -= spi->dirty_offset;
2060 range_end_bit -= spi->dirty_offset;
2061
2062 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
2063 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
2064 }
2065
2066 /*
2067 * helper for __extent_writepage. This calls the writepage start hooks,
2068 * and does the loop to map the page into extents and bios.
2069 *
2070 * We return 1 if the IO is started and the page is unlocked,
2071 * 0 if all went well (page still locked)
2072 * < 0 if there were errors (page still locked)
2073 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,int * nr_ret)2074 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
2075 struct page *page,
2076 struct writeback_control *wbc,
2077 struct extent_page_data *epd,
2078 loff_t i_size,
2079 int *nr_ret)
2080 {
2081 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2082 u64 cur = page_offset(page);
2083 u64 end = cur + PAGE_SIZE - 1;
2084 u64 extent_offset;
2085 u64 block_start;
2086 struct extent_map *em;
2087 int saved_ret = 0;
2088 int ret = 0;
2089 int nr = 0;
2090 enum req_op op = REQ_OP_WRITE;
2091 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
2092 bool has_error = false;
2093 bool compressed;
2094
2095 ret = btrfs_writepage_cow_fixup(page);
2096 if (ret) {
2097 /* Fixup worker will requeue */
2098 redirty_page_for_writepage(wbc, page);
2099 unlock_page(page);
2100 return 1;
2101 }
2102
2103 /*
2104 * we don't want to touch the inode after unlocking the page,
2105 * so we update the mapping writeback index now
2106 */
2107 wbc->nr_to_write--;
2108
2109 epd->bio_ctrl.end_io_func = end_bio_extent_writepage;
2110 while (cur <= end) {
2111 u64 disk_bytenr;
2112 u64 em_end;
2113 u64 dirty_range_start = cur;
2114 u64 dirty_range_end;
2115 u32 iosize;
2116
2117 if (cur >= i_size) {
2118 btrfs_writepage_endio_finish_ordered(inode, page, cur,
2119 end, true);
2120 /*
2121 * This range is beyond i_size, thus we don't need to
2122 * bother writing back.
2123 * But we still need to clear the dirty subpage bit, or
2124 * the next time the page gets dirtied, we will try to
2125 * writeback the sectors with subpage dirty bits,
2126 * causing writeback without ordered extent.
2127 */
2128 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2129 break;
2130 }
2131
2132 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2133 &dirty_range_end);
2134 if (cur < dirty_range_start) {
2135 cur = dirty_range_start;
2136 continue;
2137 }
2138
2139 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2140 if (IS_ERR(em)) {
2141 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2142 ret = PTR_ERR_OR_ZERO(em);
2143 has_error = true;
2144 if (!saved_ret)
2145 saved_ret = ret;
2146 break;
2147 }
2148
2149 extent_offset = cur - em->start;
2150 em_end = extent_map_end(em);
2151 ASSERT(cur <= em_end);
2152 ASSERT(cur < end);
2153 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2154 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2155 block_start = em->block_start;
2156 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2157 disk_bytenr = em->block_start + extent_offset;
2158
2159 /*
2160 * Note that em_end from extent_map_end() and dirty_range_end from
2161 * find_next_dirty_byte() are all exclusive
2162 */
2163 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2164
2165 if (btrfs_use_zone_append(inode, em->block_start))
2166 op = REQ_OP_ZONE_APPEND;
2167
2168 free_extent_map(em);
2169 em = NULL;
2170
2171 /*
2172 * compressed and inline extents are written through other
2173 * paths in the FS
2174 */
2175 if (compressed || block_start == EXTENT_MAP_HOLE ||
2176 block_start == EXTENT_MAP_INLINE) {
2177 if (compressed)
2178 nr++;
2179 else
2180 btrfs_writepage_endio_finish_ordered(inode,
2181 page, cur, cur + iosize - 1, true);
2182 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2183 cur += iosize;
2184 continue;
2185 }
2186
2187 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2188 if (!PageWriteback(page)) {
2189 btrfs_err(inode->root->fs_info,
2190 "page %lu not writeback, cur %llu end %llu",
2191 page->index, cur, end);
2192 }
2193
2194 /*
2195 * Although the PageDirty bit is cleared before entering this
2196 * function, subpage dirty bit is not cleared.
2197 * So clear subpage dirty bit here so next time we won't submit
2198 * page for range already written to disk.
2199 */
2200 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2201
2202 ret = submit_extent_page(op | write_flags, wbc,
2203 &epd->bio_ctrl, disk_bytenr,
2204 page, iosize,
2205 cur - page_offset(page),
2206 0, false);
2207 if (ret) {
2208 has_error = true;
2209 if (!saved_ret)
2210 saved_ret = ret;
2211
2212 btrfs_page_set_error(fs_info, page, cur, iosize);
2213 if (PageWriteback(page))
2214 btrfs_page_clear_writeback(fs_info, page, cur,
2215 iosize);
2216 }
2217
2218 cur += iosize;
2219 nr++;
2220 }
2221 /*
2222 * If we finish without problem, we should not only clear page dirty,
2223 * but also empty subpage dirty bits
2224 */
2225 if (!has_error)
2226 btrfs_page_assert_not_dirty(fs_info, page);
2227 else
2228 ret = saved_ret;
2229 *nr_ret = nr;
2230 return ret;
2231 }
2232
2233 /*
2234 * the writepage semantics are similar to regular writepage. extent
2235 * records are inserted to lock ranges in the tree, and as dirty areas
2236 * are found, they are marked writeback. Then the lock bits are removed
2237 * and the end_io handler clears the writeback ranges
2238 *
2239 * Return 0 if everything goes well.
2240 * Return <0 for error.
2241 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2242 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2243 struct extent_page_data *epd)
2244 {
2245 struct folio *folio = page_folio(page);
2246 struct inode *inode = page->mapping->host;
2247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2248 const u64 page_start = page_offset(page);
2249 const u64 page_end = page_start + PAGE_SIZE - 1;
2250 int ret;
2251 int nr = 0;
2252 size_t pg_offset;
2253 loff_t i_size = i_size_read(inode);
2254 unsigned long end_index = i_size >> PAGE_SHIFT;
2255
2256 trace___extent_writepage(page, inode, wbc);
2257
2258 WARN_ON(!PageLocked(page));
2259
2260 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2261 page_offset(page), PAGE_SIZE);
2262
2263 pg_offset = offset_in_page(i_size);
2264 if (page->index > end_index ||
2265 (page->index == end_index && !pg_offset)) {
2266 folio_invalidate(folio, 0, folio_size(folio));
2267 folio_unlock(folio);
2268 return 0;
2269 }
2270
2271 if (page->index == end_index)
2272 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2273
2274 ret = set_page_extent_mapped(page);
2275 if (ret < 0) {
2276 SetPageError(page);
2277 goto done;
2278 }
2279
2280 if (!epd->extent_locked) {
2281 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2282 if (ret == 1)
2283 return 0;
2284 if (ret)
2285 goto done;
2286 }
2287
2288 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
2289 &nr);
2290 if (ret == 1)
2291 return 0;
2292
2293 done:
2294 if (nr == 0) {
2295 /* make sure the mapping tag for page dirty gets cleared */
2296 set_page_writeback(page);
2297 end_page_writeback(page);
2298 }
2299 /*
2300 * Here we used to have a check for PageError() and then set @ret and
2301 * call end_extent_writepage().
2302 *
2303 * But in fact setting @ret here will cause different error paths
2304 * between subpage and regular sectorsize.
2305 *
2306 * For regular page size, we never submit current page, but only add
2307 * current page to current bio.
2308 * The bio submission can only happen in next page.
2309 * Thus if we hit the PageError() branch, @ret is already set to
2310 * non-zero value and will not get updated for regular sectorsize.
2311 *
2312 * But for subpage case, it's possible we submit part of current page,
2313 * thus can get PageError() set by submitted bio of the same page,
2314 * while our @ret is still 0.
2315 *
2316 * So here we unify the behavior and don't set @ret.
2317 * Error can still be properly passed to higher layer as page will
2318 * be set error, here we just don't handle the IO failure.
2319 *
2320 * NOTE: This is just a hotfix for subpage.
2321 * The root fix will be properly ending ordered extent when we hit
2322 * an error during writeback.
2323 *
2324 * But that needs a bigger refactoring, as we not only need to grab the
2325 * submitted OE, but also need to know exactly at which bytenr we hit
2326 * the error.
2327 * Currently the full page based __extent_writepage_io() is not
2328 * capable of that.
2329 */
2330 if (PageError(page))
2331 end_extent_writepage(page, ret, page_start, page_end);
2332 if (epd->extent_locked) {
2333 /*
2334 * If epd->extent_locked, it's from extent_write_locked_range(),
2335 * the page can either be locked by lock_page() or
2336 * process_one_page().
2337 * Let btrfs_page_unlock_writer() handle both cases.
2338 */
2339 ASSERT(wbc);
2340 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2341 wbc->range_end + 1 - wbc->range_start);
2342 } else {
2343 unlock_page(page);
2344 }
2345 ASSERT(ret <= 0);
2346 return ret;
2347 }
2348
wait_on_extent_buffer_writeback(struct extent_buffer * eb)2349 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2350 {
2351 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2352 TASK_UNINTERRUPTIBLE);
2353 }
2354
end_extent_buffer_writeback(struct extent_buffer * eb)2355 static void end_extent_buffer_writeback(struct extent_buffer *eb)
2356 {
2357 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2358 smp_mb__after_atomic();
2359 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2360 }
2361
2362 /*
2363 * Lock extent buffer status and pages for writeback.
2364 *
2365 * May try to flush write bio if we can't get the lock.
2366 *
2367 * Return 0 if the extent buffer doesn't need to be submitted.
2368 * (E.g. the extent buffer is not dirty)
2369 * Return >0 is the extent buffer is submitted to bio.
2370 * Return <0 if something went wrong, no page is locked.
2371 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)2372 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2373 struct extent_page_data *epd)
2374 {
2375 struct btrfs_fs_info *fs_info = eb->fs_info;
2376 int i, num_pages;
2377 int flush = 0;
2378 int ret = 0;
2379
2380 if (!btrfs_try_tree_write_lock(eb)) {
2381 submit_write_bio(epd, 0);
2382 flush = 1;
2383 btrfs_tree_lock(eb);
2384 }
2385
2386 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2387 btrfs_tree_unlock(eb);
2388 if (!epd->sync_io)
2389 return 0;
2390 if (!flush) {
2391 submit_write_bio(epd, 0);
2392 flush = 1;
2393 }
2394 while (1) {
2395 wait_on_extent_buffer_writeback(eb);
2396 btrfs_tree_lock(eb);
2397 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2398 break;
2399 btrfs_tree_unlock(eb);
2400 }
2401 }
2402
2403 /*
2404 * We need to do this to prevent races in people who check if the eb is
2405 * under IO since we can end up having no IO bits set for a short period
2406 * of time.
2407 */
2408 spin_lock(&eb->refs_lock);
2409 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2410 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2411 spin_unlock(&eb->refs_lock);
2412 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2413 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2414 -eb->len,
2415 fs_info->dirty_metadata_batch);
2416 ret = 1;
2417 } else {
2418 spin_unlock(&eb->refs_lock);
2419 }
2420
2421 btrfs_tree_unlock(eb);
2422
2423 /*
2424 * Either we don't need to submit any tree block, or we're submitting
2425 * subpage eb.
2426 * Subpage metadata doesn't use page locking at all, so we can skip
2427 * the page locking.
2428 */
2429 if (!ret || fs_info->nodesize < PAGE_SIZE)
2430 return ret;
2431
2432 num_pages = num_extent_pages(eb);
2433 for (i = 0; i < num_pages; i++) {
2434 struct page *p = eb->pages[i];
2435
2436 if (!trylock_page(p)) {
2437 if (!flush) {
2438 submit_write_bio(epd, 0);
2439 flush = 1;
2440 }
2441 lock_page(p);
2442 }
2443 }
2444
2445 return ret;
2446 }
2447
set_btree_ioerr(struct page * page,struct extent_buffer * eb)2448 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2449 {
2450 struct btrfs_fs_info *fs_info = eb->fs_info;
2451
2452 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2453 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2454 return;
2455
2456 /*
2457 * A read may stumble upon this buffer later, make sure that it gets an
2458 * error and knows there was an error.
2459 */
2460 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2461
2462 /*
2463 * We need to set the mapping with the io error as well because a write
2464 * error will flip the file system readonly, and then syncfs() will
2465 * return a 0 because we are readonly if we don't modify the err seq for
2466 * the superblock.
2467 */
2468 mapping_set_error(page->mapping, -EIO);
2469
2470 /*
2471 * If we error out, we should add back the dirty_metadata_bytes
2472 * to make it consistent.
2473 */
2474 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2475 eb->len, fs_info->dirty_metadata_batch);
2476
2477 /*
2478 * If writeback for a btree extent that doesn't belong to a log tree
2479 * failed, increment the counter transaction->eb_write_errors.
2480 * We do this because while the transaction is running and before it's
2481 * committing (when we call filemap_fdata[write|wait]_range against
2482 * the btree inode), we might have
2483 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2484 * returns an error or an error happens during writeback, when we're
2485 * committing the transaction we wouldn't know about it, since the pages
2486 * can be no longer dirty nor marked anymore for writeback (if a
2487 * subsequent modification to the extent buffer didn't happen before the
2488 * transaction commit), which makes filemap_fdata[write|wait]_range not
2489 * able to find the pages tagged with SetPageError at transaction
2490 * commit time. So if this happens we must abort the transaction,
2491 * otherwise we commit a super block with btree roots that point to
2492 * btree nodes/leafs whose content on disk is invalid - either garbage
2493 * or the content of some node/leaf from a past generation that got
2494 * cowed or deleted and is no longer valid.
2495 *
2496 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2497 * not be enough - we need to distinguish between log tree extents vs
2498 * non-log tree extents, and the next filemap_fdatawait_range() call
2499 * will catch and clear such errors in the mapping - and that call might
2500 * be from a log sync and not from a transaction commit. Also, checking
2501 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2502 * not done and would not be reliable - the eb might have been released
2503 * from memory and reading it back again means that flag would not be
2504 * set (since it's a runtime flag, not persisted on disk).
2505 *
2506 * Using the flags below in the btree inode also makes us achieve the
2507 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2508 * writeback for all dirty pages and before filemap_fdatawait_range()
2509 * is called, the writeback for all dirty pages had already finished
2510 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2511 * filemap_fdatawait_range() would return success, as it could not know
2512 * that writeback errors happened (the pages were no longer tagged for
2513 * writeback).
