1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163 * Called at the last iput() if i_nlink is zero.
164 */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list))
231 inode_io_list_del(inode);
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
238 */
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
263 goto no_delete;
264 }
265
266 if (IS_SYNC(inode))
267 ext4_handle_sync(handle);
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 inode->i_size = 0;
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
291 goto stop_handle;
292 }
293 }
294
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
307 }
308
309 /*
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
316 */
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
330 else
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337 no_delete:
338 /*
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
341 */
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
347 }
348
349 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352 return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355
356 /*
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
359 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)360 void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
362 {
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 struct ext4_inode_info *ei = EXT4_I(inode);
365
366 spin_lock(&ei->i_block_reservation_lock);
367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 if (unlikely(used > ei->i_reserved_data_blocks)) {
369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 "with only %d reserved data blocks",
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
373 WARN_ON(1);
374 used = ei->i_reserved_data_blocks;
375 }
376
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381 spin_unlock(&ei->i_block_reservation_lock);
382
383 /* Update quota subsystem for data blocks */
384 if (quota_claim)
385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 else {
387 /*
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
390 * not re-claim the quota for fallocated blocks.
391 */
392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 }
394
395 /*
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
399 */
400 if ((ei->i_reserved_data_blocks == 0) &&
401 !inode_is_open_for_write(inode))
402 ext4_discard_preallocations(inode, 0);
403 }
404
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)405 static int __check_block_validity(struct inode *inode, const char *func,
406 unsigned int line,
407 struct ext4_map_blocks *map)
408 {
409 if (ext4_has_feature_journal(inode->i_sb) &&
410 (inode->i_ino ==
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 return 0;
413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock %llu "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_pblk, map->m_len);
418 return -EFSCORRUPTED;
419 }
420 return 0;
421 }
422
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 ext4_lblk_t len)
425 {
426 int ret;
427
428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 if (ret > 0)
433 ret = 0;
434
435 return ret;
436 }
437
438 #define check_block_validity(inode, map) \
439 __check_block_validity((inode), __func__, __LINE__, (map))
440
441 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443 struct inode *inode,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
446 int flags)
447 {
448 int retval;
449
450 map->m_flags = 0;
451 /*
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
457 */
458 down_read(&EXT4_I(inode)->i_data_sem);
459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 } else {
462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 }
464 up_read((&EXT4_I(inode)->i_data_sem));
465
466 /*
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
469 */
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
473 printk("ES cache assertion failed for inode: %lu "
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
479 retval, flags);
480 }
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483
484 /*
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
487 *
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
491 *
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494 * based files
495 *
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499 *
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
503 *
504 * It returns the error in case of allocation failure.
505 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
508 {
509 struct extent_status es;
510 int retval;
511 int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
514
515 memcpy(&orig_map, map, sizeof(*map));
516 #endif
517
518 map->m_flags = 0;
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
521
522 /*
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 */
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
527
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 return -EFSCORRUPTED;
531
532 /* Lookup extent status tree firstly */
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 map->m_pblk = 0;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 retval = 0;
551 } else {
552 BUG();
553 }
554
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560 #endif
561 goto found;
562 }
563 /*
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
566 */
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 return 0;
569
570 /*
571 * Try to see if we can get the block without requesting a new
572 * file system block.
573 */
574 down_read(&EXT4_I(inode)->i_data_sem);
575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 } else {
578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 }
580 if (retval > 0) {
581 unsigned int status;
582
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
588 WARN_ON(1);
589 }
590
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 !(status & EXTENT_STATUS_WRITTEN) &&
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
600 if (ret < 0)
601 retval = ret;
602 }
603 up_read((&EXT4_I(inode)->i_data_sem));
604
605 found:
606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 ret = check_block_validity(inode, map);
608 if (ret != 0)
609 return ret;
610 }
611
612 /* If it is only a block(s) look up */
613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 return retval;
615
616 /*
617 * Returns if the blocks have already allocated
618 *
619 * Note that if blocks have been preallocated
620 * ext4_ext_get_block() returns the create = 0
621 * with buffer head unmapped.
622 */
623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 /*
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
628 */
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 return retval;
631
632 /*
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
635 */
636 map->m_flags &= ~EXT4_MAP_FLAGS;
637
638 /*
639 * New blocks allocate and/or writing to unwritten extent
640 * will possibly result in updating i_data, so we take
641 * the write lock of i_data_sem, and call get_block()
642 * with create == 1 flag.
643 */
644 down_write(&EXT4_I(inode)->i_data_sem);
645
646 /*
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
649 */
650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 } else {
653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 /*
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
660 */
661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 }
663
664 /*
665 * Update reserved blocks/metadata blocks after successful
666 * block allocation which had been deferred till now. We don't
667 * support fallocate for non extent files. So we can update
668 * reserve space here.
669 */
670 if ((retval > 0) &&
671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672 ext4_da_update_reserve_space(inode, retval, 1);
673 }
674
675 if (retval > 0) {
676 unsigned int status;
677
678 if (unlikely(retval != map->m_len)) {
679 ext4_warning(inode->i_sb,
680 "ES len assertion failed for inode "
681 "%lu: retval %d != map->m_len %d",
682 inode->i_ino, retval, map->m_len);
683 WARN_ON(1);
684 }
685
686 /*
687 * We have to zeroout blocks before inserting them into extent
688 * status tree. Otherwise someone could look them up there and
689 * use them before they are really zeroed. We also have to
690 * unmap metadata before zeroing as otherwise writeback can
691 * overwrite zeros with stale data from block device.
692 */
693 if (flags & EXT4_GET_BLOCKS_ZERO &&
694 map->m_flags & EXT4_MAP_MAPPED &&
695 map->m_flags & EXT4_MAP_NEW) {
696 ret = ext4_issue_zeroout(inode, map->m_lblk,
697 map->m_pblk, map->m_len);
698 if (ret) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 /*
705 * If the extent has been zeroed out, we don't need to update
706 * extent status tree.
707 */
708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 if (ext4_es_is_written(&es))
711 goto out_sem;
712 }
713 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 !(status & EXTENT_STATUS_WRITTEN) &&
717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 map->m_lblk + map->m_len - 1))
719 status |= EXTENT_STATUS_DELAYED;
720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 map->m_pblk, status);
722 if (ret < 0) {
723 retval = ret;
724 goto out_sem;
725 }
726 }
727
728 out_sem:
729 up_write((&EXT4_I(inode)->i_data_sem));
730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 ret = check_block_validity(inode, map);
732 if (ret != 0)
733 return ret;
734
735 /*
736 * Inodes with freshly allocated blocks where contents will be
737 * visible after transaction commit must be on transaction's
738 * ordered data list.
739 */
740 if (map->m_flags & EXT4_MAP_NEW &&
741 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 !ext4_is_quota_file(inode) &&
744 ext4_should_order_data(inode)) {
745 loff_t start_byte =
746 (loff_t)map->m_lblk << inode->i_blkbits;
747 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 ret = ext4_jbd2_inode_add_wait(handle, inode,
751 start_byte, length);
752 else
753 ret = ext4_jbd2_inode_add_write(handle, inode,
754 start_byte, length);
755 if (ret)
756 return ret;
757 }
758 }
759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 map->m_flags & EXT4_MAP_MAPPED))
761 ext4_fc_track_range(handle, inode, map->m_lblk,
762 map->m_lblk + map->m_len - 1);
763 if (retval < 0)
764 ext_debug(inode, "failed with err %d\n", retval);
765 return retval;
766 }
767
768 /*
769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770 * we have to be careful as someone else may be manipulating b_state as well.
771 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774 unsigned long old_state;
775 unsigned long new_state;
776
777 flags &= EXT4_MAP_FLAGS;
778
779 /* Dummy buffer_head? Set non-atomically. */
780 if (!bh->b_page) {
781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 return;
783 }
784 /*
785 * Someone else may be modifying b_state. Be careful! This is ugly but
786 * once we get rid of using bh as a container for mapping information
787 * to pass to / from get_block functions, this can go away.
788 */
789 do {
790 old_state = READ_ONCE(bh->b_state);
791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 } while (unlikely(
793 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794 }
795
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)796 static int _ext4_get_block(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh, int flags)
798 {
799 struct ext4_map_blocks map;
800 int ret = 0;
801
802 if (ext4_has_inline_data(inode))
803 return -ERANGE;
804
805 map.m_lblk = iblock;
806 map.m_len = bh->b_size >> inode->i_blkbits;
807
808 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809 flags);
810 if (ret > 0) {
811 map_bh(bh, inode->i_sb, map.m_pblk);
812 ext4_update_bh_state(bh, map.m_flags);
813 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814 ret = 0;
815 } else if (ret == 0) {
816 /* hole case, need to fill in bh->b_size */
817 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818 }
819 return ret;
820 }
821
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)822 int ext4_get_block(struct inode *inode, sector_t iblock,
823 struct buffer_head *bh, int create)
824 {
825 return _ext4_get_block(inode, iblock, bh,
826 create ? EXT4_GET_BLOCKS_CREATE : 0);
827 }
828
829 /*
830 * Get block function used when preparing for buffered write if we require
831 * creating an unwritten extent if blocks haven't been allocated. The extent
832 * will be converted to written after the IO is complete.
833 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int create)
836 {
837 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838 inode->i_ino, create);
839 return _ext4_get_block(inode, iblock, bh_result,
840 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841 }
842
843 /* Maximum number of blocks we map for direct IO at once. */
844 #define DIO_MAX_BLOCKS 4096
845
846 /*
847 * `handle' can be NULL if create is zero
848 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850 ext4_lblk_t block, int map_flags)
851 {
852 struct ext4_map_blocks map;
853 struct buffer_head *bh;
854 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856 int err;
857
858 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 || handle != NULL || create == 0);
860 ASSERT(create == 0 || !nowait);
861
862 map.m_lblk = block;
863 map.m_len = 1;
864 err = ext4_map_blocks(handle, inode, &map, map_flags);
865
866 if (err == 0)
867 return create ? ERR_PTR(-ENOSPC) : NULL;
868 if (err < 0)
869 return ERR_PTR(err);
870
871 if (nowait)
872 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
874 bh = sb_getblk(inode->i_sb, map.m_pblk);
875 if (unlikely(!bh))
876 return ERR_PTR(-ENOMEM);
877 if (map.m_flags & EXT4_MAP_NEW) {
878 ASSERT(create != 0);
879 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880 || (handle != NULL));
881
882 /*
883 * Now that we do not always journal data, we should
884 * keep in mind whether this should always journal the
885 * new buffer as metadata. For now, regular file
886 * writes use ext4_get_block instead, so it's not a
887 * problem.
888 */
889 lock_buffer(bh);
890 BUFFER_TRACE(bh, "call get_create_access");
891 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892 EXT4_JTR_NONE);
893 if (unlikely(err)) {
894 unlock_buffer(bh);
895 goto errout;
896 }
897 if (!buffer_uptodate(bh)) {
898 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899 set_buffer_uptodate(bh);
900 }
901 unlock_buffer(bh);
902 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903 err = ext4_handle_dirty_metadata(handle, inode, bh);
904 if (unlikely(err))
905 goto errout;
906 } else
907 BUFFER_TRACE(bh, "not a new buffer");
908 return bh;
909 errout:
910 brelse(bh);
911 return ERR_PTR(err);
912 }
913
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915 ext4_lblk_t block, int map_flags)
916 {
917 struct buffer_head *bh;
918 int ret;
919
920 bh = ext4_getblk(handle, inode, block, map_flags);
921 if (IS_ERR(bh))
922 return bh;
923 if (!bh || ext4_buffer_uptodate(bh))
924 return bh;
925
926 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927 if (ret) {
928 put_bh(bh);
929 return ERR_PTR(ret);
930 }
931 return bh;
932 }
933
934 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936 bool wait, struct buffer_head **bhs)
937 {
938 int i, err;
939
940 for (i = 0; i < bh_count; i++) {
941 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942 if (IS_ERR(bhs[i])) {
943 err = PTR_ERR(bhs[i]);
944 bh_count = i;
945 goto out_brelse;
946 }
947 }
948
949 for (i = 0; i < bh_count; i++)
950 /* Note that NULL bhs[i] is valid because of holes. */
951 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953
954 if (!wait)
955 return 0;
956
957 for (i = 0; i < bh_count; i++)
958 if (bhs[i])
959 wait_on_buffer(bhs[i]);
960
961 for (i = 0; i < bh_count; i++) {
962 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963 err = -EIO;
964 goto out_brelse;
965 }
966 }
967 return 0;
968
969 out_brelse:
970 for (i = 0; i < bh_count; i++) {
971 brelse(bhs[i]);
972 bhs[i] = NULL;
973 }
974 return err;
975 }
976
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978 struct buffer_head *head,
979 unsigned from,
980 unsigned to,
981 int *partial,
982 int (*fn)(handle_t *handle, struct inode *inode,
983 struct buffer_head *bh))
984 {
985 struct buffer_head *bh;
986 unsigned block_start, block_end;
987 unsigned blocksize = head->b_size;
988 int err, ret = 0;
989 struct buffer_head *next;
990
991 for (bh = head, block_start = 0;
992 ret == 0 && (bh != head || !block_start);
993 block_start = block_end, bh = next) {
994 next = bh->b_this_page;
995 block_end = block_start + blocksize;
996 if (block_end <= from || block_start >= to) {
997 if (partial && !buffer_uptodate(bh))
998 *partial = 1;
999 continue;
1000 }
1001 err = (*fn)(handle, inode, bh);
1002 if (!ret)
1003 ret = err;
1004 }
1005 return ret;
1006 }
1007
1008 /*
1009 * To preserve ordering, it is essential that the hole instantiation and
1010 * the data write be encapsulated in a single transaction. We cannot
1011 * close off a transaction and start a new one between the ext4_get_block()
1012 * and the commit_write(). So doing the jbd2_journal_start at the start of
1013 * prepare_write() is the right place.
1014 *
1015 * Also, this function can nest inside ext4_writepage(). In that case, we
1016 * *know* that ext4_writepage() has generated enough buffer credits to do the
1017 * whole page. So we won't block on the journal in that case, which is good,
1018 * because the caller may be PF_MEMALLOC.
1019 *
1020 * By accident, ext4 can be reentered when a transaction is open via
1021 * quota file writes. If we were to commit the transaction while thus
1022 * reentered, there can be a deadlock - we would be holding a quota
1023 * lock, and the commit would never complete if another thread had a
1024 * transaction open and was blocking on the quota lock - a ranking
1025 * violation.
1026 *
1027 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028 * will _not_ run commit under these circumstances because handle->h_ref
1029 * is elevated. We'll still have enough credits for the tiny quotafile
1030 * write.
1031 */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033 struct buffer_head *bh)
1034 {
1035 int dirty = buffer_dirty(bh);
1036 int ret;
1037
1038 if (!buffer_mapped(bh) || buffer_freed(bh))
1039 return 0;
1040 /*
1041 * __block_write_begin() could have dirtied some buffers. Clean
1042 * the dirty bit as jbd2_journal_get_write_access() could complain
1043 * otherwise about fs integrity issues. Setting of the dirty bit
1044 * by __block_write_begin() isn't a real problem here as we clear
1045 * the bit before releasing a page lock and thus writeback cannot
1046 * ever write the buffer.
1047 */
1048 if (dirty)
1049 clear_buffer_dirty(bh);
1050 BUFFER_TRACE(bh, "get write access");
1051 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052 EXT4_JTR_NONE);
1053 if (!ret && dirty)
1054 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055 return ret;
1056 }
1057
1058 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060 get_block_t *get_block)
1061 {
1062 unsigned from = pos & (PAGE_SIZE - 1);
1063 unsigned to = from + len;
1064 struct inode *inode = page->mapping->host;
1065 unsigned block_start, block_end;
1066 sector_t block;
1067 int err = 0;
1068 unsigned blocksize = inode->i_sb->s_blocksize;
1069 unsigned bbits;
1070 struct buffer_head *bh, *head, *wait[2];
1071 int nr_wait = 0;
1072 int i;
1073
1074 BUG_ON(!PageLocked(page));
1075 BUG_ON(from > PAGE_SIZE);
1076 BUG_ON(to > PAGE_SIZE);
1077 BUG_ON(from > to);
1078
1079 if (!page_has_buffers(page))
1080 create_empty_buffers(page, blocksize, 0);
1081 head = page_buffers(page);
1082 bbits = ilog2(blocksize);
1083 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085 for (bh = head, block_start = 0; bh != head || !block_start;
1086 block++, block_start = block_end, bh = bh->b_this_page) {
1087 block_end = block_start + blocksize;
1088 if (block_end <= from || block_start >= to) {
1089 if (PageUptodate(page)) {
1090 set_buffer_uptodate(bh);
1091 }
1092 continue;
1093 }
1094 if (buffer_new(bh))
1095 clear_buffer_new(bh);
1096 if (!buffer_mapped(bh)) {
1097 WARN_ON(bh->b_size != blocksize);
1098 err = get_block(inode, block, bh, 1);
1099 if (err)
1100 break;
1101 if (buffer_new(bh)) {
1102 if (PageUptodate(page)) {
1103 clear_buffer_new(bh);
1104 set_buffer_uptodate(bh);
1105 mark_buffer_dirty(bh);
1106 continue;
1107 }
1108 if (block_end > to || block_start < from)
1109 zero_user_segments(page, to, block_end,
1110 block_start, from);
1111 continue;
1112 }
1113 }
1114 if (PageUptodate(page)) {
1115 set_buffer_uptodate(bh);
1116 continue;
1117 }
1118 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 !buffer_unwritten(bh) &&
1120 (block_start < from || block_end > to)) {
1121 ext4_read_bh_lock(bh, 0, false);
1122 wait[nr_wait++] = bh;
1123 }
1124 }
1125 /*
1126 * If we issued read requests, let them complete.
1127 */
1128 for (i = 0; i < nr_wait; i++) {
1129 wait_on_buffer(wait[i]);
1130 if (!buffer_uptodate(wait[i]))
1131 err = -EIO;
1132 }
1133 if (unlikely(err)) {
1134 page_zero_new_buffers(page, from, to);
1135 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136 for (i = 0; i < nr_wait; i++) {
1137 int err2;
1138
1139 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140 bh_offset(wait[i]));
1141 if (err2) {
1142 clear_buffer_uptodate(wait[i]);
1143 err = err2;
1144 }
1145 }
1146 }
1147
1148 return err;
1149 }
1150 #endif
1151
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153 loff_t pos, unsigned len,
1154 struct page **pagep, void **fsdata)
1155 {
1156 struct inode *inode = mapping->host;
1157 int ret, needed_blocks;
1158 handle_t *handle;
1159 int retries = 0;
1160 struct page *page;
1161 pgoff_t index;
1162 unsigned from, to;
1163
1164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165 return -EIO;
1166
1167 trace_ext4_write_begin(inode, pos, len);
1168 /*
1169 * Reserve one block more for addition to orphan list in case
1170 * we allocate blocks but write fails for some reason
1171 */
1172 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173 index = pos >> PAGE_SHIFT;
1174 from = pos & (PAGE_SIZE - 1);
1175 to = from + len;
1176
1177 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179 pagep);
1180 if (ret < 0)
1181 return ret;
1182 if (ret == 1)
1183 return 0;
1184 }
1185
1186 /*
1187 * grab_cache_page_write_begin() can take a long time if the
1188 * system is thrashing due to memory pressure, or if the page
1189 * is being written back. So grab it first before we start
1190 * the transaction handle. This also allows us to allocate
1191 * the page (if needed) without using GFP_NOFS.
1192 */
1193 retry_grab:
1194 page = grab_cache_page_write_begin(mapping, index);
1195 if (!page)
1196 return -ENOMEM;
1197 /*
1198 * The same as page allocation, we prealloc buffer heads before
1199 * starting the handle.
1200 */
1201 if (!page_has_buffers(page))
1202 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204 unlock_page(page);
1205
1206 retry_journal:
1207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208 if (IS_ERR(handle)) {
1209 put_page(page);
1210 return PTR_ERR(handle);
1211 }
1212
1213 lock_page(page);
1214 if (page->mapping != mapping) {
1215 /* The page got truncated from under us */
1216 unlock_page(page);
1217 put_page(page);
1218 ext4_journal_stop(handle);
1219 goto retry_grab;
1220 }
1221 /* In case writeback began while the page was unlocked */
1222 wait_for_stable_page(page);
1223
1224 #ifdef CONFIG_FS_ENCRYPTION
1225 if (ext4_should_dioread_nolock(inode))
1226 ret = ext4_block_write_begin(page, pos, len,
1227 ext4_get_block_unwritten);
1228 else
1229 ret = ext4_block_write_begin(page, pos, len,
1230 ext4_get_block);
1231 #else
1232 if (ext4_should_dioread_nolock(inode))
1233 ret = __block_write_begin(page, pos, len,
1234 ext4_get_block_unwritten);
1235 else
1236 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237 #endif
1238 if (!ret && ext4_should_journal_data(inode)) {
1239 ret = ext4_walk_page_buffers(handle, inode,
1240 page_buffers(page), from, to, NULL,
1241 do_journal_get_write_access);
1242 }
1243
1244 if (ret) {
1245 bool extended = (pos + len > inode->i_size) &&
1246 !ext4_verity_in_progress(inode);
1247
1248 unlock_page(page);
1249 /*
1250 * __block_write_begin may have instantiated a few blocks
1251 * outside i_size. Trim these off again. Don't need
1252 * i_size_read because we hold i_rwsem.
1253 *
1254 * Add inode to orphan list in case we crash before
1255 * truncate finishes
1256 */
1257 if (extended && ext4_can_truncate(inode))
1258 ext4_orphan_add(handle, inode);
1259
1260 ext4_journal_stop(handle);
1261 if (extended) {
1262 ext4_truncate_failed_write(inode);
1263 /*
1264 * If truncate failed early the inode might
1265 * still be on the orphan list; we need to
1266 * make sure the inode is removed from the
1267 * orphan list in that case.
1268 */
1269 if (inode->i_nlink)
1270 ext4_orphan_del(NULL, inode);
1271 }
1272
1273 if (ret == -ENOSPC &&
1274 ext4_should_retry_alloc(inode->i_sb, &retries))
1275 goto retry_journal;
1276 put_page(page);
1277 return ret;
1278 }
1279 *pagep = page;
1280 return ret;
1281 }
1282
1283 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1284 static int write_end_fn(handle_t *handle, struct inode *inode,
1285 struct buffer_head *bh)
1286 {
1287 int ret;
1288 if (!buffer_mapped(bh) || buffer_freed(bh))
1289 return 0;
1290 set_buffer_uptodate(bh);
1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 clear_buffer_meta(bh);
1293 clear_buffer_prio(bh);
1294 return ret;
1295 }
1296
1297 /*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1302 * buffers are managed internally.
