1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/readpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2015, Google, Inc.
7 *
8 * This was originally taken from fs/mpage.c
9 *
10 * The ext4_mpage_readpages() function here is intended to
11 * replace mpage_readahead() in the general case, not just for
12 * encrypted files. It has some limitations (see below), where it
13 * will fall back to read_block_full_page(), but these limitations
14 * should only be hit when page_size != block_size.
15 *
16 * This will allow us to attach a callback function to support ext4
17 * encryption.
18 *
19 * If anything unusual happens, such as:
20 *
21 * - encountering a page which has buffers
22 * - encountering a page which has a non-hole after a hole
23 * - encountering a page with non-contiguous blocks
24 *
25 * then this code just gives up and calls the buffer_head-based read function.
26 * It does handle a page which has holes at the end - that is a common case:
27 * the end-of-file on blocksize < PAGE_SIZE setups.
28 *
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46
47 #include "ext4.h"
48
49 #define NUM_PREALLOC_POST_READ_CTXS 128
50
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 STEP_INITIAL = 0,
57 STEP_DECRYPT,
58 STEP_VERITY,
59 STEP_MAX,
60 };
61
62 struct bio_post_read_ctx {
63 struct bio *bio;
64 struct work_struct work;
65 unsigned int cur_step;
66 unsigned int enabled_steps;
67 };
68
__read_end_io(struct bio * bio)69 static void __read_end_io(struct bio *bio)
70 {
71 struct page *page;
72 struct bio_vec *bv;
73 struct bvec_iter_all iter_all;
74
75 bio_for_each_segment_all(bv, bio, iter_all) {
76 page = bv->bv_page;
77
78 /* PG_error was set if verity failed. */
79 if (bio->bi_status || PageError(page)) {
80 ClearPageUptodate(page);
81 /* will re-read again later */
82 ClearPageError(page);
83 } else {
84 SetPageUptodate(page);
85 }
86 unlock_page(page);
87 }
88 if (bio->bi_private)
89 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90 bio_put(bio);
91 }
92
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94
decrypt_work(struct work_struct * work)95 static void decrypt_work(struct work_struct *work)
96 {
97 struct bio_post_read_ctx *ctx =
98 container_of(work, struct bio_post_read_ctx, work);
99 struct bio *bio = ctx->bio;
100
101 if (fscrypt_decrypt_bio(bio))
102 bio_post_read_processing(ctx);
103 else
104 __read_end_io(bio);
105 }
106
verity_work(struct work_struct * work)107 static void verity_work(struct work_struct *work)
108 {
109 struct bio_post_read_ctx *ctx =
110 container_of(work, struct bio_post_read_ctx, work);
111 struct bio *bio = ctx->bio;
112
113 /*
114 * fsverity_verify_bio() may call readahead() again, and although verity
115 * will be disabled for that, decryption may still be needed, causing
116 * another bio_post_read_ctx to be allocated. So to guarantee that
117 * mempool_alloc() never deadlocks we must free the current ctx first.
118 * This is safe because verity is the last post-read step.
119 */
120 BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
121 mempool_free(ctx, bio_post_read_ctx_pool);
122 bio->bi_private = NULL;
123
124 fsverity_verify_bio(bio);
125
126 __read_end_io(bio);
127 }
128
bio_post_read_processing(struct bio_post_read_ctx * ctx)129 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
130 {
131 /*
132 * We use different work queues for decryption and for verity because
133 * verity may require reading metadata pages that need decryption, and
134 * we shouldn't recurse to the same workqueue.
135 */
136 switch (++ctx->cur_step) {
137 case STEP_DECRYPT:
138 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
139 INIT_WORK(&ctx->work, decrypt_work);
140 fscrypt_enqueue_decrypt_work(&ctx->work);
141 return;
142 }
143 ctx->cur_step++;
144 fallthrough;
145 case STEP_VERITY:
146 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
147 INIT_WORK(&ctx->work, verity_work);
148 fsverity_enqueue_verify_work(&ctx->work);
149 return;
150 }
151 ctx->cur_step++;
152 fallthrough;
153 default:
154 __read_end_io(ctx->bio);
155 }
156 }
157
bio_post_read_required(struct bio * bio)158 static bool bio_post_read_required(struct bio *bio)
159 {
160 return bio->bi_private && !bio->bi_status;
161 }
162
163 /*
164 * I/O completion handler for multipage BIOs.
165 *
166 * The mpage code never puts partial pages into a BIO (except for end-of-file).
