1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
29
30 /*
31 * MUSTDO:
32 * - test ext4_ext_search_left() and ext4_ext_search_right()
33 * - search for metadata in few groups
34 *
35 * TODO v4:
36 * - normalization should take into account whether file is still open
37 * - discard preallocations if no free space left (policy?)
38 * - don't normalize tails
39 * - quota
40 * - reservation for superuser
41 *
42 * TODO v3:
43 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
44 * - track min/max extents in each group for better group selection
45 * - mb_mark_used() may allocate chunk right after splitting buddy
46 * - tree of groups sorted by number of free blocks
47 * - error handling
48 */
49
50 /*
51 * The allocation request involve request for multiple number of blocks
52 * near to the goal(block) value specified.
53 *
54 * During initialization phase of the allocator we decide to use the
55 * group preallocation or inode preallocation depending on the size of
56 * the file. The size of the file could be the resulting file size we
57 * would have after allocation, or the current file size, which ever
58 * is larger. If the size is less than sbi->s_mb_stream_request we
59 * select to use the group preallocation. The default value of
60 * s_mb_stream_request is 16 blocks. This can also be tuned via
61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62 * terms of number of blocks.
63 *
64 * The main motivation for having small file use group preallocation is to
65 * ensure that we have small files closer together on the disk.
66 *
67 * First stage the allocator looks at the inode prealloc list,
68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69 * spaces for this particular inode. The inode prealloc space is
70 * represented as:
71 *
72 * pa_lstart -> the logical start block for this prealloc space
73 * pa_pstart -> the physical start block for this prealloc space
74 * pa_len -> length for this prealloc space (in clusters)
75 * pa_free -> free space available in this prealloc space (in clusters)
76 *
77 * The inode preallocation space is used looking at the _logical_ start
78 * block. If only the logical file block falls within the range of prealloc
79 * space we will consume the particular prealloc space. This makes sure that
80 * we have contiguous physical blocks representing the file blocks
81 *
82 * The important thing to be noted in case of inode prealloc space is that
83 * we don't modify the values associated to inode prealloc space except
84 * pa_free.
85 *
86 * If we are not able to find blocks in the inode prealloc space and if we
87 * have the group allocation flag set then we look at the locality group
88 * prealloc space. These are per CPU prealloc list represented as
89 *
90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 *
92 * The reason for having a per cpu locality group is to reduce the contention
93 * between CPUs. It is possible to get scheduled at this point.
94 *
95 * The locality group prealloc space is used looking at whether we have
96 * enough free space (pa_free) within the prealloc space.
97 *
98 * If we can't allocate blocks via inode prealloc or/and locality group
99 * prealloc then we look at the buddy cache. The buddy cache is represented
100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101 * mapped to the buddy and bitmap information regarding different
102 * groups. The buddy information is attached to buddy cache inode so that
103 * we can access them through the page cache. The information regarding
104 * each group is loaded via ext4_mb_load_buddy. The information involve
105 * block bitmap and buddy information. The information are stored in the
106 * inode as:
107 *
108 * { page }
109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 *
111 *
112 * one block each for bitmap and buddy information. So for each group we
113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114 * blocksize) blocks. So it can have information regarding groups_per_page
115 * which is blocks_per_page/2
116 *
117 * The buddy cache inode is not stored on disk. The inode is thrown
118 * away when the filesystem is unmounted.
119 *
120 * We look for count number of blocks in the buddy cache. If we were able
121 * to locate that many free blocks we return with additional information
122 * regarding rest of the contiguous physical block available
123 *
124 * Before allocating blocks via buddy cache we normalize the request
125 * blocks. This ensure we ask for more blocks that we needed. The extra
126 * blocks that we get after allocation is added to the respective prealloc
127 * list. In case of inode preallocation we follow a list of heuristics
128 * based on file size. This can be found in ext4_mb_normalize_request. If
129 * we are doing a group prealloc we try to normalize the request to
130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
131 * dependent on the cluster size; for non-bigalloc file systems, it is
132 * 512 blocks. This can be tuned via
133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 * terms of number of blocks. If we have mounted the file system with -O
135 * stripe=<value> option the group prealloc request is normalized to the
136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
137 * greater than the default mb_group_prealloc.
138 *
139 * The regular allocator (using the buddy cache) supports a few tunables.
140 *
141 * /sys/fs/ext4/<partition>/mb_min_to_scan
142 * /sys/fs/ext4/<partition>/mb_max_to_scan
143 * /sys/fs/ext4/<partition>/mb_order2_req
144 *
145 * The regular allocator uses buddy scan only if the request len is power of
146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147 * value of s_mb_order2_reqs can be tuned via
148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
150 * stripe size. This should result in better allocation on RAID setups. If
151 * not, we search in the specific group using bitmap for best extents. The
152 * tunable min_to_scan and max_to_scan control the behaviour here.
153 * min_to_scan indicate how long the mballoc __must__ look for a best
154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 * best extent in the found extents. Searching for the blocks starts with
156 * the group specified as the goal value in allocation context via
157 * ac_g_ex. Each group is first checked based on the criteria whether it
158 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * checked.
160 *
161 * Both the prealloc space are getting populated as above. So for the first
162 * request we will hit the buddy cache which will result in this prealloc
163 * space getting filled. The prealloc space is then later used for the
164 * subsequent request.
165 */
166
167 /*
168 * mballoc operates on the following data:
169 * - on-disk bitmap
170 * - in-core buddy (actually includes buddy and bitmap)
171 * - preallocation descriptors (PAs)
172 *
173 * there are two types of preallocations:
174 * - inode
175 * assiged to specific inode and can be used for this inode only.
176 * it describes part of inode's space preallocated to specific
177 * physical blocks. any block from that preallocated can be used
178 * independent. the descriptor just tracks number of blocks left
179 * unused. so, before taking some block from descriptor, one must
180 * make sure corresponded logical block isn't allocated yet. this
181 * also means that freeing any block within descriptor's range
182 * must discard all preallocated blocks.
183 * - locality group
184 * assigned to specific locality group which does not translate to
185 * permanent set of inodes: inode can join and leave group. space
186 * from this type of preallocation can be used for any inode. thus
187 * it's consumed from the beginning to the end.
188 *
189 * relation between them can be expressed as:
190 * in-core buddy = on-disk bitmap + preallocation descriptors
191 *
192 * this mean blocks mballoc considers used are:
193 * - allocated blocks (persistent)
194 * - preallocated blocks (non-persistent)
195 *
196 * consistency in mballoc world means that at any time a block is either
197 * free or used in ALL structures. notice: "any time" should not be read
198 * literally -- time is discrete and delimited by locks.
199 *
200 * to keep it simple, we don't use block numbers, instead we count number of
201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202 *
203 * all operations can be expressed as:
204 * - init buddy: buddy = on-disk + PAs
205 * - new PA: buddy += N; PA = N
206 * - use inode PA: on-disk += N; PA -= N
207 * - discard inode PA buddy -= on-disk - PA; PA = 0
208 * - use locality group PA on-disk += N; PA -= N
209 * - discard locality group PA buddy -= PA; PA = 0
210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211 * is used in real operation because we can't know actual used
212 * bits from PA, only from on-disk bitmap
213 *
214 * if we follow this strict logic, then all operations above should be atomic.
215 * given some of them can block, we'd have to use something like semaphores
216 * killing performance on high-end SMP hardware. let's try to relax it using
217 * the following knowledge:
218 * 1) if buddy is referenced, it's already initialized
219 * 2) while block is used in buddy and the buddy is referenced,
220 * nobody can re-allocate that block
221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222 * bit set and PA claims same block, it's OK. IOW, one can set bit in
223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * block
225 *
226 * so, now we're building a concurrency table:
227 * - init buddy vs.
228 * - new PA
229 * blocks for PA are allocated in the buddy, buddy must be referenced
230 * until PA is linked to allocation group to avoid concurrent buddy init
231 * - use inode PA
232 * we need to make sure that either on-disk bitmap or PA has uptodate data
233 * given (3) we care that PA-=N operation doesn't interfere with init
234 * - discard inode PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - use locality group PA
237 * again PA-=N must be serialized with init
238 * - discard locality group PA
239 * the simplest way would be to have buddy initialized by the discard
240 * - new PA vs.
241 * - use inode PA
242 * i_data_sem serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * some mutex should serialize them
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 * - use inode PA
250 * - use inode PA
251 * i_data_sem or another mutex should serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * nothing wrong here -- they're different PAs covering different blocks
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 *
259 * now we're ready to make few consequences:
260 * - PA is referenced and while it is no discard is possible
261 * - PA is referenced until block isn't marked in on-disk bitmap
262 * - PA changes only after on-disk bitmap
263 * - discard must not compete with init. either init is done before
264 * any discard or they're serialized somehow
265 * - buddy init as sum of on-disk bitmap and PAs is done atomically
266 *
267 * a special case when we've used PA to emptiness. no need to modify buddy
268 * in this case, but we should care about concurrent init
269 *
270 */
271
272 /*
273 * Logic in few words:
274 *
275 * - allocation:
276 * load group
277 * find blocks
278 * mark bits in on-disk bitmap
279 * release group
280 *
281 * - use preallocation:
282 * find proper PA (per-inode or group)
283 * load group
284 * mark bits in on-disk bitmap
285 * release group
286 * release PA
287 *
288 * - free:
289 * load group
290 * mark bits in on-disk bitmap
291 * release group
292 *
293 * - discard preallocations in group:
294 * mark PAs deleted
295 * move them onto local list
296 * load on-disk bitmap
297 * load group
298 * remove PA from object (inode or locality group)
299 * mark free blocks in-core
300 *
301 * - discard inode's preallocations:
302 */
303
304 /*
305 * Locking rules
306 *
307 * Locks:
308 * - bitlock on a group (group)
309 * - object (inode/locality) (object)
310 * - per-pa lock (pa)
311 *
312 * Paths:
313 * - new pa
314 * object
315 * group
316 *
317 * - find and use pa:
318 * pa
319 *
320 * - release consumed pa:
321 * pa
322 * group
323 * object
324 *
325 * - generate in-core bitmap:
326 * group
327 * pa
328 *
329 * - discard all for given object (inode, locality group):
330 * object
331 * pa
332 * group
333 *
334 * - discard all for given group:
335 * group
336 * pa
337 * group
338 * object
339 *
340 */
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
344
345 /* We create slab caches for groupinfo data structures based on the
346 * superblock block size. There will be one per mounted filesystem for
347 * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
350
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 };
356
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 struct ext4_journal_cb_entry *jce, int rc);
363
mb_correct_addr_and_bit(int * bit,void * addr)364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
365 {
366 #if BITS_PER_LONG == 64
367 *bit += ((unsigned long) addr & 7UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 *bit += ((unsigned long) addr & 3UL) << 3;
371 addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 return addr;
376 }
377
mb_test_bit(int bit,void * addr)378 static inline int mb_test_bit(int bit, void *addr)
379 {
380 /*
381 * ext4_test_bit on architecture like powerpc
382 * needs unsigned long aligned address
383 */
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 return ext4_test_bit(bit, addr);
386 }
387
mb_set_bit(int bit,void * addr)388 static inline void mb_set_bit(int bit, void *addr)
389 {
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_set_bit(bit, addr);
392 }
393
mb_clear_bit(int bit,void * addr)394 static inline void mb_clear_bit(int bit, void *addr)
395 {
396 addr = mb_correct_addr_and_bit(&bit, addr);
397 ext4_clear_bit(bit, addr);
398 }
399
mb_find_next_zero_bit(void * addr,int max,int start)400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
401 {
402 int fix = 0, ret, tmpmax;
403 addr = mb_correct_addr_and_bit(&fix, addr);
404 tmpmax = max + fix;
405 start += fix;
406
407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 if (ret > max)
409 return max;
410 return ret;
411 }
412
mb_find_next_bit(void * addr,int max,int start)413 static inline int mb_find_next_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
427 {
428 char *bb;
429
430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 BUG_ON(max == NULL);
432
433 if (order > e4b->bd_blkbits + 1) {
434 *max = 0;
435 return NULL;
436 }
437
438 /* at order 0 we see each particular block */
439 if (order == 0) {
440 *max = 1 << (e4b->bd_blkbits + 3);
441 return e4b->bd_bitmap;
442 }
443
444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
446
447 return bb;
448 }
449
450 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 int first, int count)
453 {
454 int i;
455 struct super_block *sb = e4b->bd_sb;
456
457 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 return;
459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 for (i = 0; i < count; i++) {
461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 ext4_fsblk_t blocknr;
463
464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 ext4_grp_locked_error(sb, e4b->bd_group,
467 inode ? inode->i_ino : 0,
468 blocknr,
469 "freeing block already freed "
470 "(bit %u)",
471 first + i);
472 }
473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 }
475 }
476
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
478 {
479 int i;
480
481 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 return;
483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 for (i = 0; i < count; i++) {
485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
491 {
492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 unsigned char *b1, *b2;
494 int i;
495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 b2 = (unsigned char *) bitmap;
497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 if (b1[i] != b2[i]) {
499 ext4_msg(e4b->bd_sb, KERN_ERR,
500 "corruption in group %u "
501 "at byte %u(%u): %x in copy != %x "
502 "on disk/prealloc",
503 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 BUG();
505 }
506 }
507 }
508 }
509
510 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)511 static inline void mb_free_blocks_double(struct inode *inode,
512 struct ext4_buddy *e4b, int first, int count)
513 {
514 return;
515 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 int first, int count)
518 {
519 return;
520 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
522 {
523 return;
524 }
525 #endif
526
527 #ifdef AGGRESSIVE_CHECK
528
529 #define MB_CHECK_ASSERT(assert) \
530 do { \
531 if (!(assert)) { \
532 printk(KERN_EMERG \
533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
534 function, file, line, # assert); \
535 BUG(); \
536 } \
537 } while (0)
538
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 const char *function, int line)
541 {
542 struct super_block *sb = e4b->bd_sb;
543 int order = e4b->bd_blkbits + 1;
544 int max;
545 int max2;
546 int i;
547 int j;
548 int k;
549 int count;
550 struct ext4_group_info *grp;
551 int fragments = 0;
552 int fstart;
553 struct list_head *cur;
554 void *buddy;
555 void *buddy2;
556
557 {
558 static int mb_check_counter;
559 if (mb_check_counter++ % 100 != 0)
560 return 0;
561 }
562
563 while (order > 1) {
564 buddy = mb_find_buddy(e4b, order, &max);
565 MB_CHECK_ASSERT(buddy);
566 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 MB_CHECK_ASSERT(buddy2);
568 MB_CHECK_ASSERT(buddy != buddy2);
569 MB_CHECK_ASSERT(max * 2 == max2);
570
571 count = 0;
572 for (i = 0; i < max; i++) {
573
574 if (mb_test_bit(i, buddy)) {
575 /* only single bit in buddy2 may be 1 */
576 if (!mb_test_bit(i << 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit((i<<1)+1, buddy2));
579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 MB_CHECK_ASSERT(
581 mb_test_bit(i << 1, buddy2));
582 }
583 continue;
584 }
585
586 /* both bits in buddy2 must be 1 */
587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
589
590 for (j = 0; j < (1 << order); j++) {
591 k = (i * (1 << order)) + j;
592 MB_CHECK_ASSERT(
593 !mb_test_bit(k, e4b->bd_bitmap));
594 }
595 count++;
596 }
597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 order--;
599 }
600
601 fstart = -1;
602 buddy = mb_find_buddy(e4b, 0, &max);
603 for (i = 0; i < max; i++) {
604 if (!mb_test_bit(i, buddy)) {
605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 if (fstart == -1) {
607 fragments++;
608 fstart = i;
609 }
610 continue;
611 }
612 fstart = -1;
613 /* check used bits only */
614 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 buddy2 = mb_find_buddy(e4b, j, &max2);
616 k = i >> j;
617 MB_CHECK_ASSERT(k < max2);
618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
619 }
620 }
621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
623
624 grp = ext4_get_group_info(sb, e4b->bd_group);
625 list_for_each(cur, &grp->bb_prealloc_list) {
626 ext4_group_t groupnr;
627 struct ext4_prealloc_space *pa;
628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 for (i = 0; i < pa->pa_len; i++)
632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
633 }
634 return 0;
635 }
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
638 __FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
642
643 /*
644 * Divide blocks started from @first with length @len into
645 * smaller chunks with power of 2 blocks.