2514 */
2515 switch (eb->log_index) {
2516 case -1:
2517 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2518 break;
2519 case 0:
2520 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2521 break;
2522 case 1:
2523 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2524 break;
2525 default:
2526 BUG(); /* unexpected, logic error */
2527 }
2528 }
2529
2530 /*
2531 * The endio specific version which won't touch any unsafe spinlock in endio
2532 * context.
2533 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2534 static struct extent_buffer *find_extent_buffer_nolock(
2535 struct btrfs_fs_info *fs_info, u64 start)
2536 {
2537 struct extent_buffer *eb;
2538
2539 rcu_read_lock();
2540 eb = radix_tree_lookup(&fs_info->buffer_radix,
2541 start >> fs_info->sectorsize_bits);
2542 if (eb && atomic_inc_not_zero(&eb->refs)) {
2543 rcu_read_unlock();
2544 return eb;
2545 }
2546 rcu_read_unlock();
2547 return NULL;
2548 }
2549
2550 /*
2551 * The endio function for subpage extent buffer write.
2552 *
2553 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2554 * after all extent buffers in the page has finished their writeback.
2555 */
end_bio_subpage_eb_writepage(struct btrfs_bio * bbio)2556 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2557 {
2558 struct bio *bio = &bbio->bio;
2559 struct btrfs_fs_info *fs_info;
2560 struct bio_vec *bvec;
2561 struct bvec_iter_all iter_all;
2562
2563 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2564 ASSERT(fs_info->nodesize < PAGE_SIZE);
2565
2566 ASSERT(!bio_flagged(bio, BIO_CLONED));
2567 bio_for_each_segment_all(bvec, bio, iter_all) {
2568 struct page *page = bvec->bv_page;
2569 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2570 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2571 u64 cur_bytenr = bvec_start;
2572
2573 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2574
2575 /* Iterate through all extent buffers in the range */
2576 while (cur_bytenr <= bvec_end) {
2577 struct extent_buffer *eb;
2578 int done;
2579
2580 /*
2581 * Here we can't use find_extent_buffer(), as it may
2582 * try to lock eb->refs_lock, which is not safe in endio
2583 * context.
2584 */
2585 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2586 ASSERT(eb);
2587
2588 cur_bytenr = eb->start + eb->len;
2589
2590 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2591 done = atomic_dec_and_test(&eb->io_pages);
2592 ASSERT(done);
2593
2594 if (bio->bi_status ||
2595 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2596 ClearPageUptodate(page);
2597 set_btree_ioerr(page, eb);
2598 }
2599
2600 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2601 eb->len);
2602 end_extent_buffer_writeback(eb);
2603 /*
2604 * free_extent_buffer() will grab spinlock which is not
2605 * safe in endio context. Thus here we manually dec
2606 * the ref.
2607 */
2608 atomic_dec(&eb->refs);
2609 }
2610 }
2611 bio_put(bio);
2612 }
2613
end_bio_extent_buffer_writepage(struct btrfs_bio * bbio)2614 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2615 {
2616 struct bio *bio = &bbio->bio;
2617 struct bio_vec *bvec;
2618 struct extent_buffer *eb;
2619 int done;
2620 struct bvec_iter_all iter_all;
2621
2622 ASSERT(!bio_flagged(bio, BIO_CLONED));
2623 bio_for_each_segment_all(bvec, bio, iter_all) {
2624 struct page *page = bvec->bv_page;
2625
2626 eb = (struct extent_buffer *)page->private;
2627 BUG_ON(!eb);
2628 done = atomic_dec_and_test(&eb->io_pages);
2629
2630 if (bio->bi_status ||
2631 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2632 ClearPageUptodate(page);
2633 set_btree_ioerr(page, eb);
2634 }
2635
2636 end_page_writeback(page);
2637
2638 if (!done)
2639 continue;
2640
2641 end_extent_buffer_writeback(eb);
2642 }
2643
2644 bio_put(bio);
2645 }
2646
prepare_eb_write(struct extent_buffer * eb)2647 static void prepare_eb_write(struct extent_buffer *eb)
2648 {
2649 u32 nritems;
2650 unsigned long start;
2651 unsigned long end;
2652
2653 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2654 atomic_set(&eb->io_pages, num_extent_pages(eb));
2655
2656 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2657 nritems = btrfs_header_nritems(eb);
2658 if (btrfs_header_level(eb) > 0) {
2659 end = btrfs_node_key_ptr_offset(nritems);
2660 memzero_extent_buffer(eb, end, eb->len - end);
2661 } else {
2662 /*
2663 * Leaf:
2664 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2665 */
2666 start = btrfs_item_nr_offset(nritems);
2667 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
2668 memzero_extent_buffer(eb, start, end - start);
2669 }
2670 }
2671
2672 /*
2673 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2674 * Page locking is only utilized at minimum to keep the VMM code happy.
2675 */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2676 static int write_one_subpage_eb(struct extent_buffer *eb,
2677 struct writeback_control *wbc,
2678 struct extent_page_data *epd)
2679 {
2680 struct btrfs_fs_info *fs_info = eb->fs_info;
2681 struct page *page = eb->pages[0];
2682 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2683 bool no_dirty_ebs = false;
2684 int ret;
2685
2686 prepare_eb_write(eb);
2687
2688 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2689 lock_page(page);
2690 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2691
2692 /* Check if this is the last dirty bit to update nr_written */
2693 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2694 eb->start, eb->len);
2695 if (no_dirty_ebs)
2696 clear_page_dirty_for_io(page);
2697
2698 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage;
2699
2700 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2701 &epd->bio_ctrl, eb->start, page, eb->len,
2702 eb->start - page_offset(page), 0, false);
2703 if (ret) {
2704 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2705 set_btree_ioerr(page, eb);
2706 unlock_page(page);
2707
2708 if (atomic_dec_and_test(&eb->io_pages))
2709 end_extent_buffer_writeback(eb);
2710 return -EIO;
2711 }
2712 unlock_page(page);
2713 /*
2714 * Submission finished without problem, if no range of the page is
2715 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2716 */
2717 if (no_dirty_ebs)
2718 wbc->nr_to_write--;
2719 return ret;
2720 }
2721
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2722 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2723 struct writeback_control *wbc,
2724 struct extent_page_data *epd)
2725 {
2726 u64 disk_bytenr = eb->start;
2727 int i, num_pages;
2728 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2729 int ret = 0;
2730
2731 prepare_eb_write(eb);
2732
2733 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage;
2734
2735 num_pages = num_extent_pages(eb);
2736 for (i = 0; i < num_pages; i++) {
2737 struct page *p = eb->pages[i];
2738
2739 clear_page_dirty_for_io(p);
2740 set_page_writeback(p);
2741 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2742 &epd->bio_ctrl, disk_bytenr, p,
2743 PAGE_SIZE, 0, 0, false);
2744 if (ret) {
2745 set_btree_ioerr(p, eb);
2746 if (PageWriteback(p))
2747 end_page_writeback(p);
2748 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2749 end_extent_buffer_writeback(eb);
2750 ret = -EIO;
2751 break;
2752 }
2753 disk_bytenr += PAGE_SIZE;
2754 wbc->nr_to_write--;
2755 unlock_page(p);
2756 }
2757
2758 if (unlikely(ret)) {
2759 for (; i < num_pages; i++) {
2760 struct page *p = eb->pages[i];
2761 clear_page_dirty_for_io(p);
2762 unlock_page(p);
2763 }
2764 }
2765
2766 return ret;
2767 }
2768
2769 /*
2770 * Submit one subpage btree page.
2771 *
2772 * The main difference to submit_eb_page() is:
2773 * - Page locking
2774 * For subpage, we don't rely on page locking at all.
2775 *
2776 * - Flush write bio
2777 * We only flush bio if we may be unable to fit current extent buffers into
2778 * current bio.
2779 *
2780 * Return >=0 for the number of submitted extent buffers.
2781 * Return <0 for fatal error.
2782 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2783 static int submit_eb_subpage(struct page *page,
2784 struct writeback_control *wbc,
2785 struct extent_page_data *epd)
2786 {
2787 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2788 int submitted = 0;
2789 u64 page_start = page_offset(page);
2790 int bit_start = 0;
2791 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2792 int ret;
2793
2794 /* Lock and write each dirty extent buffers in the range */
2795 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2796 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2797 struct extent_buffer *eb;
2798 unsigned long flags;
2799 u64 start;
2800
2801 /*
2802 * Take private lock to ensure the subpage won't be detached
2803 * in the meantime.
2804 */
2805 spin_lock(&page->mapping->private_lock);
2806 if (!PagePrivate(page)) {
2807 spin_unlock(&page->mapping->private_lock);
2808 break;
2809 }
2810 spin_lock_irqsave(&subpage->lock, flags);
2811 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2812 subpage->bitmaps)) {
2813 spin_unlock_irqrestore(&subpage->lock, flags);
2814 spin_unlock(&page->mapping->private_lock);
2815 bit_start++;
2816 continue;
2817 }
2818
2819 start = page_start + bit_start * fs_info->sectorsize;
2820 bit_start += sectors_per_node;
2821
2822 /*
2823 * Here we just want to grab the eb without touching extra
2824 * spin locks, so call find_extent_buffer_nolock().
2825 */
2826 eb = find_extent_buffer_nolock(fs_info, start);
2827 spin_unlock_irqrestore(&subpage->lock, flags);
2828 spin_unlock(&page->mapping->private_lock);
2829
2830 /*
2831 * The eb has already reached 0 refs thus find_extent_buffer()
2832 * doesn't return it. We don't need to write back such eb
2833 * anyway.
2834 */
2835 if (!eb)
2836 continue;
2837
2838 ret = lock_extent_buffer_for_io(eb, epd);
2839 if (ret == 0) {
2840 free_extent_buffer(eb);
2841 continue;
2842 }
2843 if (ret < 0) {
2844 free_extent_buffer(eb);
2845 goto cleanup;
2846 }
2847 ret = write_one_subpage_eb(eb, wbc, epd);
2848 free_extent_buffer(eb);
2849 if (ret < 0)
2850 goto cleanup;
2851 submitted++;
2852 }
2853 return submitted;
2854
2855 cleanup:
2856 /* We hit error, end bio for the submitted extent buffers */
2857 submit_write_bio(epd, ret);
2858 return ret;
2859 }
2860
2861 /*
2862 * Submit all page(s) of one extent buffer.
2863 *
2864 * @page: the page of one extent buffer
2865 * @eb_context: to determine if we need to submit this page, if current page
2866 * belongs to this eb, we don't need to submit
2867 *
2868 * The caller should pass each page in their bytenr order, and here we use
2869 * @eb_context to determine if we have submitted pages of one extent buffer.
2870 *
2871 * If we have, we just skip until we hit a new page that doesn't belong to
2872 * current @eb_context.
2873 *
2874 * If not, we submit all the page(s) of the extent buffer.
2875 *
2876 * Return >0 if we have submitted the extent buffer successfully.
2877 * Return 0 if we don't need to submit the page, as it's already submitted by
2878 * previous call.
2879 * Return <0 for fatal error.
2880 */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)2881 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2882 struct extent_page_data *epd,
2883 struct extent_buffer **eb_context)
2884 {
2885 struct address_space *mapping = page->mapping;
2886 struct btrfs_block_group *cache = NULL;
2887 struct extent_buffer *eb;
2888 int ret;
2889
2890 if (!PagePrivate(page))
2891 return 0;
2892
2893 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2894 return submit_eb_subpage(page, wbc, epd);
2895
2896 spin_lock(&mapping->private_lock);
2897 if (!PagePrivate(page)) {
2898 spin_unlock(&mapping->private_lock);
2899 return 0;
2900 }
2901
2902 eb = (struct extent_buffer *)page->private;
2903
2904 /*
2905 * Shouldn't happen and normally this would be a BUG_ON but no point
2906 * crashing the machine for something we can survive anyway.
2907 */
2908 if (WARN_ON(!eb)) {
2909 spin_unlock(&mapping->private_lock);
2910 return 0;
2911 }
2912
2913 if (eb == *eb_context) {
2914 spin_unlock(&mapping->private_lock);
2915 return 0;
2916 }
2917 ret = atomic_inc_not_zero(&eb->refs);
2918 spin_unlock(&mapping->private_lock);
2919 if (!ret)
2920 return 0;
2921
2922 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2923 /*
2924 * If for_sync, this hole will be filled with
2925 * trasnsaction commit.
2926 */
2927 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2928 ret = -EAGAIN;
2929 else
2930 ret = 0;
2931 free_extent_buffer(eb);
2932 return ret;
2933 }
2934
2935 *eb_context = eb;
2936
2937 ret = lock_extent_buffer_for_io(eb, epd);
2938 if (ret <= 0) {
2939 btrfs_revert_meta_write_pointer(cache, eb);
2940 if (cache)
2941 btrfs_put_block_group(cache);
2942 free_extent_buffer(eb);
2943 return ret;
2944 }
2945 if (cache) {
2946 /*
2947 * Implies write in zoned mode. Mark the last eb in a block group.
2948 */
2949 btrfs_schedule_zone_finish_bg(cache, eb);
2950 btrfs_put_block_group(cache);
2951 }
2952 ret = write_one_eb(eb, wbc, epd);
2953 free_extent_buffer(eb);
2954 if (ret < 0)
2955 return ret;
2956 return 1;
2957 }
2958
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2959 int btree_write_cache_pages(struct address_space *mapping,
2960 struct writeback_control *wbc)
2961 {
2962 struct extent_buffer *eb_context = NULL;
2963 struct extent_page_data epd = {
2964 .bio_ctrl = { 0 },
2965 .extent_locked = 0,
2966 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2967 };
2968 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2969 int ret = 0;
2970 int done = 0;
2971 int nr_to_write_done = 0;
2972 struct pagevec pvec;
2973 int nr_pages;
2974 pgoff_t index;
2975 pgoff_t end; /* Inclusive */
2976 int scanned = 0;
2977 xa_mark_t tag;
2978
2979 pagevec_init(&pvec);
2980 if (wbc->range_cyclic) {
2981 index = mapping->writeback_index; /* Start from prev offset */
2982 end = -1;
2983 /*
2984 * Start from the beginning does not need to cycle over the
2985 * range, mark it as scanned.