167 * If a page does not map to a contiguous run of blocks then it simply falls
168 * back to block_read_full_folio().
169 *
170 * Why is this? If a page's completion depends on a number of different BIOs
171 * which can complete in any order (or at the same time) then determining the
172 * status of that page is hard. See end_buffer_async_read() for the details.
173 * There is no point in duplicating all that complexity.
174 */
mpage_end_io(struct bio * bio)175 static void mpage_end_io(struct bio *bio)
176 {
177 if (bio_post_read_required(bio)) {
178 struct bio_post_read_ctx *ctx = bio->bi_private;
179
180 ctx->cur_step = STEP_INITIAL;
181 bio_post_read_processing(ctx);
182 return;
183 }
184 __read_end_io(bio);
185 }
186
ext4_need_verity(const struct inode * inode,pgoff_t idx)187 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
188 {
189 return fsverity_active(inode) &&
190 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
191 }
192
ext4_set_bio_post_read_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx)193 static void ext4_set_bio_post_read_ctx(struct bio *bio,
194 const struct inode *inode,
195 pgoff_t first_idx)
196 {
197 unsigned int post_read_steps = 0;
198
199 if (fscrypt_inode_uses_fs_layer_crypto(inode))
200 post_read_steps |= 1 << STEP_DECRYPT;
201
202 if (ext4_need_verity(inode, first_idx))
203 post_read_steps |= 1 << STEP_VERITY;
204
205 if (post_read_steps) {
206 /* Due to the mempool, this never fails. */
207 struct bio_post_read_ctx *ctx =
208 mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
209
210 ctx->bio = bio;
211 ctx->enabled_steps = post_read_steps;
212 bio->bi_private = ctx;
213 }
214 }
215
ext4_readpage_limit(struct inode * inode)216 static inline loff_t ext4_readpage_limit(struct inode *inode)
217 {
218 if (IS_ENABLED(CONFIG_FS_VERITY) &&
219 (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
220 return inode->i_sb->s_maxbytes;
221
222 return i_size_read(inode);
223 }
224
ext4_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)225 int ext4_mpage_readpages(struct inode *inode,
226 struct readahead_control *rac, struct page *page)
227 {
228 struct bio *bio = NULL;
229 sector_t last_block_in_bio = 0;
230
231 const unsigned blkbits = inode->i_blkbits;
232 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
233 const unsigned blocksize = 1 << blkbits;
234 sector_t next_block;
235 sector_t block_in_file;
236 sector_t last_block;
237 sector_t last_block_in_file;
238 sector_t blocks[MAX_BUF_PER_PAGE];
239 unsigned page_block;
240 struct block_device *bdev = inode->i_sb->s_bdev;
241 int length;
242 unsigned relative_block = 0;
243 struct ext4_map_blocks map;
244 unsigned int nr_pages = rac ? readahead_count(rac) : 1;
245
246 map.m_pblk = 0;
247 map.m_lblk = 0;
248 map.m_len = 0;
249 map.m_flags = 0;
250
251 for (; nr_pages; nr_pages--) {
252 int fully_mapped = 1;
253 unsigned first_hole = blocks_per_page;
254
255 if (rac) {
256 page = readahead_page(rac);
257 prefetchw(&page->flags);
258 }
259
260 if (page_has_buffers(page))
261 goto confused;
262
263 block_in_file = next_block =
264 (sector_t)page->index << (PAGE_SHIFT - blkbits);
265 last_block = block_in_file + nr_pages * blocks_per_page;
266 last_block_in_file = (ext4_readpage_limit(inode) +
267 blocksize - 1) >> blkbits;
268 if (last_block > last_block_in_file)
269 last_block = last_block_in_file;
270 page_block = 0;
271
272 /*
273 * Map blocks using the previous result first.
274 */
275 if ((map.m_flags & EXT4_MAP_MAPPED) &&
276 block_in_file > map.m_lblk &&
277 block_in_file < (map.m_lblk + map.m_len)) {
278 unsigned map_offset = block_in_file - map.m_lblk;
279 unsigned last = map.m_len - map_offset;
280
281 for (relative_block = 0; ; relative_block++) {
282 if (relative_block == last) {
283 /* needed? */
284 map.m_flags &= ~EXT4_MAP_MAPPED;
285 break;
286 }
287 if (page_block == blocks_per_page)
288 break;
289 blocks[page_block] = map.m_pblk + map_offset +
290 relative_block;
291 page_block++;
292 block_in_file++;
293 }
294 }
295
296 /*
297 * Then do more ext4_map_blocks() calls until we are
298 * done with this page.