646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647 * then increase bb_counters[] for corresponded chunk size.
648 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 struct ext4_group_info *grp)
652 {
653 struct ext4_sb_info *sbi = EXT4_SB(sb);
654 ext4_grpblk_t min;
655 ext4_grpblk_t max;
656 ext4_grpblk_t chunk;
657 unsigned short border;
658
659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660
661 border = 2 << sb->s_blocksize_bits;
662
663 while (len > 0) {
664 /* find how many blocks can be covered since this position */
665 max = ffs(first | border) - 1;
666
667 /* find how many blocks of power 2 we need to mark */
668 min = fls(len) - 1;
669
670 if (max < min)
671 min = max;
672 chunk = 1 << min;
673
674 /* mark multiblock chunks only */
675 grp->bb_counters[min]++;
676 if (min > 0)
677 mb_clear_bit(first >> min,
678 buddy + sbi->s_mb_offsets[min]);
679
680 len -= chunk;
681 first += chunk;
682 }
683 }
684
685 /*
686 * Cache the order of the largest free extent we have available in this block
687 * group.
688 */
689 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
691 {
692 int i;
693 int bits;
694
695 grp->bb_largest_free_order = -1; /* uninit */
696
697 bits = sb->s_blocksize_bits + 1;
698 for (i = bits; i >= 0; i--) {
699 if (grp->bb_counters[i] > 0) {
700 grp->bb_largest_free_order = i;
701 break;
702 }
703 }
704 }
705
706 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)707 void ext4_mb_generate_buddy(struct super_block *sb,
708 void *buddy, void *bitmap, ext4_group_t group)
709 {
710 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 ext4_grpblk_t i = 0;
713 ext4_grpblk_t first;
714 ext4_grpblk_t len;
715 unsigned free = 0;
716 unsigned fragments = 0;
717 unsigned long long period = get_cycles();
718
719 /* initialize buddy from bitmap which is aggregation
720 * of on-disk bitmap and preallocations */
721 i = mb_find_next_zero_bit(bitmap, max, 0);
722 grp->bb_first_free = i;
723 while (i < max) {
724 fragments++;
725 first = i;
726 i = mb_find_next_bit(bitmap, max, i);
727 len = i - first;
728 free += len;
729 if (len > 1)
730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 else
732 grp->bb_counters[0]++;
733 if (i < max)
734 i = mb_find_next_zero_bit(bitmap, max, i);
735 }
736 grp->bb_fragments = fragments;
737
738 if (free != grp->bb_free) {
739 ext4_grp_locked_error(sb, group, 0, 0,
740 "%u clusters in bitmap, %u in gd",
741 free, grp->bb_free);
742 /*
743 * If we intent to continue, we consider group descritor
744 * corrupt and update bb_free using bitmap value
745 */
746 grp->bb_free = free;
747 }
748 mb_set_largest_free_order(sb, grp);
749
750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
751
752 period = get_cycles() - period;
753 spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 EXT4_SB(sb)->s_mb_buddies_generated++;
755 EXT4_SB(sb)->s_mb_generation_time += period;
756 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
757 }
758
759 /* The buddy information is attached the buddy cache inode
760 * for convenience. The information regarding each group
761 * is loaded via ext4_mb_load_buddy. The information involve
762 * block bitmap and buddy information. The information are
763 * stored in the inode as
764 *
765 * { page }
766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 *
768 *
769 * one block each for bitmap and buddy information.
770 * So for each group we take up 2 blocks. A page can
771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
772 * So it can have information regarding groups_per_page which
773 * is blocks_per_page/2
774 *
775 * Locking note: This routine takes the block group lock of all groups
776 * for this page; do not hold this lock when calling this routine!
777 */
778
ext4_mb_init_cache(struct page * page,char * incore)779 static int ext4_mb_init_cache(struct page *page, char *incore)
780 {
781 ext4_group_t ngroups;
782 int blocksize;
783 int blocks_per_page;
784 int groups_per_page;
785 int err = 0;
786 int i;
787 ext4_group_t first_group, group;
788 int first_block;
789 struct super_block *sb;
790 struct buffer_head *bhs;
791 struct buffer_head **bh;
792 struct inode *inode;
793 char *data;
794 char *bitmap;
795 struct ext4_group_info *grinfo;
796
797 mb_debug(1, "init page %lu\n", page->index);
798
799 inode = page->mapping->host;
800 sb = inode->i_sb;
801 ngroups = ext4_get_groups_count(sb);
802 blocksize = 1 << inode->i_blkbits;
803 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
804
805 groups_per_page = blocks_per_page >> 1;
806 if (groups_per_page == 0)
807 groups_per_page = 1;
808
809 /* allocate buffer_heads to read bitmaps */
810 if (groups_per_page > 1) {
811 i = sizeof(struct buffer_head *) * groups_per_page;
812 bh = kzalloc(i, GFP_NOFS);
813 if (bh == NULL) {
814 err = -ENOMEM;
815 goto out;
816 }
817 } else
818 bh = &bhs;
819
820 first_group = page->index * blocks_per_page / 2;
821
822 /* read all groups the page covers into the cache */
823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 if (group >= ngroups)
825 break;
826
827 grinfo = ext4_get_group_info(sb, group);
828 /*
829 * If page is uptodate then we came here after online resize
830 * which added some new uninitialized group info structs, so
831 * we must skip all initialized uptodate buddies on the page,
832 * which may be currently in use by an allocating task.
833 */
834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 bh[i] = NULL;
836 continue;
837 }
838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 err = -ENOMEM;
840 goto out;
841 }
842 mb_debug(1, "read bitmap for group %u\n", group);
843 }
844
845 /* wait for I/O completion */
846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 err = -EIO;
849 goto out;
850 }
851 }
852
853 first_block = page->index * blocks_per_page;
854 for (i = 0; i < blocks_per_page; i++) {
855 int group;
856
857 group = (first_block + i) >> 1;
858 if (group >= ngroups)
859 break;
860
861 if (!bh[group - first_group])
862 /* skip initialized uptodate buddy */
863 continue;
864
865 /*
866 * data carry information regarding this
867 * particular group in the format specified
868 * above
869 *
870 */
871 data = page_address(page) + (i * blocksize);
872 bitmap = bh[group - first_group]->b_data;
873
874 /*
875 * We place the buddy block and bitmap block
876 * close together
877 */
878 if ((first_block + i) & 1) {
879 /* this is block of buddy */
880 BUG_ON(incore == NULL);
881 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
883 trace_ext4_mb_buddy_bitmap_load(sb, group);
884 grinfo = ext4_get_group_info(sb, group);
885 grinfo->bb_fragments = 0;
886 memset(grinfo->bb_counters, 0,
887 sizeof(*grinfo->bb_counters) *
888 (sb->s_blocksize_bits+2));
889 /*
890 * incore got set to the group block bitmap below
891 */
892 ext4_lock_group(sb, group);
893 /* init the buddy */
894 memset(data, 0xff, blocksize);
895 ext4_mb_generate_buddy(sb, data, incore, group);
896 ext4_unlock_group(sb, group);
897 incore = NULL;
898 } else {
899 /* this is block of bitmap */
900 BUG_ON(incore != NULL);
901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 group, page->index, i * blocksize);
903 trace_ext4_mb_bitmap_load(sb, group);
904
905 /* see comments in ext4_mb_put_pa() */
906 ext4_lock_group(sb, group);
907 memcpy(data, bitmap, blocksize);
908
909 /* mark all preallocated blks used in in-core bitmap */
910 ext4_mb_generate_from_pa(sb, data, group);
911 ext4_mb_generate_from_freelist(sb, data, group);
912 ext4_unlock_group(sb, group);
913
914 /* set incore so that the buddy information can be
915 * generated using this
916 */
917 incore = data;
918 }
919 }
920 SetPageUptodate(page);
921
922 out:
923 if (bh) {
924 for (i = 0; i < groups_per_page; i++)
925 brelse(bh[i]);
926 if (bh != &bhs)
927 kfree(bh);
928 }
929 return err;
930 }
931
932 /*
933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
934 * on the same buddy page doesn't happen whild holding the buddy page lock.
935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 ext4_group_t group, struct ext4_buddy *e4b)
940 {
941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 int block, pnum, poff;
943 int blocks_per_page;
944 struct page *page;
945
946 e4b->bd_buddy_page = NULL;
947 e4b->bd_bitmap_page = NULL;
948
949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
950 /*
951 * the buddy cache inode stores the block bitmap
952 * and buddy information in consecutive blocks.
953 * So for each group we need two blocks.