1303 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1304 static int ext4_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
1308 {
1309 handle_t *handle = ext4_journal_current_handle();
1310 struct inode *inode = mapping->host;
1311 loff_t old_size = inode->i_size;
1312 int ret = 0, ret2;
1313 int i_size_changed = 0;
1314 bool verity = ext4_verity_in_progress(inode);
1315
1316 trace_ext4_write_end(inode, pos, len, copied);
1317
1318 if (ext4_has_inline_data(inode) &&
1319 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323 /*
1324 * it's important to update i_size while still holding page lock:
1325 * page writeout could otherwise come in and zero beyond i_size.
1326 *
1327 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328 * blocks are being written past EOF, so skip the i_size update.
1329 */
1330 if (!verity)
1331 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332 unlock_page(page);
1333 put_page(page);
1334
1335 if (old_size < pos && !verity)
1336 pagecache_isize_extended(inode, old_size, pos);
1337 /*
1338 * Don't mark the inode dirty under page lock. First, it unnecessarily
1339 * makes the holding time of page lock longer. Second, it forces lock
1340 * ordering of page lock and transaction start for journaling
1341 * filesystems.
1342 */
1343 if (i_size_changed)
1344 ret = ext4_mark_inode_dirty(handle, inode);
1345
1346 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347 /* if we have allocated more blocks and copied
1348 * less. We will have blocks allocated outside
1349 * inode->i_size. So truncate them
1350 */
1351 ext4_orphan_add(handle, inode);
1352
1353 ret2 = ext4_journal_stop(handle);
1354 if (!ret)
1355 ret = ret2;
1356
1357 if (pos + len > inode->i_size && !verity) {
1358 ext4_truncate_failed_write(inode);
1359 /*
1360 * If truncate failed early the inode might still be
1361 * on the orphan list; we need to make sure the inode
1362 * is removed from the orphan list in that case.
1363 */
1364 if (inode->i_nlink)
1365 ext4_orphan_del(NULL, inode);
1366 }
1367
1368 return ret ? ret : copied;
1369 }
1370
1371 /*
1372 * This is a private version of page_zero_new_buffers() which doesn't
1373 * set the buffer to be dirty, since in data=journalled mode we need
1374 * to call ext4_handle_dirty_metadata() instead.
1375 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1376 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377 struct inode *inode,
1378 struct page *page,
1379 unsigned from, unsigned to)
1380 {
1381 unsigned int block_start = 0, block_end;
1382 struct buffer_head *head, *bh;
1383
1384 bh = head = page_buffers(page);
1385 do {
1386 block_end = block_start + bh->b_size;
1387 if (buffer_new(bh)) {
1388 if (block_end > from && block_start < to) {
1389 if (!PageUptodate(page)) {
1390 unsigned start, size;
1391
1392 start = max(from, block_start);
1393 size = min(to, block_end) - start;
1394
1395 zero_user(page, start, size);
1396 write_end_fn(handle, inode, bh);
1397 }
1398 clear_buffer_new(bh);
1399 }
1400 }
1401 block_start = block_end;
1402 bh = bh->b_this_page;
1403 } while (bh != head);
1404 }
1405
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1406 static int ext4_journalled_write_end(struct file *file,
1407 struct address_space *mapping,
1408 loff_t pos, unsigned len, unsigned copied,
1409 struct page *page, void *fsdata)
1410 {
1411 handle_t *handle = ext4_journal_current_handle();
1412 struct inode *inode = mapping->host;
1413 loff_t old_size = inode->i_size;
1414 int ret = 0, ret2;
1415 int partial = 0;
1416 unsigned from, to;
1417 int size_changed = 0;
1418 bool verity = ext4_verity_in_progress(inode);
1419
1420 trace_ext4_journalled_write_end(inode, pos, len, copied);
1421 from = pos & (PAGE_SIZE - 1);
1422 to = from + len;
1423
1424 BUG_ON(!ext4_handle_valid(handle));
1425
1426 if (ext4_has_inline_data(inode))
1427 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429 if (unlikely(copied < len) && !PageUptodate(page)) {
1430 copied = 0;
1431 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432 } else {
1433 if (unlikely(copied < len))
1434 ext4_journalled_zero_new_buffers(handle, inode, page,
1435 from + copied, to);
1436 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437 from, from + copied, &partial,
1438 write_end_fn);
1439 if (!partial)
1440 SetPageUptodate(page);
1441 }
1442 if (!verity)
1443 size_changed = ext4_update_inode_size(inode, pos + copied);
1444 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 unlock_page(page);
1447 put_page(page);
1448
1449 if (old_size < pos && !verity)
1450 pagecache_isize_extended(inode, old_size, pos);
1451
1452 if (size_changed) {
1453 ret2 = ext4_mark_inode_dirty(handle, inode);
1454 if (!ret)
1455 ret = ret2;
1456 }
1457
1458 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459 /* if we have allocated more blocks and copied
1460 * less. We will have blocks allocated outside
1461 * inode->i_size. So truncate them
1462 */
1463 ext4_orphan_add(handle, inode);
1464
1465 ret2 = ext4_journal_stop(handle);
1466 if (!ret)
1467 ret = ret2;
1468 if (pos + len > inode->i_size && !verity) {
1469 ext4_truncate_failed_write(inode);
1470 /*
1471 * If truncate failed early the inode might still be
1472 * on the orphan list; we need to make sure the inode
1473 * is removed from the orphan list in that case.
1474 */
1475 if (inode->i_nlink)
1476 ext4_orphan_del(NULL, inode);
1477 }
1478
1479 return ret ? ret : copied;
1480 }
1481
1482 /*
1483 * Reserve space for a single cluster
1484 */
ext4_da_reserve_space(struct inode * inode)1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1489 int ret;
1490
1491 /*
1492 * We will charge metadata quota at writeout time; this saves
1493 * us from metadata over-estimation, though we may go over by
1494 * a small amount in the end. Here we just reserve for data.
1495 */
1496 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 if (ret)
1498 return ret;
1499
1500 spin_lock(&ei->i_block_reservation_lock);
1501 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 spin_unlock(&ei->i_block_reservation_lock);
1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 return -ENOSPC;
1505 }
1506 ei->i_reserved_data_blocks++;
1507 trace_ext4_da_reserve_space(inode);
1508 spin_unlock(&ei->i_block_reservation_lock);
1509
1510 return 0; /* success */
1511 }
1512
ext4_da_release_space(struct inode * inode,int to_free)1513 void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518 if (!to_free)
1519 return; /* Nothing to release, exit */
1520
1521 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523 trace_ext4_da_release_space(inode, to_free);
1524 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 /*
1526 * if there aren't enough reserved blocks, then the
1527 * counter is messed up somewhere. Since this
1528 * function is called from invalidate page, it's
1529 * harmless to return without any action.
1530 */
1531 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 "ino %lu, to_free %d with only %d reserved "
1533 "data blocks", inode->i_ino, to_free,
1534 ei->i_reserved_data_blocks);
1535 WARN_ON(1);
1536 to_free = ei->i_reserved_data_blocks;
1537 }
1538 ei->i_reserved_data_blocks -= to_free;
1539
1540 /* update fs dirty data blocks counter */
1541 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547
1548 /*
1549 * Delayed allocation stuff
1550 */
1551
1552 struct mpage_da_data {
1553 struct inode *inode;
1554 struct writeback_control *wbc;
1555
1556 pgoff_t first_page; /* The first page to write */
1557 pgoff_t next_page; /* Current page to examine */
1558 pgoff_t last_page; /* Last page to examine */
1559 /*
1560 * Extent to map - this can be after first_page because that can be
1561 * fully mapped. We somewhat abuse m_flags to store whether the extent
1562 * is delalloc or unwritten.
1563 */
1564 struct ext4_map_blocks map;
1565 struct ext4_io_submit io_submit; /* IO submission data */
1566 unsigned int do_map:1;
1567 unsigned int scanned_until_end:1;
1568 };
1569
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1570 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1571 bool invalidate)
1572 {
1573 unsigned nr, i;
1574 pgoff_t index, end;
1575 struct folio_batch fbatch;
1576 struct inode *inode = mpd->inode;
1577 struct address_space *mapping = inode->i_mapping;
1578
1579 /* This is necessary when next_page == 0. */
1580 if (mpd->first_page >= mpd->next_page)
1581 return;
1582
1583 mpd->scanned_until_end = 0;
1584 index = mpd->first_page;
1585 end = mpd->next_page - 1;
1586 if (invalidate) {
1587 ext4_lblk_t start, last;
1588 start = index << (PAGE_SHIFT - inode->i_blkbits);
1589 last = end << (PAGE_SHIFT - inode->i_blkbits);
1590
1591 /*
1592 * avoid racing with extent status tree scans made by
1593 * ext4_insert_delayed_block()
1594 */
1595 down_write(&EXT4_I(inode)->i_data_sem);
1596 ext4_es_remove_extent(inode, start, last - start + 1);
1597 up_write(&EXT4_I(inode)->i_data_sem);
1598 }
1599
1600 folio_batch_init(&fbatch);
1601 while (index <= end) {
1602 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1603 if (nr == 0)
1604 break;
1605 for (i = 0; i < nr; i++) {
1606 struct folio *folio = fbatch.folios[i];
1607
1608 if (folio->index < mpd->first_page)
1609 continue;
1610 if (folio->index + folio_nr_pages(folio) - 1 > end)
1611 continue;
1612 BUG_ON(!folio_test_locked(folio));
1613 BUG_ON(folio_test_writeback(folio));
1614 if (invalidate) {
1615 if (folio_mapped(folio))
1616 folio_clear_dirty_for_io(folio);
1617 block_invalidate_folio(folio, 0,
1618 folio_size(folio));
1619 folio_clear_uptodate(folio);
1620 }
1621 folio_unlock(folio);
1622 }
1623 folio_batch_release(&fbatch);
1624 }
1625 }
1626
ext4_print_free_blocks(struct inode * inode)1627 static void ext4_print_free_blocks(struct inode *inode)
1628 {
1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 struct super_block *sb = inode->i_sb;
1631 struct ext4_inode_info *ei = EXT4_I(inode);
1632
1633 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634 EXT4_C2B(EXT4_SB(inode->i_sb),
1635 ext4_count_free_clusters(sb)));
1636 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638 (long long) EXT4_C2B(EXT4_SB(sb),
1639 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb),
1642 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645 ei->i_reserved_data_blocks);
1646 return;
1647 }
1648
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1649 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1650 struct buffer_head *bh)
1651 {
1652 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1653 }
1654
1655 /*
1656 * ext4_insert_delayed_block - adds a delayed block to the extents status
1657 * tree, incrementing the reserved cluster/block
1658 * count or making a pending reservation
1659 * where needed
1660 *
1661 * @inode - file containing the newly added block
1662 * @lblk - logical block to be added
1663 *
1664 * Returns 0 on success, negative error code on failure.
1665 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1666 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1667 {
1668 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1669 int ret;
1670 bool allocated = false;
1671 bool reserved = false;
1672
1673 /*
1674 * If the cluster containing lblk is shared with a delayed,
1675 * written, or unwritten extent in a bigalloc file system, it's
1676 * already been accounted for and does not need to be reserved.
1677 * A pending reservation must be made for the cluster if it's
1678 * shared with a written or unwritten extent and doesn't already
1679 * have one. Written and unwritten extents can be purged from the
1680 * extents status tree if the system is under memory pressure, so
1681 * it's necessary to examine the extent tree if a search of the
1682 * extents status tree doesn't get a match.
1683 */
1684 if (sbi->s_cluster_ratio == 1) {
1685 ret = ext4_da_reserve_space(inode);
1686 if (ret != 0) /* ENOSPC */
1687 goto errout;
1688 reserved = true;
1689 } else { /* bigalloc */
1690 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1691 if (!ext4_es_scan_clu(inode,
1692 &ext4_es_is_mapped, lblk)) {
1693 ret = ext4_clu_mapped(inode,
1694 EXT4_B2C(sbi, lblk));
1695 if (ret < 0)
1696 goto errout;
1697 if (ret == 0) {
1698 ret = ext4_da_reserve_space(inode);
1699 if (ret != 0) /* ENOSPC */
1700 goto errout;
1701 reserved = true;
1702 } else {
1703 allocated = true;
1704 }
1705 } else {
1706 allocated = true;
1707 }
1708 }
1709 }
1710
1711 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1712 if (ret && reserved)
1713 ext4_da_release_space(inode, 1);
1714
1715 errout:
1716 return ret;
1717 }
1718
1719 /*
1720 * This function is grabs code from the very beginning of
1721 * ext4_map_blocks, but assumes that the caller is from delayed write
1722 * time. This function looks up the requested blocks and sets the
1723 * buffer delay bit under the protection of i_data_sem.
1724 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1725 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1726 struct ext4_map_blocks *map,
1727 struct buffer_head *bh)
1728 {
1729 struct extent_status es;
1730 int retval;
1731 sector_t invalid_block = ~((sector_t) 0xffff);
1732 #ifdef ES_AGGRESSIVE_TEST
1733 struct ext4_map_blocks orig_map;
1734
1735 memcpy(&orig_map, map, sizeof(*map));
1736 #endif
1737
1738 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1739 invalid_block = ~0;
1740
1741 map->m_flags = 0;
1742 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1743 (unsigned long) map->m_lblk);
1744
1745 /* Lookup extent status tree firstly */
1746 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1747 if (ext4_es_is_hole(&es)) {
1748 retval = 0;
1749 down_read(&EXT4_I(inode)->i_data_sem);
1750 goto add_delayed;
1751 }
1752
1753 /*
1754 * Delayed extent could be allocated by fallocate.
1755 * So we need to check it.
1756 */
1757 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758 map_bh(bh, inode->i_sb, invalid_block);
1759 set_buffer_new(bh);
1760 set_buffer_delay(bh);
1761 return 0;
1762 }
1763
1764 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765 retval = es.es_len - (iblock - es.es_lblk);
1766 if (retval > map->m_len)
1767 retval = map->m_len;
1768 map->m_len = retval;
1769 if (ext4_es_is_written(&es))
1770 map->m_flags |= EXT4_MAP_MAPPED;
1771 else if (ext4_es_is_unwritten(&es))
1772 map->m_flags |= EXT4_MAP_UNWRITTEN;
1773 else
1774 BUG();
1775
1776 #ifdef ES_AGGRESSIVE_TEST
1777 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778 #endif
1779 return retval;
1780 }
1781
1782 /*
1783 * Try to see if we can get the block without requesting a new
1784 * file system block.
1785 */
1786 down_read(&EXT4_I(inode)->i_data_sem);
1787 if (ext4_has_inline_data(inode))
1788 retval = 0;
1789 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791 else
1792 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1793
1794 add_delayed:
1795 if (retval == 0) {
1796 int ret;
1797
1798 /*
1799 * XXX: __block_prepare_write() unmaps passed block,
1800 * is it OK?
1801 */
1802
1803 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1804 if (ret != 0) {
1805 retval = ret;
1806 goto out_unlock;
1807 }
1808
1809 map_bh(bh, inode->i_sb, invalid_block);
1810 set_buffer_new(bh);
1811 set_buffer_delay(bh);
1812 } else if (retval > 0) {
1813 int ret;
1814 unsigned int status;
1815
1816 if (unlikely(retval != map->m_len)) {
1817 ext4_warning(inode->i_sb,
1818 "ES len assertion failed for inode "
1819 "%lu: retval %d != map->m_len %d",
1820 inode->i_ino, retval, map->m_len);
1821 WARN_ON(1);
1822 }
1823
1824 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1825 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1826 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1827 map->m_pblk, status);
1828 if (ret != 0)
1829 retval = ret;
1830 }
1831
1832 out_unlock:
1833 up_read((&EXT4_I(inode)->i_data_sem));
1834
1835 return retval;
1836 }
1837
1838 /*
1839 * This is a special get_block_t callback which is used by
1840 * ext4_da_write_begin(). It will either return mapped block or
1841 * reserve space for a single block.
1842 *
1843 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1844 * We also have b_blocknr = -1 and b_bdev initialized properly
1845 *
1846 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1847 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1848 * initialized properly.
1849 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1850 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1851 struct buffer_head *bh, int create)
1852 {
1853 struct ext4_map_blocks map;
1854 int ret = 0;
1855
1856 BUG_ON(create == 0);
1857 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1858
1859 map.m_lblk = iblock;
1860 map.m_len = 1;
1861
1862 /*
1863 * first, we need to know whether the block is allocated already
1864 * preallocated blocks are unmapped but should treated
1865 * the same as allocated blocks.
1866 */
1867 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1868 if (ret <= 0)
1869 return ret;
1870
1871 map_bh(bh, inode->i_sb, map.m_pblk);
1872 ext4_update_bh_state(bh, map.m_flags);
1873
1874 if (buffer_unwritten(bh)) {
1875 /* A delayed write to unwritten bh should be marked
1876 * new and mapped. Mapped ensures that we don't do
1877 * get_block multiple times when we write to the same
1878 * offset and new ensures that we do proper zero out
1879 * for partial write.
1880 */
1881 set_buffer_new(bh);
1882 set_buffer_mapped(bh);
1883 }
1884 return 0;
1885 }
1886
__ext4_journalled_writepage(struct page * page,unsigned int len)1887 static int __ext4_journalled_writepage(struct page *page,
1888 unsigned int len)
1889 {
1890 struct address_space *mapping = page->mapping;
1891 struct inode *inode = mapping->host;
1892 handle_t *handle = NULL;
1893 int ret = 0, err = 0;
1894 int inline_data = ext4_has_inline_data(inode);
1895 struct buffer_head *inode_bh = NULL;
1896 loff_t size;
1897
1898 ClearPageChecked(page);
1899
1900 if (inline_data) {
1901 BUG_ON(page->index != 0);
1902 BUG_ON(len > ext4_get_max_inline_size(inode));
1903 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1904 if (inode_bh == NULL)
1905 goto out;
1906 }
1907 /*
1908 * We need to release the page lock before we start the
1909 * journal, so grab a reference so the page won't disappear
1910 * out from under us.
1911 */
1912 get_page(page);
1913 unlock_page(page);
1914
1915 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1916 ext4_writepage_trans_blocks(inode));
1917 if (IS_ERR(handle)) {
1918 ret = PTR_ERR(handle);
1919 put_page(page);
1920 goto out_no_pagelock;
1921 }
1922 BUG_ON(!ext4_handle_valid(handle));
1923
1924 lock_page(page);
1925 put_page(page);
1926 size = i_size_read(inode);
1927 if (page->mapping != mapping || page_offset(page) > size) {
1928 /* The page got truncated from under us */
1929 ext4_journal_stop(handle);
1930 ret = 0;
1931 goto out;
1932 }
1933
1934 if (inline_data) {
1935 ret = ext4_mark_inode_dirty(handle, inode);
1936 } else {
1937 struct buffer_head *page_bufs = page_buffers(page);
1938
1939 if (page->index == size >> PAGE_SHIFT)
1940 len = size & ~PAGE_MASK;
1941 else
1942 len = PAGE_SIZE;
1943
1944 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1945 NULL, do_journal_get_write_access);
1946
1947 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 NULL, write_end_fn);
1949 }
1950 if (ret == 0)
1951 ret = err;
1952 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1953 if (ret == 0)
1954 ret = err;
1955 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1956 err = ext4_journal_stop(handle);
1957 if (!ret)
1958 ret = err;
1959
1960 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1961 out:
1962 unlock_page(page);
1963 out_no_pagelock:
1964 brelse(inode_bh);
1965 return ret;
1966 }
1967
1968 /*
1969 * Note that we don't need to start a transaction unless we're journaling data
1970 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1971 * need to file the inode to the transaction's list in ordered mode because if
1972 * we are writing back data added by write(), the inode is already there and if
1973 * we are writing back data modified via mmap(), no one guarantees in which
1974 * transaction the data will hit the disk. In case we are journaling data, we
1975 * cannot start transaction directly because transaction start ranks above page
1976 * lock so we have to do some magic.
1977 *
1978 * This function can get called via...
1979 * - ext4_writepages after taking page lock (have journal handle)
1980 * - journal_submit_inode_data_buffers (no journal handle)
1981 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1982 * - grab_page_cache when doing write_begin (have journal handle)
1983 *
1984 * We don't do any block allocation in this function. If we have page with
1985 * multiple blocks we need to write those buffer_heads that are mapped. This
1986 * is important for mmaped based write. So if we do with blocksize 1K
1987 * truncate(f, 1024);
1988 * a = mmap(f, 0, 4096);
1989 * a[0] = 'a';
1990 * truncate(f, 4096);
1991 * we have in the page first buffer_head mapped via page_mkwrite call back
1992 * but other buffer_heads would be unmapped but dirty (dirty done via the
1993 * do_wp_page). So writepage should write the first block. If we modify
1994 * the mmap area beyond 1024 we will again get a page_fault and the
1995 * page_mkwrite callback will do the block allocation and mark the
1996 * buffer_heads mapped.
1997 *
1998 * We redirty the page if we have any buffer_heads that is either delay or
1999 * unwritten in the page.
2000 *
2001 * We can get recursively called as show below.
2002 *
2003 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2004 * ext4_writepage()
2005 *
2006 * But since we don't do any block allocation we should not deadlock.
2007 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2008 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2009 static int ext4_writepage(struct page *page,
2010 struct writeback_control *wbc)
2011 {
2012 struct folio *folio = page_folio(page);
2013 int ret = 0;
2014 loff_t size;
2015 unsigned int len;
2016 struct buffer_head *page_bufs = NULL;
2017 struct inode *inode = page->mapping->host;
2018 struct ext4_io_submit io_submit;
2019 bool keep_towrite = false;
2020
2021 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2022 folio_invalidate(folio, 0, folio_size(folio));
2023 folio_unlock(folio);
2024 return -EIO;
2025 }
2026
2027 trace_ext4_writepage(page);
2028 size = i_size_read(inode);
2029 if (page->index == size >> PAGE_SHIFT &&
2030 !ext4_verity_in_progress(inode))
2031 len = size & ~PAGE_MASK;
2032 else
2033 len = PAGE_SIZE;
2034
2035 /* Should never happen but for bugs in other kernel subsystems */
2036 if (!page_has_buffers(page)) {
2037 ext4_warning_inode(inode,
2038 "page %lu does not have buffers attached", page->index);
2039 ClearPageDirty(page);
2040 unlock_page(page);
2041 return 0;
2042 }
2043
2044 page_bufs = page_buffers(page);
2045 /*
2046 * We cannot do block allocation or other extent handling in this
2047 * function. If there are buffers needing that, we have to redirty
2048 * the page. But we may reach here when we do a journal commit via
2049 * journal_submit_inode_data_buffers() and in that case we must write
2050 * allocated buffers to achieve data=ordered mode guarantees.