299 */
300 while (page_block < blocks_per_page) {
301 if (block_in_file < last_block) {
302 map.m_lblk = block_in_file;
303 map.m_len = last_block - block_in_file;
304
305 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
306 set_error_page:
307 SetPageError(page);
308 zero_user_segment(page, 0,
309 PAGE_SIZE);
310 unlock_page(page);
311 goto next_page;
312 }
313 }
314 if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
315 fully_mapped = 0;
316 if (first_hole == blocks_per_page)
317 first_hole = page_block;
318 page_block++;
319 block_in_file++;
320 continue;
321 }
322 if (first_hole != blocks_per_page)
323 goto confused; /* hole -> non-hole */
324
325 /* Contiguous blocks? */
326 if (page_block && blocks[page_block-1] != map.m_pblk-1)
327 goto confused;
328 for (relative_block = 0; ; relative_block++) {
329 if (relative_block == map.m_len) {
330 /* needed? */
331 map.m_flags &= ~EXT4_MAP_MAPPED;
332 break;
333 } else if (page_block == blocks_per_page)
334 break;
335 blocks[page_block] = map.m_pblk+relative_block;
336 page_block++;
337 block_in_file++;
338 }
339 }
340 if (first_hole != blocks_per_page) {
341 zero_user_segment(page, first_hole << blkbits,
342 PAGE_SIZE);
343 if (first_hole == 0) {
344 if (ext4_need_verity(inode, page->index) &&
345 !fsverity_verify_page(page))
346 goto set_error_page;
347 SetPageUptodate(page);
348 unlock_page(page);
349 goto next_page;
350 }
351 } else if (fully_mapped) {
352 SetPageMappedToDisk(page);
353 }
354
355 /*
356 * This page will go to BIO. Do we need to send this
357 * BIO off first?
358 */
359 if (bio && (last_block_in_bio != blocks[0] - 1 ||
360 !fscrypt_mergeable_bio(bio, inode, next_block))) {
361 submit_and_realloc:
362 submit_bio(bio);
363 bio = NULL;
364 }
365 if (bio == NULL) {
366 /*
367 * bio_alloc will _always_ be able to allocate a bio if
368 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
369 */
370 bio = bio_alloc(bdev, bio_max_segs(nr_pages),
371 REQ_OP_READ, GFP_KERNEL);
372 fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
373 GFP_KERNEL);
374 ext4_set_bio_post_read_ctx(bio, inode, page->index);
375 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
376 bio->bi_end_io = mpage_end_io;
377 if (rac)
378 bio->bi_opf |= REQ_RAHEAD;
379 }
380
381 length = first_hole << blkbits;
382 if (bio_add_page(bio, page, length, 0) < length)
383 goto submit_and_realloc;
384
385 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
386 (relative_block == map.m_len)) ||
387 (first_hole != blocks_per_page)) {
388 submit_bio(bio);
389 bio = NULL;
390 } else
391 last_block_in_bio = blocks[blocks_per_page - 1];
392 goto next_page;
393 confused:
394 if (bio) {
395 submit_bio(bio);
396 bio = NULL;
397 }
398 if (!PageUptodate(page))
399 block_read_full_folio(page_folio(page), ext4_get_block);
400 else
401 unlock_page(page);
402 next_page:
403 if (rac)
404 put_page(page);
405 }
406 if (bio)
407 submit_bio(bio);
408 return 0;
409 }
410
ext4_init_post_read_processing(void)411 int __init ext4_init_post_read_processing(void)
412 {
413 bio_post_read_ctx_cache =
414 kmem_cache_create("ext4_bio_post_read_ctx",
415 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
416 if (!bio_post_read_ctx_cache)
417 goto fail;
418 bio_post_read_ctx_pool =
419 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
420 bio_post_read_ctx_cache);
421 if (!bio_post_read_ctx_pool)
422 goto fail_free_cache;
423 return 0;
424
425 fail_free_cache:
426 kmem_cache_destroy(bio_post_read_ctx_cache);
427 fail:
428 return -ENOMEM;
429 }
430
ext4_exit_post_read_processing(void)431 void ext4_exit_post_read_processing(void)
432 {
433 mempool_destroy(bio_post_read_ctx_pool);
434 kmem_cache_destroy(bio_post_read_ctx_cache);
435 }
436