954 */
955 block = group * 2;
956 pnum = block / blocks_per_page;
957 poff = block % blocks_per_page;
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 if (!page)
960 return -EIO;
961 BUG_ON(page->mapping != inode->i_mapping);
962 e4b->bd_bitmap_page = page;
963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
964
965 if (blocks_per_page >= 2) {
966 /* buddy and bitmap are on the same page */
967 return 0;
968 }
969
970 block++;
971 pnum = block / blocks_per_page;
972 poff = block % blocks_per_page;
973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 if (!page)
975 return -EIO;
976 BUG_ON(page->mapping != inode->i_mapping);
977 e4b->bd_buddy_page = page;
978 return 0;
979 }
980
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 if (e4b->bd_bitmap_page) {
984 unlock_page(e4b->bd_bitmap_page);
985 page_cache_release(e4b->bd_bitmap_page);
986 }
987 if (e4b->bd_buddy_page) {
988 unlock_page(e4b->bd_buddy_page);
989 page_cache_release(e4b->bd_buddy_page);
990 }
991 }
992
993 /*
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
997 */
998 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001
1002 struct ext4_group_info *this_grp;
1003 struct ext4_buddy e4b;
1004 struct page *page;
1005 int ret = 0;
1006
1007 mb_debug(1, "init group %u\n", group);
1008 this_grp = ext4_get_group_info(sb, group);
1009 /*
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1015 */
1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 /*
1019 * somebody initialized the group
1020 * return without doing anything
1021 */
1022 goto err;
1023 }
1024
1025 page = e4b.bd_bitmap_page;
1026 ret = ext4_mb_init_cache(page, NULL);
1027 if (ret)
1028 goto err;
1029 if (!PageUptodate(page)) {
1030 ret = -EIO;
1031 goto err;
1032 }
1033 mark_page_accessed(page);
1034
1035 if (e4b.bd_buddy_page == NULL) {
1036 /*
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1039 * init the buddy
1040 */
1041 ret = 0;
1042 goto err;
1043 }
1044 /* init buddy cache */
1045 page = e4b.bd_buddy_page;
1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 if (ret)
1048 goto err;
1049 if (!PageUptodate(page)) {
1050 ret = -EIO;
1051 goto err;
1052 }
1053 mark_page_accessed(page);
1054 err:
1055 ext4_mb_put_buddy_page_lock(&e4b);
1056 return ret;
1057 }
1058
1059 /*
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 struct ext4_buddy *e4b)
1067 {
1068 int blocks_per_page;
1069 int block;
1070 int pnum;
1071 int poff;
1072 struct page *page;
1073 int ret;
1074 struct ext4_group_info *grp;
1075 struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 struct inode *inode = sbi->s_buddy_cache;
1077
1078 mb_debug(1, "load group %u\n", group);
1079
1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 grp = ext4_get_group_info(sb, group);
1082
1083 e4b->bd_blkbits = sb->s_blocksize_bits;
1084 e4b->bd_info = grp;
1085 e4b->bd_sb = sb;
1086 e4b->bd_group = group;
1087 e4b->bd_buddy_page = NULL;
1088 e4b->bd_bitmap_page = NULL;
1089
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 /*
1092 * we need full data about the group
1093 * to make a good selection
1094 */
1095 ret = ext4_mb_init_group(sb, group);
1096 if (ret)
1097 return ret;
1098 }
1099
1100 /*
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1104 */
1105 block = group * 2;
1106 pnum = block / blocks_per_page;
1107 poff = block % blocks_per_page;
1108
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page = find_get_page(inode->i_mapping, pnum);
1112 if (page == NULL || !PageUptodate(page)) {
1113 if (page)
1114 /*
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1121 */
1122 page_cache_release(page);
1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 if (page) {
1125 BUG_ON(page->mapping != inode->i_mapping);
1126 if (!PageUptodate(page)) {
1127 ret = ext4_mb_init_cache(page, NULL);
1128 if (ret) {
1129 unlock_page(page);
1130 goto err;
1131 }
1132 mb_cmp_bitmaps(e4b, page_address(page) +
1133 (poff * sb->s_blocksize));
1134 }
1135 unlock_page(page);
1136 }
1137 }
1138 if (page == NULL || !PageUptodate(page)) {
1139 ret = -EIO;
1140 goto err;
1141 }
1142 e4b->bd_bitmap_page = page;
1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 mark_page_accessed(page);
1145
1146 block++;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1149
1150 page = find_get_page(inode->i_mapping, pnum);
1151 if (page == NULL || !PageUptodate(page)) {
1152 if (page)
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 }
1164 unlock_page(page);
1165 }
1166 }
1167 if (page == NULL || !PageUptodate(page)) {
1168 ret = -EIO;
1169 goto err;
1170 }
1171 e4b->bd_buddy_page = page;
1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 mark_page_accessed(page);
1174
1175 BUG_ON(e4b->bd_bitmap_page == NULL);
1176 BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178 return 0;
1179
1180 err:
1181 if (page)
1182 page_cache_release(page);
1183 if (e4b->bd_bitmap_page)
1184 page_cache_release(e4b->bd_bitmap_page);
1185 if (e4b->bd_buddy_page)
1186 page_cache_release(e4b->bd_buddy_page);
1187 e4b->bd_buddy = NULL;
1188 e4b->bd_bitmap = NULL;
1189 return ret;
1190 }
1191
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 if (e4b->bd_bitmap_page)
1195 page_cache_release(e4b->bd_bitmap_page);
1196 if (e4b->bd_buddy_page)
1197 page_cache_release(e4b->bd_buddy_page);
1198 }
1199
1200
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 int order = 1;
1204 void *bb;
1205
1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209 bb = e4b->bd_buddy;
1210 while (order <= e4b->bd_blkbits + 1) {
1211 block = block >> 1;
1212 if (!mb_test_bit(block, bb)) {
1213 /* this block is part of buddy of order 'order' */
1214 return order;
1215 }
1216 bb += 1 << (e4b->bd_blkbits - order);
1217 order++;
1218 }
1219 return 0;
1220 }
1221
mb_clear_bits(void * bm,int cur,int len)1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 __u32 *addr;
1225
1226 len = cur + len;
1227 while (cur < len) {
1228 if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr = bm + (cur >> 3);
1231 *addr = 0;
1232 cur += 32;
1233 continue;
1234 }
1235 mb_clear_bit(cur, bm);
1236 cur++;
1237 }
1238 }
1239
ext4_set_bits(void * bm,int cur,int len)1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 __u32 *addr;
1243
1244 len = cur + len;
1245 while (cur < len) {
1246 if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr = bm + (cur >> 3);
1249 *addr = 0xffffffff;
1250 cur += 32;
1251 continue;
1252 }
1253 mb_set_bit(cur, bm);
1254 cur++;
1255 }
1256 }
1257
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 int first, int count)
1260 {
1261 int block = 0;
1262 int max = 0;
1263 int order;
1264 void *buddy;
1265 void *buddy2;
1266 struct super_block *sb = e4b->bd_sb;
1267
1268 BUG_ON(first + count > (sb->s_blocksize << 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 mb_check_buddy(e4b);
1271 mb_free_blocks_double(inode, e4b, first, count);
1272
1273 e4b->bd_info->bb_free += count;
1274 if (first < e4b->bd_info->bb_first_free)
1275 e4b->bd_info->bb_first_free = first;
1276
1277 /* let's maintain fragments counter */
1278 if (first != 0)
1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 if (block && max)
1283 e4b->bd_info->bb_fragments--;
1284 else if (!block && !max)
1285 e4b->bd_info->bb_fragments++;
1286
1287 /* let's maintain buddy itself */
1288 while (count-- > 0) {
1289 block = first++;
1290 order = 0;
1291
1292 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 ext4_fsblk_t blocknr;
1294
1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 ext4_grp_locked_error(sb, e4b->bd_group,
1298 inode ? inode->i_ino : 0,
1299 blocknr,
1300 "freeing already freed block "
1301 "(bit %u)", block);
1302 }
1303 mb_clear_bit(block, e4b->bd_bitmap);
1304 e4b->bd_info->bb_counters[order]++;
1305
1306 /* start of the buddy */
1307 buddy = mb_find_buddy(e4b, order, &max);
1308
1309 do {
1310 block &= ~1UL;
1311 if (mb_test_bit(block, buddy) ||
1312 mb_test_bit(block + 1, buddy))
1313 break;
1314
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318 if (!buddy2)
1319 break;
1320
1321 if (order > 0) {
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block, buddy);
1325 mb_set_bit(block + 1, buddy);
1326 }
1327 e4b->bd_info->bb_counters[order]--;
1328 e4b->bd_info->bb_counters[order]--;
1329
1330 block = block >> 1;
1331 order++;
1332 e4b->bd_info->bb_counters[order]++;
1333
1334 mb_clear_bit(block, buddy2);
1335 buddy = buddy2;
1336 } while (1);
1337 }
1338 mb_set_largest_free_order(sb, e4b->bd_info);
1339 mb_check_buddy(e4b);
1340 }
1341
mb_find_extent(struct ext4_buddy * e4b,int order,int block,int needed,struct ext4_free_extent * ex)1342 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1343 int needed, struct ext4_free_extent *ex)
1344 {
1345 int next = block;
1346 int max;
1347 void *buddy;
1348
1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 BUG_ON(ex == NULL);
1351
1352 buddy = mb_find_buddy(e4b, order, &max);
1353 BUG_ON(buddy == NULL);
1354 BUG_ON(block >= max);
1355 if (mb_test_bit(block, buddy)) {
1356 ex->fe_len = 0;
1357 ex->fe_start = 0;
1358 ex->fe_group = 0;
1359 return 0;
1360 }
1361
1362 /* FIXME dorp order completely ? */
1363 if (likely(order == 0)) {
1364 /* find actual order */
1365 order = mb_find_order_for_block(e4b, block);
1366 block = block >> order;
1367 }
1368
1369 ex->fe_len = 1 << order;
1370 ex->fe_start = block << order;
1371 ex->fe_group = e4b->bd_group;
1372
1373 /* calc difference from given start */
1374 next = next - ex->fe_start;
1375 ex->fe_len -= next;
1376 ex->fe_start += next;
1377
1378 while (needed > ex->fe_len &&
1379 (buddy = mb_find_buddy(e4b, order, &max))) {
1380
1381 if (block + 1 >= max)
1382 break;
1383
1384 next = (block + 1) * (1 << order);
1385 if (mb_test_bit(next, e4b->bd_bitmap))
1386 break;
1387
1388 order = mb_find_order_for_block(e4b, next);
1389
1390 block = next >> order;
1391 ex->fe_len += 1 << order;
1392 }
1393
1394 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1395 return ex->fe_len;
1396 }
1397
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1398 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399 {
1400 int ord;
1401 int mlen = 0;
1402 int max = 0;
1403 int cur;
1404 int start = ex->fe_start;
1405 int len = ex->fe_len;
1406 unsigned ret = 0;
1407 int len0 = len;
1408 void *buddy;
1409
1410 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1411 BUG_ON(e4b->bd_group != ex->fe_group);
1412 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1413 mb_check_buddy(e4b);
1414 mb_mark_used_double(e4b, start, len);
1415
1416 e4b->bd_info->bb_free -= len;
1417 if (e4b->bd_info->bb_first_free == start)
1418 e4b->bd_info->bb_first_free += len;
1419
1420 /* let's maintain fragments counter */
1421 if (start != 0)
1422 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1423 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1424 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1425 if (mlen && max)
1426 e4b->bd_info->bb_fragments++;
1427 else if (!mlen && !max)
1428 e4b->bd_info->bb_fragments--;
1429
1430 /* let's maintain buddy itself */
1431 while (len) {
1432 ord = mb_find_order_for_block(e4b, start);
1433
1434 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1435 /* the whole chunk may be allocated at once! */
1436 mlen = 1 << ord;
1437 buddy = mb_find_buddy(e4b, ord, &max);
1438 BUG_ON((start >> ord) >= max);
1439 mb_set_bit(start >> ord, buddy);
1440 e4b->bd_info->bb_counters[ord]--;
1441 start += mlen;
1442 len -= mlen;
1443 BUG_ON(len < 0);
1444 continue;
1445 }
1446
1447 /* store for history */
1448 if (ret == 0)
1449 ret = len | (ord << 16);
1450
1451 /* we have to split large buddy */
1452 BUG_ON(ord <= 0);
1453 buddy = mb_find_buddy(e4b, ord, &max);
1454 mb_set_bit(start >> ord, buddy);
1455 e4b->bd_info->bb_counters[ord]--;
1456
1457 ord--;
1458 cur = (start >> ord) & ~1U;
1459 buddy = mb_find_buddy(e4b, ord, &max);
1460 mb_clear_bit(cur, buddy);
1461 mb_clear_bit(cur + 1, buddy);
1462 e4b->bd_info->bb_counters[ord]++;
1463 e4b->bd_info->bb_counters[ord]++;
1464 }
1465 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466
1467 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1468 mb_check_buddy(e4b);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * Must be called under group lock!
1475 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1476 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1477 struct ext4_buddy *e4b)
1478 {
1479 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1480 int ret;
1481
1482 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1483 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484
1485 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1486 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1487 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488
1489 /* preallocation can change ac_b_ex, thus we store actually
1490 * allocated blocks for history */
1491 ac->ac_f_ex = ac->ac_b_ex;
1492
1493 ac->ac_status = AC_STATUS_FOUND;
1494 ac->ac_tail = ret & 0xffff;
1495 ac->ac_buddy = ret >> 16;
1496
1497 /*
1498 * take the page reference. We want the page to be pinned
1499 * so that we don't get a ext4_mb_init_cache_call for this
1500 * group until we update the bitmap. That would mean we
1501 * double allocate blocks. The reference is dropped
1502 * in ext4_mb_release_context
1503 */
1504 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1505 get_page(ac->ac_bitmap_page);
1506 ac->ac_buddy_page = e4b->bd_buddy_page;
1507 get_page(ac->ac_buddy_page);
1508 /* store last allocated for subsequent stream allocation */
1509 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1510 spin_lock(&sbi->s_md_lock);
1511 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1512 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1513 spin_unlock(&sbi->s_md_lock);
1514 }
1515 }
1516
1517 /*
1518 * regular allocator, for general purposes allocation
1519 */
1520
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1521 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1522 struct ext4_buddy *e4b,
1523 int finish_group)
1524 {
1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 struct ext4_free_extent *bex = &ac->ac_b_ex;
1527 struct ext4_free_extent *gex = &ac->ac_g_ex;
1528 struct ext4_free_extent ex;
1529 int max;
1530
1531 if (ac->ac_status == AC_STATUS_FOUND)
1532 return;
1533 /*
1534 * We don't want to scan for a whole year
1535 */
1536 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1537 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1538 ac->ac_status = AC_STATUS_BREAK;
1539 return;
1540 }
1541
1542 /*
1543 * Haven't found good chunk so far, let's continue
1544 */
1545 if (bex->fe_len < gex->fe_len)
1546 return;
1547
1548 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1549 && bex->fe_group == e4b->bd_group) {
1550 /* recheck chunk's availability - we don't know
1551 * when it was found (within this lock-unlock
1552 * period or not) */
1553 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1554 if (max >= gex->fe_len) {
1555 ext4_mb_use_best_found(ac, e4b);
1556 return;
1557 }
1558 }
1559 }
1560
1561 /*
1562 * The routine checks whether found extent is good enough. If it is,
1563 * then the extent gets marked used and flag is set to the context
1564 * to stop scanning. Otherwise, the extent is compared with the
1565 * previous found extent and if new one is better, then it's stored
1566 * in the context. Later, the best found extent will be used, if
1567 * mballoc can't find good enough extent.
1568 *
1569 * FIXME: real allocation policy is to be designed yet!