2051 *
2052 * Also, if there is only one buffer per page (the fs block
2053 * size == the page size), if one buffer needs block
2054 * allocation or needs to modify the extent tree to clear the
2055 * unwritten flag, we know that the page can't be written at
2056 * all, so we might as well refuse the write immediately.
2057 * Unfortunately if the block size != page size, we can't as
2058 * easily detect this case using ext4_walk_page_buffers(), but
2059 * for the extremely common case, this is an optimization that
2060 * skips a useless round trip through ext4_bio_write_page().
2061 */
2062 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2063 ext4_bh_delay_or_unwritten)) {
2064 redirty_page_for_writepage(wbc, page);
2065 if ((current->flags & PF_MEMALLOC) ||
2066 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067 /*
2068 * For memory cleaning there's no point in writing only
2069 * some buffers. So just bail out. Warn if we came here
2070 * from direct reclaim.
2071 */
2072 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073 == PF_MEMALLOC);
2074 unlock_page(page);
2075 return 0;
2076 }
2077 keep_towrite = true;
2078 }
2079
2080 if (PageChecked(page) && ext4_should_journal_data(inode))
2081 /*
2082 * It's mmapped pagecache. Add buffers and journal it. There
2083 * doesn't seem much point in redirtying the page here.
2084 */
2085 return __ext4_journalled_writepage(page, len);
2086
2087 ext4_io_submit_init(&io_submit, wbc);
2088 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089 if (!io_submit.io_end) {
2090 redirty_page_for_writepage(wbc, page);
2091 unlock_page(page);
2092 return -ENOMEM;
2093 }
2094 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2095 ext4_io_submit(&io_submit);
2096 /* Drop io_end reference we got from init */
2097 ext4_put_io_end_defer(io_submit.io_end);
2098 return ret;
2099 }
2100
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102 {
2103 int len;
2104 loff_t size;
2105 int err;
2106
2107 BUG_ON(page->index != mpd->first_page);
2108 clear_page_dirty_for_io(page);
2109 /*
2110 * We have to be very careful here! Nothing protects writeback path
2111 * against i_size changes and the page can be writeably mapped into
2112 * page tables. So an application can be growing i_size and writing
2113 * data through mmap while writeback runs. clear_page_dirty_for_io()
2114 * write-protects our page in page tables and the page cannot get
2115 * written to again until we release page lock. So only after
2116 * clear_page_dirty_for_io() we are safe to sample i_size for
2117 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2118 * on the barrier provided by TestClearPageDirty in
2119 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2120 * after page tables are updated.
2121 */
2122 size = i_size_read(mpd->inode);
2123 if (page->index == size >> PAGE_SHIFT &&
2124 !ext4_verity_in_progress(mpd->inode))
2125 len = size & ~PAGE_MASK;
2126 else
2127 len = PAGE_SIZE;
2128 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2129 if (!err)
2130 mpd->wbc->nr_to_write--;
2131 mpd->first_page++;
2132
2133 return err;
2134 }
2135
2136 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2137
2138 /*
2139 * mballoc gives us at most this number of blocks...
2140 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2141 * The rest of mballoc seems to handle chunks up to full group size.
2142 */
2143 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2144
2145 /*
2146 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2147 *
2148 * @mpd - extent of blocks
2149 * @lblk - logical number of the block in the file
2150 * @bh - buffer head we want to add to the extent
2151 *
2152 * The function is used to collect contig. blocks in the same state. If the
2153 * buffer doesn't require mapping for writeback and we haven't started the
2154 * extent of buffers to map yet, the function returns 'true' immediately - the
2155 * caller can write the buffer right away. Otherwise the function returns true
2156 * if the block has been added to the extent, false if the block couldn't be
2157 * added.
2158 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2159 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2160 struct buffer_head *bh)
2161 {
2162 struct ext4_map_blocks *map = &mpd->map;
2163
2164 /* Buffer that doesn't need mapping for writeback? */
2165 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2166 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2167 /* So far no extent to map => we write the buffer right away */
2168 if (map->m_len == 0)
2169 return true;
2170 return false;
2171 }
2172
2173 /* First block in the extent? */
2174 if (map->m_len == 0) {
2175 /* We cannot map unless handle is started... */
2176 if (!mpd->do_map)
2177 return false;
2178 map->m_lblk = lblk;
2179 map->m_len = 1;
2180 map->m_flags = bh->b_state & BH_FLAGS;
2181 return true;
2182 }
2183
2184 /* Don't go larger than mballoc is willing to allocate */
2185 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2186 return false;
2187
2188 /* Can we merge the block to our big extent? */
2189 if (lblk == map->m_lblk + map->m_len &&
2190 (bh->b_state & BH_FLAGS) == map->m_flags) {
2191 map->m_len++;
2192 return true;
2193 }
2194 return false;
2195 }
2196
2197 /*
2198 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2199 *
2200 * @mpd - extent of blocks for mapping
2201 * @head - the first buffer in the page
2202 * @bh - buffer we should start processing from
2203 * @lblk - logical number of the block in the file corresponding to @bh
2204 *
2205 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2206 * the page for IO if all buffers in this page were mapped and there's no
2207 * accumulated extent of buffers to map or add buffers in the page to the
2208 * extent of buffers to map. The function returns 1 if the caller can continue
2209 * by processing the next page, 0 if it should stop adding buffers to the
2210 * extent to map because we cannot extend it anymore. It can also return value
2211 * < 0 in case of error during IO submission.
2212 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2213 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2214 struct buffer_head *head,
2215 struct buffer_head *bh,
2216 ext4_lblk_t lblk)
2217 {
2218 struct inode *inode = mpd->inode;
2219 int err;
2220 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2221 >> inode->i_blkbits;
2222
2223 if (ext4_verity_in_progress(inode))
2224 blocks = EXT_MAX_BLOCKS;
2225
2226 do {
2227 BUG_ON(buffer_locked(bh));
2228
2229 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2230 /* Found extent to map? */
2231 if (mpd->map.m_len)
2232 return 0;
2233 /* Buffer needs mapping and handle is not started? */
2234 if (!mpd->do_map)
2235 return 0;
2236 /* Everything mapped so far and we hit EOF */
2237 break;
2238 }
2239 } while (lblk++, (bh = bh->b_this_page) != head);
2240 /* So far everything mapped? Submit the page for IO. */
2241 if (mpd->map.m_len == 0) {
2242 err = mpage_submit_page(mpd, head->b_page);
2243 if (err < 0)
2244 return err;
2245 }
2246 if (lblk >= blocks) {
2247 mpd->scanned_until_end = 1;
2248 return 0;
2249 }
2250 return 1;
2251 }
2252
2253 /*
2254 * mpage_process_page - update page buffers corresponding to changed extent and
2255 * may submit fully mapped page for IO
2256 *
2257 * @mpd - description of extent to map, on return next extent to map
2258 * @m_lblk - logical block mapping.
2259 * @m_pblk - corresponding physical mapping.
2260 * @map_bh - determines on return whether this page requires any further
2261 * mapping or not.
2262 * Scan given page buffers corresponding to changed extent and update buffer
2263 * state according to new extent state.
2264 * We map delalloc buffers to their physical location, clear unwritten bits.
2265 * If the given page is not fully mapped, we update @map to the next extent in
2266 * the given page that needs mapping & return @map_bh as true.
2267 */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2268 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2269 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2270 bool *map_bh)
2271 {
2272 struct buffer_head *head, *bh;
2273 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2274 ext4_lblk_t lblk = *m_lblk;
2275 ext4_fsblk_t pblock = *m_pblk;
2276 int err = 0;
2277 int blkbits = mpd->inode->i_blkbits;
2278 ssize_t io_end_size = 0;
2279 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2280
2281 bh = head = page_buffers(page);
2282 do {
2283 if (lblk < mpd->map.m_lblk)
2284 continue;
2285 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2286 /*
2287 * Buffer after end of mapped extent.
2288 * Find next buffer in the page to map.
2289 */
2290 mpd->map.m_len = 0;
2291 mpd->map.m_flags = 0;
2292 io_end_vec->size += io_end_size;
2293
2294 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2295 if (err > 0)
2296 err = 0;
2297 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2298 io_end_vec = ext4_alloc_io_end_vec(io_end);
2299 if (IS_ERR(io_end_vec)) {
2300 err = PTR_ERR(io_end_vec);
2301 goto out;
2302 }
2303 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2304 }
2305 *map_bh = true;
2306 goto out;
2307 }
2308 if (buffer_delay(bh)) {
2309 clear_buffer_delay(bh);
2310 bh->b_blocknr = pblock++;
2311 }
2312 clear_buffer_unwritten(bh);
2313 io_end_size += (1 << blkbits);
2314 } while (lblk++, (bh = bh->b_this_page) != head);
2315
2316 io_end_vec->size += io_end_size;
2317 *map_bh = false;
2318 out:
2319 *m_lblk = lblk;
2320 *m_pblk = pblock;
2321 return err;
2322 }
2323
2324 /*
2325 * mpage_map_buffers - update buffers corresponding to changed extent and
2326 * submit fully mapped pages for IO
2327 *
2328 * @mpd - description of extent to map, on return next extent to map
2329 *
2330 * Scan buffers corresponding to changed extent (we expect corresponding pages
2331 * to be already locked) and update buffer state according to new extent state.
2332 * We map delalloc buffers to their physical location, clear unwritten bits,
2333 * and mark buffers as uninit when we perform writes to unwritten extents
2334 * and do extent conversion after IO is finished. If the last page is not fully
2335 * mapped, we update @map to the next extent in the last page that needs
2336 * mapping. Otherwise we submit the page for IO.
2337 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2338 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2339 {
2340 struct folio_batch fbatch;
2341 unsigned nr, i;
2342 struct inode *inode = mpd->inode;
2343 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2344 pgoff_t start, end;
2345 ext4_lblk_t lblk;
2346 ext4_fsblk_t pblock;
2347 int err;
2348 bool map_bh = false;
2349
2350 start = mpd->map.m_lblk >> bpp_bits;
2351 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2352 lblk = start << bpp_bits;
2353 pblock = mpd->map.m_pblk;
2354
2355 folio_batch_init(&fbatch);
2356 while (start <= end) {
2357 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2358 if (nr == 0)
2359 break;
2360 for (i = 0; i < nr; i++) {
2361 struct page *page = &fbatch.folios[i]->page;
2362
2363 err = mpage_process_page(mpd, page, &lblk, &pblock,
2364 &map_bh);
2365 /*
2366 * If map_bh is true, means page may require further bh
2367 * mapping, or maybe the page was submitted for IO.
2368 * So we return to call further extent mapping.
2369 */
2370 if (err < 0 || map_bh)
2371 goto out;
2372 /* Page fully mapped - let IO run! */
2373 err = mpage_submit_page(mpd, page);
2374 if (err < 0)
2375 goto out;
2376 }
2377 folio_batch_release(&fbatch);
2378 }
2379 /* Extent fully mapped and matches with page boundary. We are done. */
2380 mpd->map.m_len = 0;
2381 mpd->map.m_flags = 0;
2382 return 0;
2383 out:
2384 folio_batch_release(&fbatch);
2385 return err;
2386 }
2387
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2388 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2389 {
2390 struct inode *inode = mpd->inode;
2391 struct ext4_map_blocks *map = &mpd->map;
2392 int get_blocks_flags;
2393 int err, dioread_nolock;
2394
2395 trace_ext4_da_write_pages_extent(inode, map);
2396 /*
2397 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2398 * to convert an unwritten extent to be initialized (in the case
2399 * where we have written into one or more preallocated blocks). It is
2400 * possible that we're going to need more metadata blocks than
2401 * previously reserved. However we must not fail because we're in
2402 * writeback and there is nothing we can do about it so it might result
2403 * in data loss. So use reserved blocks to allocate metadata if
2404 * possible.
2405 *
2406 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2407 * the blocks in question are delalloc blocks. This indicates
2408 * that the blocks and quotas has already been checked when
2409 * the data was copied into the page cache.
2410 */
2411 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2412 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2413 EXT4_GET_BLOCKS_IO_SUBMIT;
2414 dioread_nolock = ext4_should_dioread_nolock(inode);
2415 if (dioread_nolock)
2416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2417 if (map->m_flags & BIT(BH_Delay))
2418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2419
2420 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2421 if (err < 0)
2422 return err;
2423 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2424 if (!mpd->io_submit.io_end->handle &&
2425 ext4_handle_valid(handle)) {
2426 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2427 handle->h_rsv_handle = NULL;
2428 }
2429 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2430 }
2431
2432 BUG_ON(map->m_len == 0);
2433 return 0;
2434 }
2435
2436 /*
2437 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2438 * mpd->len and submit pages underlying it for IO
2439 *
2440 * @handle - handle for journal operations
2441 * @mpd - extent to map
2442 * @give_up_on_write - we set this to true iff there is a fatal error and there
2443 * is no hope of writing the data. The caller should discard
2444 * dirty pages to avoid infinite loops.
2445 *
2446 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2447 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2448 * them to initialized or split the described range from larger unwritten
2449 * extent. Note that we need not map all the described range since allocation
2450 * can return less blocks or the range is covered by more unwritten extents. We
2451 * cannot map more because we are limited by reserved transaction credits. On
2452 * the other hand we always make sure that the last touched page is fully
2453 * mapped so that it can be written out (and thus forward progress is
2454 * guaranteed). After mapping we submit all mapped pages for IO.
2455 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2456 static int mpage_map_and_submit_extent(handle_t *handle,
2457 struct mpage_da_data *mpd,
2458 bool *give_up_on_write)
2459 {
2460 struct inode *inode = mpd->inode;
2461 struct ext4_map_blocks *map = &mpd->map;
2462 int err;
2463 loff_t disksize;
2464 int progress = 0;
2465 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2466 struct ext4_io_end_vec *io_end_vec;
2467
2468 io_end_vec = ext4_alloc_io_end_vec(io_end);
2469 if (IS_ERR(io_end_vec))
2470 return PTR_ERR(io_end_vec);
2471 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2472 do {
2473 err = mpage_map_one_extent(handle, mpd);
2474 if (err < 0) {
2475 struct super_block *sb = inode->i_sb;
2476
2477 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2478 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2479 goto invalidate_dirty_pages;
2480 /*
2481 * Let the uper layers retry transient errors.
2482 * In the case of ENOSPC, if ext4_count_free_blocks()
2483 * is non-zero, a commit should free up blocks.
2484 */
2485 if ((err == -ENOMEM) ||
2486 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2487 if (progress)
2488 goto update_disksize;
2489 return err;
2490 }
2491 ext4_msg(sb, KERN_CRIT,
2492 "Delayed block allocation failed for "
2493 "inode %lu at logical offset %llu with"
2494 " max blocks %u with error %d",
2495 inode->i_ino,
2496 (unsigned long long)map->m_lblk,
2497 (unsigned)map->m_len, -err);
2498 ext4_msg(sb, KERN_CRIT,
2499 "This should not happen!! Data will "
2500 "be lost\n");
2501 if (err == -ENOSPC)
2502 ext4_print_free_blocks(inode);
2503 invalidate_dirty_pages:
2504 *give_up_on_write = true;
2505 return err;
2506 }
2507 progress = 1;
2508 /*
2509 * Update buffer state, submit mapped pages, and get us new
2510 * extent to map
2511 */
2512 err = mpage_map_and_submit_buffers(mpd);
2513 if (err < 0)
2514 goto update_disksize;
2515 } while (map->m_len);
2516
2517 update_disksize:
2518 /*
2519 * Update on-disk size after IO is submitted. Races with
2520 * truncate are avoided by checking i_size under i_data_sem.
2521 */
2522 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2523 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2524 int err2;
2525 loff_t i_size;
2526
2527 down_write(&EXT4_I(inode)->i_data_sem);
2528 i_size = i_size_read(inode);
2529 if (disksize > i_size)
2530 disksize = i_size;
2531 if (disksize > EXT4_I(inode)->i_disksize)
2532 EXT4_I(inode)->i_disksize = disksize;
2533 up_write(&EXT4_I(inode)->i_data_sem);
2534 err2 = ext4_mark_inode_dirty(handle, inode);
2535 if (err2) {
2536 ext4_error_err(inode->i_sb, -err2,
2537 "Failed to mark inode %lu dirty",
2538 inode->i_ino);
2539 }
2540 if (!err)
2541 err = err2;
2542 }
2543 return err;
2544 }
2545
2546 /*
2547 * Calculate the total number of credits to reserve for one writepages
2548 * iteration. This is called from ext4_writepages(). We map an extent of
2549 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2550 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2551 * bpp - 1 blocks in bpp different extents.
2552 */
ext4_da_writepages_trans_blocks(struct inode * inode)2553 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2554 {
2555 int bpp = ext4_journal_blocks_per_page(inode);
2556
2557 return ext4_meta_trans_blocks(inode,
2558 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2559 }
2560
2561 /*
2562 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2563 * and underlying extent to map
2564 *
2565 * @mpd - where to look for pages
2566 *
2567 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2568 * IO immediately. When we find a page which isn't mapped we start accumulating
2569 * extent of buffers underlying these pages that needs mapping (formed by
2570 * either delayed or unwritten buffers). We also lock the pages containing
2571 * these buffers. The extent found is returned in @mpd structure (starting at
2572 * mpd->lblk with length mpd->len blocks).
2573 *
2574 * Note that this function can attach bios to one io_end structure which are
2575 * neither logically nor physically contiguous. Although it may seem as an
2576 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2577 * case as we need to track IO to all buffers underlying a page in one io_end.
2578 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2579 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2580 {
2581 struct address_space *mapping = mpd->inode->i_mapping;
2582 struct pagevec pvec;
2583 unsigned int nr_pages;
2584 long left = mpd->wbc->nr_to_write;
2585 pgoff_t index = mpd->first_page;
2586 pgoff_t end = mpd->last_page;
2587 xa_mark_t tag;
2588 int i, err = 0;
2589 int blkbits = mpd->inode->i_blkbits;
2590 ext4_lblk_t lblk;
2591 struct buffer_head *head;
2592
2593 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2594 tag = PAGECACHE_TAG_TOWRITE;
2595 else
2596 tag = PAGECACHE_TAG_DIRTY;
2597
2598 pagevec_init(&pvec);
2599 mpd->map.m_len = 0;
2600 mpd->next_page = index;
2601 while (index <= end) {
2602 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2603 tag);
2604 if (nr_pages == 0)
2605 break;
2606
2607 for (i = 0; i < nr_pages; i++) {
2608 struct page *page = pvec.pages[i];
2609
2610 /*
2611 * Accumulated enough dirty pages? This doesn't apply
2612 * to WB_SYNC_ALL mode. For integrity sync we have to
2613 * keep going because someone may be concurrently
2614 * dirtying pages, and we might have synced a lot of
2615 * newly appeared dirty pages, but have not synced all
2616 * of the old dirty pages.
2617 */
2618 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2619 goto out;
2620
2621 /* If we can't merge this page, we are done. */
2622 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2623 goto out;
2624
2625 lock_page(page);
2626 /*
2627 * If the page is no longer dirty, or its mapping no
2628 * longer corresponds to inode we are writing (which
2629 * means it has been truncated or invalidated), or the
2630 * page is already under writeback and we are not doing
2631 * a data integrity writeback, skip the page
2632 */
2633 if (!PageDirty(page) ||
2634 (PageWriteback(page) &&
2635 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2636 unlikely(page->mapping != mapping)) {
2637 unlock_page(page);
2638 continue;
2639 }
2640
2641 wait_on_page_writeback(page);
2642 BUG_ON(PageWriteback(page));
2643
2644 /*
2645 * Should never happen but for buggy code in
2646 * other subsystems that call
2647 * set_page_dirty() without properly warning
2648 * the file system first. See [1] for more
2649 * information.
2650 *
2651 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2652 */
2653 if (!page_has_buffers(page)) {
2654 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2655 ClearPageDirty(page);
2656 unlock_page(page);
2657 continue;
2658 }
2659
2660 if (mpd->map.m_len == 0)
2661 mpd->first_page = page->index;
2662 mpd->next_page = page->index + 1;
2663 /* Add all dirty buffers to mpd */
2664 lblk = ((ext4_lblk_t)page->index) <<
2665 (PAGE_SHIFT - blkbits);
2666 head = page_buffers(page);
2667 err = mpage_process_page_bufs(mpd, head, head, lblk);
2668 if (err <= 0)
2669 goto out;
2670 err = 0;
2671 left--;
2672 }
2673 pagevec_release(&pvec);
2674 cond_resched();
2675 }
2676 mpd->scanned_until_end = 1;
2677 return 0;
2678 out:
2679 pagevec_release(&pvec);
2680 return err;
2681 }
2682
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2683 static int ext4_writepages(struct address_space *mapping,
2684 struct writeback_control *wbc)
2685 {
2686 pgoff_t writeback_index = 0;
2687 long nr_to_write = wbc->nr_to_write;
2688 int range_whole = 0;
2689 int cycled = 1;
2690 handle_t *handle = NULL;
2691 struct mpage_da_data mpd;
2692 struct inode *inode = mapping->host;
2693 int needed_blocks, rsv_blocks = 0, ret = 0;
2694 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2695 struct blk_plug plug;
2696 bool give_up_on_write = false;
2697
2698 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2699 return -EIO;
2700
2701 percpu_down_read(&sbi->s_writepages_rwsem);
2702 trace_ext4_writepages(inode, wbc);
2703
2704 /*
2705 * No pages to write? This is mainly a kludge to avoid starting
2706 * a transaction for special inodes like journal inode on last iput()
2707 * because that could violate lock ordering on umount
2708 */
2709 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2710 goto out_writepages;
2711
2712 if (ext4_should_journal_data(inode)) {
2713 ret = generic_writepages(mapping, wbc);
2714 goto out_writepages;
2715 }
2716
2717 /*
2718 * If the filesystem has aborted, it is read-only, so return
2719 * right away instead of dumping stack traces later on that
2720 * will obscure the real source of the problem. We test
2721 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2722 * the latter could be true if the filesystem is mounted
2723 * read-only, and in that case, ext4_writepages should
2724 * *never* be called, so if that ever happens, we would want
2725 * the stack trace.
2726 */
2727 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2728 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2729 ret = -EROFS;
2730 goto out_writepages;
2731 }
2732
2733 /*
2734 * If we have inline data and arrive here, it means that
2735 * we will soon create the block for the 1st page, so
2736 * we'd better clear the inline data here.