2986 */
2987 scanned = (index == 0);
2988 } else {
2989 index = wbc->range_start >> PAGE_SHIFT;
2990 end = wbc->range_end >> PAGE_SHIFT;
2991 scanned = 1;
2992 }
2993 if (wbc->sync_mode == WB_SYNC_ALL)
2994 tag = PAGECACHE_TAG_TOWRITE;
2995 else
2996 tag = PAGECACHE_TAG_DIRTY;
2997 btrfs_zoned_meta_io_lock(fs_info);
2998 retry:
2999 if (wbc->sync_mode == WB_SYNC_ALL)
3000 tag_pages_for_writeback(mapping, index, end);
3001 while (!done && !nr_to_write_done && (index <= end) &&
3002 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3003 tag))) {
3004 unsigned i;
3005
3006 for (i = 0; i < nr_pages; i++) {
3007 struct page *page = pvec.pages[i];
3008
3009 ret = submit_eb_page(page, wbc, &epd, &eb_context);
3010 if (ret == 0)
3011 continue;
3012 if (ret < 0) {
3013 done = 1;
3014 break;
3015 }
3016
3017 /*
3018 * the filesystem may choose to bump up nr_to_write.
3019 * We have to make sure to honor the new nr_to_write
3020 * at any time
3021 */
3022 nr_to_write_done = wbc->nr_to_write <= 0;
3023 }
3024 pagevec_release(&pvec);
3025 cond_resched();
3026 }
3027 if (!scanned && !done) {
3028 /*
3029 * We hit the last page and there is more work to be done: wrap
3030 * back to the start of the file
3031 */
3032 scanned = 1;
3033 index = 0;
3034 goto retry;
3035 }
3036 /*
3037 * If something went wrong, don't allow any metadata write bio to be
3038 * submitted.
3039 *
3040 * This would prevent use-after-free if we had dirty pages not
3041 * cleaned up, which can still happen by fuzzed images.
3042 *
3043 * - Bad extent tree
3044 * Allowing existing tree block to be allocated for other trees.
3045 *
3046 * - Log tree operations
3047 * Exiting tree blocks get allocated to log tree, bumps its
3048 * generation, then get cleaned in tree re-balance.
3049 * Such tree block will not be written back, since it's clean,
3050 * thus no WRITTEN flag set.
3051 * And after log writes back, this tree block is not traced by
3052 * any dirty extent_io_tree.
3053 *
3054 * - Offending tree block gets re-dirtied from its original owner
3055 * Since it has bumped generation, no WRITTEN flag, it can be
3056 * reused without COWing. This tree block will not be traced
3057 * by btrfs_transaction::dirty_pages.
3058 *
3059 * Now such dirty tree block will not be cleaned by any dirty
3060 * extent io tree. Thus we don't want to submit such wild eb
3061 * if the fs already has error.
3062 *
3063 * We can get ret > 0 from submit_extent_page() indicating how many ebs
3064 * were submitted. Reset it to 0 to avoid false alerts for the caller.
3065 */
3066 if (ret > 0)
3067 ret = 0;
3068 if (!ret && BTRFS_FS_ERROR(fs_info))
3069 ret = -EROFS;
3070 submit_write_bio(&epd, ret);
3071
3072 btrfs_zoned_meta_io_unlock(fs_info);
3073 return ret;
3074 }
3075
3076 /**
3077 * Walk the list of dirty pages of the given address space and write all of them.
3078 *
3079 * @mapping: address space structure to write
3080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3081 * @epd: holds context for the write, namely the bio
3082 *
3083 * If a page is already under I/O, write_cache_pages() skips it, even
3084 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3085 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3086 * and msync() need to guarantee that all the data which was dirty at the time
3087 * the call was made get new I/O started against them. If wbc->sync_mode is
3088 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3089 * existing IO to complete.
3090 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)3091 static int extent_write_cache_pages(struct address_space *mapping,
3092 struct writeback_control *wbc,
3093 struct extent_page_data *epd)
3094 {
3095 struct inode *inode = mapping->host;
3096 int ret = 0;
3097 int done = 0;
3098 int nr_to_write_done = 0;
3099 struct pagevec pvec;
3100 int nr_pages;
3101 pgoff_t index;
3102 pgoff_t end; /* Inclusive */
3103 pgoff_t done_index;
3104 int range_whole = 0;
3105 int scanned = 0;
3106 xa_mark_t tag;
3107
3108 /*
3109 * We have to hold onto the inode so that ordered extents can do their
3110 * work when the IO finishes. The alternative to this is failing to add
3111 * an ordered extent if the igrab() fails there and that is a huge pain
3112 * to deal with, so instead just hold onto the inode throughout the
3113 * writepages operation. If it fails here we are freeing up the inode
3114 * anyway and we'd rather not waste our time writing out stuff that is
3115 * going to be truncated anyway.
3116 */
3117 if (!igrab(inode))
3118 return 0;
3119
3120 pagevec_init(&pvec);
3121 if (wbc->range_cyclic) {
3122 index = mapping->writeback_index; /* Start from prev offset */
3123 end = -1;
3124 /*
3125 * Start from the beginning does not need to cycle over the
3126 * range, mark it as scanned.
3127 */
3128 scanned = (index == 0);
3129 } else {
3130 index = wbc->range_start >> PAGE_SHIFT;
3131 end = wbc->range_end >> PAGE_SHIFT;
3132 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3133 range_whole = 1;
3134 scanned = 1;
3135 }
3136
3137 /*
3138 * We do the tagged writepage as long as the snapshot flush bit is set
3139 * and we are the first one who do the filemap_flush() on this inode.
3140 *
3141 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3142 * not race in and drop the bit.
3143 */
3144 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3145 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3146 &BTRFS_I(inode)->runtime_flags))
3147 wbc->tagged_writepages = 1;
3148
3149 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3150 tag = PAGECACHE_TAG_TOWRITE;
3151 else
3152 tag = PAGECACHE_TAG_DIRTY;
3153 retry:
3154 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3155 tag_pages_for_writeback(mapping, index, end);
3156 done_index = index;
3157 while (!done && !nr_to_write_done && (index <= end) &&
3158 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3159 &index, end, tag))) {
3160 unsigned i;
3161
3162 for (i = 0; i < nr_pages; i++) {
3163 struct page *page = pvec.pages[i];
3164
3165 done_index = page->index + 1;
3166 /*
3167 * At this point we hold neither the i_pages lock nor
3168 * the page lock: the page may be truncated or
3169 * invalidated (changing page->mapping to NULL),
3170 * or even swizzled back from swapper_space to
3171 * tmpfs file mapping
3172 */
3173 if (!trylock_page(page)) {
3174 submit_write_bio(epd, 0);
3175 lock_page(page);
3176 }
3177
3178 if (unlikely(page->mapping != mapping)) {
3179 unlock_page(page);
3180 continue;
3181 }
3182
3183 if (wbc->sync_mode != WB_SYNC_NONE) {
3184 if (PageWriteback(page))
3185 submit_write_bio(epd, 0);
3186 wait_on_page_writeback(page);
3187 }
3188
3189 if (PageWriteback(page) ||
3190 !clear_page_dirty_for_io(page)) {
3191 unlock_page(page);
3192 continue;
3193 }
3194
3195 ret = __extent_writepage(page, wbc, epd);
3196 if (ret < 0) {
3197 done = 1;
3198 break;
3199 }
3200
3201 /*
3202 * the filesystem may choose to bump up nr_to_write.
3203 * We have to make sure to honor the new nr_to_write
3204 * at any time
3205 */
3206 nr_to_write_done = wbc->nr_to_write <= 0;
3207 }
3208 pagevec_release(&pvec);
3209 cond_resched();
3210 }
3211 if (!scanned && !done) {
3212 /*
3213 * We hit the last page and there is more work to be done: wrap
3214 * back to the start of the file
3215 */
3216 scanned = 1;
3217 index = 0;
3218
3219 /*
3220 * If we're looping we could run into a page that is locked by a
3221 * writer and that writer could be waiting on writeback for a
3222 * page in our current bio, and thus deadlock, so flush the
3223 * write bio here.
3224 */
3225 submit_write_bio(epd, 0);
3226 goto retry;
3227 }
3228
3229 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3230 mapping->writeback_index = done_index;
3231
3232 btrfs_add_delayed_iput(inode);
3233 return ret;
3234 }
3235
3236 /*
3237 * Submit the pages in the range to bio for call sites which delalloc range has
3238 * already been ran (aka, ordered extent inserted) and all pages are still
3239 * locked.
3240 */
extent_write_locked_range(struct inode * inode,u64 start,u64 end)3241 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3242 {
3243 bool found_error = false;
3244 int first_error = 0;
3245 int ret = 0;
3246 struct address_space *mapping = inode->i_mapping;
3247 struct page *page;
3248 u64 cur = start;
3249 unsigned long nr_pages;
3250 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3251 struct extent_page_data epd = {
3252 .bio_ctrl = { 0 },
3253 .extent_locked = 1,
3254 .sync_io = 1,
3255 };
3256 struct writeback_control wbc_writepages = {
3257 .sync_mode = WB_SYNC_ALL,
3258 .range_start = start,
3259 .range_end = end + 1,
3260 /* We're called from an async helper function */
3261 .punt_to_cgroup = 1,
3262 .no_cgroup_owner = 1,
3263 };
3264
3265 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3266 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3267 PAGE_SHIFT;
3268 wbc_writepages.nr_to_write = nr_pages * 2;
3269
3270 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3271 while (cur <= end) {
3272 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3273
3274 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3275 /*
3276 * All pages in the range are locked since
3277 * btrfs_run_delalloc_range(), thus there is no way to clear
3278 * the page dirty flag.
3279 */
3280 ASSERT(PageLocked(page));
3281 ASSERT(PageDirty(page));
3282 clear_page_dirty_for_io(page);
3283 ret = __extent_writepage(page, &wbc_writepages, &epd);
3284 ASSERT(ret <= 0);
3285 if (ret < 0) {
3286 found_error = true;
3287 first_error = ret;
3288 }
3289 put_page(page);
3290 cur = cur_end + 1;
3291 }
3292
3293 submit_write_bio(&epd, found_error ? ret : 0);
3294
3295 wbc_detach_inode(&wbc_writepages);
3296 if (found_error)
3297 return first_error;
3298 return ret;
3299 }
3300
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)3301 int extent_writepages(struct address_space *mapping,
3302 struct writeback_control *wbc)
3303 {
3304 struct inode *inode = mapping->host;
3305 int ret = 0;
3306 struct extent_page_data epd = {
3307 .bio_ctrl = { 0 },
3308 .extent_locked = 0,
3309 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3310 };
3311
3312 /*
3313 * Allow only a single thread to do the reloc work in zoned mode to
3314 * protect the write pointer updates.
3315 */
3316 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3317 ret = extent_write_cache_pages(mapping, wbc, &epd);
3318 submit_write_bio(&epd, ret);
3319 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3320 return ret;
3321 }
3322
extent_readahead(struct readahead_control * rac)3323 void extent_readahead(struct readahead_control *rac)
3324 {
3325 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3326 struct page *pagepool[16];
3327 struct extent_map *em_cached = NULL;
3328 u64 prev_em_start = (u64)-1;
3329 int nr;
3330
3331 while ((nr = readahead_page_batch(rac, pagepool))) {
3332 u64 contig_start = readahead_pos(rac);
3333 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3334
3335 contiguous_readpages(pagepool, nr, contig_start, contig_end,
3336 &em_cached, &bio_ctrl, &prev_em_start);
3337 }
3338
3339 if (em_cached)
3340 free_extent_map(em_cached);
3341 submit_one_bio(&bio_ctrl);
3342 }
3343
3344 /*
3345 * basic invalidate_folio code, this waits on any locked or writeback
3346 * ranges corresponding to the folio, and then deletes any extent state
3347 * records from the tree
3348 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)3349 int extent_invalidate_folio(struct extent_io_tree *tree,
3350 struct folio *folio, size_t offset)
3351 {
3352 struct extent_state *cached_state = NULL;
3353 u64 start = folio_pos(folio);
3354 u64 end = start + folio_size(folio) - 1;
3355 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3356
3357 /* This function is only called for the btree inode */
3358 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3359
3360 start += ALIGN(offset, blocksize);
3361 if (start > end)
3362 return 0;
3363
3364 lock_extent(tree, start, end, &cached_state);
3365 folio_wait_writeback(folio);
3366
3367 /*
3368 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3369 * so here we only need to unlock the extent range to free any
3370 * existing extent state.
3371 */
3372 unlock_extent(tree, start, end, &cached_state);
3373 return 0;
3374 }
3375
3376 /*
3377 * a helper for release_folio, this tests for areas of the page that
3378 * are locked or under IO and drops the related state bits if it is safe
3379 * to drop the page.
3380 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)3381 static int try_release_extent_state(struct extent_io_tree *tree,
3382 struct page *page, gfp_t mask)
3383 {
3384 u64 start = page_offset(page);
3385 u64 end = start + PAGE_SIZE - 1;
3386 int ret = 1;
3387
3388 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3389 ret = 0;
3390 } else {
3391 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3392 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3393
3394 /*
3395 * At this point we can safely clear everything except the
3396 * locked bit, the nodatasum bit and the delalloc new bit.
3397 * The delalloc new bit will be cleared by ordered extent
3398 * completion.
3399 */
3400 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3401 mask, NULL);
3402
3403 /* if clear_extent_bit failed for enomem reasons,
3404 * we can't allow the release to continue.
3405 */
3406 if (ret < 0)
3407 ret = 0;
3408 else
3409 ret = 1;
3410 }
3411 return ret;
3412 }
3413
3414 /*
3415 * a helper for release_folio. As long as there are no locked extents
3416 * in the range corresponding to the page, both state records and extent
3417 * map records are removed
3418 */
try_release_extent_mapping(struct page * page,gfp_t mask)3419 int try_release_extent_mapping(struct page *page, gfp_t mask)
3420 {
3421 struct extent_map *em;
3422 u64 start = page_offset(page);
3423 u64 end = start + PAGE_SIZE - 1;
3424 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3425 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3426 struct extent_map_tree *map = &btrfs_inode->extent_tree;
3427
3428 if (gfpflags_allow_blocking(mask) &&
3429 page->mapping->host->i_size > SZ_16M) {
3430 u64 len;
3431 while (start <= end) {
3432 struct btrfs_fs_info *fs_info;
3433 u64 cur_gen;
3434
3435 len = end - start + 1;
3436 write_lock(&map->lock);
3437 em = lookup_extent_mapping(map, start, len);
3438 if (!em) {
3439 write_unlock(&map->lock);
3440 break;
3441 }
3442 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3443 em->start != start) {
3444 write_unlock(&map->lock);
3445 free_extent_map(em);
3446 break;
3447 }
3448 if (test_range_bit(tree, em->start,
3449 extent_map_end(em) - 1,
3450 EXTENT_LOCKED, 0, NULL))
3451 goto next;
3452 /*
3453 * If it's not in the list of modified extents, used
3454 * by a fast fsync, we can remove it. If it's being
3455 * logged we can safely remove it since fsync took an
3456 * extra reference on the em.
3457 */
3458 if (list_empty(&em->list) ||
3459 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3460 goto remove_em;
3461 /*
3462 * If it's in the list of modified extents, remove it
3463 * only if its generation is older then the current one,
3464 * in which case we don't need it for a fast fsync.