1570 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1571 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1572 struct ext4_free_extent *ex,
1573 struct ext4_buddy *e4b)
1574 {
1575 struct ext4_free_extent *bex = &ac->ac_b_ex;
1576 struct ext4_free_extent *gex = &ac->ac_g_ex;
1577
1578 BUG_ON(ex->fe_len <= 0);
1579 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1581 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582
1583 ac->ac_found++;
1584
1585 /*
1586 * The special case - take what you catch first
1587 */
1588 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1589 *bex = *ex;
1590 ext4_mb_use_best_found(ac, e4b);
1591 return;
1592 }
1593
1594 /*
1595 * Let's check whether the chuck is good enough
1596 */
1597 if (ex->fe_len == gex->fe_len) {
1598 *bex = *ex;
1599 ext4_mb_use_best_found(ac, e4b);
1600 return;
1601 }
1602
1603 /*
1604 * If this is first found extent, just store it in the context
1605 */
1606 if (bex->fe_len == 0) {
1607 *bex = *ex;
1608 return;
1609 }
1610
1611 /*
1612 * If new found extent is better, store it in the context
1613 */
1614 if (bex->fe_len < gex->fe_len) {
1615 /* if the request isn't satisfied, any found extent
1616 * larger than previous best one is better */
1617 if (ex->fe_len > bex->fe_len)
1618 *bex = *ex;
1619 } else if (ex->fe_len > gex->fe_len) {
1620 /* if the request is satisfied, then we try to find
1621 * an extent that still satisfy the request, but is
1622 * smaller than previous one */
1623 if (ex->fe_len < bex->fe_len)
1624 *bex = *ex;
1625 }
1626
1627 ext4_mb_check_limits(ac, e4b, 0);
1628 }
1629
1630 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1631 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1632 struct ext4_buddy *e4b)
1633 {
1634 struct ext4_free_extent ex = ac->ac_b_ex;
1635 ext4_group_t group = ex.fe_group;
1636 int max;
1637 int err;
1638
1639 BUG_ON(ex.fe_len <= 0);
1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 if (err)
1642 return err;
1643
1644 ext4_lock_group(ac->ac_sb, group);
1645 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646
1647 if (max > 0) {
1648 ac->ac_b_ex = ex;
1649 ext4_mb_use_best_found(ac, e4b);
1650 }
1651
1652 ext4_unlock_group(ac->ac_sb, group);
1653 ext4_mb_unload_buddy(e4b);
1654
1655 return 0;
1656 }
1657
1658 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1659 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1660 struct ext4_buddy *e4b)
1661 {
1662 ext4_group_t group = ac->ac_g_ex.fe_group;
1663 int max;
1664 int err;
1665 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1666 struct ext4_free_extent ex;
1667
1668 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1669 return 0;
1670
1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 if (err)
1673 return err;
1674
1675 ext4_lock_group(ac->ac_sb, group);
1676 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1677 ac->ac_g_ex.fe_len, &ex);
1678
1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 ext4_fsblk_t start;
1681
1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 ex.fe_start;
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start, sbi->s_stripe) == 0) {
1686 ac->ac_found++;
1687 ac->ac_b_ex = ex;
1688 ext4_mb_use_best_found(ac, e4b);
1689 }
1690 } else if (max >= ac->ac_g_ex.fe_len) {
1691 BUG_ON(ex.fe_len <= 0);
1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 ac->ac_found++;
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex.fe_len <= 0);
1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 ac->ac_found++;
1704 ac->ac_b_ex = ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 }
1707 ext4_unlock_group(ac->ac_sb, group);
1708 ext4_mb_unload_buddy(e4b);
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 struct ext4_buddy *e4b)
1720 {
1721 struct super_block *sb = ac->ac_sb;
1722 struct ext4_group_info *grp = e4b->bd_info;
1723 void *buddy;
1724 int i;
1725 int k;
1726 int max;
1727
1728 BUG_ON(ac->ac_2order <= 0);
1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 if (grp->bb_counters[i] == 0)
1731 continue;
1732
1733 buddy = mb_find_buddy(e4b, i, &max);
1734 BUG_ON(buddy == NULL);
1735
1736 k = mb_find_next_zero_bit(buddy, max, 0);
1737 BUG_ON(k >= max);
1738
1739 ac->ac_found++;
1740
1741 ac->ac_b_ex.fe_len = 1 << i;
1742 ac->ac_b_ex.fe_start = k << i;
1743 ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745 ext4_mb_use_best_found(ac, e4b);
1746
1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749 if (EXT4_SB(sb)->s_mb_stats)
1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752 break;
1753 }
1754 }
1755
1756 /*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 struct ext4_buddy *e4b)
1764 {
1765 struct super_block *sb = ac->ac_sb;
1766 void *bitmap = e4b->bd_bitmap;
1767 struct ext4_free_extent ex;
1768 int i;
1769 int free;
1770
1771 free = e4b->bd_info->bb_free;
1772 BUG_ON(free <= 0);
1773
1774 i = e4b->bd_info->bb_first_free;
1775
1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 i = mb_find_next_zero_bit(bitmap,
1778 EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 /*
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1784 */
1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1788 free);
1789 break;
1790 }
1791
1792 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1793 BUG_ON(ex.fe_len <= 0);
1794 if (free < ex.fe_len) {
1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1798 free, ex.fe_len);
1799 /*
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1803 */
1804 break;
1805 }
1806
1807 ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809 i += ex.fe_len;
1810 free -= ex.fe_len;
1811 }
1812
1813 ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815
1816 /*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 struct ext4_buddy *e4b)
1823 {
1824 struct super_block *sb = ac->ac_sb;
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 void *bitmap = e4b->bd_bitmap;
1827 struct ext4_free_extent ex;
1828 ext4_fsblk_t first_group_block;
1829 ext4_fsblk_t a;
1830 ext4_grpblk_t i;
1831 int max;
1832
1833 BUG_ON(sbi->s_stripe == 0);
1834
1835 /* find first stripe-aligned block in group */
1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838 a = first_group_block + sbi->s_stripe - 1;
1839 do_div(a, sbi->s_stripe);
1840 i = (a * sbi->s_stripe) - first_group_block;
1841
1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 if (!mb_test_bit(i, bitmap)) {
1844 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1845 if (max >= sbi->s_stripe) {
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 break;
1850 }
1851 }
1852 i += sbi->s_stripe;
1853 }
1854 }
1855
1856 /* This is now called BEFORE we load the buddy bitmap. */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 ext4_group_t group, int cr)
1859 {
1860 unsigned free, fragments;
1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864 BUG_ON(cr < 0 || cr >= 4);
1865
1866 /* We only do this if the grp has never been initialized */
1867 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1868 int ret = ext4_mb_init_group(ac->ac_sb, group);
1869 if (ret)
1870 return 0;
1871 }
1872
1873 free = grp->bb_free;
1874 fragments = grp->bb_fragments;
1875 if (free == 0)
1876 return 0;
1877 if (fragments == 0)
1878 return 0;
1879
1880 switch (cr) {
1881 case 0:
1882 BUG_ON(ac->ac_2order == 0);
1883
1884 if (grp->bb_largest_free_order < ac->ac_2order)
1885 return 0;
1886
1887 /* Avoid using the first bg of a flexgroup for data files */
1888 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1889 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1890 ((group % flex_size) == 0))
1891 return 0;
1892
1893 return 1;
1894 case 1:
1895 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1896 return 1;
1897 break;
1898 case 2:
1899 if (free >= ac->ac_g_ex.fe_len)
1900 return 1;
1901 break;
1902 case 3:
1903 return 1;
1904 default:
1905 BUG();
1906 }
1907
1908 return 0;
1909 }
1910
1911 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)1912 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913 {
1914 ext4_group_t ngroups, group, i;
1915 int cr;
1916 int err = 0;
1917 struct ext4_sb_info *sbi;
1918 struct super_block *sb;
1919 struct ext4_buddy e4b;
1920
1921 sb = ac->ac_sb;
1922 sbi = EXT4_SB(sb);
1923 ngroups = ext4_get_groups_count(sb);
1924 /* non-extent files are limited to low blocks/groups */
1925 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1926 ngroups = sbi->s_blockfile_groups;
1927
1928 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929
1930 /* first, try the goal */
1931 err = ext4_mb_find_by_goal(ac, &e4b);
1932 if (err || ac->ac_status == AC_STATUS_FOUND)
1933 goto out;
1934
1935 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1936 goto out;
1937
1938 /*
1939 * ac->ac2_order is set only if the fe_len is a power of 2
1940 * if ac2_order is set we also set criteria to 0 so that we
1941 * try exact allocation using buddy.
1942 */
1943 i = fls(ac->ac_g_ex.fe_len);
1944 ac->ac_2order = 0;
1945 /*
1946 * We search using buddy data only if the order of the request
1947 * is greater than equal to the sbi_s_mb_order2_reqs
1948 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949 */
1950 if (i >= sbi->s_mb_order2_reqs) {
1951 /*
1952 * This should tell if fe_len is exactly power of 2
1953 */
1954 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1955 ac->ac_2order = i - 1;
1956 }
1957
1958 /* if stream allocation is enabled, use global goal */
1959 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1960 /* TBD: may be hot point */
1961 spin_lock(&sbi->s_md_lock);
1962 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1963 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1964 spin_unlock(&sbi->s_md_lock);
1965 }
1966
1967 /* Let's just scan groups to find more-less suitable blocks */
1968 cr = ac->ac_2order ? 0 : 1;
1969 /*
1970 * cr == 0 try to get exact allocation,
1971 * cr == 3 try to get anything
1972 */
1973 repeat:
1974 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1975 ac->ac_criteria = cr;
1976 /*
1977 * searching for the right group start
1978 * from the goal value specified
1979 */
1980 group = ac->ac_g_ex.fe_group;
1981
1982 for (i = 0; i < ngroups; group++, i++) {
1983 /*
1984 * Artificially restricted ngroups for non-extent
1985 * files makes group > ngroups possible on first loop.
1986 */
1987 if (group >= ngroups)
1988 group = 0;
1989
1990 /* This now checks without needing the buddy page */
1991 if (!ext4_mb_good_group(ac, group, cr))
1992 continue;
1993
1994 err = ext4_mb_load_buddy(sb, group, &e4b);
1995 if (err)
1996 goto out;
1997
1998 ext4_lock_group(sb, group);
1999
2000 /*
2001 * We need to check again after locking the
2002 * block group
2003 */
2004 if (!ext4_mb_good_group(ac, group, cr)) {
2005 ext4_unlock_group(sb, group);
2006 ext4_mb_unload_buddy(&e4b);
2007 continue;
2008 }
2009
2010 ac->ac_groups_scanned++;
2011 if (cr == 0)
2012 ext4_mb_simple_scan_group(ac, &e4b);
2013 else if (cr == 1 && sbi->s_stripe &&
2014 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2015 ext4_mb_scan_aligned(ac, &e4b);
2016 else
2017 ext4_mb_complex_scan_group(ac, &e4b);
2018
2019 ext4_unlock_group(sb, group);
2020 ext4_mb_unload_buddy(&e4b);
2021
2022 if (ac->ac_status != AC_STATUS_CONTINUE)
2023 break;
2024 }
2025 }
2026
2027 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2028 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2029 /*
2030 * We've been searching too long. Let's try to allocate
2031 * the best chunk we've found so far
2032 */
2033
2034 ext4_mb_try_best_found(ac, &e4b);
2035 if (ac->ac_status != AC_STATUS_FOUND) {
2036 /*
2037 * Someone more lucky has already allocated it.
2038 * The only thing we can do is just take first
2039 * found block(s)
2040 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2041 */
2042 ac->ac_b_ex.fe_group = 0;
2043 ac->ac_b_ex.fe_start = 0;
2044 ac->ac_b_ex.fe_len = 0;
2045 ac->ac_status = AC_STATUS_CONTINUE;
2046 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2047 cr = 3;
2048 atomic_inc(&sbi->s_mb_lost_chunks);
2049 goto repeat;
2050 }
2051 }
2052 out:
2053 return err;
2054 }
2055
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2056 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2057 {
2058 struct super_block *sb = seq->private;
2059 ext4_group_t group;
2060
2061 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2062 return NULL;
2063 group = *pos + 1;
2064 return (void *) ((unsigned long) group);
2065 }
2066
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2067 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2068 {
2069 struct super_block *sb = seq->private;
2070 ext4_group_t group;
2071
2072 ++*pos;
2073 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2074 return NULL;
2075 group = *pos + 1;
2076 return (void *) ((unsigned long) group);
2077 }
2078
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2079 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2080 {
2081 struct super_block *sb = seq->private;
2082 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2083 int i;
2084 int err;
2085 struct ext4_buddy e4b;
2086 struct sg {
2087 struct ext4_group_info info;
2088 ext4_grpblk_t counters[16];
2089 } sg;
2090
2091 group--;
2092 if (group == 0)
2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2096 "group", "free", "frags", "first",
2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2099
2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2101 sizeof(struct ext4_group_info);
2102 err = ext4_mb_load_buddy(sb, group, &e4b);
2103 if (err) {
2104 seq_printf(seq, "#%-5u: I/O error\n", group);
2105 return 0;
2106 }
2107 ext4_lock_group(sb, group);
2108 memcpy(&sg, ext4_get_group_info(sb, group), i);
2109 ext4_unlock_group(sb, group);
2110 ext4_mb_unload_buddy(&e4b);
2111
2112 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2113 sg.info.bb_fragments, sg.info.bb_first_free);
2114 for (i = 0; i <= 13; i++)
2115 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2116 sg.info.bb_counters[i] : 0);
2117 seq_printf(seq, " ]\n");
2118
2119 return 0;
2120 }
2121
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2122 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2123 {
2124 }
2125
2126 static const struct seq_operations ext4_mb_seq_groups_ops = {
2127 .start = ext4_mb_seq_groups_start,
2128 .next = ext4_mb_seq_groups_next,
2129 .stop = ext4_mb_seq_groups_stop,
2130 .show = ext4_mb_seq_groups_show,
2131 };
2132
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2133 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2134 {
2135 struct super_block *sb = PDE(inode)->data;
2136 int rc;
2137
2138 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2139 if (rc == 0) {
2140 struct seq_file *m = file->private_data;
2141 m->private = sb;
2142 }
2143 return rc;
2144
2145 }
2146
2147 static const struct file_operations ext4_mb_seq_groups_fops = {
2148 .owner = THIS_MODULE,
2149 .open = ext4_mb_seq_groups_open,
2150 .read = seq_read,
2151 .llseek = seq_lseek,
2152 .release = seq_release,
2153 };
2154
get_groupinfo_cache(int blocksize_bits)2155 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2156 {
2157 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2158 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2159
2160 BUG_ON(!cachep);
2161 return cachep;
2162 }
2163
2164 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2165 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2166 struct ext4_group_desc *desc)
2167 {
2168 int i;
2169 int metalen = 0;
2170 struct ext4_sb_info *sbi = EXT4_SB(sb);
2171 struct ext4_group_info **meta_group_info;
2172 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2173
2174 /*
2175 * First check if this group is the first of a reserved block.
2176 * If it's true, we have to allocate a new table of pointers
2177 * to ext4_group_info structures
2178 */
2179 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2180 metalen = sizeof(*meta_group_info) <<
2181 EXT4_DESC_PER_BLOCK_BITS(sb);
2182 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2183 if (meta_group_info == NULL) {
2184 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2185 "for a buddy group");
2186 goto exit_meta_group_info;
2187 }
2188 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2189 meta_group_info;
2190 }
2191
2192 meta_group_info =
2193 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2194 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2195
2196 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2197 if (meta_group_info[i] == NULL) {
2198 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2199 goto exit_group_info;
2200 }
2201 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2202 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2203 &(meta_group_info[i]->bb_state));
2204
2205 /*
2206 * initialize bb_free to be able to skip
2207 * empty groups without initialization
2208 */
2209 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2210 meta_group_info[i]->bb_free =
2211 ext4_free_clusters_after_init(sb, group, desc);
2212 } else {
2213 meta_group_info[i]->bb_free =
2214 ext4_free_group_clusters(sb, desc);
2215 }
2216
2217 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2218 init_rwsem(&meta_group_info[i]->alloc_sem);
2219 meta_group_info[i]->bb_free_root = RB_ROOT;
2220 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2221
2222 #ifdef DOUBLE_CHECK
2223 {
2224 struct buffer_head *bh;
2225 meta_group_info[i]->bb_bitmap =
2226 kmalloc(sb->s_blocksize, GFP_KERNEL);
2227 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2228 bh = ext4_read_block_bitmap(sb, group);
2229 BUG_ON(bh == NULL);
2230 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2231 sb->s_blocksize);
2232 put_bh(bh);
2233 }
2234 #endif
2235
2236 return 0;
2237
2238 exit_group_info:
2239 /* If a meta_group_info table has been allocated, release it now */
2240 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2241 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2242 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2243 }
2244 exit_meta_group_info:
2245 return -ENOMEM;
2246 } /* ext4_mb_add_groupinfo */
2247
ext4_mb_init_backend(struct super_block * sb)2248 static int ext4_mb_init_backend(struct super_block *sb)
2249 {
2250 ext4_group_t ngroups = ext4_get_groups_count(sb);
2251 ext4_group_t i;
2252 struct ext4_sb_info *sbi = EXT4_SB(sb);
2253 struct ext4_super_block *es = sbi->s_es;
2254 int num_meta_group_infos;
2255 int num_meta_group_infos_max;
2256 int array_size;
2257 struct ext4_group_desc *desc;
2258 struct kmem_cache *cachep;
2259
2260 /* This is the number of blocks used by GDT */
2261 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2262 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2263
2264 /*
2265 * This is the total number of blocks used by GDT including
2266 * the number of reserved blocks for GDT.