2737 */
2738 if (ext4_has_inline_data(inode)) {
2739 /* Just inode will be modified... */
2740 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2741 if (IS_ERR(handle)) {
2742 ret = PTR_ERR(handle);
2743 goto out_writepages;
2744 }
2745 BUG_ON(ext4_test_inode_state(inode,
2746 EXT4_STATE_MAY_INLINE_DATA));
2747 ext4_destroy_inline_data(handle, inode);
2748 ext4_journal_stop(handle);
2749 }
2750
2751 if (ext4_should_dioread_nolock(inode)) {
2752 /*
2753 * We may need to convert up to one extent per block in
2754 * the page and we may dirty the inode.
2755 */
2756 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2757 PAGE_SIZE >> inode->i_blkbits);
2758 }
2759
2760 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2761 range_whole = 1;
2762
2763 if (wbc->range_cyclic) {
2764 writeback_index = mapping->writeback_index;
2765 if (writeback_index)
2766 cycled = 0;
2767 mpd.first_page = writeback_index;
2768 mpd.last_page = -1;
2769 } else {
2770 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2771 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2772 }
2773
2774 mpd.inode = inode;
2775 mpd.wbc = wbc;
2776 ext4_io_submit_init(&mpd.io_submit, wbc);
2777 retry:
2778 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2779 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2780 blk_start_plug(&plug);
2781
2782 /*
2783 * First writeback pages that don't need mapping - we can avoid
2784 * starting a transaction unnecessarily and also avoid being blocked
2785 * in the block layer on device congestion while having transaction
2786 * started.
2787 */
2788 mpd.do_map = 0;
2789 mpd.scanned_until_end = 0;
2790 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2791 if (!mpd.io_submit.io_end) {
2792 ret = -ENOMEM;
2793 goto unplug;
2794 }
2795 ret = mpage_prepare_extent_to_map(&mpd);
2796 /* Unlock pages we didn't use */
2797 mpage_release_unused_pages(&mpd, false);
2798 /* Submit prepared bio */
2799 ext4_io_submit(&mpd.io_submit);
2800 ext4_put_io_end_defer(mpd.io_submit.io_end);
2801 mpd.io_submit.io_end = NULL;
2802 if (ret < 0)
2803 goto unplug;
2804
2805 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2806 /* For each extent of pages we use new io_end */
2807 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2808 if (!mpd.io_submit.io_end) {
2809 ret = -ENOMEM;
2810 break;
2811 }
2812
2813 /*
2814 * We have two constraints: We find one extent to map and we
2815 * must always write out whole page (makes a difference when
2816 * blocksize < pagesize) so that we don't block on IO when we
2817 * try to write out the rest of the page. Journalled mode is
2818 * not supported by delalloc.
2819 */
2820 BUG_ON(ext4_should_journal_data(inode));
2821 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2822
2823 /* start a new transaction */
2824 handle = ext4_journal_start_with_reserve(inode,
2825 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2826 if (IS_ERR(handle)) {
2827 ret = PTR_ERR(handle);
2828 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2829 "%ld pages, ino %lu; err %d", __func__,
2830 wbc->nr_to_write, inode->i_ino, ret);
2831 /* Release allocated io_end */
2832 ext4_put_io_end(mpd.io_submit.io_end);
2833 mpd.io_submit.io_end = NULL;
2834 break;
2835 }
2836 mpd.do_map = 1;
2837
2838 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2839 ret = mpage_prepare_extent_to_map(&mpd);
2840 if (!ret && mpd.map.m_len)
2841 ret = mpage_map_and_submit_extent(handle, &mpd,
2842 &give_up_on_write);
2843 /*
2844 * Caution: If the handle is synchronous,
2845 * ext4_journal_stop() can wait for transaction commit
2846 * to finish which may depend on writeback of pages to
2847 * complete or on page lock to be released. In that
2848 * case, we have to wait until after we have
2849 * submitted all the IO, released page locks we hold,
2850 * and dropped io_end reference (for extent conversion
2851 * to be able to complete) before stopping the handle.
2852 */
2853 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854 ext4_journal_stop(handle);
2855 handle = NULL;
2856 mpd.do_map = 0;
2857 }
2858 /* Unlock pages we didn't use */
2859 mpage_release_unused_pages(&mpd, give_up_on_write);
2860 /* Submit prepared bio */
2861 ext4_io_submit(&mpd.io_submit);
2862
2863 /*
2864 * Drop our io_end reference we got from init. We have
2865 * to be careful and use deferred io_end finishing if
2866 * we are still holding the transaction as we can
2867 * release the last reference to io_end which may end
2868 * up doing unwritten extent conversion.
2869 */
2870 if (handle) {
2871 ext4_put_io_end_defer(mpd.io_submit.io_end);
2872 ext4_journal_stop(handle);
2873 } else
2874 ext4_put_io_end(mpd.io_submit.io_end);
2875 mpd.io_submit.io_end = NULL;
2876
2877 if (ret == -ENOSPC && sbi->s_journal) {
2878 /*
2879 * Commit the transaction which would
2880 * free blocks released in the transaction
2881 * and try again
2882 */
2883 jbd2_journal_force_commit_nested(sbi->s_journal);
2884 ret = 0;
2885 continue;
2886 }
2887 /* Fatal error - ENOMEM, EIO... */
2888 if (ret)
2889 break;
2890 }
2891 unplug:
2892 blk_finish_plug(&plug);
2893 if (!ret && !cycled && wbc->nr_to_write > 0) {
2894 cycled = 1;
2895 mpd.last_page = writeback_index - 1;
2896 mpd.first_page = 0;
2897 goto retry;
2898 }
2899
2900 /* Update index */
2901 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2902 /*
2903 * Set the writeback_index so that range_cyclic
2904 * mode will write it back later
2905 */
2906 mapping->writeback_index = mpd.first_page;
2907
2908 out_writepages:
2909 trace_ext4_writepages_result(inode, wbc, ret,
2910 nr_to_write - wbc->nr_to_write);
2911 percpu_up_read(&sbi->s_writepages_rwsem);
2912 return ret;
2913 }
2914
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2915 static int ext4_dax_writepages(struct address_space *mapping,
2916 struct writeback_control *wbc)
2917 {
2918 int ret;
2919 long nr_to_write = wbc->nr_to_write;
2920 struct inode *inode = mapping->host;
2921 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2922
2923 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2924 return -EIO;
2925
2926 percpu_down_read(&sbi->s_writepages_rwsem);
2927 trace_ext4_writepages(inode, wbc);
2928
2929 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2930 trace_ext4_writepages_result(inode, wbc, ret,
2931 nr_to_write - wbc->nr_to_write);
2932 percpu_up_read(&sbi->s_writepages_rwsem);
2933 return ret;
2934 }
2935
ext4_nonda_switch(struct super_block * sb)2936 static int ext4_nonda_switch(struct super_block *sb)
2937 {
2938 s64 free_clusters, dirty_clusters;
2939 struct ext4_sb_info *sbi = EXT4_SB(sb);
2940
2941 /*
2942 * switch to non delalloc mode if we are running low
2943 * on free block. The free block accounting via percpu
2944 * counters can get slightly wrong with percpu_counter_batch getting
2945 * accumulated on each CPU without updating global counters
2946 * Delalloc need an accurate free block accounting. So switch
2947 * to non delalloc when we are near to error range.
2948 */
2949 free_clusters =
2950 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2951 dirty_clusters =
2952 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2953 /*
2954 * Start pushing delalloc when 1/2 of free blocks are dirty.
2955 */
2956 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2957 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2958
2959 if (2 * free_clusters < 3 * dirty_clusters ||
2960 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2961 /*
2962 * free block count is less than 150% of dirty blocks
2963 * or free blocks is less than watermark
2964 */
2965 return 1;
2966 }
2967 return 0;
2968 }
2969
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2970 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2971 loff_t pos, unsigned len,
2972 struct page **pagep, void **fsdata)
2973 {
2974 int ret, retries = 0;
2975 struct page *page;
2976 pgoff_t index;
2977 struct inode *inode = mapping->host;
2978
2979 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2980 return -EIO;
2981
2982 index = pos >> PAGE_SHIFT;
2983
2984 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2985 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2986 return ext4_write_begin(file, mapping, pos,
2987 len, pagep, fsdata);
2988 }
2989 *fsdata = (void *)0;
2990 trace_ext4_da_write_begin(inode, pos, len);
2991
2992 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2993 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2994 pagep, fsdata);
2995 if (ret < 0)
2996 return ret;
2997 if (ret == 1)
2998 return 0;
2999 }
3000
3001 retry:
3002 page = grab_cache_page_write_begin(mapping, index);
3003 if (!page)
3004 return -ENOMEM;
3005
3006 /* In case writeback began while the page was unlocked */
3007 wait_for_stable_page(page);
3008
3009 #ifdef CONFIG_FS_ENCRYPTION
3010 ret = ext4_block_write_begin(page, pos, len,
3011 ext4_da_get_block_prep);
3012 #else
3013 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3014 #endif
3015 if (ret < 0) {
3016 unlock_page(page);
3017 put_page(page);
3018 /*
3019 * block_write_begin may have instantiated a few blocks
3020 * outside i_size. Trim these off again. Don't need
3021 * i_size_read because we hold inode lock.
3022 */
3023 if (pos + len > inode->i_size)
3024 ext4_truncate_failed_write(inode);
3025
3026 if (ret == -ENOSPC &&
3027 ext4_should_retry_alloc(inode->i_sb, &retries))
3028 goto retry;
3029 return ret;
3030 }
3031
3032 *pagep = page;
3033 return ret;
3034 }
3035
3036 /*
3037 * Check if we should update i_disksize
3038 * when write to the end of file but not require block allocation
3039 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3040 static int ext4_da_should_update_i_disksize(struct page *page,
3041 unsigned long offset)
3042 {
3043 struct buffer_head *bh;
3044 struct inode *inode = page->mapping->host;
3045 unsigned int idx;
3046 int i;
3047
3048 bh = page_buffers(page);
3049 idx = offset >> inode->i_blkbits;
3050
3051 for (i = 0; i < idx; i++)
3052 bh = bh->b_this_page;
3053
3054 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3055 return 0;
3056 return 1;
3057 }
3058
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3059 static int ext4_da_write_end(struct file *file,
3060 struct address_space *mapping,
3061 loff_t pos, unsigned len, unsigned copied,
3062 struct page *page, void *fsdata)
3063 {
3064 struct inode *inode = mapping->host;
3065 loff_t new_i_size;
3066 unsigned long start, end;
3067 int write_mode = (int)(unsigned long)fsdata;
3068
3069 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3070 return ext4_write_end(file, mapping, pos,
3071 len, copied, page, fsdata);
3072
3073 trace_ext4_da_write_end(inode, pos, len, copied);
3074
3075 if (write_mode != CONVERT_INLINE_DATA &&
3076 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3077 ext4_has_inline_data(inode))
3078 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3079
3080 start = pos & (PAGE_SIZE - 1);
3081 end = start + copied - 1;
3082
3083 /*
3084 * Since we are holding inode lock, we are sure i_disksize <=
3085 * i_size. We also know that if i_disksize < i_size, there are
3086 * delalloc writes pending in the range upto i_size. If the end of
3087 * the current write is <= i_size, there's no need to touch
3088 * i_disksize since writeback will push i_disksize upto i_size
3089 * eventually. If the end of the current write is > i_size and
3090 * inside an allocated block (ext4_da_should_update_i_disksize()
3091 * check), we need to update i_disksize here as neither
3092 * ext4_writepage() nor certain ext4_writepages() paths not
3093 * allocating blocks update i_disksize.
3094 *
3095 * Note that we defer inode dirtying to generic_write_end() /
3096 * ext4_da_write_inline_data_end().
3097 */
3098 new_i_size = pos + copied;
3099 if (copied && new_i_size > inode->i_size &&
3100 ext4_da_should_update_i_disksize(page, end))
3101 ext4_update_i_disksize(inode, new_i_size);
3102
3103 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3104 }
3105
3106 /*
3107 * Force all delayed allocation blocks to be allocated for a given inode.
3108 */
ext4_alloc_da_blocks(struct inode * inode)3109 int ext4_alloc_da_blocks(struct inode *inode)
3110 {
3111 trace_ext4_alloc_da_blocks(inode);
3112
3113 if (!EXT4_I(inode)->i_reserved_data_blocks)
3114 return 0;
3115
3116 /*
3117 * We do something simple for now. The filemap_flush() will
3118 * also start triggering a write of the data blocks, which is
3119 * not strictly speaking necessary (and for users of
3120 * laptop_mode, not even desirable). However, to do otherwise
3121 * would require replicating code paths in:
3122 *
3123 * ext4_writepages() ->
3124 * write_cache_pages() ---> (via passed in callback function)
3125 * __mpage_da_writepage() -->
3126 * mpage_add_bh_to_extent()
3127 * mpage_da_map_blocks()
3128 *
3129 * The problem is that write_cache_pages(), located in
3130 * mm/page-writeback.c, marks pages clean in preparation for
3131 * doing I/O, which is not desirable if we're not planning on
3132 * doing I/O at all.
3133 *
3134 * We could call write_cache_pages(), and then redirty all of
3135 * the pages by calling redirty_page_for_writepage() but that
3136 * would be ugly in the extreme. So instead we would need to
3137 * replicate parts of the code in the above functions,
3138 * simplifying them because we wouldn't actually intend to
3139 * write out the pages, but rather only collect contiguous
3140 * logical block extents, call the multi-block allocator, and
3141 * then update the buffer heads with the block allocations.
3142 *
3143 * For now, though, we'll cheat by calling filemap_flush(),
3144 * which will map the blocks, and start the I/O, but not
3145 * actually wait for the I/O to complete.
3146 */
3147 return filemap_flush(inode->i_mapping);
3148 }
3149
3150 /*
3151 * bmap() is special. It gets used by applications such as lilo and by
3152 * the swapper to find the on-disk block of a specific piece of data.
3153 *
3154 * Naturally, this is dangerous if the block concerned is still in the
3155 * journal. If somebody makes a swapfile on an ext4 data-journaling
3156 * filesystem and enables swap, then they may get a nasty shock when the
3157 * data getting swapped to that swapfile suddenly gets overwritten by
3158 * the original zero's written out previously to the journal and
3159 * awaiting writeback in the kernel's buffer cache.
3160 *
3161 * So, if we see any bmap calls here on a modified, data-journaled file,
3162 * take extra steps to flush any blocks which might be in the cache.
3163 */
ext4_bmap(struct address_space * mapping,sector_t block)3164 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3165 {
3166 struct inode *inode = mapping->host;
3167 journal_t *journal;
3168 sector_t ret = 0;
3169 int err;
3170
3171 inode_lock_shared(inode);
3172 /*
3173 * We can get here for an inline file via the FIBMAP ioctl
3174 */
3175 if (ext4_has_inline_data(inode))
3176 goto out;
3177
3178 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3179 test_opt(inode->i_sb, DELALLOC)) {
3180 /*
3181 * With delalloc we want to sync the file
3182 * so that we can make sure we allocate
3183 * blocks for file
3184 */
3185 filemap_write_and_wait(mapping);
3186 }
3187
3188 if (EXT4_JOURNAL(inode) &&
3189 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3190 /*
3191 * This is a REALLY heavyweight approach, but the use of
3192 * bmap on dirty files is expected to be extremely rare:
3193 * only if we run lilo or swapon on a freshly made file
3194 * do we expect this to happen.
3195 *
3196 * (bmap requires CAP_SYS_RAWIO so this does not
3197 * represent an unprivileged user DOS attack --- we'd be
3198 * in trouble if mortal users could trigger this path at
3199 * will.)
3200 *
3201 * NB. EXT4_STATE_JDATA is not set on files other than
3202 * regular files. If somebody wants to bmap a directory
3203 * or symlink and gets confused because the buffer
3204 * hasn't yet been flushed to disk, they deserve
3205 * everything they get.
3206 */
3207
3208 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3209 journal = EXT4_JOURNAL(inode);
3210 jbd2_journal_lock_updates(journal);
3211 err = jbd2_journal_flush(journal, 0);
3212 jbd2_journal_unlock_updates(journal);
3213
3214 if (err)
3215 goto out;
3216 }
3217
3218 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3219
3220 out:
3221 inode_unlock_shared(inode);
3222 return ret;
3223 }
3224
ext4_read_folio(struct file * file,struct folio * folio)3225 static int ext4_read_folio(struct file *file, struct folio *folio)
3226 {
3227 struct page *page = &folio->page;
3228 int ret = -EAGAIN;
3229 struct inode *inode = page->mapping->host;
3230
3231 trace_ext4_readpage(page);
3232
3233 if (ext4_has_inline_data(inode))
3234 ret = ext4_readpage_inline(inode, page);
3235
3236 if (ret == -EAGAIN)
3237 return ext4_mpage_readpages(inode, NULL, page);
3238
3239 return ret;
3240 }
3241
ext4_readahead(struct readahead_control * rac)3242 static void ext4_readahead(struct readahead_control *rac)
3243 {
3244 struct inode *inode = rac->mapping->host;
3245
3246 /* If the file has inline data, no need to do readahead. */
3247 if (ext4_has_inline_data(inode))
3248 return;
3249
3250 ext4_mpage_readpages(inode, rac, NULL);
3251 }
3252
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3253 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3254 size_t length)
3255 {
3256 trace_ext4_invalidate_folio(folio, offset, length);
3257
3258 /* No journalling happens on data buffers when this function is used */
3259 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3260
3261 block_invalidate_folio(folio, offset, length);
3262 }
3263
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3264 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3265 size_t offset, size_t length)
3266 {
3267 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3268
3269 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3270
3271 /*
3272 * If it's a full truncate we just forget about the pending dirtying
3273 */
3274 if (offset == 0 && length == folio_size(folio))
3275 folio_clear_checked(folio);
3276
3277 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3278 }
3279
3280 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3281 static void ext4_journalled_invalidate_folio(struct folio *folio,
3282 size_t offset,
3283 size_t length)
3284 {
3285 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3286 }
3287
ext4_release_folio(struct folio * folio,gfp_t wait)3288 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3289 {
3290 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3291
3292 trace_ext4_releasepage(&folio->page);
3293
3294 /* Page has dirty journalled data -> cannot release */
3295 if (folio_test_checked(folio))
3296 return false;
3297 if (journal)
3298 return jbd2_journal_try_to_free_buffers(journal, folio);
3299 else
3300 return try_to_free_buffers(folio);
3301 }
3302
ext4_inode_datasync_dirty(struct inode * inode)3303 static bool ext4_inode_datasync_dirty(struct inode *inode)
3304 {
3305 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3306
3307 if (journal) {
3308 if (jbd2_transaction_committed(journal,
3309 EXT4_I(inode)->i_datasync_tid))
3310 return false;
3311 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3312 return !list_empty(&EXT4_I(inode)->i_fc_list);
3313 return true;
3314 }
3315
3316 /* Any metadata buffers to write? */
3317 if (!list_empty(&inode->i_mapping->private_list))
3318 return true;
3319 return inode->i_state & I_DIRTY_DATASYNC;
3320 }
3321
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3322 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3323 struct ext4_map_blocks *map, loff_t offset,
3324 loff_t length, unsigned int flags)
3325 {
3326 u8 blkbits = inode->i_blkbits;
3327
3328 /*
3329 * Writes that span EOF might trigger an I/O size update on completion,
3330 * so consider them to be dirty for the purpose of O_DSYNC, even if
3331 * there is no other metadata changes being made or are pending.
3332 */
3333 iomap->flags = 0;
3334 if (ext4_inode_datasync_dirty(inode) ||
3335 offset + length > i_size_read(inode))
3336 iomap->flags |= IOMAP_F_DIRTY;
3337
3338 if (map->m_flags & EXT4_MAP_NEW)
3339 iomap->flags |= IOMAP_F_NEW;
3340
3341 if (flags & IOMAP_DAX)
3342 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3343 else
3344 iomap->bdev = inode->i_sb->s_bdev;
3345 iomap->offset = (u64) map->m_lblk << blkbits;
3346 iomap->length = (u64) map->m_len << blkbits;
3347
3348 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3349 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3350 iomap->flags |= IOMAP_F_MERGED;
3351
3352 /*
3353 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3354 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3355 * set. In order for any allocated unwritten extents to be converted
3356 * into written extents correctly within the ->end_io() handler, we
3357 * need to ensure that the iomap->type is set appropriately. Hence, the
3358 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3359 * been set first.
3360 */
3361 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3362 iomap->type = IOMAP_UNWRITTEN;
3363 iomap->addr = (u64) map->m_pblk << blkbits;
3364 if (flags & IOMAP_DAX)
3365 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3366 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3367 iomap->type = IOMAP_MAPPED;
3368 iomap->addr = (u64) map->m_pblk << blkbits;
3369 if (flags & IOMAP_DAX)
3370 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3371 } else {
3372 iomap->type = IOMAP_HOLE;
3373 iomap->addr = IOMAP_NULL_ADDR;
3374 }
3375 }
3376
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3377 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3378 unsigned int flags)
3379 {
3380 handle_t *handle;
3381 u8 blkbits = inode->i_blkbits;
3382 int ret, dio_credits, m_flags = 0, retries = 0;
3383
3384 /*
3385 * Trim the mapping request to the maximum value that we can map at
3386 * once for direct I/O.
3387 */
3388 if (map->m_len > DIO_MAX_BLOCKS)
3389 map->m_len = DIO_MAX_BLOCKS;
3390 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3391
3392 retry:
3393 /*
3394 * Either we allocate blocks and then don't get an unwritten extent, so
3395 * in that case we have reserved enough credits. Or, the blocks are
3396 * already allocated and unwritten. In that case, the extent conversion
3397 * fits into the credits as well.
3398 */
3399 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3400 if (IS_ERR(handle))
3401 return PTR_ERR(handle);
3402
3403 /*
3404 * DAX and direct I/O are the only two operations that are currently
3405 * supported with IOMAP_WRITE.
3406 */
3407 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3408 if (flags & IOMAP_DAX)
3409 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3410 /*
3411 * We use i_size instead of i_disksize here because delalloc writeback
3412 * can complete at any point during the I/O and subsequently push the
3413 * i_disksize out to i_size. This could be beyond where direct I/O is
3414 * happening and thus expose allocated blocks to direct I/O reads.
3415 */
3416 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3417 m_flags = EXT4_GET_BLOCKS_CREATE;
3418 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3419 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3420
3421 ret = ext4_map_blocks(handle, inode, map, m_flags);
3422
3423 /*
3424 * We cannot fill holes in indirect tree based inodes as that could
3425 * expose stale data in the case of a crash. Use the magic error code
3426 * to fallback to buffered I/O.
3427 */
3428 if (!m_flags && !ret)
3429 ret = -ENOTBLK;
3430
3431 ext4_journal_stop(handle);
3432 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3433 goto retry;
3434
3435 return ret;
3436 }
3437
3438
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3441 {
3442 int ret;
3443 struct ext4_map_blocks map;
3444 u8 blkbits = inode->i_blkbits;
3445
3446 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3447 return -EINVAL;
3448
3449 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3450 return -ERANGE;
3451
3452 /*
3453 * Calculate the first and last logical blocks respectively.