3465 * Otherwise don't remove it, we could be racing with an
3466 * ongoing fast fsync that could miss the new extent.
3467 */
3468 fs_info = btrfs_inode->root->fs_info;
3469 spin_lock(&fs_info->trans_lock);
3470 cur_gen = fs_info->generation;
3471 spin_unlock(&fs_info->trans_lock);
3472 if (em->generation >= cur_gen)
3473 goto next;
3474 remove_em:
3475 /*
3476 * We only remove extent maps that are not in the list of
3477 * modified extents or that are in the list but with a
3478 * generation lower then the current generation, so there
3479 * is no need to set the full fsync flag on the inode (it
3480 * hurts the fsync performance for workloads with a data
3481 * size that exceeds or is close to the system's memory).
3482 */
3483 remove_extent_mapping(map, em);
3484 /* once for the rb tree */
3485 free_extent_map(em);
3486 next:
3487 start = extent_map_end(em);
3488 write_unlock(&map->lock);
3489
3490 /* once for us */
3491 free_extent_map(em);
3492
3493 cond_resched(); /* Allow large-extent preemption. */
3494 }
3495 }
3496 return try_release_extent_state(tree, page, mask);
3497 }
3498
3499 /*
3500 * To cache previous fiemap extent
3501 *
3502 * Will be used for merging fiemap extent
3503 */
3504 struct fiemap_cache {
3505 u64 offset;
3506 u64 phys;
3507 u64 len;
3508 u32 flags;
3509 bool cached;
3510 };
3511
3512 /*
3513 * Helper to submit fiemap extent.
3514 *
3515 * Will try to merge current fiemap extent specified by @offset, @phys,
3516 * @len and @flags with cached one.
3517 * And only when we fails to merge, cached one will be submitted as
3518 * fiemap extent.
3519 *
3520 * Return value is the same as fiemap_fill_next_extent().
3521 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)3522 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3523 struct fiemap_cache *cache,
3524 u64 offset, u64 phys, u64 len, u32 flags)
3525 {
3526 int ret = 0;
3527
3528 /* Set at the end of extent_fiemap(). */
3529 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3530
3531 if (!cache->cached)
3532 goto assign;
3533
3534 /*
3535 * Sanity check, extent_fiemap() should have ensured that new
3536 * fiemap extent won't overlap with cached one.
3537 * Not recoverable.
3538 *
3539 * NOTE: Physical address can overlap, due to compression
3540 */
3541 if (cache->offset + cache->len > offset) {
3542 WARN_ON(1);
3543 return -EINVAL;
3544 }
3545
3546 /*
3547 * Only merges fiemap extents if
3548 * 1) Their logical addresses are continuous
3549 *
3550 * 2) Their physical addresses are continuous
3551 * So truly compressed (physical size smaller than logical size)
3552 * extents won't get merged with each other
3553 *
3554 * 3) Share same flags
3555 */
3556 if (cache->offset + cache->len == offset &&
3557 cache->phys + cache->len == phys &&
3558 cache->flags == flags) {
3559 cache->len += len;
3560 return 0;
3561 }
3562
3563 /* Not mergeable, need to submit cached one */
3564 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3565 cache->len, cache->flags);
3566 cache->cached = false;
3567 if (ret)
3568 return ret;
3569 assign:
3570 cache->cached = true;
3571 cache->offset = offset;
3572 cache->phys = phys;
3573 cache->len = len;
3574 cache->flags = flags;
3575
3576 return 0;
3577 }
3578
3579 /*
3580 * Emit last fiemap cache
3581 *
3582 * The last fiemap cache may still be cached in the following case:
3583 * 0 4k 8k
3584 * |<- Fiemap range ->|
3585 * |<------------ First extent ----------->|
3586 *
3587 * In this case, the first extent range will be cached but not emitted.
3588 * So we must emit it before ending extent_fiemap().
3589 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)3590 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3591 struct fiemap_cache *cache)
3592 {
3593 int ret;
3594
3595 if (!cache->cached)
3596 return 0;
3597
3598 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3599 cache->len, cache->flags);
3600 cache->cached = false;
3601 if (ret > 0)
3602 ret = 0;
3603 return ret;
3604 }
3605
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)3606 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3607 {
3608 struct extent_buffer *clone;
3609 struct btrfs_key key;
3610 int slot;
3611 int ret;
3612
3613 path->slots[0]++;
3614 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3615 return 0;
3616
3617 ret = btrfs_next_leaf(inode->root, path);
3618 if (ret != 0)
3619 return ret;
3620
3621 /*
3622 * Don't bother with cloning if there are no more file extent items for
3623 * our inode.
3624 */
3625 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3626 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3627 return 1;
3628
3629 /* See the comment at fiemap_search_slot() about why we clone. */
3630 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3631 if (!clone)
3632 return -ENOMEM;
3633
3634 slot = path->slots[0];
3635 btrfs_release_path(path);
3636 path->nodes[0] = clone;
3637 path->slots[0] = slot;
3638
3639 return 0;
3640 }
3641
3642 /*
3643 * Search for the first file extent item that starts at a given file offset or
3644 * the one that starts immediately before that offset.
3645 * Returns: 0 on success, < 0 on error, 1 if not found.
3646 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)3647 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3648 u64 file_offset)
3649 {
3650 const u64 ino = btrfs_ino(inode);
3651 struct btrfs_root *root = inode->root;
3652 struct extent_buffer *clone;
3653 struct btrfs_key key;
3654 int slot;
3655 int ret;
3656
3657 key.objectid = ino;
3658 key.type = BTRFS_EXTENT_DATA_KEY;
3659 key.offset = file_offset;
3660
3661 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3662 if (ret < 0)
3663 return ret;
3664
3665 if (ret > 0 && path->slots[0] > 0) {
3666 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3667 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3668 path->slots[0]--;
3669 }
3670
3671 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3672 ret = btrfs_next_leaf(root, path);
3673 if (ret != 0)
3674 return ret;
3675
3676 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3677 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3678 return 1;
3679 }
3680
3681 /*
3682 * We clone the leaf and use it during fiemap. This is because while
3683 * using the leaf we do expensive things like checking if an extent is
3684 * shared, which can take a long time. In order to prevent blocking
3685 * other tasks for too long, we use a clone of the leaf. We have locked
3686 * the file range in the inode's io tree, so we know none of our file
3687 * extent items can change. This way we avoid blocking other tasks that
3688 * want to insert items for other inodes in the same leaf or b+tree
3689 * rebalance operations (triggered for example when someone is trying
3690 * to push items into this leaf when trying to insert an item in a
3691 * neighbour leaf).
3692 * We also need the private clone because holding a read lock on an
3693 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3694 * when we call fiemap_fill_next_extent(), because that may cause a page
3695 * fault when filling the user space buffer with fiemap data.
3696 */
3697 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3698 if (!clone)
3699 return -ENOMEM;
3700
3701 slot = path->slots[0];
3702 btrfs_release_path(path);
3703 path->nodes[0] = clone;
3704 path->slots[0] = slot;
3705
3706 return 0;
3707 }
3708
3709 /*
3710 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3711 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3712 * extent. The end offset (@end) is inclusive.
3713 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct btrfs_backref_shared_cache * backref_cache,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,struct ulist * roots,struct ulist * tmp_ulist,u64 start,u64 end)3714 static int fiemap_process_hole(struct btrfs_inode *inode,
3715 struct fiemap_extent_info *fieinfo,
3716 struct fiemap_cache *cache,
3717 struct btrfs_backref_shared_cache *backref_cache,
3718 u64 disk_bytenr, u64 extent_offset,
3719 u64 extent_gen,
3720 struct ulist *roots, struct ulist *tmp_ulist,
3721 u64 start, u64 end)
3722 {
3723 const u64 i_size = i_size_read(&inode->vfs_inode);
3724 const u64 ino = btrfs_ino(inode);
3725 u64 cur_offset = start;
3726 u64 last_delalloc_end = 0;
3727 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3728 bool checked_extent_shared = false;
3729 int ret;
3730
3731 /*
3732 * There can be no delalloc past i_size, so don't waste time looking for
3733 * it beyond i_size.
3734 */
3735 while (cur_offset < end && cur_offset < i_size) {
3736 u64 delalloc_start;
3737 u64 delalloc_end;
3738 u64 prealloc_start;
3739 u64 prealloc_len = 0;
3740 bool delalloc;
3741
3742 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3743 &delalloc_start,
3744 &delalloc_end);
3745 if (!delalloc)
3746 break;
3747
3748 /*
3749 * If this is a prealloc extent we have to report every section
3750 * of it that has no delalloc.
3751 */
3752 if (disk_bytenr != 0) {
3753 if (last_delalloc_end == 0) {
3754 prealloc_start = start;
3755 prealloc_len = delalloc_start - start;
3756 } else {
3757 prealloc_start = last_delalloc_end + 1;
3758 prealloc_len = delalloc_start - prealloc_start;
3759 }
3760 }
3761
3762 if (prealloc_len > 0) {
3763 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3764 ret = btrfs_is_data_extent_shared(inode->root,
3765 ino, disk_bytenr,
3766 extent_gen, roots,
3767 tmp_ulist,
3768 backref_cache);
3769 if (ret < 0)
3770 return ret;
3771 else if (ret > 0)
3772 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3773
3774 checked_extent_shared = true;
3775 }
3776 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3777 disk_bytenr + extent_offset,
3778 prealloc_len, prealloc_flags);
3779 if (ret)
3780 return ret;
3781 extent_offset += prealloc_len;
3782 }
3783
3784 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3785 delalloc_end + 1 - delalloc_start,
3786 FIEMAP_EXTENT_DELALLOC |
3787 FIEMAP_EXTENT_UNKNOWN);
3788 if (ret)
3789 return ret;
3790
3791 last_delalloc_end = delalloc_end;
3792 cur_offset = delalloc_end + 1;
3793 extent_offset += cur_offset - delalloc_start;
3794 cond_resched();
3795 }
3796
3797 /*
3798 * Either we found no delalloc for the whole prealloc extent or we have
3799 * a prealloc extent that spans i_size or starts at or after i_size.
3800 */
3801 if (disk_bytenr != 0 && last_delalloc_end < end) {
3802 u64 prealloc_start;
3803 u64 prealloc_len;
3804
3805 if (last_delalloc_end == 0) {
3806 prealloc_start = start;
3807 prealloc_len = end + 1 - start;
3808 } else {
3809 prealloc_start = last_delalloc_end + 1;
3810 prealloc_len = end + 1 - prealloc_start;
3811 }
3812
3813 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3814 ret = btrfs_is_data_extent_shared(inode->root,
3815 ino, disk_bytenr,
3816 extent_gen, roots,
3817 tmp_ulist,
3818 backref_cache);
3819 if (ret < 0)
3820 return ret;
3821 else if (ret > 0)
3822 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3823 }
3824 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3825 disk_bytenr + extent_offset,
3826 prealloc_len, prealloc_flags);
3827 if (ret)
3828 return ret;
3829 }
3830
3831 return 0;
3832 }
3833
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)3834 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3835 struct btrfs_path *path,
3836 u64 *last_extent_end_ret)
3837 {
3838 const u64 ino = btrfs_ino(inode);
3839 struct btrfs_root *root = inode->root;
3840 struct extent_buffer *leaf;
3841 struct btrfs_file_extent_item *ei;
3842 struct btrfs_key key;
3843 u64 disk_bytenr;
3844 int ret;
3845
3846 /*
3847 * Lookup the last file extent. We're not using i_size here because
3848 * there might be preallocation past i_size.
3849 */
3850 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3851 /* There can't be a file extent item at offset (u64)-1 */
3852 ASSERT(ret != 0);
3853 if (ret < 0)
3854 return ret;
3855
3856 /*
3857 * For a non-existing key, btrfs_search_slot() always leaves us at a
3858 * slot > 0, except if the btree is empty, which is impossible because
3859 * at least it has the inode item for this inode and all the items for
3860 * the root inode 256.
3861 */
3862 ASSERT(path->slots[0] > 0);
3863 path->slots[0]--;
3864 leaf = path->nodes[0];
3865 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3866 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3867 /* No file extent items in the subvolume tree. */
3868 *last_extent_end_ret = 0;
3869 return 0;
3870 }
3871
3872 /*
3873 * For an inline extent, the disk_bytenr is where inline data starts at,
3874 * so first check if we have an inline extent item before checking if we
3875 * have an implicit hole (disk_bytenr == 0).
3876 */
3877 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3878 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3879 *last_extent_end_ret = btrfs_file_extent_end(path);
3880 return 0;
3881 }
3882
3883 /*
3884 * Find the last file extent item that is not a hole (when NO_HOLES is
3885 * not enabled). This should take at most 2 iterations in the worst
3886 * case: we have one hole file extent item at slot 0 of a leaf and
3887 * another hole file extent item as the last item in the previous leaf.
3888 * This is because we merge file extent items that represent holes.
3889 */
3890 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3891 while (disk_bytenr == 0) {
3892 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3893 if (ret < 0) {
3894 return ret;
3895 } else if (ret > 0) {
3896 /* No file extent items that are not holes. */
3897 *last_extent_end_ret = 0;
3898 return 0;
3899 }
3900 leaf = path->nodes[0];
3901 ei = btrfs_item_ptr(leaf, path->slots[0],
3902 struct btrfs_file_extent_item);
3903 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3904 }
3905
3906 *last_extent_end_ret = btrfs_file_extent_end(path);
3907 return 0;
3908 }
3909
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)3910 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3911 u64 start, u64 len)
3912 {
3913 const u64 ino = btrfs_ino(inode);
3914 struct extent_state *cached_state = NULL;
3915 struct btrfs_path *path;
3916 struct btrfs_root *root = inode->root;
3917 struct fiemap_cache cache = { 0 };
3918 struct btrfs_backref_shared_cache *backref_cache;
3919 struct ulist *roots;
3920 struct ulist *tmp_ulist;
3921 u64 last_extent_end;
3922 u64 prev_extent_end;
3923 u64 lockstart;
3924 u64 lockend;
3925 bool stopped = false;
3926 int ret;
3927
3928 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
3929 path = btrfs_alloc_path();
3930 roots = ulist_alloc(GFP_KERNEL);
3931 tmp_ulist = ulist_alloc(GFP_KERNEL);
3932 if (!backref_cache || !path || !roots || !tmp_ulist) {
3933 ret = -ENOMEM;
3934 goto out;
3935 }
3936
3937 lockstart = round_down(start, root->fs_info->sectorsize);
3938 lockend = round_up(start + len, root->fs_info->sectorsize);
3939 prev_extent_end = lockstart;
3940
3941 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3942
3943 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3944 if (ret < 0)
3945 goto out_unlock;
3946 btrfs_release_path(path);
3947
3948 path->reada = READA_FORWARD;
3949 ret = fiemap_search_slot(inode, path, lockstart);
3950 if (ret < 0) {
3951 goto out_unlock;
3952 } else if (ret > 0) {
3953 /*
3954 * No file extent item found, but we may have delalloc between
3955 * the current offset and i_size. So check for that.