2267 * The s_group_info array is allocated with this value
2268 * to allow a clean online resize without a complex
2269 * manipulation of pointer.
2270 * The drawback is the unused memory when no resize
2271 * occurs but it's very low in terms of pages
2272 * (see comments below)
2273 * Need to handle this properly when META_BG resizing is allowed
2274 */
2275 num_meta_group_infos_max = num_meta_group_infos +
2276 le16_to_cpu(es->s_reserved_gdt_blocks);
2277
2278 /*
2279 * array_size is the size of s_group_info array. We round it
2280 * to the next power of two because this approximation is done
2281 * internally by kmalloc so we can have some more memory
2282 * for free here (e.g. may be used for META_BG resize).
2283 */
2284 array_size = 1;
2285 while (array_size < sizeof(*sbi->s_group_info) *
2286 num_meta_group_infos_max)
2287 array_size = array_size << 1;
2288 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2289 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2290 * So a two level scheme suffices for now. */
2291 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2292 if (sbi->s_group_info == NULL) {
2293 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2294 return -ENOMEM;
2295 }
2296 sbi->s_buddy_cache = new_inode(sb);
2297 if (sbi->s_buddy_cache == NULL) {
2298 ext4_msg(sb, KERN_ERR, "can't get new inode");
2299 goto err_freesgi;
2300 }
2301 /* To avoid potentially colliding with an valid on-disk inode number,
2302 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2303 * not in the inode hash, so it should never be found by iget(), but
2304 * this will avoid confusion if it ever shows up during debugging. */
2305 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2306 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2307 for (i = 0; i < ngroups; i++) {
2308 desc = ext4_get_group_desc(sb, i, NULL);
2309 if (desc == NULL) {
2310 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2311 goto err_freebuddy;
2312 }
2313 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2314 goto err_freebuddy;
2315 }
2316
2317 return 0;
2318
2319 err_freebuddy:
2320 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2321 while (i-- > 0)
2322 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2323 i = num_meta_group_infos;
2324 while (i-- > 0)
2325 kfree(sbi->s_group_info[i]);
2326 iput(sbi->s_buddy_cache);
2327 err_freesgi:
2328 ext4_kvfree(sbi->s_group_info);
2329 return -ENOMEM;
2330 }
2331
ext4_groupinfo_destroy_slabs(void)2332 static void ext4_groupinfo_destroy_slabs(void)
2333 {
2334 int i;
2335
2336 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2337 if (ext4_groupinfo_caches[i])
2338 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2339 ext4_groupinfo_caches[i] = NULL;
2340 }
2341 }
2342
ext4_groupinfo_create_slab(size_t size)2343 static int ext4_groupinfo_create_slab(size_t size)
2344 {
2345 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2346 int slab_size;
2347 int blocksize_bits = order_base_2(size);
2348 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2349 struct kmem_cache *cachep;
2350
2351 if (cache_index >= NR_GRPINFO_CACHES)
2352 return -EINVAL;
2353
2354 if (unlikely(cache_index < 0))
2355 cache_index = 0;
2356
2357 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2358 if (ext4_groupinfo_caches[cache_index]) {
2359 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2360 return 0; /* Already created */
2361 }
2362
2363 slab_size = offsetof(struct ext4_group_info,
2364 bb_counters[blocksize_bits + 2]);
2365
2366 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2367 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2368 NULL);
2369
2370 ext4_groupinfo_caches[cache_index] = cachep;
2371
2372 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2373 if (!cachep) {
2374 printk(KERN_EMERG
2375 "EXT4-fs: no memory for groupinfo slab cache\n");
2376 return -ENOMEM;
2377 }
2378
2379 return 0;
2380 }
2381
ext4_mb_init(struct super_block * sb,int needs_recovery)2382 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2383 {
2384 struct ext4_sb_info *sbi = EXT4_SB(sb);
2385 unsigned i, j;
2386 unsigned offset;
2387 unsigned max;
2388 int ret;
2389
2390 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2391
2392 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2393 if (sbi->s_mb_offsets == NULL) {
2394 ret = -ENOMEM;
2395 goto out;
2396 }
2397
2398 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2399 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2400 if (sbi->s_mb_maxs == NULL) {
2401 ret = -ENOMEM;
2402 goto out;
2403 }
2404
2405 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2406 if (ret < 0)
2407 goto out;
2408
2409 /* order 0 is regular bitmap */
2410 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2411 sbi->s_mb_offsets[0] = 0;
2412
2413 i = 1;
2414 offset = 0;
2415 max = sb->s_blocksize << 2;
2416 do {
2417 sbi->s_mb_offsets[i] = offset;
2418 sbi->s_mb_maxs[i] = max;
2419 offset += 1 << (sb->s_blocksize_bits - i);
2420 max = max >> 1;
2421 i++;
2422 } while (i <= sb->s_blocksize_bits + 1);
2423
2424 spin_lock_init(&sbi->s_md_lock);
2425 spin_lock_init(&sbi->s_bal_lock);
2426
2427 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2428 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2429 sbi->s_mb_stats = MB_DEFAULT_STATS;
2430 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2431 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2432 /*
2433 * The default group preallocation is 512, which for 4k block
2434 * sizes translates to 2 megabytes. However for bigalloc file
2435 * systems, this is probably too big (i.e, if the cluster size
2436 * is 1 megabyte, then group preallocation size becomes half a
2437 * gigabyte!). As a default, we will keep a two megabyte
2438 * group pralloc size for cluster sizes up to 64k, and after
2439 * that, we will force a minimum group preallocation size of
2440 * 32 clusters. This translates to 8 megs when the cluster
2441 * size is 256k, and 32 megs when the cluster size is 1 meg,
2442 * which seems reasonable as a default.
2443 */
2444 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2445 sbi->s_cluster_bits, 32);
2446 /*
2447 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2448 * to the lowest multiple of s_stripe which is bigger than
2449 * the s_mb_group_prealloc as determined above. We want
2450 * the preallocation size to be an exact multiple of the
2451 * RAID stripe size so that preallocations don't fragment
2452 * the stripes.
2453 */
2454 if (sbi->s_stripe > 1) {
2455 sbi->s_mb_group_prealloc = roundup(
2456 sbi->s_mb_group_prealloc, sbi->s_stripe);
2457 }
2458
2459 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2460 if (sbi->s_locality_groups == NULL) {
2461 ret = -ENOMEM;
2462 goto out_free_groupinfo_slab;
2463 }
2464 for_each_possible_cpu(i) {
2465 struct ext4_locality_group *lg;
2466 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2467 mutex_init(&lg->lg_mutex);
2468 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2469 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2470 spin_lock_init(&lg->lg_prealloc_lock);
2471 }
2472
2473 /* init file for buddy data */
2474 ret = ext4_mb_init_backend(sb);
2475 if (ret != 0)
2476 goto out_free_locality_groups;
2477
2478 if (sbi->s_proc)
2479 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2480 &ext4_mb_seq_groups_fops, sb);
2481
2482 return 0;
2483
2484 out_free_locality_groups:
2485 free_percpu(sbi->s_locality_groups);
2486 sbi->s_locality_groups = NULL;
2487 out_free_groupinfo_slab:
2488 ext4_groupinfo_destroy_slabs();
2489 out:
2490 kfree(sbi->s_mb_offsets);
2491 sbi->s_mb_offsets = NULL;
2492 kfree(sbi->s_mb_maxs);
2493 sbi->s_mb_maxs = NULL;
2494 return ret;
2495 }
2496
2497 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2498 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2499 {
2500 struct ext4_prealloc_space *pa;
2501 struct list_head *cur, *tmp;
2502 int count = 0;
2503
2504 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2505 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2506 list_del(&pa->pa_group_list);
2507 count++;
2508 kmem_cache_free(ext4_pspace_cachep, pa);
2509 }
2510 if (count)
2511 mb_debug(1, "mballoc: %u PAs left\n", count);
2512
2513 }
2514
ext4_mb_release(struct super_block * sb)2515 int ext4_mb_release(struct super_block *sb)
2516 {
2517 ext4_group_t ngroups = ext4_get_groups_count(sb);
2518 ext4_group_t i;
2519 int num_meta_group_infos;
2520 struct ext4_group_info *grinfo;
2521 struct ext4_sb_info *sbi = EXT4_SB(sb);
2522 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2523
2524 if (sbi->s_proc)
2525 remove_proc_entry("mb_groups", sbi->s_proc);
2526
2527 if (sbi->s_group_info) {
2528 for (i = 0; i < ngroups; i++) {
2529 grinfo = ext4_get_group_info(sb, i);
2530 #ifdef DOUBLE_CHECK
2531 kfree(grinfo->bb_bitmap);
2532 #endif
2533 ext4_lock_group(sb, i);
2534 ext4_mb_cleanup_pa(grinfo);
2535 ext4_unlock_group(sb, i);
2536 kmem_cache_free(cachep, grinfo);
2537 }
2538 num_meta_group_infos = (ngroups +
2539 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2540 EXT4_DESC_PER_BLOCK_BITS(sb);
2541 for (i = 0; i < num_meta_group_infos; i++)
2542 kfree(sbi->s_group_info[i]);
2543 ext4_kvfree(sbi->s_group_info);
2544 }
2545 kfree(sbi->s_mb_offsets);
2546 kfree(sbi->s_mb_maxs);
2547 if (sbi->s_buddy_cache)
2548 iput(sbi->s_buddy_cache);
2549 if (sbi->s_mb_stats) {
2550 ext4_msg(sb, KERN_INFO,
2551 "mballoc: %u blocks %u reqs (%u success)",
2552 atomic_read(&sbi->s_bal_allocated),
2553 atomic_read(&sbi->s_bal_reqs),
2554 atomic_read(&sbi->s_bal_success));
2555 ext4_msg(sb, KERN_INFO,
2556 "mballoc: %u extents scanned, %u goal hits, "
2557 "%u 2^N hits, %u breaks, %u lost",
2558 atomic_read(&sbi->s_bal_ex_scanned),
2559 atomic_read(&sbi->s_bal_goals),
2560 atomic_read(&sbi->s_bal_2orders),
2561 atomic_read(&sbi->s_bal_breaks),
2562 atomic_read(&sbi->s_mb_lost_chunks));
2563 ext4_msg(sb, KERN_INFO,
2564 "mballoc: %lu generated and it took %Lu",
2565 sbi->s_mb_buddies_generated,
2566 sbi->s_mb_generation_time);
2567 ext4_msg(sb, KERN_INFO,
2568 "mballoc: %u preallocated, %u discarded",
2569 atomic_read(&sbi->s_mb_preallocated),
2570 atomic_read(&sbi->s_mb_discarded));
2571 }
2572
2573 free_percpu(sbi->s_locality_groups);
2574
2575 return 0;
2576 }
2577
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)2578 static inline int ext4_issue_discard(struct super_block *sb,
2579 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2580 {
2581 ext4_fsblk_t discard_block;
2582
2583 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2584 ext4_group_first_block_no(sb, block_group));
2585 count = EXT4_C2B(EXT4_SB(sb), count);
2586 trace_ext4_discard_blocks(sb,
2587 (unsigned long long) discard_block, count);
2588 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2589 }
2590
2591 /*
2592 * This function is called by the jbd2 layer once the commit has finished,
2593 * so we know we can free the blocks that were released with that commit.
2594 */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2595 static void ext4_free_data_callback(struct super_block *sb,
2596 struct ext4_journal_cb_entry *jce,
2597 int rc)
2598 {
2599 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2600 struct ext4_buddy e4b;
2601 struct ext4_group_info *db;
2602 int err, count = 0, count2 = 0;
2603
2604 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2605 entry->efd_count, entry->efd_group, entry);
2606
2607 if (test_opt(sb, DISCARD))
2608 ext4_issue_discard(sb, entry->efd_group,
2609 entry->efd_start_cluster, entry->efd_count);
2610
2611 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2612 /* we expect to find existing buddy because it's pinned */
2613 BUG_ON(err != 0);
2614
2615
2616 db = e4b.bd_info;
2617 /* there are blocks to put in buddy to make them really free */
2618 count += entry->efd_count;
2619 count2++;
2620 ext4_lock_group(sb, entry->efd_group);
2621 /* Take it out of per group rb tree */
2622 rb_erase(&entry->efd_node, &(db->bb_free_root));
2623 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2624
2625 /*
2626 * Clear the trimmed flag for the group so that the next
2627 * ext4_trim_fs can trim it.
2628 * If the volume is mounted with -o discard, online discard
2629 * is supported and the free blocks will be trimmed online.