3454 */
3455 map.m_lblk = offset >> blkbits;
3456 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3457 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3458
3459 if (flags & IOMAP_WRITE) {
3460 /*
3461 * We check here if the blocks are already allocated, then we
3462 * don't need to start a journal txn and we can directly return
3463 * the mapping information. This could boost performance
3464 * especially in multi-threaded overwrite requests.
3465 */
3466 if (offset + length <= i_size_read(inode)) {
3467 ret = ext4_map_blocks(NULL, inode, &map, 0);
3468 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3469 goto out;
3470 }
3471 ret = ext4_iomap_alloc(inode, &map, flags);
3472 } else {
3473 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 }
3475
3476 if (ret < 0)
3477 return ret;
3478 out:
3479 /*
3480 * When inline encryption is enabled, sometimes I/O to an encrypted file
3481 * has to be broken up to guarantee DUN contiguity. Handle this by
3482 * limiting the length of the mapping returned.
3483 */
3484 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3485
3486 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3487
3488 return 0;
3489 }
3490
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3491 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492 loff_t length, unsigned flags, struct iomap *iomap,
3493 struct iomap *srcmap)
3494 {
3495 int ret;
3496
3497 /*
3498 * Even for writes we don't need to allocate blocks, so just pretend
3499 * we are reading to save overhead of starting a transaction.
3500 */
3501 flags &= ~IOMAP_WRITE;
3502 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504 return ret;
3505 }
3506
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3507 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508 ssize_t written, unsigned flags, struct iomap *iomap)
3509 {
3510 /*
3511 * Check to see whether an error occurred while writing out the data to
3512 * the allocated blocks. If so, return the magic error code so that we
3513 * fallback to buffered I/O and attempt to complete the remainder of
3514 * the I/O. Any blocks that may have been allocated in preparation for
3515 * the direct I/O will be reused during buffered I/O.
3516 */
3517 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518 return -ENOTBLK;
3519
3520 return 0;
3521 }
3522
3523 const struct iomap_ops ext4_iomap_ops = {
3524 .iomap_begin = ext4_iomap_begin,
3525 .iomap_end = ext4_iomap_end,
3526 };
3527
3528 const struct iomap_ops ext4_iomap_overwrite_ops = {
3529 .iomap_begin = ext4_iomap_overwrite_begin,
3530 .iomap_end = ext4_iomap_end,
3531 };
3532
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3533 static bool ext4_iomap_is_delalloc(struct inode *inode,
3534 struct ext4_map_blocks *map)
3535 {
3536 struct extent_status es;
3537 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538
3539 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540 map->m_lblk, end, &es);
3541
3542 if (!es.es_len || es.es_lblk > end)
3543 return false;
3544
3545 if (es.es_lblk > map->m_lblk) {
3546 map->m_len = es.es_lblk - map->m_lblk;
3547 return false;
3548 }
3549
3550 offset = map->m_lblk - es.es_lblk;
3551 map->m_len = es.es_len - offset;
3552
3553 return true;
3554 }
3555
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3556 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557 loff_t length, unsigned int flags,
3558 struct iomap *iomap, struct iomap *srcmap)
3559 {
3560 int ret;
3561 bool delalloc = false;
3562 struct ext4_map_blocks map;
3563 u8 blkbits = inode->i_blkbits;
3564
3565 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566 return -EINVAL;
3567
3568 if (ext4_has_inline_data(inode)) {
3569 ret = ext4_inline_data_iomap(inode, iomap);
3570 if (ret != -EAGAIN) {
3571 if (ret == 0 && offset >= iomap->length)
3572 ret = -ENOENT;
3573 return ret;
3574 }
3575 }
3576
3577 /*
3578 * Calculate the first and last logical block respectively.
3579 */
3580 map.m_lblk = offset >> blkbits;
3581 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3583
3584 /*
3585 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586 * So handle it here itself instead of querying ext4_map_blocks().
3587 * Since ext4_map_blocks() will warn about it and will return
3588 * -EIO error.
3589 */
3590 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592
3593 if (offset >= sbi->s_bitmap_maxbytes) {
3594 map.m_flags = 0;
3595 goto set_iomap;
3596 }
3597 }
3598
3599 ret = ext4_map_blocks(NULL, inode, &map, 0);
3600 if (ret < 0)
3601 return ret;
3602 if (ret == 0)
3603 delalloc = ext4_iomap_is_delalloc(inode, &map);
3604
3605 set_iomap:
3606 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3607 if (delalloc && iomap->type == IOMAP_HOLE)
3608 iomap->type = IOMAP_DELALLOC;
3609
3610 return 0;
3611 }
3612
3613 const struct iomap_ops ext4_iomap_report_ops = {
3614 .iomap_begin = ext4_iomap_begin_report,
3615 };
3616
3617 /*
3618 * Whenever the folio is being dirtied, corresponding buffers should already
3619 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3620 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3621 * lists here because ->dirty_folio is called under VFS locks and the folio
3622 * is not necessarily locked.
3623 *
3624 * We cannot just dirty the folio and leave attached buffers clean, because the
3625 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3626 * or jbddirty because all the journalling code will explode.
3627 *
3628 * So what we do is to mark the folio "pending dirty" and next time writepage
3629 * is called, propagate that into the buffers appropriately.
3630 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3631 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3632 struct folio *folio)
3633 {
3634 WARN_ON_ONCE(!folio_buffers(folio));
3635 folio_set_checked(folio);
3636 return filemap_dirty_folio(mapping, folio);
3637 }
3638
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3639 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3640 {
3641 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3642 WARN_ON_ONCE(!folio_buffers(folio));
3643 return block_dirty_folio(mapping, folio);
3644 }
3645
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3646 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3647 struct file *file, sector_t *span)
3648 {
3649 return iomap_swapfile_activate(sis, file, span,
3650 &ext4_iomap_report_ops);
3651 }
3652
3653 static const struct address_space_operations ext4_aops = {
3654 .read_folio = ext4_read_folio,
3655 .readahead = ext4_readahead,
3656 .writepage = ext4_writepage,
3657 .writepages = ext4_writepages,
3658 .write_begin = ext4_write_begin,
3659 .write_end = ext4_write_end,
3660 .dirty_folio = ext4_dirty_folio,
3661 .bmap = ext4_bmap,
3662 .invalidate_folio = ext4_invalidate_folio,
3663 .release_folio = ext4_release_folio,
3664 .direct_IO = noop_direct_IO,
3665 .migrate_folio = buffer_migrate_folio,
3666 .is_partially_uptodate = block_is_partially_uptodate,
3667 .error_remove_page = generic_error_remove_page,
3668 .swap_activate = ext4_iomap_swap_activate,
3669 };
3670
3671 static const struct address_space_operations ext4_journalled_aops = {
3672 .read_folio = ext4_read_folio,
3673 .readahead = ext4_readahead,
3674 .writepage = ext4_writepage,
3675 .writepages = ext4_writepages,
3676 .write_begin = ext4_write_begin,
3677 .write_end = ext4_journalled_write_end,
3678 .dirty_folio = ext4_journalled_dirty_folio,
3679 .bmap = ext4_bmap,
3680 .invalidate_folio = ext4_journalled_invalidate_folio,
3681 .release_folio = ext4_release_folio,
3682 .direct_IO = noop_direct_IO,
3683 .is_partially_uptodate = block_is_partially_uptodate,
3684 .error_remove_page = generic_error_remove_page,
3685 .swap_activate = ext4_iomap_swap_activate,
3686 };
3687
3688 static const struct address_space_operations ext4_da_aops = {
3689 .read_folio = ext4_read_folio,
3690 .readahead = ext4_readahead,
3691 .writepage = ext4_writepage,
3692 .writepages = ext4_writepages,
3693 .write_begin = ext4_da_write_begin,
3694 .write_end = ext4_da_write_end,
3695 .dirty_folio = ext4_dirty_folio,
3696 .bmap = ext4_bmap,
3697 .invalidate_folio = ext4_invalidate_folio,
3698 .release_folio = ext4_release_folio,
3699 .direct_IO = noop_direct_IO,
3700 .migrate_folio = buffer_migrate_folio,
3701 .is_partially_uptodate = block_is_partially_uptodate,
3702 .error_remove_page = generic_error_remove_page,
3703 .swap_activate = ext4_iomap_swap_activate,
3704 };
3705
3706 static const struct address_space_operations ext4_dax_aops = {
3707 .writepages = ext4_dax_writepages,
3708 .direct_IO = noop_direct_IO,
3709 .dirty_folio = noop_dirty_folio,
3710 .bmap = ext4_bmap,
3711 .swap_activate = ext4_iomap_swap_activate,
3712 };
3713
ext4_set_aops(struct inode * inode)3714 void ext4_set_aops(struct inode *inode)
3715 {
3716 switch (ext4_inode_journal_mode(inode)) {
3717 case EXT4_INODE_ORDERED_DATA_MODE:
3718 case EXT4_INODE_WRITEBACK_DATA_MODE:
3719 break;
3720 case EXT4_INODE_JOURNAL_DATA_MODE:
3721 inode->i_mapping->a_ops = &ext4_journalled_aops;
3722 return;
3723 default:
3724 BUG();
3725 }
3726 if (IS_DAX(inode))
3727 inode->i_mapping->a_ops = &ext4_dax_aops;
3728 else if (test_opt(inode->i_sb, DELALLOC))
3729 inode->i_mapping->a_ops = &ext4_da_aops;
3730 else
3731 inode->i_mapping->a_ops = &ext4_aops;
3732 }
3733
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3734 static int __ext4_block_zero_page_range(handle_t *handle,
3735 struct address_space *mapping, loff_t from, loff_t length)
3736 {
3737 ext4_fsblk_t index = from >> PAGE_SHIFT;
3738 unsigned offset = from & (PAGE_SIZE-1);
3739 unsigned blocksize, pos;
3740 ext4_lblk_t iblock;
3741 struct inode *inode = mapping->host;
3742 struct buffer_head *bh;
3743 struct page *page;
3744 int err = 0;
3745
3746 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3747 mapping_gfp_constraint(mapping, ~__GFP_FS));
3748 if (!page)
3749 return -ENOMEM;
3750
3751 blocksize = inode->i_sb->s_blocksize;
3752
3753 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3754
3755 if (!page_has_buffers(page))
3756 create_empty_buffers(page, blocksize, 0);
3757
3758 /* Find the buffer that contains "offset" */
3759 bh = page_buffers(page);
3760 pos = blocksize;
3761 while (offset >= pos) {
3762 bh = bh->b_this_page;
3763 iblock++;
3764 pos += blocksize;
3765 }
3766 if (buffer_freed(bh)) {
3767 BUFFER_TRACE(bh, "freed: skip");
3768 goto unlock;
3769 }
3770 if (!buffer_mapped(bh)) {
3771 BUFFER_TRACE(bh, "unmapped");
3772 ext4_get_block(inode, iblock, bh, 0);
3773 /* unmapped? It's a hole - nothing to do */
3774 if (!buffer_mapped(bh)) {
3775 BUFFER_TRACE(bh, "still unmapped");
3776 goto unlock;
3777 }
3778 }
3779
3780 /* Ok, it's mapped. Make sure it's up-to-date */
3781 if (PageUptodate(page))
3782 set_buffer_uptodate(bh);
3783
3784 if (!buffer_uptodate(bh)) {
3785 err = ext4_read_bh_lock(bh, 0, true);
3786 if (err)
3787 goto unlock;
3788 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3789 /* We expect the key to be set. */
3790 BUG_ON(!fscrypt_has_encryption_key(inode));
3791 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3792 bh_offset(bh));
3793 if (err) {
3794 clear_buffer_uptodate(bh);
3795 goto unlock;
3796 }
3797 }
3798 }
3799 if (ext4_should_journal_data(inode)) {
3800 BUFFER_TRACE(bh, "get write access");
3801 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3802 EXT4_JTR_NONE);
3803 if (err)
3804 goto unlock;
3805 }
3806 zero_user(page, offset, length);
3807 BUFFER_TRACE(bh, "zeroed end of block");
3808
3809 if (ext4_should_journal_data(inode)) {
3810 err = ext4_handle_dirty_metadata(handle, inode, bh);
3811 } else {
3812 err = 0;
3813 mark_buffer_dirty(bh);
3814 if (ext4_should_order_data(inode))
3815 err = ext4_jbd2_inode_add_write(handle, inode, from,
3816 length);
3817 }
3818
3819 unlock:
3820 unlock_page(page);
3821 put_page(page);
3822 return err;
3823 }
3824
3825 /*
3826 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3827 * starting from file offset 'from'. The range to be zero'd must
3828 * be contained with in one block. If the specified range exceeds
3829 * the end of the block it will be shortened to end of the block
3830 * that corresponds to 'from'
3831 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3832 static int ext4_block_zero_page_range(handle_t *handle,
3833 struct address_space *mapping, loff_t from, loff_t length)
3834 {
3835 struct inode *inode = mapping->host;
3836 unsigned offset = from & (PAGE_SIZE-1);
3837 unsigned blocksize = inode->i_sb->s_blocksize;
3838 unsigned max = blocksize - (offset & (blocksize - 1));
3839
3840 /*
3841 * correct length if it does not fall between
3842 * 'from' and the end of the block
3843 */
3844 if (length > max || length < 0)
3845 length = max;
3846
3847 if (IS_DAX(inode)) {
3848 return dax_zero_range(inode, from, length, NULL,
3849 &ext4_iomap_ops);
3850 }
3851 return __ext4_block_zero_page_range(handle, mapping, from, length);
3852 }
3853
3854 /*
3855 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856 * up to the end of the block which corresponds to `from'.
3857 * This required during truncate. We need to physically zero the tail end
3858 * of that block so it doesn't yield old data if the file is later grown.
3859 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3860 static int ext4_block_truncate_page(handle_t *handle,
3861 struct address_space *mapping, loff_t from)
3862 {
3863 unsigned offset = from & (PAGE_SIZE-1);
3864 unsigned length;
3865 unsigned blocksize;
3866 struct inode *inode = mapping->host;
3867
3868 /* If we are processing an encrypted inode during orphan list handling */
3869 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3870 return 0;
3871
3872 blocksize = inode->i_sb->s_blocksize;
3873 length = blocksize - (offset & (blocksize - 1));
3874
3875 return ext4_block_zero_page_range(handle, mapping, from, length);
3876 }
3877
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3878 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3879 loff_t lstart, loff_t length)
3880 {
3881 struct super_block *sb = inode->i_sb;
3882 struct address_space *mapping = inode->i_mapping;
3883 unsigned partial_start, partial_end;
3884 ext4_fsblk_t start, end;
3885 loff_t byte_end = (lstart + length - 1);
3886 int err = 0;
3887
3888 partial_start = lstart & (sb->s_blocksize - 1);
3889 partial_end = byte_end & (sb->s_blocksize - 1);
3890
3891 start = lstart >> sb->s_blocksize_bits;
3892 end = byte_end >> sb->s_blocksize_bits;
3893
3894 /* Handle partial zero within the single block */
3895 if (start == end &&
3896 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3897 err = ext4_block_zero_page_range(handle, mapping,
3898 lstart, length);
3899 return err;
3900 }
3901 /* Handle partial zero out on the start of the range */
3902 if (partial_start) {
3903 err = ext4_block_zero_page_range(handle, mapping,
3904 lstart, sb->s_blocksize);
3905 if (err)
3906 return err;
3907 }
3908 /* Handle partial zero out on the end of the range */
3909 if (partial_end != sb->s_blocksize - 1)
3910 err = ext4_block_zero_page_range(handle, mapping,
3911 byte_end - partial_end,
3912 partial_end + 1);
3913 return err;
3914 }
3915
ext4_can_truncate(struct inode * inode)3916 int ext4_can_truncate(struct inode *inode)
3917 {
3918 if (S_ISREG(inode->i_mode))
3919 return 1;
3920 if (S_ISDIR(inode->i_mode))
3921 return 1;
3922 if (S_ISLNK(inode->i_mode))
3923 return !ext4_inode_is_fast_symlink(inode);
3924 return 0;
3925 }
3926
3927 /*
3928 * We have to make sure i_disksize gets properly updated before we truncate
3929 * page cache due to hole punching or zero range. Otherwise i_disksize update
3930 * can get lost as it may have been postponed to submission of writeback but
3931 * that will never happen after we truncate page cache.
3932 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3933 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3934 loff_t len)
3935 {
3936 handle_t *handle;
3937 int ret;
3938
3939 loff_t size = i_size_read(inode);
3940
3941 WARN_ON(!inode_is_locked(inode));
3942 if (offset > size || offset + len < size)
3943 return 0;
3944
3945 if (EXT4_I(inode)->i_disksize >= size)
3946 return 0;
3947
3948 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3949 if (IS_ERR(handle))
3950 return PTR_ERR(handle);
3951 ext4_update_i_disksize(inode, size);
3952 ret = ext4_mark_inode_dirty(handle, inode);
3953 ext4_journal_stop(handle);
3954
3955 return ret;
3956 }
3957
ext4_wait_dax_page(struct inode * inode)3958 static void ext4_wait_dax_page(struct inode *inode)
3959 {
3960 filemap_invalidate_unlock(inode->i_mapping);
3961 schedule();
3962 filemap_invalidate_lock(inode->i_mapping);
3963 }
3964
ext4_break_layouts(struct inode * inode)3965 int ext4_break_layouts(struct inode *inode)
3966 {
3967 struct page *page;
3968 int error;
3969
3970 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3971 return -EINVAL;
3972
3973 do {
3974 page = dax_layout_busy_page(inode->i_mapping);
3975 if (!page)
3976 return 0;
3977
3978 error = ___wait_var_event(&page->_refcount,
3979 atomic_read(&page->_refcount) == 1,
3980 TASK_INTERRUPTIBLE, 0, 0,
3981 ext4_wait_dax_page(inode));
3982 } while (error == 0);
3983
3984 return error;
3985 }
3986
3987 /*
3988 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3989 * associated with the given offset and length
3990 *
3991 * @inode: File inode
3992 * @offset: The offset where the hole will begin
3993 * @len: The length of the hole
3994 *
3995 * Returns: 0 on success or negative on failure
3996 */
3997
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3998 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3999 {
4000 struct inode *inode = file_inode(file);
4001 struct super_block *sb = inode->i_sb;
4002 ext4_lblk_t first_block, stop_block;
4003 struct address_space *mapping = inode->i_mapping;
4004 loff_t first_block_offset, last_block_offset, max_length;
4005 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4006 handle_t *handle;
4007 unsigned int credits;
4008 int ret = 0, ret2 = 0;
4009
4010 trace_ext4_punch_hole(inode, offset, length, 0);
4011
4012 /*
4013 * Write out all dirty pages to avoid race conditions
4014 * Then release them.
4015 */
4016 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4017 ret = filemap_write_and_wait_range(mapping, offset,
4018 offset + length - 1);
4019 if (ret)
4020 return ret;
4021 }
4022
4023 inode_lock(inode);
4024
4025 /* No need to punch hole beyond i_size */
4026 if (offset >= inode->i_size)
4027 goto out_mutex;
4028
4029 /*
4030 * If the hole extends beyond i_size, set the hole
4031 * to end after the page that contains i_size
4032 */
4033 if (offset + length > inode->i_size) {
4034 length = inode->i_size +
4035 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4036 offset;
4037 }
4038
4039 /*
4040 * For punch hole the length + offset needs to be within one block
4041 * before last range. Adjust the length if it goes beyond that limit.
4042 */
4043 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4044 if (offset + length > max_length)
4045 length = max_length - offset;
4046
4047 if (offset & (sb->s_blocksize - 1) ||
4048 (offset + length) & (sb->s_blocksize - 1)) {
4049 /*
4050 * Attach jinode to inode for jbd2 if we do any zeroing of
4051 * partial block
4052 */
4053 ret = ext4_inode_attach_jinode(inode);
4054 if (ret < 0)
4055 goto out_mutex;
4056
4057 }
4058
4059 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4060 inode_dio_wait(inode);
4061
4062 ret = file_modified(file);
4063 if (ret)
4064 goto out_mutex;
4065
4066 /*
4067 * Prevent page faults from reinstantiating pages we have released from
4068 * page cache.
4069 */
4070 filemap_invalidate_lock(mapping);
4071
4072 ret = ext4_break_layouts(inode);
4073 if (ret)
4074 goto out_dio;
4075
4076 first_block_offset = round_up(offset, sb->s_blocksize);
4077 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4078
4079 /* Now release the pages and zero block aligned part of pages*/
4080 if (last_block_offset > first_block_offset) {
4081 ret = ext4_update_disksize_before_punch(inode, offset, length);
4082 if (ret)
4083 goto out_dio;
4084 truncate_pagecache_range(inode, first_block_offset,
4085 last_block_offset);
4086 }
4087
4088 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4089 credits = ext4_writepage_trans_blocks(inode);
4090 else
4091 credits = ext4_blocks_for_truncate(inode);
4092 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4093 if (IS_ERR(handle)) {
4094 ret = PTR_ERR(handle);
4095 ext4_std_error(sb, ret);
4096 goto out_dio;
4097 }
4098
4099 ret = ext4_zero_partial_blocks(handle, inode, offset,
4100 length);
4101 if (ret)
4102 goto out_stop;
4103
4104 first_block = (offset + sb->s_blocksize - 1) >>
4105 EXT4_BLOCK_SIZE_BITS(sb);
4106 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4107
4108 /* If there are blocks to remove, do it */
4109 if (stop_block > first_block) {
4110
4111 down_write(&EXT4_I(inode)->i_data_sem);
4112 ext4_discard_preallocations(inode, 0);
4113
4114 ret = ext4_es_remove_extent(inode, first_block,
4115 stop_block - first_block);
4116 if (ret) {
4117 up_write(&EXT4_I(inode)->i_data_sem);
4118 goto out_stop;
4119 }
4120
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 ret = ext4_ext_remove_space(inode, first_block,
4123 stop_block - 1);
4124 else
4125 ret = ext4_ind_remove_space(handle, inode, first_block,
4126 stop_block);
4127
4128 up_write(&EXT4_I(inode)->i_data_sem);
4129 }
4130 ext4_fc_track_range(handle, inode, first_block, stop_block);
4131 if (IS_SYNC(inode))
4132 ext4_handle_sync(handle);
4133
4134 inode->i_mtime = inode->i_ctime = current_time(inode);
4135 ret2 = ext4_mark_inode_dirty(handle, inode);
4136 if (unlikely(ret2))
4137 ret = ret2;
4138 if (ret >= 0)
4139 ext4_update_inode_fsync_trans(handle, inode, 1);
4140 out_stop:
4141 ext4_journal_stop(handle);
4142 out_dio:
4143 filemap_invalidate_unlock(mapping);
4144 out_mutex:
4145 inode_unlock(inode);
4146 return ret;
4147 }
4148
ext4_inode_attach_jinode(struct inode * inode)4149 int ext4_inode_attach_jinode(struct inode *inode)
4150 {
4151 struct ext4_inode_info *ei = EXT4_I(inode);
4152 struct jbd2_inode *jinode;
4153
4154 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4155 return 0;
4156
4157 jinode = jbd2_alloc_inode(GFP_KERNEL);
4158 spin_lock(&inode->i_lock);
4159 if (!ei->jinode) {
4160 if (!jinode) {
4161 spin_unlock(&inode->i_lock);
4162 return -ENOMEM;
4163 }
4164 ei->jinode = jinode;
4165 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4166 jinode = NULL;
4167 }
4168 spin_unlock(&inode->i_lock);
4169 if (unlikely(jinode != NULL))
4170 jbd2_free_inode(jinode);
4171 return 0;
4172 }
4173
4174 /*
4175 * ext4_truncate()
4176 *
4177 * We block out ext4_get_block() block instantiations across the entire
4178 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4179 * simultaneously on behalf of the same inode.