3956 */
3957 ret = 0;
3958 goto check_eof_delalloc;
3959 }
3960
3961 while (prev_extent_end < lockend) {
3962 struct extent_buffer *leaf = path->nodes[0];
3963 struct btrfs_file_extent_item *ei;
3964 struct btrfs_key key;
3965 u64 extent_end;
3966 u64 extent_len;
3967 u64 extent_offset = 0;
3968 u64 extent_gen;
3969 u64 disk_bytenr = 0;
3970 u64 flags = 0;
3971 int extent_type;
3972 u8 compression;
3973
3974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3975 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3976 break;
3977
3978 extent_end = btrfs_file_extent_end(path);
3979
3980 /*
3981 * The first iteration can leave us at an extent item that ends
3982 * before our range's start. Move to the next item.
3983 */
3984 if (extent_end <= lockstart)
3985 goto next_item;
3986
3987 /* We have in implicit hole (NO_HOLES feature enabled). */
3988 if (prev_extent_end < key.offset) {
3989 const u64 range_end = min(key.offset, lockend) - 1;
3990
3991 ret = fiemap_process_hole(inode, fieinfo, &cache,
3992 backref_cache, 0, 0, 0,
3993 roots, tmp_ulist,
3994 prev_extent_end, range_end);
3995 if (ret < 0) {
3996 goto out_unlock;
3997 } else if (ret > 0) {
3998 /* fiemap_fill_next_extent() told us to stop. */
3999 stopped = true;
4000 break;
4001 }
4002
4003 /* We've reached the end of the fiemap range, stop. */
4004 if (key.offset >= lockend) {
4005 stopped = true;
4006 break;
4007 }
4008 }
4009
4010 extent_len = extent_end - key.offset;
4011 ei = btrfs_item_ptr(leaf, path->slots[0],
4012 struct btrfs_file_extent_item);
4013 compression = btrfs_file_extent_compression(leaf, ei);
4014 extent_type = btrfs_file_extent_type(leaf, ei);
4015 extent_gen = btrfs_file_extent_generation(leaf, ei);
4016
4017 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4018 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
4019 if (compression == BTRFS_COMPRESS_NONE)
4020 extent_offset = btrfs_file_extent_offset(leaf, ei);
4021 }
4022
4023 if (compression != BTRFS_COMPRESS_NONE)
4024 flags |= FIEMAP_EXTENT_ENCODED;
4025
4026 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4027 flags |= FIEMAP_EXTENT_DATA_INLINE;
4028 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
4029 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
4030 extent_len, flags);
4031 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
4032 ret = fiemap_process_hole(inode, fieinfo, &cache,
4033 backref_cache,
4034 disk_bytenr, extent_offset,
4035 extent_gen, roots, tmp_ulist,
4036 key.offset, extent_end - 1);
4037 } else if (disk_bytenr == 0) {
4038 /* We have an explicit hole. */
4039 ret = fiemap_process_hole(inode, fieinfo, &cache,
4040 backref_cache, 0, 0, 0,
4041 roots, tmp_ulist,
4042 key.offset, extent_end - 1);
4043 } else {
4044 /* We have a regular extent. */
4045 if (fieinfo->fi_extents_max) {
4046 ret = btrfs_is_data_extent_shared(root, ino,
4047 disk_bytenr,
4048 extent_gen,
4049 roots,
4050 tmp_ulist,
4051 backref_cache);
4052 if (ret < 0)
4053 goto out_unlock;
4054 else if (ret > 0)
4055 flags |= FIEMAP_EXTENT_SHARED;
4056 }
4057
4058 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
4059 disk_bytenr + extent_offset,
4060 extent_len, flags);
4061 }
4062
4063 if (ret < 0) {
4064 goto out_unlock;
4065 } else if (ret > 0) {
4066 /* fiemap_fill_next_extent() told us to stop. */
4067 stopped = true;
4068 break;
4069 }
4070
4071 prev_extent_end = extent_end;
4072 next_item:
4073 if (fatal_signal_pending(current)) {
4074 ret = -EINTR;
4075 goto out_unlock;
4076 }
4077
4078 ret = fiemap_next_leaf_item(inode, path);
4079 if (ret < 0) {
4080 goto out_unlock;
4081 } else if (ret > 0) {
4082 /* No more file extent items for this inode. */
4083 break;
4084 }
4085 cond_resched();
4086 }
4087
4088 check_eof_delalloc:
4089 /*
4090 * Release (and free) the path before emitting any final entries to
4091 * fiemap_fill_next_extent() to keep lockdep happy. This is because
4092 * once we find no more file extent items exist, we may have a
4093 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
4094 * faults when copying data to the user space buffer.
4095 */
4096 btrfs_free_path(path);
4097 path = NULL;
4098
4099 if (!stopped && prev_extent_end < lockend) {
4100 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
4101 0, 0, 0, roots, tmp_ulist,
4102 prev_extent_end, lockend - 1);
4103 if (ret < 0)
4104 goto out_unlock;
4105 prev_extent_end = lockend;
4106 }
4107
4108 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
4109 const u64 i_size = i_size_read(&inode->vfs_inode);
4110
4111 if (prev_extent_end < i_size) {
4112 u64 delalloc_start;
4113 u64 delalloc_end;
4114 bool delalloc;
4115
4116 delalloc = btrfs_find_delalloc_in_range(inode,
4117 prev_extent_end,
4118 i_size - 1,
4119 &delalloc_start,
4120 &delalloc_end);
4121 if (!delalloc)
4122 cache.flags |= FIEMAP_EXTENT_LAST;
4123 } else {
4124 cache.flags |= FIEMAP_EXTENT_LAST;
4125 }
4126 }
4127
4128 ret = emit_last_fiemap_cache(fieinfo, &cache);
4129
4130 out_unlock:
4131 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4132 out:
4133 kfree(backref_cache);
4134 btrfs_free_path(path);
4135 ulist_free(roots);
4136 ulist_free(tmp_ulist);
4137 return ret;
4138 }
4139
__free_extent_buffer(struct extent_buffer * eb)4140 static void __free_extent_buffer(struct extent_buffer *eb)
4141 {
4142 kmem_cache_free(extent_buffer_cache, eb);
4143 }
4144
extent_buffer_under_io(const struct extent_buffer * eb)4145 int extent_buffer_under_io(const struct extent_buffer *eb)
4146 {
4147 return (atomic_read(&eb->io_pages) ||
4148 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4149 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4150 }
4151
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)4152 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4153 {
4154 struct btrfs_subpage *subpage;
4155
4156 lockdep_assert_held(&page->mapping->private_lock);
4157
4158 if (PagePrivate(page)) {
4159 subpage = (struct btrfs_subpage *)page->private;
4160 if (atomic_read(&subpage->eb_refs))
4161 return true;
4162 /*
4163 * Even there is no eb refs here, we may still have
4164 * end_page_read() call relying on page::private.
4165 */
4166 if (atomic_read(&subpage->readers))
4167 return true;
4168 }
4169 return false;
4170 }
4171
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)4172 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4173 {
4174 struct btrfs_fs_info *fs_info = eb->fs_info;
4175 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4176
4177 /*
4178 * For mapped eb, we're going to change the page private, which should
4179 * be done under the private_lock.
4180 */
4181 if (mapped)
4182 spin_lock(&page->mapping->private_lock);
4183
4184 if (!PagePrivate(page)) {
4185 if (mapped)
4186 spin_unlock(&page->mapping->private_lock);
4187 return;
4188 }
4189
4190 if (fs_info->nodesize >= PAGE_SIZE) {
4191 /*
4192 * We do this since we'll remove the pages after we've
4193 * removed the eb from the radix tree, so we could race
4194 * and have this page now attached to the new eb. So
4195 * only clear page_private if it's still connected to
4196 * this eb.
4197 */
4198 if (PagePrivate(page) &&
4199 page->private == (unsigned long)eb) {
4200 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4201 BUG_ON(PageDirty(page));
4202 BUG_ON(PageWriteback(page));
4203 /*
4204 * We need to make sure we haven't be attached
4205 * to a new eb.
4206 */
4207 detach_page_private(page);
4208 }
4209 if (mapped)
4210 spin_unlock(&page->mapping->private_lock);
4211 return;
4212 }
4213
4214 /*
4215 * For subpage, we can have dummy eb with page private. In this case,
4216 * we can directly detach the private as such page is only attached to
4217 * one dummy eb, no sharing.
4218 */
4219 if (!mapped) {
4220 btrfs_detach_subpage(fs_info, page);
4221 return;
4222 }
4223
4224 btrfs_page_dec_eb_refs(fs_info, page);
4225
4226 /*
4227 * We can only detach the page private if there are no other ebs in the
4228 * page range and no unfinished IO.
4229 */
4230 if (!page_range_has_eb(fs_info, page))
4231 btrfs_detach_subpage(fs_info, page);
4232
4233 spin_unlock(&page->mapping->private_lock);
4234 }
4235
4236 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4237 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4238 {
4239 int i;
4240 int num_pages;
4241
4242 ASSERT(!extent_buffer_under_io(eb));
4243
4244 num_pages = num_extent_pages(eb);
4245 for (i = 0; i < num_pages; i++) {
4246 struct page *page = eb->pages[i];
4247
4248 if (!page)
4249 continue;
4250
4251 detach_extent_buffer_page(eb, page);
4252
4253 /* One for when we allocated the page */
4254 put_page(page);
4255 }
4256 }
4257
4258 /*
4259 * Helper for releasing the extent buffer.
4260 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4261 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4262 {
4263 btrfs_release_extent_buffer_pages(eb);
4264 btrfs_leak_debug_del_eb(eb);
4265 __free_extent_buffer(eb);
4266 }
4267
4268 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4269 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4270 unsigned long len)
4271 {
4272 struct extent_buffer *eb = NULL;
4273
4274 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4275 eb->start = start;
4276 eb->len = len;
4277 eb->fs_info = fs_info;
4278 eb->bflags = 0;
4279 init_rwsem(&eb->lock);
4280
4281 btrfs_leak_debug_add_eb(eb);
4282 INIT_LIST_HEAD(&eb->release_list);
4283
4284 spin_lock_init(&eb->refs_lock);
4285 atomic_set(&eb->refs, 1);
4286 atomic_set(&eb->io_pages, 0);
4287
4288 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4289
4290 return eb;
4291 }
4292
btrfs_clone_extent_buffer(const struct extent_buffer * src)4293 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4294 {
4295 int i;
4296 struct extent_buffer *new;
4297 int num_pages = num_extent_pages(src);
4298 int ret;
4299
4300 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4301 if (new == NULL)
4302 return NULL;
4303
4304 /*
4305 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4306 * btrfs_release_extent_buffer() have different behavior for
4307 * UNMAPPED subpage extent buffer.
4308 */
4309 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4310
4311 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
4312 ret = btrfs_alloc_page_array(num_pages, new->pages);
4313 if (ret) {
4314 btrfs_release_extent_buffer(new);
4315 return NULL;
4316 }
4317
4318 for (i = 0; i < num_pages; i++) {
4319 int ret;
4320 struct page *p = new->pages[i];
4321
4322 ret = attach_extent_buffer_page(new, p, NULL);
4323 if (ret < 0) {
4324 btrfs_release_extent_buffer(new);
4325 return NULL;
4326 }
4327 WARN_ON(PageDirty(p));
4328 copy_page(page_address(p), page_address(src->pages[i]));
4329 }
4330 set_extent_buffer_uptodate(new);
4331
4332 return new;
4333 }
4334
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4335 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4336 u64 start, unsigned long len)
4337 {
4338 struct extent_buffer *eb;
4339 int num_pages;
4340 int i;
4341 int ret;
4342
4343 eb = __alloc_extent_buffer(fs_info, start, len);
4344 if (!eb)
4345 return NULL;
4346
4347 num_pages = num_extent_pages(eb);
4348 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4349 if (ret)
4350 goto err;
4351
4352 for (i = 0; i < num_pages; i++) {
4353 struct page *p = eb->pages[i];
4354
4355 ret = attach_extent_buffer_page(eb, p, NULL);
4356 if (ret < 0)
4357 goto err;
4358 }
4359
4360 set_extent_buffer_uptodate(eb);
4361 btrfs_set_header_nritems(eb, 0);
4362 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4363
4364 return eb;
4365 err:
4366 for (i = 0; i < num_pages; i++) {
4367 if (eb->pages[i]) {
4368 detach_extent_buffer_page(eb, eb->pages[i]);
4369 __free_page(eb->pages[i]);
4370 }
4371 }
4372 __free_extent_buffer(eb);
4373 return NULL;
4374 }
4375
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4376 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4377 u64 start)
4378 {
4379 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4380 }
4381
check_buffer_tree_ref(struct extent_buffer * eb)4382 static void check_buffer_tree_ref(struct extent_buffer *eb)
4383 {
4384 int refs;
4385 /*
4386 * The TREE_REF bit is first set when the extent_buffer is added
4387 * to the radix tree. It is also reset, if unset, when a new reference
4388 * is created by find_extent_buffer.
4389 *
4390 * It is only cleared in two cases: freeing the last non-tree
4391 * reference to the extent_buffer when its STALE bit is set or
4392 * calling release_folio when the tree reference is the only reference.
4393 *
4394 * In both cases, care is taken to ensure that the extent_buffer's
4395 * pages are not under io. However, release_folio can be concurrently
4396 * called with creating new references, which is prone to race
4397 * conditions between the calls to check_buffer_tree_ref in those
4398 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4399 *
4400 * The actual lifetime of the extent_buffer in the radix tree is
4401 * adequately protected by the refcount, but the TREE_REF bit and
4402 * its corresponding reference are not. To protect against this
4403 * class of races, we call check_buffer_tree_ref from the codepaths
4404 * which trigger io after they set eb->io_pages. Note that once io is
4405 * initiated, TREE_REF can no longer be cleared, so that is the
4406 * moment at which any such race is best fixed.