2630 */
2631 if (!test_opt(sb, DISCARD))
2632 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2633
2634 if (!db->bb_free_root.rb_node) {
2635 /* No more items in the per group rb tree
2636 * balance refcounts from ext4_mb_free_metadata()
2637 */
2638 page_cache_release(e4b.bd_buddy_page);
2639 page_cache_release(e4b.bd_bitmap_page);
2640 }
2641 ext4_unlock_group(sb, entry->efd_group);
2642 kmem_cache_free(ext4_free_data_cachep, entry);
2643 ext4_mb_unload_buddy(&e4b);
2644
2645 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2646 }
2647
2648 #ifdef CONFIG_EXT4_DEBUG
2649 u8 mb_enable_debug __read_mostly;
2650
2651 static struct dentry *debugfs_dir;
2652 static struct dentry *debugfs_debug;
2653
ext4_create_debugfs_entry(void)2654 static void __init ext4_create_debugfs_entry(void)
2655 {
2656 debugfs_dir = debugfs_create_dir("ext4", NULL);
2657 if (debugfs_dir)
2658 debugfs_debug = debugfs_create_u8("mballoc-debug",
2659 S_IRUGO | S_IWUSR,
2660 debugfs_dir,
2661 &mb_enable_debug);
2662 }
2663
ext4_remove_debugfs_entry(void)2664 static void ext4_remove_debugfs_entry(void)
2665 {
2666 debugfs_remove(debugfs_debug);
2667 debugfs_remove(debugfs_dir);
2668 }
2669
2670 #else
2671
ext4_create_debugfs_entry(void)2672 static void __init ext4_create_debugfs_entry(void)
2673 {
2674 }
2675
ext4_remove_debugfs_entry(void)2676 static void ext4_remove_debugfs_entry(void)
2677 {
2678 }
2679
2680 #endif
2681
ext4_init_mballoc(void)2682 int __init ext4_init_mballoc(void)
2683 {
2684 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2685 SLAB_RECLAIM_ACCOUNT);
2686 if (ext4_pspace_cachep == NULL)
2687 return -ENOMEM;
2688
2689 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2690 SLAB_RECLAIM_ACCOUNT);
2691 if (ext4_ac_cachep == NULL) {
2692 kmem_cache_destroy(ext4_pspace_cachep);
2693 return -ENOMEM;
2694 }
2695
2696 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2697 SLAB_RECLAIM_ACCOUNT);
2698 if (ext4_free_data_cachep == NULL) {
2699 kmem_cache_destroy(ext4_pspace_cachep);
2700 kmem_cache_destroy(ext4_ac_cachep);
2701 return -ENOMEM;
2702 }
2703 ext4_create_debugfs_entry();
2704 return 0;
2705 }
2706
ext4_exit_mballoc(void)2707 void ext4_exit_mballoc(void)
2708 {
2709 /*
2710 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2711 * before destroying the slab cache.
2712 */
2713 rcu_barrier();
2714 kmem_cache_destroy(ext4_pspace_cachep);
2715 kmem_cache_destroy(ext4_ac_cachep);
2716 kmem_cache_destroy(ext4_free_data_cachep);
2717 ext4_groupinfo_destroy_slabs();
2718 ext4_remove_debugfs_entry();
2719 }
2720
2721
2722 /*
2723 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2724 * Returns 0 if success or error code
2725 */
2726 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2727 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2728 handle_t *handle, unsigned int reserv_clstrs)
2729 {
2730 struct buffer_head *bitmap_bh = NULL;
2731 struct ext4_group_desc *gdp;
2732 struct buffer_head *gdp_bh;
2733 struct ext4_sb_info *sbi;
2734 struct super_block *sb;
2735 ext4_fsblk_t block;
2736 int err, len;
2737
2738 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2739 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2740
2741 sb = ac->ac_sb;
2742 sbi = EXT4_SB(sb);
2743
2744 err = -EIO;
2745 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2746 if (!bitmap_bh)
2747 goto out_err;
2748
2749 err = ext4_journal_get_write_access(handle, bitmap_bh);
2750 if (err)
2751 goto out_err;
2752
2753 err = -EIO;
2754 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2755 if (!gdp)
2756 goto out_err;
2757
2758 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2759 ext4_free_group_clusters(sb, gdp));
2760
2761 err = ext4_journal_get_write_access(handle, gdp_bh);
2762 if (err)
2763 goto out_err;
2764
2765 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2766
2767 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2768 if (!ext4_data_block_valid(sbi, block, len)) {
2769 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2770 "fs metadata", block, block+len);
2771 /* File system mounted not to panic on error
2772 * Fix the bitmap and repeat the block allocation
2773 * We leak some of the blocks here.
2774 */
2775 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2776 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2777 ac->ac_b_ex.fe_len);
2778 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2779 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2780 if (!err)
2781 err = -EAGAIN;
2782 goto out_err;
2783 }
2784
2785 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2786 #ifdef AGGRESSIVE_CHECK
2787 {
2788 int i;
2789 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2790 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2791 bitmap_bh->b_data));
2792 }
2793 }
2794 #endif
2795 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2796 ac->ac_b_ex.fe_len);
2797 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2798 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2799 ext4_free_group_clusters_set(sb, gdp,
2800 ext4_free_clusters_after_init(sb,
2801 ac->ac_b_ex.fe_group, gdp));
2802 }
2803 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2804 ext4_free_group_clusters_set(sb, gdp, len);
2805 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2806
2807 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2808 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2809 /*
2810 * Now reduce the dirty block count also. Should not go negative
2811 */
2812 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2813 /* release all the reserved blocks if non delalloc */
2814 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2815 reserv_clstrs);
2816
2817 if (sbi->s_log_groups_per_flex) {
2818 ext4_group_t flex_group = ext4_flex_group(sbi,
2819 ac->ac_b_ex.fe_group);
2820 atomic64_sub(ac->ac_b_ex.fe_len,
2821 &sbi->s_flex_groups[flex_group].free_clusters);
2822 }
2823
2824 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2825 if (err)
2826 goto out_err;
2827 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2828
2829 out_err:
2830 ext4_mark_super_dirty(sb);
2831 brelse(bitmap_bh);
2832 return err;
2833 }
2834
2835 /*
2836 * here we normalize request for locality group
2837 * Group request are normalized to s_mb_group_prealloc, which goes to
2838 * s_strip if we set the same via mount option.
2839 * s_mb_group_prealloc can be configured via
2840 * /sys/fs/ext4/<partition>/mb_group_prealloc
2841 *
2842 * XXX: should we try to preallocate more than the group has now?
2843 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)2844 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2845 {
2846 struct super_block *sb = ac->ac_sb;
2847 struct ext4_locality_group *lg = ac->ac_lg;
2848
2849 BUG_ON(lg == NULL);
2850 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2851 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2852 current->pid, ac->ac_g_ex.fe_len);
2853 }
2854
2855 /*
2856 * Normalization means making request better in terms of
2857 * size and alignment
2858 */
2859 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)2860 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2861 struct ext4_allocation_request *ar)
2862 {
2863 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2864 int bsbits, max;
2865 ext4_lblk_t end;
2866 loff_t size, start_off;
2867 loff_t orig_size __maybe_unused;
2868 ext4_lblk_t start;
2869 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2870 struct ext4_prealloc_space *pa;
2871
2872 /* do normalize only data requests, metadata requests
2873 do not need preallocation */
2874 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2875 return;
2876
2877 /* sometime caller may want exact blocks */
2878 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2879 return;
2880
2881 /* caller may indicate that preallocation isn't
2882 * required (it's a tail, for example) */
2883 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2884 return;
2885
2886 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2887 ext4_mb_normalize_group_request(ac);
2888 return ;
2889 }
2890
2891 bsbits = ac->ac_sb->s_blocksize_bits;
2892
2893 /* first, let's learn actual file size
2894 * given current request is allocated */
2895 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2896 size = size << bsbits;
2897 if (size < i_size_read(ac->ac_inode))
2898 size = i_size_read(ac->ac_inode);
2899 orig_size = size;
2900
2901 /* max size of free chunks */
2902 max = 2 << bsbits;
2903
2904 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2905 (req <= (size) || max <= (chunk_size))
2906
2907 /* first, try to predict filesize */
2908 /* XXX: should this table be tunable? */
2909 start_off = 0;
2910 if (size <= 16 * 1024) {
2911 size = 16 * 1024;
2912 } else if (size <= 32 * 1024) {
2913 size = 32 * 1024;
2914 } else if (size <= 64 * 1024) {
2915 size = 64 * 1024;
2916 } else if (size <= 128 * 1024) {
2917 size = 128 * 1024;
2918 } else if (size <= 256 * 1024) {
2919 size = 256 * 1024;
2920 } else if (size <= 512 * 1024) {
2921 size = 512 * 1024;
2922 } else if (size <= 1024 * 1024) {
2923 size = 1024 * 1024;
2924 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2925 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2926 (21 - bsbits)) << 21;
2927 size = 2 * 1024 * 1024;
2928 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2929 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2930 (22 - bsbits)) << 22;
2931 size = 4 * 1024 * 1024;
2932 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2933 (8<<20)>>bsbits, max, 8 * 1024)) {
2934 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2935 (23 - bsbits)) << 23;
2936 size = 8 * 1024 * 1024;
2937 } else {
2938 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2939 size = ac->ac_o_ex.fe_len << bsbits;
2940 }
2941 size = size >> bsbits;
2942 start = start_off >> bsbits;
2943
2944 /* don't cover already allocated blocks in selected range */
2945 if (ar->pleft && start <= ar->lleft) {
2946 size -= ar->lleft + 1 - start;
2947 start = ar->lleft + 1;
2948 }
2949 if (ar->pright && start + size - 1 >= ar->lright)
2950 size -= start + size - ar->lright;
2951
2952 end = start + size;
2953
2954 /* check we don't cross already preallocated blocks */
2955 rcu_read_lock();
2956 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2957 ext4_lblk_t pa_end;
2958
2959 if (pa->pa_deleted)
2960 continue;
2961 spin_lock(&pa->pa_lock);
2962 if (pa->pa_deleted) {
2963 spin_unlock(&pa->pa_lock);
2964 continue;
2965 }
2966
2967 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2968 pa->pa_len);
2969
2970 /* PA must not overlap original request */
2971 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2972 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2973
2974 /* skip PAs this normalized request doesn't overlap with */
2975 if (pa->pa_lstart >= end || pa_end <= start) {
2976 spin_unlock(&pa->pa_lock);
2977 continue;
2978 }
2979 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2980
2981 /* adjust start or end to be adjacent to this pa */
2982 if (pa_end <= ac->ac_o_ex.fe_logical) {
2983 BUG_ON(pa_end < start);
2984 start = pa_end;
2985 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2986 BUG_ON(pa->pa_lstart > end);
2987 end = pa->pa_lstart;
2988 }
2989 spin_unlock(&pa->pa_lock);
2990 }
2991 rcu_read_unlock();
2992 size = end - start;
2993
2994 /* XXX: extra loop to check we really don't overlap preallocations */
2995 rcu_read_lock();
2996 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2997 ext4_lblk_t pa_end;
2998
2999 spin_lock(&pa->pa_lock);
3000 if (pa->pa_deleted == 0) {
3001 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3002 pa->pa_len);
3003 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3004 }
3005 spin_unlock(&pa->pa_lock);
3006 }
3007 rcu_read_unlock();
3008
3009 if (start + size <= ac->ac_o_ex.fe_logical &&
3010 start > ac->ac_o_ex.fe_logical) {
3011 ext4_msg(ac->ac_sb, KERN_ERR,
3012 "start %lu, size %lu, fe_logical %lu",
3013 (unsigned long) start, (unsigned long) size,
3014 (unsigned long) ac->ac_o_ex.fe_logical);
3015 }
3016 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3017 start > ac->ac_o_ex.fe_logical);
3018 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3019
3020 /* now prepare goal request */
3021
3022 /* XXX: is it better to align blocks WRT to logical
3023 * placement or satisfy big request as is */
3024 ac->ac_g_ex.fe_logical = start;
3025 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3026
3027 /* define goal start in order to merge */
3028 if (ar->pright && (ar->lright == (start + size))) {
3029 /* merge to the right */
3030 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3031 &ac->ac_f_ex.fe_group,
3032 &ac->ac_f_ex.fe_start);
3033 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3034 }
3035 if (ar->pleft && (ar->lleft + 1 == start)) {
3036 /* merge to the left */
3037 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3038 &ac->ac_f_ex.fe_group,
3039 &ac->ac_f_ex.fe_start);
3040 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3041 }
3042
3043 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3044 (unsigned) orig_size, (unsigned) start);
3045 }
3046
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3047 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3048 {
3049 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3050
3051 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3052 atomic_inc(&sbi->s_bal_reqs);
3053 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3054 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3055 atomic_inc(&sbi->s_bal_success);
3056 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3057 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3058 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3059 atomic_inc(&sbi->s_bal_goals);
3060 if (ac->ac_found > sbi->s_mb_max_to_scan)
3061 atomic_inc(&sbi->s_bal_breaks);
3062 }
3063
3064 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3065 trace_ext4_mballoc_alloc(ac);
3066 else
3067 trace_ext4_mballoc_prealloc(ac);
3068 }
3069
3070 /*
3071 * Called on failure; free up any blocks from the inode PA for this
3072 * context. We don't need this for MB_GROUP_PA because we only change
3073 * pa_free in ext4_mb_release_context(), but on failure, we've already
3074 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3075 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3076 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3077 {
3078 struct ext4_prealloc_space *pa = ac->ac_pa;
3079 int len;
3080
3081 if (pa && pa->pa_type == MB_INODE_PA) {
3082 len = ac->ac_b_ex.fe_len;
3083 pa->pa_free += len;
3084 }
3085
3086 }
3087
3088 /*
3089 * use blocks preallocated to inode
3090 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3091 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3092 struct ext4_prealloc_space *pa)
3093 {
3094 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3095 ext4_fsblk_t start;
3096 ext4_fsblk_t end;
3097 int len;
3098
3099 /* found preallocated blocks, use them */
3100 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3101 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3102 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3103 len = EXT4_NUM_B2C(sbi, end - start);
3104 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3105 &ac->ac_b_ex.fe_start);
3106 ac->ac_b_ex.fe_len = len;
3107 ac->ac_status = AC_STATUS_FOUND;
3108 ac->ac_pa = pa;
3109
3110 BUG_ON(start < pa->pa_pstart);
3111 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3112 BUG_ON(pa->pa_free < len);
3113 pa->pa_free -= len;
3114
3115 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3116 }
3117
3118 /*
3119 * use blocks preallocated to locality group
3120 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3121 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3122 struct ext4_prealloc_space *pa)
3123 {
3124 unsigned int len = ac->ac_o_ex.fe_len;
3125
3126 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3127 &ac->ac_b_ex.fe_group,
3128 &ac->ac_b_ex.fe_start);
3129 ac->ac_b_ex.fe_len = len;
3130 ac->ac_status = AC_STATUS_FOUND;
3131 ac->ac_pa = pa;
3132
3133 /* we don't correct pa_pstart or pa_plen here to avoid
3134 * possible race when the group is being loaded concurrently
3135 * instead we correct pa later, after blocks are marked
3136 * in on-disk bitmap -- see ext4_mb_release_context()
3137 * Other CPUs are prevented from allocating from this pa by lg_mutex
3138 */
3139 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3140 }
3141
3142 /*
3143 * Return the prealloc space that have minimal distance
3144 * from the goal block. @cpa is the prealloc
3145 * space that is having currently known minimal distance
3146 * from the goal block.