4180 *
4181 * As we work through the truncate and commit bits of it to the journal there
4182 * is one core, guiding principle: the file's tree must always be consistent on
4183 * disk. We must be able to restart the truncate after a crash.
4184 *
4185 * The file's tree may be transiently inconsistent in memory (although it
4186 * probably isn't), but whenever we close off and commit a journal transaction,
4187 * the contents of (the filesystem + the journal) must be consistent and
4188 * restartable. It's pretty simple, really: bottom up, right to left (although
4189 * left-to-right works OK too).
4190 *
4191 * Note that at recovery time, journal replay occurs *before* the restart of
4192 * truncate against the orphan inode list.
4193 *
4194 * The committed inode has the new, desired i_size (which is the same as
4195 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4196 * that this inode's truncate did not complete and it will again call
4197 * ext4_truncate() to have another go. So there will be instantiated blocks
4198 * to the right of the truncation point in a crashed ext4 filesystem. But
4199 * that's fine - as long as they are linked from the inode, the post-crash
4200 * ext4_truncate() run will find them and release them.
4201 */
ext4_truncate(struct inode * inode)4202 int ext4_truncate(struct inode *inode)
4203 {
4204 struct ext4_inode_info *ei = EXT4_I(inode);
4205 unsigned int credits;
4206 int err = 0, err2;
4207 handle_t *handle;
4208 struct address_space *mapping = inode->i_mapping;
4209
4210 /*
4211 * There is a possibility that we're either freeing the inode
4212 * or it's a completely new inode. In those cases we might not
4213 * have i_rwsem locked because it's not necessary.
4214 */
4215 if (!(inode->i_state & (I_NEW|I_FREEING)))
4216 WARN_ON(!inode_is_locked(inode));
4217 trace_ext4_truncate_enter(inode);
4218
4219 if (!ext4_can_truncate(inode))
4220 goto out_trace;
4221
4222 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4223 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4224
4225 if (ext4_has_inline_data(inode)) {
4226 int has_inline = 1;
4227
4228 err = ext4_inline_data_truncate(inode, &has_inline);
4229 if (err || has_inline)
4230 goto out_trace;
4231 }
4232
4233 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4234 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4235 err = ext4_inode_attach_jinode(inode);
4236 if (err)
4237 goto out_trace;
4238 }
4239
4240 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4241 credits = ext4_writepage_trans_blocks(inode);
4242 else
4243 credits = ext4_blocks_for_truncate(inode);
4244
4245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246 if (IS_ERR(handle)) {
4247 err = PTR_ERR(handle);
4248 goto out_trace;
4249 }
4250
4251 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4252 ext4_block_truncate_page(handle, mapping, inode->i_size);
4253
4254 /*
4255 * We add the inode to the orphan list, so that if this
4256 * truncate spans multiple transactions, and we crash, we will
4257 * resume the truncate when the filesystem recovers. It also
4258 * marks the inode dirty, to catch the new size.
4259 *
4260 * Implication: the file must always be in a sane, consistent
4261 * truncatable state while each transaction commits.
4262 */
4263 err = ext4_orphan_add(handle, inode);
4264 if (err)
4265 goto out_stop;
4266
4267 down_write(&EXT4_I(inode)->i_data_sem);
4268
4269 ext4_discard_preallocations(inode, 0);
4270
4271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4272 err = ext4_ext_truncate(handle, inode);
4273 else
4274 ext4_ind_truncate(handle, inode);
4275
4276 up_write(&ei->i_data_sem);
4277 if (err)
4278 goto out_stop;
4279
4280 if (IS_SYNC(inode))
4281 ext4_handle_sync(handle);
4282
4283 out_stop:
4284 /*
4285 * If this was a simple ftruncate() and the file will remain alive,
4286 * then we need to clear up the orphan record which we created above.
4287 * However, if this was a real unlink then we were called by
4288 * ext4_evict_inode(), and we allow that function to clean up the
4289 * orphan info for us.
4290 */
4291 if (inode->i_nlink)
4292 ext4_orphan_del(handle, inode);
4293
4294 inode->i_mtime = inode->i_ctime = current_time(inode);
4295 err2 = ext4_mark_inode_dirty(handle, inode);
4296 if (unlikely(err2 && !err))
4297 err = err2;
4298 ext4_journal_stop(handle);
4299
4300 out_trace:
4301 trace_ext4_truncate_exit(inode);
4302 return err;
4303 }
4304
ext4_inode_peek_iversion(const struct inode * inode)4305 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4306 {
4307 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4308 return inode_peek_iversion_raw(inode);
4309 else
4310 return inode_peek_iversion(inode);
4311 }
4312
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4313 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4314 struct ext4_inode_info *ei)
4315 {
4316 struct inode *inode = &(ei->vfs_inode);
4317 u64 i_blocks = READ_ONCE(inode->i_blocks);
4318 struct super_block *sb = inode->i_sb;
4319
4320 if (i_blocks <= ~0U) {
4321 /*
4322 * i_blocks can be represented in a 32 bit variable
4323 * as multiple of 512 bytes
4324 */
4325 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4326 raw_inode->i_blocks_high = 0;
4327 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4328 return 0;
4329 }
4330
4331 /*
4332 * This should never happen since sb->s_maxbytes should not have
4333 * allowed this, sb->s_maxbytes was set according to the huge_file
4334 * feature in ext4_fill_super().
4335 */
4336 if (!ext4_has_feature_huge_file(sb))
4337 return -EFSCORRUPTED;
4338
4339 if (i_blocks <= 0xffffffffffffULL) {
4340 /*
4341 * i_blocks can be represented in a 48 bit variable
4342 * as multiple of 512 bytes
4343 */
4344 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4345 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4346 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4347 } else {
4348 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4349 /* i_block is stored in file system block size */
4350 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4351 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4352 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4353 }
4354 return 0;
4355 }
4356
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4357 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4358 {
4359 struct ext4_inode_info *ei = EXT4_I(inode);
4360 uid_t i_uid;
4361 gid_t i_gid;
4362 projid_t i_projid;
4363 int block;
4364 int err;
4365
4366 err = ext4_inode_blocks_set(raw_inode, ei);
4367
4368 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4369 i_uid = i_uid_read(inode);
4370 i_gid = i_gid_read(inode);
4371 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4372 if (!(test_opt(inode->i_sb, NO_UID32))) {
4373 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4374 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4375 /*
4376 * Fix up interoperability with old kernels. Otherwise,
4377 * old inodes get re-used with the upper 16 bits of the
4378 * uid/gid intact.
4379 */
4380 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4381 raw_inode->i_uid_high = 0;
4382 raw_inode->i_gid_high = 0;
4383 } else {
4384 raw_inode->i_uid_high =
4385 cpu_to_le16(high_16_bits(i_uid));
4386 raw_inode->i_gid_high =
4387 cpu_to_le16(high_16_bits(i_gid));
4388 }
4389 } else {
4390 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4391 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4392 raw_inode->i_uid_high = 0;
4393 raw_inode->i_gid_high = 0;
4394 }
4395 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4396
4397 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4398 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4399 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4400 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4401
4402 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4403 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4404 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4405 raw_inode->i_file_acl_high =
4406 cpu_to_le16(ei->i_file_acl >> 32);
4407 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4408 ext4_isize_set(raw_inode, ei->i_disksize);
4409
4410 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4411 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4412 if (old_valid_dev(inode->i_rdev)) {
4413 raw_inode->i_block[0] =
4414 cpu_to_le32(old_encode_dev(inode->i_rdev));
4415 raw_inode->i_block[1] = 0;
4416 } else {
4417 raw_inode->i_block[0] = 0;
4418 raw_inode->i_block[1] =
4419 cpu_to_le32(new_encode_dev(inode->i_rdev));
4420 raw_inode->i_block[2] = 0;
4421 }
4422 } else if (!ext4_has_inline_data(inode)) {
4423 for (block = 0; block < EXT4_N_BLOCKS; block++)
4424 raw_inode->i_block[block] = ei->i_data[block];
4425 }
4426
4427 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4428 u64 ivers = ext4_inode_peek_iversion(inode);
4429
4430 raw_inode->i_disk_version = cpu_to_le32(ivers);
4431 if (ei->i_extra_isize) {
4432 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4433 raw_inode->i_version_hi =
4434 cpu_to_le32(ivers >> 32);
4435 raw_inode->i_extra_isize =
4436 cpu_to_le16(ei->i_extra_isize);
4437 }
4438 }
4439
4440 if (i_projid != EXT4_DEF_PROJID &&
4441 !ext4_has_feature_project(inode->i_sb))
4442 err = err ?: -EFSCORRUPTED;
4443
4444 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4445 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4446 raw_inode->i_projid = cpu_to_le32(i_projid);
4447
4448 ext4_inode_csum_set(inode, raw_inode, ei);
4449 return err;
4450 }
4451
4452 /*
4453 * ext4_get_inode_loc returns with an extra refcount against the inode's
4454 * underlying buffer_head on success. If we pass 'inode' and it does not
4455 * have in-inode xattr, we have all inode data in memory that is needed
4456 * to recreate the on-disk version of this inode.
4457 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4458 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4459 struct inode *inode, struct ext4_iloc *iloc,
4460 ext4_fsblk_t *ret_block)
4461 {
4462 struct ext4_group_desc *gdp;
4463 struct buffer_head *bh;
4464 ext4_fsblk_t block;
4465 struct blk_plug plug;
4466 int inodes_per_block, inode_offset;
4467
4468 iloc->bh = NULL;
4469 if (ino < EXT4_ROOT_INO ||
4470 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4471 return -EFSCORRUPTED;
4472
4473 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4474 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4475 if (!gdp)
4476 return -EIO;
4477
4478 /*
4479 * Figure out the offset within the block group inode table
4480 */
4481 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4482 inode_offset = ((ino - 1) %
4483 EXT4_INODES_PER_GROUP(sb));
4484 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4485
4486 block = ext4_inode_table(sb, gdp);
4487 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4488 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4489 ext4_error(sb, "Invalid inode table block %llu in "
4490 "block_group %u", block, iloc->block_group);
4491 return -EFSCORRUPTED;
4492 }
4493 block += (inode_offset / inodes_per_block);
4494
4495 bh = sb_getblk(sb, block);
4496 if (unlikely(!bh))
4497 return -ENOMEM;
4498 if (ext4_buffer_uptodate(bh))
4499 goto has_buffer;
4500
4501 lock_buffer(bh);
4502 if (ext4_buffer_uptodate(bh)) {
4503 /* Someone brought it uptodate while we waited */
4504 unlock_buffer(bh);
4505 goto has_buffer;
4506 }
4507
4508 /*
4509 * If we have all information of the inode in memory and this
4510 * is the only valid inode in the block, we need not read the
4511 * block.
4512 */
4513 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4514 struct buffer_head *bitmap_bh;
4515 int i, start;
4516
4517 start = inode_offset & ~(inodes_per_block - 1);
4518
4519 /* Is the inode bitmap in cache? */
4520 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4521 if (unlikely(!bitmap_bh))
4522 goto make_io;
4523
4524 /*
4525 * If the inode bitmap isn't in cache then the
4526 * optimisation may end up performing two reads instead
4527 * of one, so skip it.
4528 */
4529 if (!buffer_uptodate(bitmap_bh)) {
4530 brelse(bitmap_bh);
4531 goto make_io;
4532 }
4533 for (i = start; i < start + inodes_per_block; i++) {
4534 if (i == inode_offset)
4535 continue;
4536 if (ext4_test_bit(i, bitmap_bh->b_data))
4537 break;
4538 }
4539 brelse(bitmap_bh);
4540 if (i == start + inodes_per_block) {
4541 struct ext4_inode *raw_inode =
4542 (struct ext4_inode *) (bh->b_data + iloc->offset);
4543
4544 /* all other inodes are free, so skip I/O */
4545 memset(bh->b_data, 0, bh->b_size);
4546 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4547 ext4_fill_raw_inode(inode, raw_inode);
4548 set_buffer_uptodate(bh);
4549 unlock_buffer(bh);
4550 goto has_buffer;
4551 }
4552 }
4553
4554 make_io:
4555 /*
4556 * If we need to do any I/O, try to pre-readahead extra
4557 * blocks from the inode table.
4558 */
4559 blk_start_plug(&plug);
4560 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4561 ext4_fsblk_t b, end, table;
4562 unsigned num;
4563 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4564
4565 table = ext4_inode_table(sb, gdp);
4566 /* s_inode_readahead_blks is always a power of 2 */
4567 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4568 if (table > b)
4569 b = table;
4570 end = b + ra_blks;
4571 num = EXT4_INODES_PER_GROUP(sb);
4572 if (ext4_has_group_desc_csum(sb))
4573 num -= ext4_itable_unused_count(sb, gdp);
4574 table += num / inodes_per_block;
4575 if (end > table)
4576 end = table;
4577 while (b <= end)
4578 ext4_sb_breadahead_unmovable(sb, b++);
4579 }
4580
4581 /*
4582 * There are other valid inodes in the buffer, this inode
4583 * has in-inode xattrs, or we don't have this inode in memory.
4584 * Read the block from disk.
4585 */
4586 trace_ext4_load_inode(sb, ino);
4587 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4588 blk_finish_plug(&plug);
4589 wait_on_buffer(bh);
4590 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4591 if (!buffer_uptodate(bh)) {
4592 if (ret_block)
4593 *ret_block = block;
4594 brelse(bh);
4595 return -EIO;
4596 }
4597 has_buffer:
4598 iloc->bh = bh;
4599 return 0;
4600 }
4601
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4602 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4603 struct ext4_iloc *iloc)
4604 {
4605 ext4_fsblk_t err_blk = 0;
4606 int ret;
4607
4608 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4609 &err_blk);
4610
4611 if (ret == -EIO)
4612 ext4_error_inode_block(inode, err_blk, EIO,
4613 "unable to read itable block");
4614
4615 return ret;
4616 }
4617
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4619 {
4620 ext4_fsblk_t err_blk = 0;
4621 int ret;
4622
4623 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4624 &err_blk);
4625
4626 if (ret == -EIO)
4627 ext4_error_inode_block(inode, err_blk, EIO,
4628 "unable to read itable block");
4629
4630 return ret;
4631 }
4632
4633
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4634 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4635 struct ext4_iloc *iloc)
4636 {
4637 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4638 }
4639
ext4_should_enable_dax(struct inode * inode)4640 static bool ext4_should_enable_dax(struct inode *inode)
4641 {
4642 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4643
4644 if (test_opt2(inode->i_sb, DAX_NEVER))
4645 return false;
4646 if (!S_ISREG(inode->i_mode))
4647 return false;
4648 if (ext4_should_journal_data(inode))
4649 return false;
4650 if (ext4_has_inline_data(inode))
4651 return false;
4652 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4653 return false;
4654 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4655 return false;
4656 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4657 return false;
4658 if (test_opt(inode->i_sb, DAX_ALWAYS))
4659 return true;
4660
4661 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4662 }
4663
ext4_set_inode_flags(struct inode * inode,bool init)4664 void ext4_set_inode_flags(struct inode *inode, bool init)
4665 {
4666 unsigned int flags = EXT4_I(inode)->i_flags;
4667 unsigned int new_fl = 0;
4668
4669 WARN_ON_ONCE(IS_DAX(inode) && init);
4670
4671 if (flags & EXT4_SYNC_FL)
4672 new_fl |= S_SYNC;
4673 if (flags & EXT4_APPEND_FL)
4674 new_fl |= S_APPEND;
4675 if (flags & EXT4_IMMUTABLE_FL)
4676 new_fl |= S_IMMUTABLE;
4677 if (flags & EXT4_NOATIME_FL)
4678 new_fl |= S_NOATIME;
4679 if (flags & EXT4_DIRSYNC_FL)
4680 new_fl |= S_DIRSYNC;
4681
4682 /* Because of the way inode_set_flags() works we must preserve S_DAX
4683 * here if already set. */
4684 new_fl |= (inode->i_flags & S_DAX);
4685 if (init && ext4_should_enable_dax(inode))
4686 new_fl |= S_DAX;
4687
4688 if (flags & EXT4_ENCRYPT_FL)
4689 new_fl |= S_ENCRYPTED;
4690 if (flags & EXT4_CASEFOLD_FL)
4691 new_fl |= S_CASEFOLD;
4692 if (flags & EXT4_VERITY_FL)
4693 new_fl |= S_VERITY;
4694 inode_set_flags(inode, new_fl,
4695 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4696 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4697 }
4698
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4699 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4700 struct ext4_inode_info *ei)
4701 {
4702 blkcnt_t i_blocks ;
4703 struct inode *inode = &(ei->vfs_inode);
4704 struct super_block *sb = inode->i_sb;
4705
4706 if (ext4_has_feature_huge_file(sb)) {
4707 /* we are using combined 48 bit field */
4708 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4709 le32_to_cpu(raw_inode->i_blocks_lo);
4710 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4711 /* i_blocks represent file system block size */
4712 return i_blocks << (inode->i_blkbits - 9);
4713 } else {
4714 return i_blocks;
4715 }
4716 } else {
4717 return le32_to_cpu(raw_inode->i_blocks_lo);
4718 }
4719 }
4720
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4721 static inline int ext4_iget_extra_inode(struct inode *inode,
4722 struct ext4_inode *raw_inode,
4723 struct ext4_inode_info *ei)
4724 {
4725 __le32 *magic = (void *)raw_inode +
4726 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4727
4728 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4729 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4730 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4731 return ext4_find_inline_data_nolock(inode);
4732 } else
4733 EXT4_I(inode)->i_inline_off = 0;
4734 return 0;
4735 }
4736
ext4_get_projid(struct inode * inode,kprojid_t * projid)4737 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4738 {
4739 if (!ext4_has_feature_project(inode->i_sb))
4740 return -EOPNOTSUPP;
4741 *projid = EXT4_I(inode)->i_projid;
4742 return 0;
4743 }
4744
4745 /*
4746 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4747 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4748 * set.
4749 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4750 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4751 {
4752 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4753 inode_set_iversion_raw(inode, val);
4754 else
4755 inode_set_iversion_queried(inode, val);
4756 }
4757
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4758 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4759 ext4_iget_flags flags, const char *function,
4760 unsigned int line)
4761 {
4762 struct ext4_iloc iloc;
4763 struct ext4_inode *raw_inode;
4764 struct ext4_inode_info *ei;
4765 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4766 struct inode *inode;
4767 journal_t *journal = EXT4_SB(sb)->s_journal;
4768 long ret;
4769 loff_t size;
4770 int block;
4771 uid_t i_uid;
4772 gid_t i_gid;
4773 projid_t i_projid;
4774
4775 if ((!(flags & EXT4_IGET_SPECIAL) &&
4776 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4777 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4778 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4779 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4780 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4781 (ino < EXT4_ROOT_INO) ||
4782 (ino > le32_to_cpu(es->s_inodes_count))) {
4783 if (flags & EXT4_IGET_HANDLE)
4784 return ERR_PTR(-ESTALE);
4785 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4786 "inode #%lu: comm %s: iget: illegal inode #",
4787 ino, current->comm);
4788 return ERR_PTR(-EFSCORRUPTED);
4789 }
4790
4791 inode = iget_locked(sb, ino);
4792 if (!inode)
4793 return ERR_PTR(-ENOMEM);
4794 if (!(inode->i_state & I_NEW))
4795 return inode;
4796
4797 ei = EXT4_I(inode);
4798 iloc.bh = NULL;
4799
4800 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4801 if (ret < 0)
4802 goto bad_inode;
4803 raw_inode = ext4_raw_inode(&iloc);
4804
4805 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4806 ext4_error_inode(inode, function, line, 0,
4807 "iget: root inode unallocated");
4808 ret = -EFSCORRUPTED;
4809 goto bad_inode;
4810 }
4811
4812 if ((flags & EXT4_IGET_HANDLE) &&
4813 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4814 ret = -ESTALE;
4815 goto bad_inode;
4816 }
4817
4818 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4819 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4820 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4821 EXT4_INODE_SIZE(inode->i_sb) ||
4822 (ei->i_extra_isize & 3)) {
4823 ext4_error_inode(inode, function, line, 0,
4824 "iget: bad extra_isize %u "
4825 "(inode size %u)",
4826 ei->i_extra_isize,
4827 EXT4_INODE_SIZE(inode->i_sb));
4828 ret = -EFSCORRUPTED;
4829 goto bad_inode;
4830 }
4831 } else
4832 ei->i_extra_isize = 0;
4833
4834 /* Precompute checksum seed for inode metadata */
4835 if (ext4_has_metadata_csum(sb)) {
4836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4837 __u32 csum;
4838 __le32 inum = cpu_to_le32(inode->i_ino);
4839 __le32 gen = raw_inode->i_generation;
4840 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4841 sizeof(inum));
4842 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4843 sizeof(gen));
4844 }
4845
4846 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4847 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4848 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4849 ext4_error_inode_err(inode, function, line, 0,
4850 EFSBADCRC, "iget: checksum invalid");
4851 ret = -EFSBADCRC;
4852 goto bad_inode;
4853 }
4854
4855 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4856 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4857 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4858 if (ext4_has_feature_project(sb) &&
4859 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4860 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4861 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4862 else
4863 i_projid = EXT4_DEF_PROJID;
4864
4865 if (!(test_opt(inode->i_sb, NO_UID32))) {
4866 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4867 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4868 }
4869 i_uid_write(inode, i_uid);
4870 i_gid_write(inode, i_gid);
4871 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4872 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4873
4874 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4875 ei->i_inline_off = 0;
4876 ei->i_dir_start_lookup = 0;
4877 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4878 /* We now have enough fields to check if the inode was active or not.