4407 */
4408 refs = atomic_read(&eb->refs);
4409 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4410 return;
4411
4412 spin_lock(&eb->refs_lock);
4413 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4414 atomic_inc(&eb->refs);
4415 spin_unlock(&eb->refs_lock);
4416 }
4417
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4418 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4419 struct page *accessed)
4420 {
4421 int num_pages, i;
4422
4423 check_buffer_tree_ref(eb);
4424
4425 num_pages = num_extent_pages(eb);
4426 for (i = 0; i < num_pages; i++) {
4427 struct page *p = eb->pages[i];
4428
4429 if (p != accessed)
4430 mark_page_accessed(p);
4431 }
4432 }
4433
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4434 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4435 u64 start)
4436 {
4437 struct extent_buffer *eb;
4438
4439 eb = find_extent_buffer_nolock(fs_info, start);
4440 if (!eb)
4441 return NULL;
4442 /*
4443 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4444 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4445 * another task running free_extent_buffer() might have seen that flag
4446 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4447 * writeback flags not set) and it's still in the tree (flag
4448 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4449 * decrementing the extent buffer's reference count twice. So here we
4450 * could race and increment the eb's reference count, clear its stale
4451 * flag, mark it as dirty and drop our reference before the other task
4452 * finishes executing free_extent_buffer, which would later result in
4453 * an attempt to free an extent buffer that is dirty.
4454 */
4455 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4456 spin_lock(&eb->refs_lock);
4457 spin_unlock(&eb->refs_lock);
4458 }
4459 mark_extent_buffer_accessed(eb, NULL);
4460 return eb;
4461 }
4462
4463 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4464 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4465 u64 start)
4466 {
4467 struct extent_buffer *eb, *exists = NULL;
4468 int ret;
4469
4470 eb = find_extent_buffer(fs_info, start);
4471 if (eb)
4472 return eb;
4473 eb = alloc_dummy_extent_buffer(fs_info, start);
4474 if (!eb)
4475 return ERR_PTR(-ENOMEM);
4476 eb->fs_info = fs_info;
4477 again:
4478 ret = radix_tree_preload(GFP_NOFS);
4479 if (ret) {
4480 exists = ERR_PTR(ret);
4481 goto free_eb;
4482 }
4483 spin_lock(&fs_info->buffer_lock);
4484 ret = radix_tree_insert(&fs_info->buffer_radix,
4485 start >> fs_info->sectorsize_bits, eb);
4486 spin_unlock(&fs_info->buffer_lock);
4487 radix_tree_preload_end();
4488 if (ret == -EEXIST) {
4489 exists = find_extent_buffer(fs_info, start);
4490 if (exists)
4491 goto free_eb;
4492 else
4493 goto again;
4494 }
4495 check_buffer_tree_ref(eb);
4496 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4497
4498 return eb;
4499 free_eb:
4500 btrfs_release_extent_buffer(eb);
4501 return exists;
4502 }
4503 #endif
4504
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)4505 static struct extent_buffer *grab_extent_buffer(
4506 struct btrfs_fs_info *fs_info, struct page *page)
4507 {
4508 struct extent_buffer *exists;
4509
4510 /*
4511 * For subpage case, we completely rely on radix tree to ensure we
4512 * don't try to insert two ebs for the same bytenr. So here we always
4513 * return NULL and just continue.
4514 */
4515 if (fs_info->nodesize < PAGE_SIZE)
4516 return NULL;
4517
4518 /* Page not yet attached to an extent buffer */
4519 if (!PagePrivate(page))
4520 return NULL;
4521
4522 /*
4523 * We could have already allocated an eb for this page and attached one
4524 * so lets see if we can get a ref on the existing eb, and if we can we
4525 * know it's good and we can just return that one, else we know we can
4526 * just overwrite page->private.
4527 */
4528 exists = (struct extent_buffer *)page->private;
4529 if (atomic_inc_not_zero(&exists->refs))
4530 return exists;
4531
4532 WARN_ON(PageDirty(page));
4533 detach_page_private(page);
4534 return NULL;
4535 }
4536
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)4537 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4538 {
4539 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4540 btrfs_err(fs_info, "bad tree block start %llu", start);
4541 return -EINVAL;
4542 }
4543
4544 if (fs_info->nodesize < PAGE_SIZE &&
4545 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4546 btrfs_err(fs_info,
4547 "tree block crosses page boundary, start %llu nodesize %u",
4548 start, fs_info->nodesize);
4549 return -EINVAL;
4550 }
4551 if (fs_info->nodesize >= PAGE_SIZE &&
4552 !PAGE_ALIGNED(start)) {
4553 btrfs_err(fs_info,
4554 "tree block is not page aligned, start %llu nodesize %u",
4555 start, fs_info->nodesize);
4556 return -EINVAL;
4557 }
4558 return 0;
4559 }
4560
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)4561 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4562 u64 start, u64 owner_root, int level)
4563 {
4564 unsigned long len = fs_info->nodesize;
4565 int num_pages;
4566 int i;
4567 unsigned long index = start >> PAGE_SHIFT;
4568 struct extent_buffer *eb;
4569 struct extent_buffer *exists = NULL;
4570 struct page *p;
4571 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4572 u64 lockdep_owner = owner_root;
4573 int uptodate = 1;
4574 int ret;
4575
4576 if (check_eb_alignment(fs_info, start))
4577 return ERR_PTR(-EINVAL);
4578
4579 #if BITS_PER_LONG == 32
4580 if (start >= MAX_LFS_FILESIZE) {
4581 btrfs_err_rl(fs_info,
4582 "extent buffer %llu is beyond 32bit page cache limit", start);
4583 btrfs_err_32bit_limit(fs_info);
4584 return ERR_PTR(-EOVERFLOW);
4585 }
4586 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4587 btrfs_warn_32bit_limit(fs_info);
4588 #endif
4589
4590 eb = find_extent_buffer(fs_info, start);
4591 if (eb)
4592 return eb;
4593
4594 eb = __alloc_extent_buffer(fs_info, start, len);
4595 if (!eb)
4596 return ERR_PTR(-ENOMEM);
4597
4598 /*
4599 * The reloc trees are just snapshots, so we need them to appear to be
4600 * just like any other fs tree WRT lockdep.
4601 */
4602 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4603 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4604
4605 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4606
4607 num_pages = num_extent_pages(eb);
4608 for (i = 0; i < num_pages; i++, index++) {
4609 struct btrfs_subpage *prealloc = NULL;
4610
4611 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4612 if (!p) {
4613 exists = ERR_PTR(-ENOMEM);
4614 goto free_eb;
4615 }
4616
4617 /*
4618 * Preallocate page->private for subpage case, so that we won't
4619 * allocate memory with private_lock hold. The memory will be
4620 * freed by attach_extent_buffer_page() or freed manually if
4621 * we exit earlier.
4622 *
4623 * Although we have ensured one subpage eb can only have one
4624 * page, but it may change in the future for 16K page size
4625 * support, so we still preallocate the memory in the loop.
4626 */
4627 if (fs_info->nodesize < PAGE_SIZE) {
4628 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4629 if (IS_ERR(prealloc)) {
4630 ret = PTR_ERR(prealloc);
4631 unlock_page(p);
4632 put_page(p);
4633 exists = ERR_PTR(ret);
4634 goto free_eb;
4635 }
4636 }
4637
4638 spin_lock(&mapping->private_lock);
4639 exists = grab_extent_buffer(fs_info, p);
4640 if (exists) {
4641 spin_unlock(&mapping->private_lock);
4642 unlock_page(p);
4643 put_page(p);
4644 mark_extent_buffer_accessed(exists, p);
4645 btrfs_free_subpage(prealloc);
4646 goto free_eb;
4647 }
4648 /* Should not fail, as we have preallocated the memory */
4649 ret = attach_extent_buffer_page(eb, p, prealloc);
4650 ASSERT(!ret);
4651 /*
4652 * To inform we have extra eb under allocation, so that
4653 * detach_extent_buffer_page() won't release the page private
4654 * when the eb hasn't yet been inserted into radix tree.
4655 *
4656 * The ref will be decreased when the eb released the page, in
4657 * detach_extent_buffer_page().
4658 * Thus needs no special handling in error path.
4659 */
4660 btrfs_page_inc_eb_refs(fs_info, p);
4661 spin_unlock(&mapping->private_lock);
4662
4663 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4664 eb->pages[i] = p;
4665 if (!PageUptodate(p))
4666 uptodate = 0;
4667
4668 /*
4669 * We can't unlock the pages just yet since the extent buffer
4670 * hasn't been properly inserted in the radix tree, this
4671 * opens a race with btree_release_folio which can free a page
4672 * while we are still filling in all pages for the buffer and
4673 * we could crash.
4674 */
4675 }
4676 if (uptodate)
4677 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4678 again:
4679 ret = radix_tree_preload(GFP_NOFS);
4680 if (ret) {
4681 exists = ERR_PTR(ret);
4682 goto free_eb;
4683 }
4684
4685 spin_lock(&fs_info->buffer_lock);
4686 ret = radix_tree_insert(&fs_info->buffer_radix,
4687 start >> fs_info->sectorsize_bits, eb);
4688 spin_unlock(&fs_info->buffer_lock);
4689 radix_tree_preload_end();
4690 if (ret == -EEXIST) {
4691 exists = find_extent_buffer(fs_info, start);
4692 if (exists)
4693 goto free_eb;
4694 else
4695 goto again;
4696 }
4697 /* add one reference for the tree */
4698 check_buffer_tree_ref(eb);
4699 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4700
4701 /*
4702 * Now it's safe to unlock the pages because any calls to
4703 * btree_release_folio will correctly detect that a page belongs to a
4704 * live buffer and won't free them prematurely.
4705 */
4706 for (i = 0; i < num_pages; i++)
4707 unlock_page(eb->pages[i]);
4708 return eb;
4709
4710 free_eb:
4711 WARN_ON(!atomic_dec_and_test(&eb->refs));
4712 for (i = 0; i < num_pages; i++) {
4713 if (eb->pages[i])
4714 unlock_page(eb->pages[i]);
4715 }
4716
4717 btrfs_release_extent_buffer(eb);
4718 return exists;
4719 }
4720
btrfs_release_extent_buffer_rcu(struct rcu_head * head)4721 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4722 {
4723 struct extent_buffer *eb =
4724 container_of(head, struct extent_buffer, rcu_head);
4725
4726 __free_extent_buffer(eb);
4727 }
4728
release_extent_buffer(struct extent_buffer * eb)4729 static int release_extent_buffer(struct extent_buffer *eb)
4730 __releases(&eb->refs_lock)
4731 {
4732 lockdep_assert_held(&eb->refs_lock);
4733
4734 WARN_ON(atomic_read(&eb->refs) == 0);
4735 if (atomic_dec_and_test(&eb->refs)) {
4736 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4737 struct btrfs_fs_info *fs_info = eb->fs_info;
4738
4739 spin_unlock(&eb->refs_lock);
4740
4741 spin_lock(&fs_info->buffer_lock);
4742 radix_tree_delete(&fs_info->buffer_radix,
4743 eb->start >> fs_info->sectorsize_bits);
4744 spin_unlock(&fs_info->buffer_lock);
4745 } else {
4746 spin_unlock(&eb->refs_lock);
4747 }
4748
4749 btrfs_leak_debug_del_eb(eb);
4750 /* Should be safe to release our pages at this point */
4751 btrfs_release_extent_buffer_pages(eb);
4752 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4753 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4754 __free_extent_buffer(eb);
4755 return 1;
4756 }
4757 #endif
4758 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4759 return 1;
4760 }
4761 spin_unlock(&eb->refs_lock);
4762
4763 return 0;
4764 }
4765
free_extent_buffer(struct extent_buffer * eb)4766 void free_extent_buffer(struct extent_buffer *eb)
4767 {
4768 int refs;
4769 if (!eb)
4770 return;
4771
4772 refs = atomic_read(&eb->refs);
4773 while (1) {
4774 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4775 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4776 refs == 1))
4777 break;
4778 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4779 return;
4780 }
4781
4782 spin_lock(&eb->refs_lock);
4783 if (atomic_read(&eb->refs) == 2 &&
4784 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4785 !extent_buffer_under_io(eb) &&
4786 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4787 atomic_dec(&eb->refs);
4788
4789 /*
4790 * I know this is terrible, but it's temporary until we stop tracking
4791 * the uptodate bits and such for the extent buffers.
4792 */
4793 release_extent_buffer(eb);
4794 }
4795
free_extent_buffer_stale(struct extent_buffer * eb)4796 void free_extent_buffer_stale(struct extent_buffer *eb)
4797 {
4798 if (!eb)
4799 return;
4800
4801 spin_lock(&eb->refs_lock);
4802 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4803
4804 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4805 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4806 atomic_dec(&eb->refs);
4807 release_extent_buffer(eb);
4808 }
4809
btree_clear_page_dirty(struct page * page)4810 static void btree_clear_page_dirty(struct page *page)
4811 {
4812 ASSERT(PageDirty(page));
4813 ASSERT(PageLocked(page));
4814 clear_page_dirty_for_io(page);
4815 xa_lock_irq(&page->mapping->i_pages);
4816 if (!PageDirty(page))
4817 __xa_clear_mark(&page->mapping->i_pages,
4818 page_index(page), PAGECACHE_TAG_DIRTY);
4819 xa_unlock_irq(&page->mapping->i_pages);
4820 }
4821
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)4822 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4823 {
4824 struct btrfs_fs_info *fs_info = eb->fs_info;
4825 struct page *page = eb->pages[0];
4826 bool last;
4827
4828 /* btree_clear_page_dirty() needs page locked */
4829 lock_page(page);
4830 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4831 eb->len);
4832 if (last)
4833 btree_clear_page_dirty(page);
4834 unlock_page(page);
4835 WARN_ON(atomic_read(&eb->refs) == 0);
4836 }
4837
clear_extent_buffer_dirty(const struct extent_buffer * eb)4838 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4839 {
4840 int i;
4841 int num_pages;
4842 struct page *page;
4843
4844 if (eb->fs_info->nodesize < PAGE_SIZE)
4845 return clear_subpage_extent_buffer_dirty(eb);
4846
4847 num_pages = num_extent_pages(eb);
4848
4849 for (i = 0; i < num_pages; i++) {
4850 page = eb->pages[i];
4851 if (!PageDirty(page))
4852 continue;
4853 lock_page(page);
4854 btree_clear_page_dirty(page);
4855 ClearPageError(page);
4856 unlock_page(page);
4857 }
4858 WARN_ON(atomic_read(&eb->refs) == 0);
4859 }
4860
set_extent_buffer_dirty(struct extent_buffer * eb)4861 bool set_extent_buffer_dirty(struct extent_buffer *eb)
4862 {
4863 int i;
4864 int num_pages;
4865 bool was_dirty;
4866
4867 check_buffer_tree_ref(eb);
4868
4869 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4870
4871 num_pages = num_extent_pages(eb);
4872 WARN_ON(atomic_read(&eb->refs) == 0);
4873 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4874
4875 if (!was_dirty) {
4876 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4877
4878 /*
4879 * For subpage case, we can have other extent buffers in the
4880 * same page, and in clear_subpage_extent_buffer_dirty() we
4881 * have to clear page dirty without subpage lock held.