3147 */
3148 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3149 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3150 struct ext4_prealloc_space *pa,
3151 struct ext4_prealloc_space *cpa)
3152 {
3153 ext4_fsblk_t cur_distance, new_distance;
3154
3155 if (cpa == NULL) {
3156 atomic_inc(&pa->pa_count);
3157 return pa;
3158 }
3159 cur_distance = abs(goal_block - cpa->pa_pstart);
3160 new_distance = abs(goal_block - pa->pa_pstart);
3161
3162 if (cur_distance <= new_distance)
3163 return cpa;
3164
3165 /* drop the previous reference */
3166 atomic_dec(&cpa->pa_count);
3167 atomic_inc(&pa->pa_count);
3168 return pa;
3169 }
3170
3171 /*
3172 * search goal blocks in preallocated space
3173 */
3174 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3175 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3176 {
3177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3178 int order, i;
3179 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3180 struct ext4_locality_group *lg;
3181 struct ext4_prealloc_space *pa, *cpa = NULL;
3182 ext4_fsblk_t goal_block;
3183
3184 /* only data can be preallocated */
3185 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3186 return 0;
3187
3188 /* first, try per-file preallocation */
3189 rcu_read_lock();
3190 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3191
3192 /* all fields in this condition don't change,
3193 * so we can skip locking for them */
3194 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3195 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3196 EXT4_C2B(sbi, pa->pa_len)))
3197 continue;
3198
3199 /* non-extent files can't have physical blocks past 2^32 */
3200 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3201 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3202 EXT4_MAX_BLOCK_FILE_PHYS))
3203 continue;
3204
3205 /* found preallocated blocks, use them */
3206 spin_lock(&pa->pa_lock);
3207 if (pa->pa_deleted == 0 && pa->pa_free) {
3208 atomic_inc(&pa->pa_count);
3209 ext4_mb_use_inode_pa(ac, pa);
3210 spin_unlock(&pa->pa_lock);
3211 ac->ac_criteria = 10;
3212 rcu_read_unlock();
3213 return 1;
3214 }
3215 spin_unlock(&pa->pa_lock);
3216 }
3217 rcu_read_unlock();
3218
3219 /* can we use group allocation? */
3220 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3221 return 0;
3222
3223 /* inode may have no locality group for some reason */
3224 lg = ac->ac_lg;
3225 if (lg == NULL)
3226 return 0;
3227 order = fls(ac->ac_o_ex.fe_len) - 1;
3228 if (order > PREALLOC_TB_SIZE - 1)
3229 /* The max size of hash table is PREALLOC_TB_SIZE */
3230 order = PREALLOC_TB_SIZE - 1;
3231
3232 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3233 /*
3234 * search for the prealloc space that is having
3235 * minimal distance from the goal block.
3236 */
3237 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3238 rcu_read_lock();
3239 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3240 pa_inode_list) {
3241 spin_lock(&pa->pa_lock);
3242 if (pa->pa_deleted == 0 &&
3243 pa->pa_free >= ac->ac_o_ex.fe_len) {
3244
3245 cpa = ext4_mb_check_group_pa(goal_block,
3246 pa, cpa);
3247 }
3248 spin_unlock(&pa->pa_lock);
3249 }
3250 rcu_read_unlock();
3251 }
3252 if (cpa) {
3253 ext4_mb_use_group_pa(ac, cpa);
3254 ac->ac_criteria = 20;
3255 return 1;
3256 }
3257 return 0;
3258 }
3259
3260 /*
3261 * the function goes through all block freed in the group
3262 * but not yet committed and marks them used in in-core bitmap.
3263 * buddy must be generated from this bitmap
3264 * Need to be called with the ext4 group lock held
3265 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3266 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3267 ext4_group_t group)
3268 {
3269 struct rb_node *n;
3270 struct ext4_group_info *grp;
3271 struct ext4_free_data *entry;
3272
3273 grp = ext4_get_group_info(sb, group);
3274 n = rb_first(&(grp->bb_free_root));
3275
3276 while (n) {
3277 entry = rb_entry(n, struct ext4_free_data, efd_node);
3278 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3279 n = rb_next(n);
3280 }
3281 return;
3282 }
3283
3284 /*
3285 * the function goes through all preallocation in this group and marks them
3286 * used in in-core bitmap. buddy must be generated from this bitmap
3287 * Need to be called with ext4 group lock held
3288 */
3289 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3290 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3291 ext4_group_t group)
3292 {
3293 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3294 struct ext4_prealloc_space *pa;
3295 struct list_head *cur;
3296 ext4_group_t groupnr;
3297 ext4_grpblk_t start;
3298 int preallocated = 0;
3299 int len;
3300
3301 /* all form of preallocation discards first load group,
3302 * so the only competing code is preallocation use.
3303 * we don't need any locking here
3304 * notice we do NOT ignore preallocations with pa_deleted
3305 * otherwise we could leave used blocks available for
3306 * allocation in buddy when concurrent ext4_mb_put_pa()
3307 * is dropping preallocation
3308 */
3309 list_for_each(cur, &grp->bb_prealloc_list) {
3310 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3311 spin_lock(&pa->pa_lock);
3312 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3313 &groupnr, &start);
3314 len = pa->pa_len;
3315 spin_unlock(&pa->pa_lock);
3316 if (unlikely(len == 0))
3317 continue;
3318 BUG_ON(groupnr != group);
3319 ext4_set_bits(bitmap, start, len);
3320 preallocated += len;
3321 }
3322 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3323 }
3324
ext4_mb_pa_callback(struct rcu_head * head)3325 static void ext4_mb_pa_callback(struct rcu_head *head)
3326 {
3327 struct ext4_prealloc_space *pa;
3328 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3329
3330 BUG_ON(atomic_read(&pa->pa_count));
3331 BUG_ON(pa->pa_deleted == 0);
3332 kmem_cache_free(ext4_pspace_cachep, pa);
3333 }
3334
3335 /*
3336 * drops a reference to preallocated space descriptor
3337 * if this was the last reference and the space is consumed
3338 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3339 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3340 struct super_block *sb, struct ext4_prealloc_space *pa)
3341 {
3342 ext4_group_t grp;
3343 ext4_fsblk_t grp_blk;
3344
3345 /* in this short window concurrent discard can set pa_deleted */
3346 spin_lock(&pa->pa_lock);
3347 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3348 spin_unlock(&pa->pa_lock);
3349 return;
3350 }
3351
3352 if (pa->pa_deleted == 1) {
3353 spin_unlock(&pa->pa_lock);
3354 return;
3355 }
3356
3357 pa->pa_deleted = 1;
3358 spin_unlock(&pa->pa_lock);
3359
3360 grp_blk = pa->pa_pstart;
3361 /*
3362 * If doing group-based preallocation, pa_pstart may be in the
3363 * next group when pa is used up
3364 */
3365 if (pa->pa_type == MB_GROUP_PA)
3366 grp_blk--;
3367
3368 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3369
3370 /*
3371 * possible race:
3372 *
3373 * P1 (buddy init) P2 (regular allocation)
3374 * find block B in PA
3375 * copy on-disk bitmap to buddy
3376 * mark B in on-disk bitmap
3377 * drop PA from group
3378 * mark all PAs in buddy
3379 *
3380 * thus, P1 initializes buddy with B available. to prevent this
3381 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3382 * against that pair
3383 */
3384 ext4_lock_group(sb, grp);
3385 list_del(&pa->pa_group_list);
3386 ext4_unlock_group(sb, grp);
3387
3388 spin_lock(pa->pa_obj_lock);
3389 list_del_rcu(&pa->pa_inode_list);
3390 spin_unlock(pa->pa_obj_lock);
3391
3392 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3393 }
3394
3395 /*
3396 * creates new preallocated space for given inode
3397 */
3398 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3399 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3400 {
3401 struct super_block *sb = ac->ac_sb;
3402 struct ext4_sb_info *sbi = EXT4_SB(sb);
3403 struct ext4_prealloc_space *pa;
3404 struct ext4_group_info *grp;
3405 struct ext4_inode_info *ei;
3406
3407 /* preallocate only when found space is larger then requested */
3408 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3409 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3410 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3411
3412 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3413 if (pa == NULL)
3414 return -ENOMEM;
3415
3416 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3417 int winl;
3418 int wins;
3419 int win;
3420 int offs;
3421
3422 /* we can't allocate as much as normalizer wants.
3423 * so, found space must get proper lstart
3424 * to cover original request */
3425 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3426 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3427
3428 /* we're limited by original request in that
3429 * logical block must be covered any way
3430 * winl is window we can move our chunk within */
3431 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3432
3433 /* also, we should cover whole original request */
3434 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3435
3436 /* the smallest one defines real window */
3437 win = min(winl, wins);
3438
3439 offs = ac->ac_o_ex.fe_logical %
3440 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3441 if (offs && offs < win)
3442 win = offs;
3443
3444 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3445 EXT4_NUM_B2C(sbi, win);
3446 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3447 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3448 }
3449
3450 /* preallocation can change ac_b_ex, thus we store actually
3451 * allocated blocks for history */
3452 ac->ac_f_ex = ac->ac_b_ex;
3453
3454 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3455 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3456 pa->pa_len = ac->ac_b_ex.fe_len;
3457 pa->pa_free = pa->pa_len;
3458 atomic_set(&pa->pa_count, 1);
3459 spin_lock_init(&pa->pa_lock);
3460 INIT_LIST_HEAD(&pa->pa_inode_list);
3461 INIT_LIST_HEAD(&pa->pa_group_list);
3462 pa->pa_deleted = 0;
3463 pa->pa_type = MB_INODE_PA;
3464
3465 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3466 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3467 trace_ext4_mb_new_inode_pa(ac, pa);
3468
3469 ext4_mb_use_inode_pa(ac, pa);
3470 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3471
3472 ei = EXT4_I(ac->ac_inode);
3473 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3474
3475 pa->pa_obj_lock = &ei->i_prealloc_lock;
3476 pa->pa_inode = ac->ac_inode;
3477
3478 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3479 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3480 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3481
3482 spin_lock(pa->pa_obj_lock);
3483 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3484 spin_unlock(pa->pa_obj_lock);
3485
3486 return 0;
3487 }
3488
3489 /*
3490 * creates new preallocated space for locality group inodes belongs to
3491 */
3492 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3493 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3494 {
3495 struct super_block *sb = ac->ac_sb;
3496 struct ext4_locality_group *lg;
3497 struct ext4_prealloc_space *pa;
3498 struct ext4_group_info *grp;
3499
3500 /* preallocate only when found space is larger then requested */
3501 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3502 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3503 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3504
3505 BUG_ON(ext4_pspace_cachep == NULL);
3506 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3507 if (pa == NULL)
3508 return -ENOMEM;
3509
3510 /* preallocation can change ac_b_ex, thus we store actually
3511 * allocated blocks for history */
3512 ac->ac_f_ex = ac->ac_b_ex;
3513
3514 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3515 pa->pa_lstart = pa->pa_pstart;
3516 pa->pa_len = ac->ac_b_ex.fe_len;
3517 pa->pa_free = pa->pa_len;
3518 atomic_set(&pa->pa_count, 1);
3519 spin_lock_init(&pa->pa_lock);
3520 INIT_LIST_HEAD(&pa->pa_inode_list);
3521 INIT_LIST_HEAD(&pa->pa_group_list);
3522 pa->pa_deleted = 0;
3523 pa->pa_type = MB_GROUP_PA;
3524
3525 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3526 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3527 trace_ext4_mb_new_group_pa(ac, pa);
3528
3529 ext4_mb_use_group_pa(ac, pa);
3530 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3531
3532 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3533 lg = ac->ac_lg;
3534 BUG_ON(lg == NULL);
3535
3536 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3537 pa->pa_inode = NULL;
3538
3539 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3540 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3541 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3542
3543 /*
3544 * We will later add the new pa to the right bucket
3545 * after updating the pa_free in ext4_mb_release_context
3546 */
3547 return 0;
3548 }
3549
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3550 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3551 {
3552 int err;
3553
3554 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3555 err = ext4_mb_new_group_pa(ac);
3556 else
3557 err = ext4_mb_new_inode_pa(ac);
3558 return err;
3559 }
3560
3561 /*
3562 * finds all unused blocks in on-disk bitmap, frees them in
3563 * in-core bitmap and buddy.
3564 * @pa must be unlinked from inode and group lists, so that
3565 * nobody else can find/use it.
3566 * the caller MUST hold group/inode locks.
3567 * TODO: optimize the case when there are no in-core structures yet
3568 */
3569 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3570 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3571 struct ext4_prealloc_space *pa)
3572 {
3573 struct super_block *sb = e4b->bd_sb;
3574 struct ext4_sb_info *sbi = EXT4_SB(sb);
3575 unsigned int end;
3576 unsigned int next;
3577 ext4_group_t group;
3578 ext4_grpblk_t bit;
3579 unsigned long long grp_blk_start;
3580 int err = 0;
3581 int free = 0;
3582
3583 BUG_ON(pa->pa_deleted == 0);
3584 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3585 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3586 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3587 end = bit + pa->pa_len;
3588
3589 while (bit < end) {
3590 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3591 if (bit >= end)
3592 break;
3593 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3594 mb_debug(1, " free preallocated %u/%u in group %u\n",
3595 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3596 (unsigned) next - bit, (unsigned) group);
3597 free += next - bit;
3598
3599 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3600 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3601 EXT4_C2B(sbi, bit)),
3602 next - bit);
3603 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3604 bit = next + 1;
3605 }
3606 if (free != pa->pa_free) {
3607 ext4_msg(e4b->bd_sb, KERN_CRIT,
3608 "pa %p: logic %lu, phys. %lu, len %lu",
3609 pa, (unsigned long) pa->pa_lstart,
3610 (unsigned long) pa->pa_pstart,
3611 (unsigned long) pa->pa_len);
3612 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3613 free, pa->pa_free);
3614 /*
3615 * pa is already deleted so we use the value obtained
3616 * from the bitmap and continue.