4879 * This is needed because nfsd might try to access dead inodes
4880 * the test is that same one that e2fsck uses
4881 * NeilBrown 1999oct15
4882 */
4883 if (inode->i_nlink == 0) {
4884 if ((inode->i_mode == 0 ||
4885 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4886 ino != EXT4_BOOT_LOADER_INO) {
4887 /* this inode is deleted */
4888 ret = -ESTALE;
4889 goto bad_inode;
4890 }
4891 /* The only unlinked inodes we let through here have
4892 * valid i_mode and are being read by the orphan
4893 * recovery code: that's fine, we're about to complete
4894 * the process of deleting those.
4895 * OR it is the EXT4_BOOT_LOADER_INO which is
4896 * not initialized on a new filesystem. */
4897 }
4898 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4899 ext4_set_inode_flags(inode, true);
4900 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4901 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4902 if (ext4_has_feature_64bit(sb))
4903 ei->i_file_acl |=
4904 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4905 inode->i_size = ext4_isize(sb, raw_inode);
4906 if ((size = i_size_read(inode)) < 0) {
4907 ext4_error_inode(inode, function, line, 0,
4908 "iget: bad i_size value: %lld", size);
4909 ret = -EFSCORRUPTED;
4910 goto bad_inode;
4911 }
4912 /*
4913 * If dir_index is not enabled but there's dir with INDEX flag set,
4914 * we'd normally treat htree data as empty space. But with metadata
4915 * checksumming that corrupts checksums so forbid that.
4916 */
4917 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4918 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4919 ext4_error_inode(inode, function, line, 0,
4920 "iget: Dir with htree data on filesystem without dir_index feature.");
4921 ret = -EFSCORRUPTED;
4922 goto bad_inode;
4923 }
4924 ei->i_disksize = inode->i_size;
4925 #ifdef CONFIG_QUOTA
4926 ei->i_reserved_quota = 0;
4927 #endif
4928 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4929 ei->i_block_group = iloc.block_group;
4930 ei->i_last_alloc_group = ~0;
4931 /*
4932 * NOTE! The in-memory inode i_data array is in little-endian order
4933 * even on big-endian machines: we do NOT byteswap the block numbers!
4934 */
4935 for (block = 0; block < EXT4_N_BLOCKS; block++)
4936 ei->i_data[block] = raw_inode->i_block[block];
4937 INIT_LIST_HEAD(&ei->i_orphan);
4938 ext4_fc_init_inode(&ei->vfs_inode);
4939
4940 /*
4941 * Set transaction id's of transactions that have to be committed
4942 * to finish f[data]sync. We set them to currently running transaction
4943 * as we cannot be sure that the inode or some of its metadata isn't
4944 * part of the transaction - the inode could have been reclaimed and
4945 * now it is reread from disk.
4946 */
4947 if (journal) {
4948 transaction_t *transaction;
4949 tid_t tid;
4950
4951 read_lock(&journal->j_state_lock);
4952 if (journal->j_running_transaction)
4953 transaction = journal->j_running_transaction;
4954 else
4955 transaction = journal->j_committing_transaction;
4956 if (transaction)
4957 tid = transaction->t_tid;
4958 else
4959 tid = journal->j_commit_sequence;
4960 read_unlock(&journal->j_state_lock);
4961 ei->i_sync_tid = tid;
4962 ei->i_datasync_tid = tid;
4963 }
4964
4965 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4966 if (ei->i_extra_isize == 0) {
4967 /* The extra space is currently unused. Use it. */
4968 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4969 ei->i_extra_isize = sizeof(struct ext4_inode) -
4970 EXT4_GOOD_OLD_INODE_SIZE;
4971 } else {
4972 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4973 if (ret)
4974 goto bad_inode;
4975 }
4976 }
4977
4978 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4979 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4980 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4981 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4982
4983 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4984 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4985
4986 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4987 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4988 ivers |=
4989 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4990 }
4991 ext4_inode_set_iversion_queried(inode, ivers);
4992 }
4993
4994 ret = 0;
4995 if (ei->i_file_acl &&
4996 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4997 ext4_error_inode(inode, function, line, 0,
4998 "iget: bad extended attribute block %llu",
4999 ei->i_file_acl);
5000 ret = -EFSCORRUPTED;
5001 goto bad_inode;
5002 } else if (!ext4_has_inline_data(inode)) {
5003 /* validate the block references in the inode */
5004 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5005 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5006 (S_ISLNK(inode->i_mode) &&
5007 !ext4_inode_is_fast_symlink(inode)))) {
5008 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5009 ret = ext4_ext_check_inode(inode);
5010 else
5011 ret = ext4_ind_check_inode(inode);
5012 }
5013 }
5014 if (ret)
5015 goto bad_inode;
5016
5017 if (S_ISREG(inode->i_mode)) {
5018 inode->i_op = &ext4_file_inode_operations;
5019 inode->i_fop = &ext4_file_operations;
5020 ext4_set_aops(inode);
5021 } else if (S_ISDIR(inode->i_mode)) {
5022 inode->i_op = &ext4_dir_inode_operations;
5023 inode->i_fop = &ext4_dir_operations;
5024 } else if (S_ISLNK(inode->i_mode)) {
5025 /* VFS does not allow setting these so must be corruption */
5026 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5027 ext4_error_inode(inode, function, line, 0,
5028 "iget: immutable or append flags "
5029 "not allowed on symlinks");
5030 ret = -EFSCORRUPTED;
5031 goto bad_inode;
5032 }
5033 if (IS_ENCRYPTED(inode)) {
5034 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5035 } else if (ext4_inode_is_fast_symlink(inode)) {
5036 inode->i_link = (char *)ei->i_data;
5037 inode->i_op = &ext4_fast_symlink_inode_operations;
5038 nd_terminate_link(ei->i_data, inode->i_size,
5039 sizeof(ei->i_data) - 1);
5040 } else {
5041 inode->i_op = &ext4_symlink_inode_operations;
5042 }
5043 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5044 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5045 inode->i_op = &ext4_special_inode_operations;
5046 if (raw_inode->i_block[0])
5047 init_special_inode(inode, inode->i_mode,
5048 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5049 else
5050 init_special_inode(inode, inode->i_mode,
5051 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5052 } else if (ino == EXT4_BOOT_LOADER_INO) {
5053 make_bad_inode(inode);
5054 } else {
5055 ret = -EFSCORRUPTED;
5056 ext4_error_inode(inode, function, line, 0,
5057 "iget: bogus i_mode (%o)", inode->i_mode);
5058 goto bad_inode;
5059 }
5060 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5061 ext4_error_inode(inode, function, line, 0,
5062 "casefold flag without casefold feature");
5063 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5064 ext4_error_inode(inode, function, line, 0,
5065 "bad inode without EXT4_IGET_BAD flag");
5066 ret = -EUCLEAN;
5067 goto bad_inode;
5068 }
5069
5070 brelse(iloc.bh);
5071 unlock_new_inode(inode);
5072 return inode;
5073
5074 bad_inode:
5075 brelse(iloc.bh);
5076 iget_failed(inode);
5077 return ERR_PTR(ret);
5078 }
5079
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5080 static void __ext4_update_other_inode_time(struct super_block *sb,
5081 unsigned long orig_ino,
5082 unsigned long ino,
5083 struct ext4_inode *raw_inode)
5084 {
5085 struct inode *inode;
5086
5087 inode = find_inode_by_ino_rcu(sb, ino);
5088 if (!inode)
5089 return;
5090
5091 if (!inode_is_dirtytime_only(inode))
5092 return;
5093
5094 spin_lock(&inode->i_lock);
5095 if (inode_is_dirtytime_only(inode)) {
5096 struct ext4_inode_info *ei = EXT4_I(inode);
5097
5098 inode->i_state &= ~I_DIRTY_TIME;
5099 spin_unlock(&inode->i_lock);
5100
5101 spin_lock(&ei->i_raw_lock);
5102 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5103 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5104 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5105 ext4_inode_csum_set(inode, raw_inode, ei);
5106 spin_unlock(&ei->i_raw_lock);
5107 trace_ext4_other_inode_update_time(inode, orig_ino);
5108 return;
5109 }
5110 spin_unlock(&inode->i_lock);
5111 }
5112
5113 /*
5114 * Opportunistically update the other time fields for other inodes in
5115 * the same inode table block.
5116 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5117 static void ext4_update_other_inodes_time(struct super_block *sb,
5118 unsigned long orig_ino, char *buf)
5119 {
5120 unsigned long ino;
5121 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5122 int inode_size = EXT4_INODE_SIZE(sb);
5123
5124 /*
5125 * Calculate the first inode in the inode table block. Inode
5126 * numbers are one-based. That is, the first inode in a block
5127 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5128 */
5129 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5130 rcu_read_lock();
5131 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5132 if (ino == orig_ino)
5133 continue;
5134 __ext4_update_other_inode_time(sb, orig_ino, ino,
5135 (struct ext4_inode *)buf);
5136 }
5137 rcu_read_unlock();
5138 }
5139
5140 /*
5141 * Post the struct inode info into an on-disk inode location in the
5142 * buffer-cache. This gobbles the caller's reference to the
5143 * buffer_head in the inode location struct.
5144 *
5145 * The caller must have write access to iloc->bh.
5146 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5147 static int ext4_do_update_inode(handle_t *handle,
5148 struct inode *inode,
5149 struct ext4_iloc *iloc)
5150 {
5151 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5152 struct ext4_inode_info *ei = EXT4_I(inode);
5153 struct buffer_head *bh = iloc->bh;
5154 struct super_block *sb = inode->i_sb;
5155 int err;
5156 int need_datasync = 0, set_large_file = 0;
5157
5158 spin_lock(&ei->i_raw_lock);
5159
5160 /*
5161 * For fields not tracked in the in-memory inode, initialise them
5162 * to zero for new inodes.
5163 */
5164 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5165 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5166
5167 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5168 need_datasync = 1;
5169 if (ei->i_disksize > 0x7fffffffULL) {
5170 if (!ext4_has_feature_large_file(sb) ||
5171 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5172 set_large_file = 1;
5173 }
5174
5175 err = ext4_fill_raw_inode(inode, raw_inode);
5176 spin_unlock(&ei->i_raw_lock);
5177 if (err) {
5178 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5179 goto out_brelse;
5180 }
5181
5182 if (inode->i_sb->s_flags & SB_LAZYTIME)
5183 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5184 bh->b_data);
5185
5186 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5187 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5188 if (err)
5189 goto out_error;
5190 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5191 if (set_large_file) {
5192 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5193 err = ext4_journal_get_write_access(handle, sb,
5194 EXT4_SB(sb)->s_sbh,
5195 EXT4_JTR_NONE);
5196 if (err)
5197 goto out_error;
5198 lock_buffer(EXT4_SB(sb)->s_sbh);
5199 ext4_set_feature_large_file(sb);
5200 ext4_superblock_csum_set(sb);
5201 unlock_buffer(EXT4_SB(sb)->s_sbh);
5202 ext4_handle_sync(handle);
5203 err = ext4_handle_dirty_metadata(handle, NULL,
5204 EXT4_SB(sb)->s_sbh);
5205 }
5206 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5207 out_error:
5208 ext4_std_error(inode->i_sb, err);
5209 out_brelse:
5210 brelse(bh);
5211 return err;
5212 }
5213
5214 /*
5215 * ext4_write_inode()
5216 *
5217 * We are called from a few places:
5218 *
5219 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5220 * Here, there will be no transaction running. We wait for any running
5221 * transaction to commit.
5222 *
5223 * - Within flush work (sys_sync(), kupdate and such).
5224 * We wait on commit, if told to.
5225 *
5226 * - Within iput_final() -> write_inode_now()
5227 * We wait on commit, if told to.
5228 *
5229 * In all cases it is actually safe for us to return without doing anything,
5230 * because the inode has been copied into a raw inode buffer in
5231 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5232 * writeback.
5233 *
5234 * Note that we are absolutely dependent upon all inode dirtiers doing the
5235 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5236 * which we are interested.
5237 *
5238 * It would be a bug for them to not do this. The code:
5239 *
5240 * mark_inode_dirty(inode)
5241 * stuff();
5242 * inode->i_size = expr;
5243 *
5244 * is in error because write_inode() could occur while `stuff()' is running,
5245 * and the new i_size will be lost. Plus the inode will no longer be on the
5246 * superblock's dirty inode list.
5247 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5248 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5249 {
5250 int err;
5251
5252 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5253 sb_rdonly(inode->i_sb))
5254 return 0;
5255
5256 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5257 return -EIO;
5258
5259 if (EXT4_SB(inode->i_sb)->s_journal) {
5260 if (ext4_journal_current_handle()) {
5261 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5262 dump_stack();
5263 return -EIO;
5264 }
5265
5266 /*
5267 * No need to force transaction in WB_SYNC_NONE mode. Also
5268 * ext4_sync_fs() will force the commit after everything is
5269 * written.
5270 */
5271 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5272 return 0;
5273
5274 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5275 EXT4_I(inode)->i_sync_tid);
5276 } else {
5277 struct ext4_iloc iloc;
5278
5279 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5280 if (err)
5281 return err;
5282 /*
5283 * sync(2) will flush the whole buffer cache. No need to do
5284 * it here separately for each inode.
5285 */
5286 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5287 sync_dirty_buffer(iloc.bh);
5288 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5289 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5290 "IO error syncing inode");
5291 err = -EIO;
5292 }
5293 brelse(iloc.bh);
5294 }
5295 return err;
5296 }
5297
5298 /*
5299 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5300 * buffers that are attached to a folio straddling i_size and are undergoing
5301 * commit. In that case we have to wait for commit to finish and try again.
5302 */
ext4_wait_for_tail_page_commit(struct inode * inode)5303 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5304 {
5305 unsigned offset;
5306 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5307 tid_t commit_tid = 0;
5308 int ret;
5309
5310 offset = inode->i_size & (PAGE_SIZE - 1);
5311 /*
5312 * If the folio is fully truncated, we don't need to wait for any commit
5313 * (and we even should not as __ext4_journalled_invalidate_folio() may
5314 * strip all buffers from the folio but keep the folio dirty which can then
5315 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5316 * buffers). Also we don't need to wait for any commit if all buffers in
5317 * the folio remain valid. This is most beneficial for the common case of
5318 * blocksize == PAGESIZE.
5319 */
5320 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5321 return;
5322 while (1) {
5323 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5324 inode->i_size >> PAGE_SHIFT);
5325 if (!folio)
5326 return;
5327 ret = __ext4_journalled_invalidate_folio(folio, offset,
5328 folio_size(folio) - offset);
5329 folio_unlock(folio);
5330 folio_put(folio);
5331 if (ret != -EBUSY)
5332 return;
5333 commit_tid = 0;
5334 read_lock(&journal->j_state_lock);
5335 if (journal->j_committing_transaction)
5336 commit_tid = journal->j_committing_transaction->t_tid;
5337 read_unlock(&journal->j_state_lock);
5338 if (commit_tid)
5339 jbd2_log_wait_commit(journal, commit_tid);
5340 }
5341 }
5342
5343 /*
5344 * ext4_setattr()
5345 *
5346 * Called from notify_change.
5347 *
5348 * We want to trap VFS attempts to truncate the file as soon as
5349 * possible. In particular, we want to make sure that when the VFS
5350 * shrinks i_size, we put the inode on the orphan list and modify
5351 * i_disksize immediately, so that during the subsequent flushing of
5352 * dirty pages and freeing of disk blocks, we can guarantee that any
5353 * commit will leave the blocks being flushed in an unused state on
5354 * disk. (On recovery, the inode will get truncated and the blocks will
5355 * be freed, so we have a strong guarantee that no future commit will
5356 * leave these blocks visible to the user.)
5357 *
5358 * Another thing we have to assure is that if we are in ordered mode
5359 * and inode is still attached to the committing transaction, we must
5360 * we start writeout of all the dirty pages which are being truncated.
5361 * This way we are sure that all the data written in the previous
5362 * transaction are already on disk (truncate waits for pages under
5363 * writeback).
5364 *
5365 * Called with inode->i_rwsem down.
5366 */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5367 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5368 struct iattr *attr)
5369 {
5370 struct inode *inode = d_inode(dentry);
5371 int error, rc = 0;
5372 int orphan = 0;
5373 const unsigned int ia_valid = attr->ia_valid;
5374 bool inc_ivers = true;
5375
5376 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5377 return -EIO;
5378
5379 if (unlikely(IS_IMMUTABLE(inode)))
5380 return -EPERM;
5381
5382 if (unlikely(IS_APPEND(inode) &&
5383 (ia_valid & (ATTR_MODE | ATTR_UID |
5384 ATTR_GID | ATTR_TIMES_SET))))
5385 return -EPERM;
5386
5387 error = setattr_prepare(mnt_userns, dentry, attr);
5388 if (error)
5389 return error;
5390
5391 error = fscrypt_prepare_setattr(dentry, attr);
5392 if (error)
5393 return error;
5394
5395 error = fsverity_prepare_setattr(dentry, attr);
5396 if (error)
5397 return error;
5398
5399 if (is_quota_modification(mnt_userns, inode, attr)) {
5400 error = dquot_initialize(inode);
5401 if (error)
5402 return error;
5403 }
5404
5405 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5406 i_gid_needs_update(mnt_userns, attr, inode)) {
5407 handle_t *handle;
5408
5409 /* (user+group)*(old+new) structure, inode write (sb,
5410 * inode block, ? - but truncate inode update has it) */
5411 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5412 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5413 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5414 if (IS_ERR(handle)) {
5415 error = PTR_ERR(handle);
5416 goto err_out;
5417 }
5418
5419 /* dquot_transfer() calls back ext4_get_inode_usage() which
5420 * counts xattr inode references.
5421 */
5422 down_read(&EXT4_I(inode)->xattr_sem);
5423 error = dquot_transfer(mnt_userns, inode, attr);
5424 up_read(&EXT4_I(inode)->xattr_sem);
5425
5426 if (error) {
5427 ext4_journal_stop(handle);
5428 return error;
5429 }
5430 /* Update corresponding info in inode so that everything is in
5431 * one transaction */
5432 i_uid_update(mnt_userns, attr, inode);
5433 i_gid_update(mnt_userns, attr, inode);
5434 error = ext4_mark_inode_dirty(handle, inode);
5435 ext4_journal_stop(handle);
5436 if (unlikely(error)) {
5437 return error;
5438 }
5439 }
5440
5441 if (attr->ia_valid & ATTR_SIZE) {
5442 handle_t *handle;
5443 loff_t oldsize = inode->i_size;
5444 loff_t old_disksize;
5445 int shrink = (attr->ia_size < inode->i_size);
5446
5447 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5448 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5449
5450 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5451 return -EFBIG;
5452 }
5453 }
5454 if (!S_ISREG(inode->i_mode)) {
5455 return -EINVAL;
5456 }
5457
5458 if (attr->ia_size == inode->i_size)
5459 inc_ivers = false;
5460
5461 if (shrink) {
5462 if (ext4_should_order_data(inode)) {
5463 error = ext4_begin_ordered_truncate(inode,
5464 attr->ia_size);
5465 if (error)
5466 goto err_out;
5467 }
5468 /*
5469 * Blocks are going to be removed from the inode. Wait
5470 * for dio in flight.
5471 */
5472 inode_dio_wait(inode);
5473 }
5474
5475 filemap_invalidate_lock(inode->i_mapping);
5476
5477 rc = ext4_break_layouts(inode);
5478 if (rc) {
5479 filemap_invalidate_unlock(inode->i_mapping);
5480 goto err_out;
5481 }
5482
5483 if (attr->ia_size != inode->i_size) {
5484 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5485 if (IS_ERR(handle)) {
5486 error = PTR_ERR(handle);
5487 goto out_mmap_sem;
5488 }
5489 if (ext4_handle_valid(handle) && shrink) {
5490 error = ext4_orphan_add(handle, inode);
5491 orphan = 1;
5492 }
5493 /*
5494 * Update c/mtime on truncate up, ext4_truncate() will
5495 * update c/mtime in shrink case below
5496 */
5497 if (!shrink) {
5498 inode->i_mtime = current_time(inode);
5499 inode->i_ctime = inode->i_mtime;
5500 }
5501
5502 if (shrink)
5503 ext4_fc_track_range(handle, inode,
5504 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5505 inode->i_sb->s_blocksize_bits,
5506 EXT_MAX_BLOCKS - 1);
5507 else
5508 ext4_fc_track_range(
5509 handle, inode,
5510 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5511 inode->i_sb->s_blocksize_bits,
5512 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5513 inode->i_sb->s_blocksize_bits);
5514
5515 down_write(&EXT4_I(inode)->i_data_sem);
5516 old_disksize = EXT4_I(inode)->i_disksize;
5517 EXT4_I(inode)->i_disksize = attr->ia_size;
5518 rc = ext4_mark_inode_dirty(handle, inode);
5519 if (!error)
5520 error = rc;
5521 /*
5522 * We have to update i_size under i_data_sem together
5523 * with i_disksize to avoid races with writeback code
5524 * running ext4_wb_update_i_disksize().
5525 */
5526 if (!error)
5527 i_size_write(inode, attr->ia_size);
5528 else
5529 EXT4_I(inode)->i_disksize = old_disksize;
5530 up_write(&EXT4_I(inode)->i_data_sem);
5531 ext4_journal_stop(handle);
5532 if (error)
5533 goto out_mmap_sem;
5534 if (!shrink) {
5535 pagecache_isize_extended(inode, oldsize,
5536 inode->i_size);
5537 } else if (ext4_should_journal_data(inode)) {
5538 ext4_wait_for_tail_page_commit(inode);
5539 }
5540 }
5541
5542 /*
5543 * Truncate pagecache after we've waited for commit
5544 * in data=journal mode to make pages freeable.
5545 */
5546 truncate_pagecache(inode, inode->i_size);
5547 /*
5548 * Call ext4_truncate() even if i_size didn't change to
5549 * truncate possible preallocated blocks.
5550 */
5551 if (attr->ia_size <= oldsize) {
5552 rc = ext4_truncate(inode);
5553 if (rc)
5554 error = rc;
5555 }
5556 out_mmap_sem:
5557 filemap_invalidate_unlock(inode->i_mapping);
5558 }
5559
5560 if (!error) {
5561 if (inc_ivers)
5562 inode_inc_iversion(inode);
5563 setattr_copy(mnt_userns, inode, attr);
5564 mark_inode_dirty(inode);
5565 }
5566
5567 /*
5568 * If the call to ext4_truncate failed to get a transaction handle at
5569 * all, we need to clean up the in-core orphan list manually.