4882 * This can cause race where our page gets dirty cleared after
4883 * we just set it.
4884 *
4885 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4886 * its page for other reasons, we can use page lock to prevent
4887 * the above race.
4888 */
4889 if (subpage)
4890 lock_page(eb->pages[0]);
4891 for (i = 0; i < num_pages; i++)
4892 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4893 eb->start, eb->len);
4894 if (subpage)
4895 unlock_page(eb->pages[0]);
4896 }
4897 #ifdef CONFIG_BTRFS_DEBUG
4898 for (i = 0; i < num_pages; i++)
4899 ASSERT(PageDirty(eb->pages[i]));
4900 #endif
4901
4902 return was_dirty;
4903 }
4904
clear_extent_buffer_uptodate(struct extent_buffer * eb)4905 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4906 {
4907 struct btrfs_fs_info *fs_info = eb->fs_info;
4908 struct page *page;
4909 int num_pages;
4910 int i;
4911
4912 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4913 num_pages = num_extent_pages(eb);
4914 for (i = 0; i < num_pages; i++) {
4915 page = eb->pages[i];
4916 if (!page)
4917 continue;
4918
4919 /*
4920 * This is special handling for metadata subpage, as regular
4921 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4922 */
4923 if (fs_info->nodesize >= PAGE_SIZE)
4924 ClearPageUptodate(page);
4925 else
4926 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4927 eb->len);
4928 }
4929 }
4930
set_extent_buffer_uptodate(struct extent_buffer * eb)4931 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4932 {
4933 struct btrfs_fs_info *fs_info = eb->fs_info;
4934 struct page *page;
4935 int num_pages;
4936 int i;
4937
4938 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4939 num_pages = num_extent_pages(eb);
4940 for (i = 0; i < num_pages; i++) {
4941 page = eb->pages[i];
4942
4943 /*
4944 * This is special handling for metadata subpage, as regular
4945 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4946 */
4947 if (fs_info->nodesize >= PAGE_SIZE)
4948 SetPageUptodate(page);
4949 else
4950 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4951 eb->len);
4952 }
4953 }
4954
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)4955 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4956 int mirror_num)
4957 {
4958 struct btrfs_fs_info *fs_info = eb->fs_info;
4959 struct extent_io_tree *io_tree;
4960 struct page *page = eb->pages[0];
4961 struct btrfs_bio_ctrl bio_ctrl = {
4962 .mirror_num = mirror_num,
4963 };
4964 int ret = 0;
4965
4966 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4967 ASSERT(PagePrivate(page));
4968 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4969
4970 if (wait == WAIT_NONE) {
4971 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
4972 return -EAGAIN;
4973 } else {
4974 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4975 if (ret < 0)
4976 return ret;
4977 }
4978
4979 ret = 0;
4980 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4981 PageUptodate(page) ||
4982 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4983 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4984 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4985 return ret;
4986 }
4987
4988 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4989 eb->read_mirror = 0;
4990 atomic_set(&eb->io_pages, 1);
4991 check_buffer_tree_ref(eb);
4992 bio_ctrl.end_io_func = end_bio_extent_readpage;
4993
4994 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4995
4996 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4997 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4998 eb->start, page, eb->len,
4999 eb->start - page_offset(page), 0, true);
5000 if (ret) {
5001 /*
5002 * In the endio function, if we hit something wrong we will
5003 * increase the io_pages, so here we need to decrease it for
5004 * error path.
5005 */
5006 atomic_dec(&eb->io_pages);
5007 }
5008 submit_one_bio(&bio_ctrl);
5009 if (ret || wait != WAIT_COMPLETE)
5010 return ret;
5011
5012 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
5013 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5014 ret = -EIO;
5015 return ret;
5016 }
5017
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5018 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5019 {
5020 int i;
5021 struct page *page;
5022 int err;
5023 int ret = 0;
5024 int locked_pages = 0;
5025 int all_uptodate = 1;
5026 int num_pages;
5027 unsigned long num_reads = 0;
5028 struct btrfs_bio_ctrl bio_ctrl = {
5029 .mirror_num = mirror_num,
5030 };
5031
5032 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5033 return 0;
5034
5035 /*
5036 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
5037 * operation, which could potentially still be in flight. In this case
5038 * we simply want to return an error.
5039 */
5040 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
5041 return -EIO;
5042
5043 if (eb->fs_info->nodesize < PAGE_SIZE)
5044 return read_extent_buffer_subpage(eb, wait, mirror_num);
5045
5046 num_pages = num_extent_pages(eb);
5047 for (i = 0; i < num_pages; i++) {
5048 page = eb->pages[i];
5049 if (wait == WAIT_NONE) {
5050 /*
5051 * WAIT_NONE is only utilized by readahead. If we can't
5052 * acquire the lock atomically it means either the eb
5053 * is being read out or under modification.
5054 * Either way the eb will be or has been cached,
5055 * readahead can exit safely.
5056 */
5057 if (!trylock_page(page))
5058 goto unlock_exit;
5059 } else {
5060 lock_page(page);
5061 }
5062 locked_pages++;
5063 }
5064 /*
5065 * We need to firstly lock all pages to make sure that
5066 * the uptodate bit of our pages won't be affected by
5067 * clear_extent_buffer_uptodate().
5068 */
5069 for (i = 0; i < num_pages; i++) {
5070 page = eb->pages[i];
5071 if (!PageUptodate(page)) {
5072 num_reads++;
5073 all_uptodate = 0;
5074 }
5075 }
5076
5077 if (all_uptodate) {
5078 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5079 goto unlock_exit;
5080 }
5081
5082 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5083 eb->read_mirror = 0;
5084 atomic_set(&eb->io_pages, num_reads);
5085 /*
5086 * It is possible for release_folio to clear the TREE_REF bit before we
5087 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5088 */
5089 check_buffer_tree_ref(eb);
5090 bio_ctrl.end_io_func = end_bio_extent_readpage;
5091 for (i = 0; i < num_pages; i++) {
5092 page = eb->pages[i];
5093
5094 if (!PageUptodate(page)) {
5095 if (ret) {
5096 atomic_dec(&eb->io_pages);
5097 unlock_page(page);
5098 continue;
5099 }
5100
5101 ClearPageError(page);
5102 err = submit_extent_page(REQ_OP_READ, NULL,
5103 &bio_ctrl, page_offset(page), page,
5104 PAGE_SIZE, 0, 0, false);
5105 if (err) {
5106 /*
5107 * We failed to submit the bio so it's the
5108 * caller's responsibility to perform cleanup
5109 * i.e unlock page/set error bit.
5110 */
5111 ret = err;
5112 SetPageError(page);
5113 unlock_page(page);
5114 atomic_dec(&eb->io_pages);
5115 }
5116 } else {
5117 unlock_page(page);
5118 }
5119 }
5120
5121 submit_one_bio(&bio_ctrl);
5122
5123 if (ret || wait != WAIT_COMPLETE)
5124 return ret;
5125
5126 for (i = 0; i < num_pages; i++) {
5127 page = eb->pages[i];
5128 wait_on_page_locked(page);
5129 if (!PageUptodate(page))
5130 ret = -EIO;
5131 }
5132
5133 return ret;
5134
5135 unlock_exit:
5136 while (locked_pages > 0) {
5137 locked_pages--;
5138 page = eb->pages[locked_pages];
5139 unlock_page(page);
5140 }
5141 return ret;
5142 }
5143
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5144 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5145 unsigned long len)
5146 {
5147 btrfs_warn(eb->fs_info,
5148 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5149 eb->start, eb->len, start, len);
5150 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5151
5152 return true;
5153 }
5154
5155 /*
5156 * Check if the [start, start + len) range is valid before reading/writing
5157 * the eb.
5158 * NOTE: @start and @len are offset inside the eb, not logical address.
5159 *
5160 * Caller should not touch the dst/src memory if this function returns error.
5161 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5162 static inline int check_eb_range(const struct extent_buffer *eb,
5163 unsigned long start, unsigned long len)
5164 {
5165 unsigned long offset;
5166
5167 /* start, start + len should not go beyond eb->len nor overflow */
5168 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5169 return report_eb_range(eb, start, len);
5170
5171 return false;
5172 }
5173
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5174 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5175 unsigned long start, unsigned long len)
5176 {
5177 size_t cur;
5178 size_t offset;
5179 struct page *page;
5180 char *kaddr;
5181 char *dst = (char *)dstv;
5182 unsigned long i = get_eb_page_index(start);
5183
5184 if (check_eb_range(eb, start, len))
5185 return;
5186
5187 offset = get_eb_offset_in_page(eb, start);
5188
5189 while (len > 0) {
5190 page = eb->pages[i];
5191
5192 cur = min(len, (PAGE_SIZE - offset));
5193 kaddr = page_address(page);
5194 memcpy(dst, kaddr + offset, cur);
5195
5196 dst += cur;
5197 len -= cur;
5198 offset = 0;
5199 i++;
5200 }
5201 }
5202
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5203 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5204 void __user *dstv,
5205 unsigned long start, unsigned long len)
5206 {
5207 size_t cur;
5208 size_t offset;
5209 struct page *page;
5210 char *kaddr;
5211 char __user *dst = (char __user *)dstv;
5212 unsigned long i = get_eb_page_index(start);
5213 int ret = 0;
5214
5215 WARN_ON(start > eb->len);
5216 WARN_ON(start + len > eb->start + eb->len);
5217
5218 offset = get_eb_offset_in_page(eb, start);
5219
5220 while (len > 0) {
5221 page = eb->pages[i];
5222
5223 cur = min(len, (PAGE_SIZE - offset));
5224 kaddr = page_address(page);
5225 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5226 ret = -EFAULT;
5227 break;
5228 }
5229
5230 dst += cur;
5231 len -= cur;
5232 offset = 0;
5233 i++;
5234 }
5235
5236 return ret;
5237 }
5238
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5239 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5240 unsigned long start, unsigned long len)
5241 {
5242 size_t cur;
5243 size_t offset;
5244 struct page *page;
5245 char *kaddr;
5246 char *ptr = (char *)ptrv;
5247 unsigned long i = get_eb_page_index(start);
5248 int ret = 0;
5249
5250 if (check_eb_range(eb, start, len))
5251 return -EINVAL;
5252
5253 offset = get_eb_offset_in_page(eb, start);
5254
5255 while (len > 0) {
5256 page = eb->pages[i];
5257
5258 cur = min(len, (PAGE_SIZE - offset));
5259
5260 kaddr = page_address(page);
5261 ret = memcmp(ptr, kaddr + offset, cur);
5262 if (ret)
5263 break;
5264
5265 ptr += cur;
5266 len -= cur;
5267 offset = 0;
5268 i++;
5269 }
5270 return ret;
5271 }
5272
5273 /*
5274 * Check that the extent buffer is uptodate.
5275 *
5276 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5277 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5278 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)5279 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5280 struct page *page)
5281 {
5282 struct btrfs_fs_info *fs_info = eb->fs_info;
5283
5284 /*
5285 * If we are using the commit root we could potentially clear a page
5286 * Uptodate while we're using the extent buffer that we've previously
5287 * looked up. We don't want to complain in this case, as the page was
5288 * valid before, we just didn't write it out. Instead we want to catch
5289 * the case where we didn't actually read the block properly, which
5290 * would have !PageUptodate && !PageError, as we clear PageError before
5291 * reading.
5292 */
5293 if (fs_info->nodesize < PAGE_SIZE) {
5294 bool uptodate, error;
5295
5296 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5297 eb->start, eb->len);
5298 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5299 WARN_ON(!uptodate && !error);
5300 } else {
5301 WARN_ON(!PageUptodate(page) && !PageError(page));
5302 }
5303 }
5304
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)5305 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5306 const void *srcv)
5307 {
5308 char *kaddr;
5309
5310 assert_eb_page_uptodate(eb, eb->pages[0]);
5311 kaddr = page_address(eb->pages[0]) +
5312 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5313 chunk_tree_uuid));
5314 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5315 }
5316
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)5317 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5318 {
5319 char *kaddr;
5320
5321 assert_eb_page_uptodate(eb, eb->pages[0]);
5322 kaddr = page_address(eb->pages[0]) +
5323 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5324 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5325 }
5326
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5327 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5328 unsigned long start, unsigned long len)
5329 {
5330 size_t cur;
5331 size_t offset;
5332 struct page *page;
5333 char *kaddr;
5334 char *src = (char *)srcv;
5335 unsigned long i = get_eb_page_index(start);
5336
5337 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5338
5339 if (check_eb_range(eb, start, len))
5340 return;
5341
5342 offset = get_eb_offset_in_page(eb, start);
5343
5344 while (len > 0) {
5345 page = eb->pages[i];
5346 assert_eb_page_uptodate(eb, page);
5347
5348 cur = min(len, PAGE_SIZE - offset);
5349 kaddr = page_address(page);
5350 memcpy(kaddr + offset, src, cur);
5351
5352 src += cur;
5353 len -= cur;
5354 offset = 0;
5355 i++;
5356 }
5357 }
5358
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)5359 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5360 unsigned long len)
5361 {
5362 size_t cur;
5363 size_t offset;
5364 struct page *page;
5365 char *kaddr;
5366 unsigned long i = get_eb_page_index(start);
5367
5368 if (check_eb_range(eb, start, len))
5369 return;
5370
5371 offset = get_eb_offset_in_page(eb, start);
5372
5373 while (len > 0) {
5374 page = eb->pages[i];
5375 assert_eb_page_uptodate(eb, page);
5376
5377 cur = min(len, PAGE_SIZE - offset);
5378 kaddr = page_address(page);
5379 memset(kaddr + offset, 0, cur);
5380
5381 len -= cur;
5382 offset = 0;
5383 i++;
5384 }
5385 }
5386
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)5387 void copy_extent_buffer_full(const struct extent_buffer *dst,
5388 const struct extent_buffer *src)
5389 {
5390 int i;
5391 int num_pages;
5392
5393 ASSERT(dst->len == src->len);
5394
5395 if (dst->fs_info->nodesize >= PAGE_SIZE) {
5396 num_pages = num_extent_pages(dst);
5397 for (i = 0; i < num_pages; i++)
5398 copy_page(page_address(dst->pages[i]),
5399 page_address(src->pages[i]));
5400 } else {
5401 size_t src_offset = get_eb_offset_in_page(src, 0);
5402 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5403
5404 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5405 memcpy(page_address(dst->pages[0]) + dst_offset,
5406 page_address(src->pages[0]) + src_offset,
5407 src->len);
5408 }
5409 }
5410
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5411 void copy_extent_buffer(const struct extent_buffer *dst,
5412 const struct extent_buffer *src,
5413 unsigned long dst_offset, unsigned long src_offset,
5414 unsigned long len)
5415 {
5416 u64 dst_len = dst->len;
5417 size_t cur;
5418 size_t offset;
5419 struct page *page;
5420 char *kaddr;
5421 unsigned long i = get_eb_page_index(dst_offset);
5422
5423 if (check_eb_range(dst, dst_offset, len) ||
5424 check_eb_range(src, src_offset, len))
5425 return;
5426
5427 WARN_ON(src->len != dst_len);
5428
5429 offset = get_eb_offset_in_page(dst, dst_offset);
5430
5431 while (len > 0) {
5432 page = dst->pages[i];
5433 assert_eb_page_uptodate(dst, page);
5434
5435 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5436
5437 kaddr = page_address(page);
5438 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5439
5440 src_offset += cur;
5441 len -= cur;
5442 offset = 0;
5443 i++;
5444 }
5445 }
5446
5447 /*
5448 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5449 * given bit number
5450 * @eb: the extent buffer
5451 * @start: offset of the bitmap item in the extent buffer
5452 * @nr: bit number
5453 * @page_index: return index of the page in the extent buffer that contains the
5454 * given bit number
5455 * @page_offset: return offset into the page given by page_index
5456 *
5457 * This helper hides the ugliness of finding the byte in an extent buffer which
5458 * contains a given bit.