5570 */
5571 if (orphan && inode->i_nlink)
5572 ext4_orphan_del(NULL, inode);
5573
5574 if (!error && (ia_valid & ATTR_MODE))
5575 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5576
5577 err_out:
5578 if (error)
5579 ext4_std_error(inode->i_sb, error);
5580 if (!error)
5581 error = rc;
5582 return error;
5583 }
5584
ext4_dio_alignment(struct inode * inode)5585 u32 ext4_dio_alignment(struct inode *inode)
5586 {
5587 if (fsverity_active(inode))
5588 return 0;
5589 if (ext4_should_journal_data(inode))
5590 return 0;
5591 if (ext4_has_inline_data(inode))
5592 return 0;
5593 if (IS_ENCRYPTED(inode)) {
5594 if (!fscrypt_dio_supported(inode))
5595 return 0;
5596 return i_blocksize(inode);
5597 }
5598 return 1; /* use the iomap defaults */
5599 }
5600
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5601 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5602 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5603 {
5604 struct inode *inode = d_inode(path->dentry);
5605 struct ext4_inode *raw_inode;
5606 struct ext4_inode_info *ei = EXT4_I(inode);
5607 unsigned int flags;
5608
5609 if ((request_mask & STATX_BTIME) &&
5610 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5611 stat->result_mask |= STATX_BTIME;
5612 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5613 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5614 }
5615
5616 /*
5617 * Return the DIO alignment restrictions if requested. We only return
5618 * this information when requested, since on encrypted files it might
5619 * take a fair bit of work to get if the file wasn't opened recently.
5620 */
5621 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5622 u32 dio_align = ext4_dio_alignment(inode);
5623
5624 stat->result_mask |= STATX_DIOALIGN;
5625 if (dio_align == 1) {
5626 struct block_device *bdev = inode->i_sb->s_bdev;
5627
5628 /* iomap defaults */
5629 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5630 stat->dio_offset_align = bdev_logical_block_size(bdev);
5631 } else {
5632 stat->dio_mem_align = dio_align;
5633 stat->dio_offset_align = dio_align;
5634 }
5635 }
5636
5637 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5638 if (flags & EXT4_APPEND_FL)
5639 stat->attributes |= STATX_ATTR_APPEND;
5640 if (flags & EXT4_COMPR_FL)
5641 stat->attributes |= STATX_ATTR_COMPRESSED;
5642 if (flags & EXT4_ENCRYPT_FL)
5643 stat->attributes |= STATX_ATTR_ENCRYPTED;
5644 if (flags & EXT4_IMMUTABLE_FL)
5645 stat->attributes |= STATX_ATTR_IMMUTABLE;
5646 if (flags & EXT4_NODUMP_FL)
5647 stat->attributes |= STATX_ATTR_NODUMP;
5648 if (flags & EXT4_VERITY_FL)
5649 stat->attributes |= STATX_ATTR_VERITY;
5650
5651 stat->attributes_mask |= (STATX_ATTR_APPEND |
5652 STATX_ATTR_COMPRESSED |
5653 STATX_ATTR_ENCRYPTED |
5654 STATX_ATTR_IMMUTABLE |
5655 STATX_ATTR_NODUMP |
5656 STATX_ATTR_VERITY);
5657
5658 generic_fillattr(mnt_userns, inode, stat);
5659 return 0;
5660 }
5661
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5662 int ext4_file_getattr(struct user_namespace *mnt_userns,
5663 const struct path *path, struct kstat *stat,
5664 u32 request_mask, unsigned int query_flags)
5665 {
5666 struct inode *inode = d_inode(path->dentry);
5667 u64 delalloc_blocks;
5668
5669 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5670
5671 /*
5672 * If there is inline data in the inode, the inode will normally not
5673 * have data blocks allocated (it may have an external xattr block).
5674 * Report at least one sector for such files, so tools like tar, rsync,
5675 * others don't incorrectly think the file is completely sparse.
5676 */
5677 if (unlikely(ext4_has_inline_data(inode)))
5678 stat->blocks += (stat->size + 511) >> 9;
5679
5680 /*
5681 * We can't update i_blocks if the block allocation is delayed
5682 * otherwise in the case of system crash before the real block
5683 * allocation is done, we will have i_blocks inconsistent with
5684 * on-disk file blocks.
5685 * We always keep i_blocks updated together with real
5686 * allocation. But to not confuse with user, stat
5687 * will return the blocks that include the delayed allocation
5688 * blocks for this file.
5689 */
5690 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5691 EXT4_I(inode)->i_reserved_data_blocks);
5692 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5693 return 0;
5694 }
5695
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5696 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5697 int pextents)
5698 {
5699 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5700 return ext4_ind_trans_blocks(inode, lblocks);
5701 return ext4_ext_index_trans_blocks(inode, pextents);
5702 }
5703
5704 /*
5705 * Account for index blocks, block groups bitmaps and block group
5706 * descriptor blocks if modify datablocks and index blocks
5707 * worse case, the indexs blocks spread over different block groups
5708 *
5709 * If datablocks are discontiguous, they are possible to spread over
5710 * different block groups too. If they are contiguous, with flexbg,
5711 * they could still across block group boundary.
5712 *
5713 * Also account for superblock, inode, quota and xattr blocks
5714 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5715 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5716 int pextents)
5717 {
5718 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5719 int gdpblocks;
5720 int idxblocks;
5721 int ret = 0;
5722
5723 /*
5724 * How many index blocks need to touch to map @lblocks logical blocks
5725 * to @pextents physical extents?
5726 */
5727 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5728
5729 ret = idxblocks;
5730
5731 /*
5732 * Now let's see how many group bitmaps and group descriptors need
5733 * to account
5734 */
5735 groups = idxblocks + pextents;
5736 gdpblocks = groups;
5737 if (groups > ngroups)
5738 groups = ngroups;
5739 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5740 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5741
5742 /* bitmaps and block group descriptor blocks */
5743 ret += groups + gdpblocks;
5744
5745 /* Blocks for super block, inode, quota and xattr blocks */
5746 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5747
5748 return ret;
5749 }
5750
5751 /*
5752 * Calculate the total number of credits to reserve to fit
5753 * the modification of a single pages into a single transaction,
5754 * which may include multiple chunks of block allocations.
5755 *
5756 * This could be called via ext4_write_begin()
5757 *
5758 * We need to consider the worse case, when
5759 * one new block per extent.
5760 */
ext4_writepage_trans_blocks(struct inode * inode)5761 int ext4_writepage_trans_blocks(struct inode *inode)
5762 {
5763 int bpp = ext4_journal_blocks_per_page(inode);
5764 int ret;
5765
5766 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5767
5768 /* Account for data blocks for journalled mode */
5769 if (ext4_should_journal_data(inode))
5770 ret += bpp;
5771 return ret;
5772 }
5773
5774 /*
5775 * Calculate the journal credits for a chunk of data modification.
5776 *
5777 * This is called from DIO, fallocate or whoever calling
5778 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5779 *
5780 * journal buffers for data blocks are not included here, as DIO
5781 * and fallocate do no need to journal data buffers.
5782 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5783 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5784 {
5785 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5786 }
5787
5788 /*
5789 * The caller must have previously called ext4_reserve_inode_write().
5790 * Give this, we know that the caller already has write access to iloc->bh.
5791 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5792 int ext4_mark_iloc_dirty(handle_t *handle,
5793 struct inode *inode, struct ext4_iloc *iloc)
5794 {
5795 int err = 0;
5796
5797 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5798 put_bh(iloc->bh);
5799 return -EIO;
5800 }
5801 ext4_fc_track_inode(handle, inode);
5802
5803 /* the do_update_inode consumes one bh->b_count */
5804 get_bh(iloc->bh);
5805
5806 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5807 err = ext4_do_update_inode(handle, inode, iloc);
5808 put_bh(iloc->bh);
5809 return err;
5810 }
5811
5812 /*
5813 * On success, We end up with an outstanding reference count against
5814 * iloc->bh. This _must_ be cleaned up later.
5815 */
5816
5817 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5818 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5819 struct ext4_iloc *iloc)
5820 {
5821 int err;
5822
5823 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5824 return -EIO;
5825
5826 err = ext4_get_inode_loc(inode, iloc);
5827 if (!err) {
5828 BUFFER_TRACE(iloc->bh, "get_write_access");
5829 err = ext4_journal_get_write_access(handle, inode->i_sb,
5830 iloc->bh, EXT4_JTR_NONE);
5831 if (err) {
5832 brelse(iloc->bh);
5833 iloc->bh = NULL;
5834 }
5835 }
5836 ext4_std_error(inode->i_sb, err);
5837 return err;
5838 }
5839
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5840 static int __ext4_expand_extra_isize(struct inode *inode,
5841 unsigned int new_extra_isize,
5842 struct ext4_iloc *iloc,
5843 handle_t *handle, int *no_expand)
5844 {
5845 struct ext4_inode *raw_inode;
5846 struct ext4_xattr_ibody_header *header;
5847 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5848 struct ext4_inode_info *ei = EXT4_I(inode);
5849 int error;
5850
5851 /* this was checked at iget time, but double check for good measure */
5852 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5853 (ei->i_extra_isize & 3)) {
5854 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5855 ei->i_extra_isize,
5856 EXT4_INODE_SIZE(inode->i_sb));
5857 return -EFSCORRUPTED;
5858 }
5859 if ((new_extra_isize < ei->i_extra_isize) ||
5860 (new_extra_isize < 4) ||
5861 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5862 return -EINVAL; /* Should never happen */
5863
5864 raw_inode = ext4_raw_inode(iloc);
5865
5866 header = IHDR(inode, raw_inode);
5867
5868 /* No extended attributes present */
5869 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5870 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5871 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5872 EXT4_I(inode)->i_extra_isize, 0,
5873 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5874 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5875 return 0;
5876 }
5877
5878 /*
5879 * We may need to allocate external xattr block so we need quotas
5880 * initialized. Here we can be called with various locks held so we
5881 * cannot affort to initialize quotas ourselves. So just bail.
5882 */
5883 if (dquot_initialize_needed(inode))
5884 return -EAGAIN;
5885
5886 /* try to expand with EAs present */
5887 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5888 raw_inode, handle);
5889 if (error) {
5890 /*
5891 * Inode size expansion failed; don't try again
5892 */
5893 *no_expand = 1;
5894 }
5895
5896 return error;
5897 }
5898
5899 /*
5900 * Expand an inode by new_extra_isize bytes.
5901 * Returns 0 on success or negative error number on failure.
5902 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5903 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5904 unsigned int new_extra_isize,
5905 struct ext4_iloc iloc,
5906 handle_t *handle)
5907 {
5908 int no_expand;
5909 int error;
5910
5911 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5912 return -EOVERFLOW;
5913
5914 /*
5915 * In nojournal mode, we can immediately attempt to expand
5916 * the inode. When journaled, we first need to obtain extra
5917 * buffer credits since we may write into the EA block
5918 * with this same handle. If journal_extend fails, then it will
5919 * only result in a minor loss of functionality for that inode.
5920 * If this is felt to be critical, then e2fsck should be run to
5921 * force a large enough s_min_extra_isize.
5922 */
5923 if (ext4_journal_extend(handle,
5924 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5925 return -ENOSPC;
5926
5927 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5928 return -EBUSY;
5929
5930 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5931 handle, &no_expand);
5932 ext4_write_unlock_xattr(inode, &no_expand);
5933
5934 return error;
5935 }
5936
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5937 int ext4_expand_extra_isize(struct inode *inode,
5938 unsigned int new_extra_isize,
5939 struct ext4_iloc *iloc)
5940 {
5941 handle_t *handle;
5942 int no_expand;
5943 int error, rc;
5944
5945 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5946 brelse(iloc->bh);
5947 return -EOVERFLOW;
5948 }
5949
5950 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5951 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5952 if (IS_ERR(handle)) {
5953 error = PTR_ERR(handle);
5954 brelse(iloc->bh);
5955 return error;
5956 }
5957
5958 ext4_write_lock_xattr(inode, &no_expand);
5959
5960 BUFFER_TRACE(iloc->bh, "get_write_access");
5961 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5962 EXT4_JTR_NONE);
5963 if (error) {
5964 brelse(iloc->bh);
5965 goto out_unlock;
5966 }
5967
5968 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5969 handle, &no_expand);
5970
5971 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5972 if (!error)
5973 error = rc;
5974
5975 out_unlock:
5976 ext4_write_unlock_xattr(inode, &no_expand);
5977 ext4_journal_stop(handle);
5978 return error;
5979 }
5980
5981 /*
5982 * What we do here is to mark the in-core inode as clean with respect to inode
5983 * dirtiness (it may still be data-dirty).
5984 * This means that the in-core inode may be reaped by prune_icache
5985 * without having to perform any I/O. This is a very good thing,
5986 * because *any* task may call prune_icache - even ones which
5987 * have a transaction open against a different journal.
5988 *
5989 * Is this cheating? Not really. Sure, we haven't written the
5990 * inode out, but prune_icache isn't a user-visible syncing function.
5991 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5992 * we start and wait on commits.
5993 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5994 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5995 const char *func, unsigned int line)
5996 {
5997 struct ext4_iloc iloc;
5998 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5999 int err;
6000
6001 might_sleep();
6002 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6003 err = ext4_reserve_inode_write(handle, inode, &iloc);
6004 if (err)
6005 goto out;
6006
6007 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6008 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6009 iloc, handle);
6010
6011 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6012 out:
6013 if (unlikely(err))
6014 ext4_error_inode_err(inode, func, line, 0, err,
6015 "mark_inode_dirty error");
6016 return err;
6017 }
6018
6019 /*
6020 * ext4_dirty_inode() is called from __mark_inode_dirty()
6021 *
6022 * We're really interested in the case where a file is being extended.
6023 * i_size has been changed by generic_commit_write() and we thus need
6024 * to include the updated inode in the current transaction.
6025 *
6026 * Also, dquot_alloc_block() will always dirty the inode when blocks
6027 * are allocated to the file.
6028 *
6029 * If the inode is marked synchronous, we don't honour that here - doing
6030 * so would cause a commit on atime updates, which we don't bother doing.
6031 * We handle synchronous inodes at the highest possible level.
6032 */
ext4_dirty_inode(struct inode * inode,int flags)6033 void ext4_dirty_inode(struct inode *inode, int flags)
6034 {
6035 handle_t *handle;
6036
6037 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6038 if (IS_ERR(handle))
6039 return;
6040 ext4_mark_inode_dirty(handle, inode);
6041 ext4_journal_stop(handle);
6042 }
6043
ext4_change_inode_journal_flag(struct inode * inode,int val)6044 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6045 {
6046 journal_t *journal;
6047 handle_t *handle;
6048 int err;
6049 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6050
6051 /*
6052 * We have to be very careful here: changing a data block's
6053 * journaling status dynamically is dangerous. If we write a
6054 * data block to the journal, change the status and then delete
6055 * that block, we risk forgetting to revoke the old log record
6056 * from the journal and so a subsequent replay can corrupt data.
6057 * So, first we make sure that the journal is empty and that
6058 * nobody is changing anything.
6059 */
6060
6061 journal = EXT4_JOURNAL(inode);
6062 if (!journal)
6063 return 0;
6064 if (is_journal_aborted(journal))
6065 return -EROFS;
6066
6067 /* Wait for all existing dio workers */
6068 inode_dio_wait(inode);
6069
6070 /*
6071 * Before flushing the journal and switching inode's aops, we have
6072 * to flush all dirty data the inode has. There can be outstanding
6073 * delayed allocations, there can be unwritten extents created by
6074 * fallocate or buffered writes in dioread_nolock mode covered by
6075 * dirty data which can be converted only after flushing the dirty
6076 * data (and journalled aops don't know how to handle these cases).
6077 */
6078 if (val) {
6079 filemap_invalidate_lock(inode->i_mapping);
6080 err = filemap_write_and_wait(inode->i_mapping);
6081 if (err < 0) {
6082 filemap_invalidate_unlock(inode->i_mapping);
6083 return err;
6084 }
6085 }
6086
6087 percpu_down_write(&sbi->s_writepages_rwsem);
6088 jbd2_journal_lock_updates(journal);
6089
6090 /*
6091 * OK, there are no updates running now, and all cached data is
6092 * synced to disk. We are now in a completely consistent state
6093 * which doesn't have anything in the journal, and we know that
6094 * no filesystem updates are running, so it is safe to modify
6095 * the inode's in-core data-journaling state flag now.
6096 */
6097
6098 if (val)
6099 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6100 else {
6101 err = jbd2_journal_flush(journal, 0);
6102 if (err < 0) {
6103 jbd2_journal_unlock_updates(journal);
6104 percpu_up_write(&sbi->s_writepages_rwsem);
6105 return err;
6106 }
6107 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6108 }
6109 ext4_set_aops(inode);
6110
6111 jbd2_journal_unlock_updates(journal);
6112 percpu_up_write(&sbi->s_writepages_rwsem);
6113
6114 if (val)
6115 filemap_invalidate_unlock(inode->i_mapping);
6116
6117 /* Finally we can mark the inode as dirty. */
6118
6119 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6120 if (IS_ERR(handle))
6121 return PTR_ERR(handle);
6122
6123 ext4_fc_mark_ineligible(inode->i_sb,
6124 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6125 err = ext4_mark_inode_dirty(handle, inode);
6126 ext4_handle_sync(handle);
6127 ext4_journal_stop(handle);
6128 ext4_std_error(inode->i_sb, err);
6129
6130 return err;
6131 }
6132
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6133 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6134 struct buffer_head *bh)
6135 {
6136 return !buffer_mapped(bh);
6137 }
6138
ext4_page_mkwrite(struct vm_fault * vmf)6139 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6140 {
6141 struct vm_area_struct *vma = vmf->vma;
6142 struct page *page = vmf->page;
6143 loff_t size;
6144 unsigned long len;
6145 int err;
6146 vm_fault_t ret;
6147 struct file *file = vma->vm_file;
6148 struct inode *inode = file_inode(file);
6149 struct address_space *mapping = inode->i_mapping;
6150 handle_t *handle;
6151 get_block_t *get_block;
6152 int retries = 0;
6153
6154 if (unlikely(IS_IMMUTABLE(inode)))
6155 return VM_FAULT_SIGBUS;
6156
6157 sb_start_pagefault(inode->i_sb);
6158 file_update_time(vma->vm_file);
6159
6160 filemap_invalidate_lock_shared(mapping);
6161
6162 err = ext4_convert_inline_data(inode);
6163 if (err)
6164 goto out_ret;
6165
6166 /*
6167 * On data journalling we skip straight to the transaction handle:
6168 * there's no delalloc; page truncated will be checked later; the
6169 * early return w/ all buffers mapped (calculates size/len) can't
6170 * be used; and there's no dioread_nolock, so only ext4_get_block.
6171 */
6172 if (ext4_should_journal_data(inode))
6173 goto retry_alloc;
6174
6175 /* Delalloc case is easy... */
6176 if (test_opt(inode->i_sb, DELALLOC) &&
6177 !ext4_nonda_switch(inode->i_sb)) {
6178 do {
6179 err = block_page_mkwrite(vma, vmf,
6180 ext4_da_get_block_prep);
6181 } while (err == -ENOSPC &&
6182 ext4_should_retry_alloc(inode->i_sb, &retries));
6183 goto out_ret;
6184 }
6185
6186 lock_page(page);
6187 size = i_size_read(inode);
6188 /* Page got truncated from under us? */
6189 if (page->mapping != mapping || page_offset(page) > size) {
6190 unlock_page(page);
6191 ret = VM_FAULT_NOPAGE;
6192 goto out;
6193 }
6194
6195 if (page->index == size >> PAGE_SHIFT)
6196 len = size & ~PAGE_MASK;
6197 else
6198 len = PAGE_SIZE;
6199 /*
6200 * Return if we have all the buffers mapped. This avoids the need to do
6201 * journal_start/journal_stop which can block and take a long time
6202 *
6203 * This cannot be done for data journalling, as we have to add the
6204 * inode to the transaction's list to writeprotect pages on commit.
6205 */
6206 if (page_has_buffers(page)) {
6207 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6208 0, len, NULL,
6209 ext4_bh_unmapped)) {
6210 /* Wait so that we don't change page under IO */
6211 wait_for_stable_page(page);
6212 ret = VM_FAULT_LOCKED;
6213 goto out;
6214 }
6215 }
6216 unlock_page(page);
6217 /* OK, we need to fill the hole... */
6218 if (ext4_should_dioread_nolock(inode))
6219 get_block = ext4_get_block_unwritten;
6220 else
6221 get_block = ext4_get_block;
6222 retry_alloc:
6223 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224 ext4_writepage_trans_blocks(inode));
6225 if (IS_ERR(handle)) {
6226 ret = VM_FAULT_SIGBUS;
6227 goto out;
6228 }
6229 /*
6230 * Data journalling can't use block_page_mkwrite() because it
6231 * will set_buffer_dirty() before do_journal_get_write_access()
6232 * thus might hit warning messages for dirty metadata buffers.
6233 */
6234 if (!ext4_should_journal_data(inode)) {
6235 err = block_page_mkwrite(vma, vmf, get_block);
6236 } else {
6237 lock_page(page);
6238 size = i_size_read(inode);
6239 /* Page got truncated from under us? */
6240 if (page->mapping != mapping || page_offset(page) > size) {
6241 ret = VM_FAULT_NOPAGE;
6242 goto out_error;
6243 }
6244
6245 if (page->index == size >> PAGE_SHIFT)
6246 len = size & ~PAGE_MASK;
6247 else
6248 len = PAGE_SIZE;
6249
6250 err = __block_write_begin(page, 0, len, ext4_get_block);
6251 if (!err) {
6252 ret = VM_FAULT_SIGBUS;
6253 if (ext4_walk_page_buffers(handle, inode,
6254 page_buffers(page), 0, len, NULL,
6255 do_journal_get_write_access))
6256 goto out_error;
6257 if (ext4_walk_page_buffers(handle, inode,
6258 page_buffers(page), 0, len, NULL,
6259 write_end_fn))
6260 goto out_error;
6261 if (ext4_jbd2_inode_add_write(handle, inode,
6262 page_offset(page), len))
6263 goto out_error;
6264 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6265 } else {
6266 unlock_page(page);
6267 }
6268 }
6269 ext4_journal_stop(handle);
6270 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6271 goto retry_alloc;
6272 out_ret:
6273 ret = block_page_mkwrite_return(err);
6274 out:
6275 filemap_invalidate_unlock_shared(mapping);
6276 sb_end_pagefault(inode->i_sb);
6277 return ret;
6278 out_error:
6279 unlock_page(page);
6280 ext4_journal_stop(handle);
6281 goto out;
6282 }
6283