5459 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5460 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5461 unsigned long start, unsigned long nr,
5462 unsigned long *page_index,
5463 size_t *page_offset)
5464 {
5465 size_t byte_offset = BIT_BYTE(nr);
5466 size_t offset;
5467
5468 /*
5469 * The byte we want is the offset of the extent buffer + the offset of
5470 * the bitmap item in the extent buffer + the offset of the byte in the
5471 * bitmap item.
5472 */
5473 offset = start + offset_in_page(eb->start) + byte_offset;
5474
5475 *page_index = offset >> PAGE_SHIFT;
5476 *page_offset = offset_in_page(offset);
5477 }
5478
5479 /**
5480 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5481 * @eb: the extent buffer
5482 * @start: offset of the bitmap item in the extent buffer
5483 * @nr: bit number to test
5484 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)5485 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5486 unsigned long nr)
5487 {
5488 u8 *kaddr;
5489 struct page *page;
5490 unsigned long i;
5491 size_t offset;
5492
5493 eb_bitmap_offset(eb, start, nr, &i, &offset);
5494 page = eb->pages[i];
5495 assert_eb_page_uptodate(eb, page);
5496 kaddr = page_address(page);
5497 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5498 }
5499
5500 /**
5501 * extent_buffer_bitmap_set - set an area of a bitmap
5502 * @eb: the extent buffer
5503 * @start: offset of the bitmap item in the extent buffer
5504 * @pos: bit number of the first bit
5505 * @len: number of bits to set
5506 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5507 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5508 unsigned long pos, unsigned long len)
5509 {
5510 u8 *kaddr;
5511 struct page *page;
5512 unsigned long i;
5513 size_t offset;
5514 const unsigned int size = pos + len;
5515 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5516 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5517
5518 eb_bitmap_offset(eb, start, pos, &i, &offset);
5519 page = eb->pages[i];
5520 assert_eb_page_uptodate(eb, page);
5521 kaddr = page_address(page);
5522
5523 while (len >= bits_to_set) {
5524 kaddr[offset] |= mask_to_set;
5525 len -= bits_to_set;
5526 bits_to_set = BITS_PER_BYTE;
5527 mask_to_set = ~0;
5528 if (++offset >= PAGE_SIZE && len > 0) {
5529 offset = 0;
5530 page = eb->pages[++i];
5531 assert_eb_page_uptodate(eb, page);
5532 kaddr = page_address(page);
5533 }
5534 }
5535 if (len) {
5536 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5537 kaddr[offset] |= mask_to_set;
5538 }
5539 }
5540
5541
5542 /**
5543 * extent_buffer_bitmap_clear - clear an area of a bitmap
5544 * @eb: the extent buffer
5545 * @start: offset of the bitmap item in the extent buffer
5546 * @pos: bit number of the first bit
5547 * @len: number of bits to clear
5548 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5549 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5550 unsigned long start, unsigned long pos,
5551 unsigned long len)
5552 {
5553 u8 *kaddr;
5554 struct page *page;
5555 unsigned long i;
5556 size_t offset;
5557 const unsigned int size = pos + len;
5558 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5559 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5560
5561 eb_bitmap_offset(eb, start, pos, &i, &offset);
5562 page = eb->pages[i];
5563 assert_eb_page_uptodate(eb, page);
5564 kaddr = page_address(page);
5565
5566 while (len >= bits_to_clear) {
5567 kaddr[offset] &= ~mask_to_clear;
5568 len -= bits_to_clear;
5569 bits_to_clear = BITS_PER_BYTE;
5570 mask_to_clear = ~0;
5571 if (++offset >= PAGE_SIZE && len > 0) {
5572 offset = 0;
5573 page = eb->pages[++i];
5574 assert_eb_page_uptodate(eb, page);
5575 kaddr = page_address(page);
5576 }
5577 }
5578 if (len) {
5579 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5580 kaddr[offset] &= ~mask_to_clear;
5581 }
5582 }
5583
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5584 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5585 {
5586 unsigned long distance = (src > dst) ? src - dst : dst - src;
5587 return distance < len;
5588 }
5589
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5590 static void copy_pages(struct page *dst_page, struct page *src_page,
5591 unsigned long dst_off, unsigned long src_off,
5592 unsigned long len)
5593 {
5594 char *dst_kaddr = page_address(dst_page);
5595 char *src_kaddr;
5596 int must_memmove = 0;
5597
5598 if (dst_page != src_page) {
5599 src_kaddr = page_address(src_page);
5600 } else {
5601 src_kaddr = dst_kaddr;
5602 if (areas_overlap(src_off, dst_off, len))
5603 must_memmove = 1;
5604 }
5605
5606 if (must_memmove)
5607 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5608 else
5609 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5610 }
5611
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5612 void memcpy_extent_buffer(const struct extent_buffer *dst,
5613 unsigned long dst_offset, unsigned long src_offset,
5614 unsigned long len)
5615 {
5616 size_t cur;
5617 size_t dst_off_in_page;
5618 size_t src_off_in_page;
5619 unsigned long dst_i;
5620 unsigned long src_i;
5621
5622 if (check_eb_range(dst, dst_offset, len) ||
5623 check_eb_range(dst, src_offset, len))
5624 return;
5625
5626 while (len > 0) {
5627 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5628 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5629
5630 dst_i = get_eb_page_index(dst_offset);
5631 src_i = get_eb_page_index(src_offset);
5632
5633 cur = min(len, (unsigned long)(PAGE_SIZE -
5634 src_off_in_page));
5635 cur = min_t(unsigned long, cur,
5636 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5637
5638 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5639 dst_off_in_page, src_off_in_page, cur);
5640
5641 src_offset += cur;
5642 dst_offset += cur;
5643 len -= cur;
5644 }
5645 }
5646
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5647 void memmove_extent_buffer(const struct extent_buffer *dst,
5648 unsigned long dst_offset, unsigned long src_offset,
5649 unsigned long len)
5650 {
5651 size_t cur;
5652 size_t dst_off_in_page;
5653 size_t src_off_in_page;
5654 unsigned long dst_end = dst_offset + len - 1;
5655 unsigned long src_end = src_offset + len - 1;
5656 unsigned long dst_i;
5657 unsigned long src_i;
5658
5659 if (check_eb_range(dst, dst_offset, len) ||
5660 check_eb_range(dst, src_offset, len))
5661 return;
5662 if (dst_offset < src_offset) {
5663 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5664 return;
5665 }
5666 while (len > 0) {
5667 dst_i = get_eb_page_index(dst_end);
5668 src_i = get_eb_page_index(src_end);
5669
5670 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5671 src_off_in_page = get_eb_offset_in_page(dst, src_end);
5672
5673 cur = min_t(unsigned long, len, src_off_in_page + 1);
5674 cur = min(cur, dst_off_in_page + 1);
5675 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5676 dst_off_in_page - cur + 1,
5677 src_off_in_page - cur + 1, cur);
5678
5679 dst_end -= cur;
5680 src_end -= cur;
5681 len -= cur;
5682 }
5683 }
5684
5685 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)5686 static struct extent_buffer *get_next_extent_buffer(
5687 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5688 {
5689 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5690 struct extent_buffer *found = NULL;
5691 u64 page_start = page_offset(page);
5692 u64 cur = page_start;
5693
5694 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5695 lockdep_assert_held(&fs_info->buffer_lock);
5696
5697 while (cur < page_start + PAGE_SIZE) {
5698 int ret;
5699 int i;
5700
5701 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5702 (void **)gang, cur >> fs_info->sectorsize_bits,
5703 min_t(unsigned int, GANG_LOOKUP_SIZE,
5704 PAGE_SIZE / fs_info->nodesize));
5705 if (ret == 0)
5706 goto out;
5707 for (i = 0; i < ret; i++) {
5708 /* Already beyond page end */
5709 if (gang[i]->start >= page_start + PAGE_SIZE)
5710 goto out;
5711 /* Found one */
5712 if (gang[i]->start >= bytenr) {
5713 found = gang[i];
5714 goto out;
5715 }
5716 }
5717 cur = gang[ret - 1]->start + gang[ret - 1]->len;
5718 }
5719 out:
5720 return found;
5721 }
5722
try_release_subpage_extent_buffer(struct page * page)5723 static int try_release_subpage_extent_buffer(struct page *page)
5724 {
5725 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5726 u64 cur = page_offset(page);
5727 const u64 end = page_offset(page) + PAGE_SIZE;
5728 int ret;
5729
5730 while (cur < end) {
5731 struct extent_buffer *eb = NULL;
5732
5733 /*
5734 * Unlike try_release_extent_buffer() which uses page->private
5735 * to grab buffer, for subpage case we rely on radix tree, thus
5736 * we need to ensure radix tree consistency.
5737 *
5738 * We also want an atomic snapshot of the radix tree, thus go
5739 * with spinlock rather than RCU.
5740 */
5741 spin_lock(&fs_info->buffer_lock);
5742 eb = get_next_extent_buffer(fs_info, page, cur);
5743 if (!eb) {
5744 /* No more eb in the page range after or at cur */
5745 spin_unlock(&fs_info->buffer_lock);
5746 break;
5747 }
5748 cur = eb->start + eb->len;
5749
5750 /*
5751 * The same as try_release_extent_buffer(), to ensure the eb
5752 * won't disappear out from under us.
5753 */
5754 spin_lock(&eb->refs_lock);
5755 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5756 spin_unlock(&eb->refs_lock);
5757 spin_unlock(&fs_info->buffer_lock);
5758 break;
5759 }
5760 spin_unlock(&fs_info->buffer_lock);
5761
5762 /*
5763 * If tree ref isn't set then we know the ref on this eb is a
5764 * real ref, so just return, this eb will likely be freed soon
5765 * anyway.
5766 */
5767 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5768 spin_unlock(&eb->refs_lock);
5769 break;
5770 }
5771
5772 /*
5773 * Here we don't care about the return value, we will always
5774 * check the page private at the end. And
5775 * release_extent_buffer() will release the refs_lock.
5776 */
5777 release_extent_buffer(eb);
5778 }
5779 /*
5780 * Finally to check if we have cleared page private, as if we have
5781 * released all ebs in the page, the page private should be cleared now.
5782 */
5783 spin_lock(&page->mapping->private_lock);
5784 if (!PagePrivate(page))
5785 ret = 1;
5786 else
5787 ret = 0;
5788 spin_unlock(&page->mapping->private_lock);
5789 return ret;
5790
5791 }
5792
try_release_extent_buffer(struct page * page)5793 int try_release_extent_buffer(struct page *page)
5794 {
5795 struct extent_buffer *eb;
5796
5797 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5798 return try_release_subpage_extent_buffer(page);
5799
5800 /*
5801 * We need to make sure nobody is changing page->private, as we rely on
5802 * page->private as the pointer to extent buffer.
5803 */
5804 spin_lock(&page->mapping->private_lock);
5805 if (!PagePrivate(page)) {
5806 spin_unlock(&page->mapping->private_lock);
5807 return 1;
5808 }
5809
5810 eb = (struct extent_buffer *)page->private;
5811 BUG_ON(!eb);
5812
5813 /*
5814 * This is a little awful but should be ok, we need to make sure that
5815 * the eb doesn't disappear out from under us while we're looking at
5816 * this page.
5817 */
5818 spin_lock(&eb->refs_lock);
5819 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5820 spin_unlock(&eb->refs_lock);
5821 spin_unlock(&page->mapping->private_lock);
5822 return 0;
5823 }
5824 spin_unlock(&page->mapping->private_lock);
5825
5826 /*
5827 * If tree ref isn't set then we know the ref on this eb is a real ref,
5828 * so just return, this page will likely be freed soon anyway.
5829 */
5830 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5831 spin_unlock(&eb->refs_lock);
5832 return 0;
5833 }
5834
5835 return release_extent_buffer(eb);
5836 }
5837
5838 /*
5839 * btrfs_readahead_tree_block - attempt to readahead a child block
5840 * @fs_info: the fs_info
5841 * @bytenr: bytenr to read
5842 * @owner_root: objectid of the root that owns this eb
5843 * @gen: generation for the uptodate check, can be 0
5844 * @level: level for the eb
5845 *
5846 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5847 * normal uptodate check of the eb, without checking the generation. If we have
5848 * to read the block we will not block on anything.
5849 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)5850 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5851 u64 bytenr, u64 owner_root, u64 gen, int level)
5852 {
5853 struct extent_buffer *eb;
5854 int ret;
5855
5856 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5857 if (IS_ERR(eb))
5858 return;
5859
5860 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5861 free_extent_buffer(eb);
5862 return;
5863 }
5864
5865 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
5866 if (ret < 0)
5867 free_extent_buffer_stale(eb);
5868 else
5869 free_extent_buffer(eb);
5870 }
5871
5872 /*
5873 * btrfs_readahead_node_child - readahead a node's child block
5874 * @node: parent node we're reading from
5875 * @slot: slot in the parent node for the child we want to read
5876 *
5877 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5878 * the slot in the node provided.
5879 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)5880 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5881 {
5882 btrfs_readahead_tree_block(node->fs_info,
5883 btrfs_node_blockptr(node, slot),
5884 btrfs_header_owner(node),
5885 btrfs_node_ptr_generation(node, slot),
5886 btrfs_header_level(node) - 1);
5887 }
5888