3617 */
3618 }
3619 atomic_add(free, &sbi->s_mb_discarded);
3620
3621 return err;
3622 }
3623
3624 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3625 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3626 struct ext4_prealloc_space *pa)
3627 {
3628 struct super_block *sb = e4b->bd_sb;
3629 ext4_group_t group;
3630 ext4_grpblk_t bit;
3631
3632 trace_ext4_mb_release_group_pa(sb, pa);
3633 BUG_ON(pa->pa_deleted == 0);
3634 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3635 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3636 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3637 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3638 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3639
3640 return 0;
3641 }
3642
3643 /*
3644 * releases all preallocations in given group
3645 *
3646 * first, we need to decide discard policy:
3647 * - when do we discard
3648 * 1) ENOSPC
3649 * - how many do we discard
3650 * 1) how many requested
3651 */
3652 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3653 ext4_mb_discard_group_preallocations(struct super_block *sb,
3654 ext4_group_t group, int needed)
3655 {
3656 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3657 struct buffer_head *bitmap_bh = NULL;
3658 struct ext4_prealloc_space *pa, *tmp;
3659 struct list_head list;
3660 struct ext4_buddy e4b;
3661 int err;
3662 int busy = 0;
3663 int free = 0;
3664
3665 mb_debug(1, "discard preallocation for group %u\n", group);
3666
3667 if (list_empty(&grp->bb_prealloc_list))
3668 return 0;
3669
3670 bitmap_bh = ext4_read_block_bitmap(sb, group);
3671 if (bitmap_bh == NULL) {
3672 ext4_error(sb, "Error reading block bitmap for %u", group);
3673 return 0;
3674 }
3675
3676 err = ext4_mb_load_buddy(sb, group, &e4b);
3677 if (err) {
3678 ext4_error(sb, "Error loading buddy information for %u", group);
3679 put_bh(bitmap_bh);
3680 return 0;
3681 }
3682
3683 if (needed == 0)
3684 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3685
3686 INIT_LIST_HEAD(&list);
3687 repeat:
3688 ext4_lock_group(sb, group);
3689 list_for_each_entry_safe(pa, tmp,
3690 &grp->bb_prealloc_list, pa_group_list) {
3691 spin_lock(&pa->pa_lock);
3692 if (atomic_read(&pa->pa_count)) {
3693 spin_unlock(&pa->pa_lock);
3694 busy = 1;
3695 continue;
3696 }
3697 if (pa->pa_deleted) {
3698 spin_unlock(&pa->pa_lock);
3699 continue;
3700 }
3701
3702 /* seems this one can be freed ... */
3703 pa->pa_deleted = 1;
3704
3705 /* we can trust pa_free ... */
3706 free += pa->pa_free;
3707
3708 spin_unlock(&pa->pa_lock);
3709
3710 list_del(&pa->pa_group_list);
3711 list_add(&pa->u.pa_tmp_list, &list);
3712 }
3713
3714 /* if we still need more blocks and some PAs were used, try again */
3715 if (free < needed && busy) {
3716 busy = 0;
3717 ext4_unlock_group(sb, group);
3718 /*
3719 * Yield the CPU here so that we don't get soft lockup
3720 * in non preempt case.
3721 */
3722 yield();
3723 goto repeat;
3724 }
3725
3726 /* found anything to free? */
3727 if (list_empty(&list)) {
3728 BUG_ON(free != 0);
3729 goto out;
3730 }
3731
3732 /* now free all selected PAs */
3733 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3734
3735 /* remove from object (inode or locality group) */
3736 spin_lock(pa->pa_obj_lock);
3737 list_del_rcu(&pa->pa_inode_list);
3738 spin_unlock(pa->pa_obj_lock);
3739
3740 if (pa->pa_type == MB_GROUP_PA)
3741 ext4_mb_release_group_pa(&e4b, pa);
3742 else
3743 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3744
3745 list_del(&pa->u.pa_tmp_list);
3746 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3747 }
3748
3749 out:
3750 ext4_unlock_group(sb, group);
3751 ext4_mb_unload_buddy(&e4b);
3752 put_bh(bitmap_bh);
3753 return free;
3754 }
3755
3756 /*
3757 * releases all non-used preallocated blocks for given inode
3758 *
3759 * It's important to discard preallocations under i_data_sem
3760 * We don't want another block to be served from the prealloc
3761 * space when we are discarding the inode prealloc space.
3762 *
3763 * FIXME!! Make sure it is valid at all the call sites
3764 */
ext4_discard_preallocations(struct inode * inode)3765 void ext4_discard_preallocations(struct inode *inode)
3766 {
3767 struct ext4_inode_info *ei = EXT4_I(inode);
3768 struct super_block *sb = inode->i_sb;
3769 struct buffer_head *bitmap_bh = NULL;
3770 struct ext4_prealloc_space *pa, *tmp;
3771 ext4_group_t group = 0;
3772 struct list_head list;
3773 struct ext4_buddy e4b;
3774 int err;
3775
3776 if (!S_ISREG(inode->i_mode)) {
3777 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3778 return;
3779 }
3780
3781 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3782 trace_ext4_discard_preallocations(inode);
3783
3784 INIT_LIST_HEAD(&list);
3785
3786 repeat:
3787 /* first, collect all pa's in the inode */
3788 spin_lock(&ei->i_prealloc_lock);
3789 while (!list_empty(&ei->i_prealloc_list)) {
3790 pa = list_entry(ei->i_prealloc_list.next,
3791 struct ext4_prealloc_space, pa_inode_list);
3792 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3793 spin_lock(&pa->pa_lock);
3794 if (atomic_read(&pa->pa_count)) {
3795 /* this shouldn't happen often - nobody should
3796 * use preallocation while we're discarding it */
3797 spin_unlock(&pa->pa_lock);
3798 spin_unlock(&ei->i_prealloc_lock);
3799 ext4_msg(sb, KERN_ERR,
3800 "uh-oh! used pa while discarding");
3801 WARN_ON(1);
3802 schedule_timeout_uninterruptible(HZ);
3803 goto repeat;
3804
3805 }
3806 if (pa->pa_deleted == 0) {
3807 pa->pa_deleted = 1;
3808 spin_unlock(&pa->pa_lock);
3809 list_del_rcu(&pa->pa_inode_list);
3810 list_add(&pa->u.pa_tmp_list, &list);
3811 continue;
3812 }
3813
3814 /* someone is deleting pa right now */
3815 spin_unlock(&pa->pa_lock);
3816 spin_unlock(&ei->i_prealloc_lock);
3817
3818 /* we have to wait here because pa_deleted
3819 * doesn't mean pa is already unlinked from
3820 * the list. as we might be called from
3821 * ->clear_inode() the inode will get freed
3822 * and concurrent thread which is unlinking
3823 * pa from inode's list may access already
3824 * freed memory, bad-bad-bad */
3825
3826 /* XXX: if this happens too often, we can
3827 * add a flag to force wait only in case
3828 * of ->clear_inode(), but not in case of
3829 * regular truncate */
3830 schedule_timeout_uninterruptible(HZ);
3831 goto repeat;
3832 }
3833 spin_unlock(&ei->i_prealloc_lock);
3834
3835 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3836 BUG_ON(pa->pa_type != MB_INODE_PA);
3837 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3838
3839 err = ext4_mb_load_buddy(sb, group, &e4b);
3840 if (err) {
3841 ext4_error(sb, "Error loading buddy information for %u",
3842 group);
3843 continue;
3844 }
3845
3846 bitmap_bh = ext4_read_block_bitmap(sb, group);
3847 if (bitmap_bh == NULL) {
3848 ext4_error(sb, "Error reading block bitmap for %u",
3849 group);
3850 ext4_mb_unload_buddy(&e4b);
3851 continue;
3852 }
3853
3854 ext4_lock_group(sb, group);
3855 list_del(&pa->pa_group_list);
3856 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3857 ext4_unlock_group(sb, group);
3858
3859 ext4_mb_unload_buddy(&e4b);
3860 put_bh(bitmap_bh);
3861
3862 list_del(&pa->u.pa_tmp_list);
3863 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3864 }
3865 }
3866
3867 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)3868 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3869 {
3870 struct super_block *sb = ac->ac_sb;
3871 ext4_group_t ngroups, i;
3872
3873 if (!mb_enable_debug ||
3874 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3875 return;
3876
3877 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3878 " Allocation context details:");
3879 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3880 ac->ac_status, ac->ac_flags);
3881 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3882 "goal %lu/%lu/%lu@%lu, "
3883 "best %lu/%lu/%lu@%lu cr %d",
3884 (unsigned long)ac->ac_o_ex.fe_group,
3885 (unsigned long)ac->ac_o_ex.fe_start,
3886 (unsigned long)ac->ac_o_ex.fe_len,
3887 (unsigned long)ac->ac_o_ex.fe_logical,
3888 (unsigned long)ac->ac_g_ex.fe_group,
3889 (unsigned long)ac->ac_g_ex.fe_start,
3890 (unsigned long)ac->ac_g_ex.fe_len,
3891 (unsigned long)ac->ac_g_ex.fe_logical,
3892 (unsigned long)ac->ac_b_ex.fe_group,
3893 (unsigned long)ac->ac_b_ex.fe_start,
3894 (unsigned long)ac->ac_b_ex.fe_len,
3895 (unsigned long)ac->ac_b_ex.fe_logical,
3896 (int)ac->ac_criteria);
3897 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3898 ac->ac_ex_scanned, ac->ac_found);
3899 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3900 ngroups = ext4_get_groups_count(sb);
3901 for (i = 0; i < ngroups; i++) {
3902 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3903 struct ext4_prealloc_space *pa;
3904 ext4_grpblk_t start;
3905 struct list_head *cur;
3906 ext4_lock_group(sb, i);
3907 list_for_each(cur, &grp->bb_prealloc_list) {
3908 pa = list_entry(cur, struct ext4_prealloc_space,
3909 pa_group_list);
3910 spin_lock(&pa->pa_lock);
3911 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3912 NULL, &start);
3913 spin_unlock(&pa->pa_lock);
3914 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3915 start, pa->pa_len);
3916 }
3917 ext4_unlock_group(sb, i);
3918
3919 if (grp->bb_free == 0)
3920 continue;
3921 printk(KERN_ERR "%u: %d/%d \n",
3922 i, grp->bb_free, grp->bb_fragments);
3923 }
3924 printk(KERN_ERR "\n");
3925 }
3926 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)3927 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3928 {
3929 return;
3930 }
3931 #endif
3932
3933 /*
3934 * We use locality group preallocation for small size file. The size of the
3935 * file is determined by the current size or the resulting size after
3936 * allocation which ever is larger
3937 *
3938 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3939 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)3940 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3941 {
3942 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3943 int bsbits = ac->ac_sb->s_blocksize_bits;
3944 loff_t size, isize;
3945
3946 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3947 return;
3948
3949 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3950 return;
3951
3952 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3953 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3954 >> bsbits;
3955
3956 if ((size == isize) &&
3957 !ext4_fs_is_busy(sbi) &&
3958 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3959 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3960 return;
3961 }
3962
3963 if (sbi->s_mb_group_prealloc <= 0) {
3964 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3965 return;
3966 }
3967
3968 /* don't use group allocation for large files */
3969 size = max(size, isize);
3970 if (size > sbi->s_mb_stream_request) {
3971 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3972 return;
3973 }
3974
3975 BUG_ON(ac->ac_lg != NULL);
3976 /*
3977 * locality group prealloc space are per cpu. The reason for having
3978 * per cpu locality group is to reduce the contention between block
3979 * request from multiple CPUs.
3980 */
3981 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3982
3983 /* we're going to use group allocation */
3984 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3985
3986 /* serialize all allocations in the group */
3987 mutex_lock(&ac->ac_lg->lg_mutex);
3988 }
3989
3990 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3991 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3992 struct ext4_allocation_request *ar)
3993 {
3994 struct super_block *sb = ar->inode->i_sb;
3995 struct ext4_sb_info *sbi = EXT4_SB(sb);
3996 struct ext4_super_block *es = sbi->s_es;
3997 ext4_group_t group;
3998 unsigned int len;
3999 ext4_fsblk_t goal;
4000 ext4_grpblk_t block;
4001
4002 /* we can't allocate > group size */
4003 len = ar->len;
4004
4005 /* just a dirty hack to filter too big requests */
4006 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4007 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4008
4009 /* start searching from the goal */
4010 goal = ar->goal;
4011 if (goal < le32_to_cpu(es->s_first_data_block) ||
4012 goal >= ext4_blocks_count(es))
4013 goal = le32_to_cpu(es->s_first_data_block);
4014 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4015
4016 /* set up allocation goals */
4017 memset(ac, 0, sizeof(struct ext4_allocation_context));
4018 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4019 ac->ac_status = AC_STATUS_CONTINUE;
4020 ac->ac_sb = sb;
4021 ac->ac_inode = ar->inode;
4022 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4023 ac->ac_o_ex.fe_group = group;
4024 ac->ac_o_ex.fe_start = block;
4025 ac->ac_o_ex.fe_len = len;
4026 ac->ac_g_ex = ac->ac_o_ex;
4027 ac->ac_flags = ar->flags;
4028
4029 /* we have to define context: we'll we work with a file or
4030 * locality group. this is a policy, actually */
4031 ext4_mb_group_or_file(ac);
4032
4033 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4034 "left: %u/%u, right %u/%u to %swritable\n",
4035 (unsigned) ar->len, (unsigned) ar->logical,
4036 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4037 (unsigned) ar->lleft, (unsigned) ar->pleft,
4038 (unsigned) ar->lright, (unsigned) ar->pright,
4039 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4040 return 0;
4041
4042 }
4043
4044 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4045 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4046 struct ext4_locality_group *lg,
4047 int order, int total_entries)
4048 {
4049 ext4_group_t group = 0;
4050 struct ext4_buddy e4b;
4051 struct list_head discard_list;
4052 struct ext4_prealloc_space *pa, *tmp;
4053
4054 mb_debug(1, "discard locality group preallocation\n");
4055
4056 INIT_LIST_HEAD(&discard_list);
4057
4058 spin_lock(&lg->lg_prealloc_lock);
4059 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4060 pa_inode_list) {
4061 spin_lock(&pa->pa_lock);
4062 if (atomic_read(&pa->pa_count)) {
4063 /*
4064 * This is the pa that we just used
4065 * for block allocation. So don't
4066 * free that
4067 */
4068 spin_unlock(&pa->pa_lock);
4069 continue;
4070 }
4071 if (pa->pa_deleted) {
4072 spin_unlock(&pa->pa_lock);
4073 continue;
4074 }
4075 /* only lg prealloc space */
4076 BUG_ON(pa->pa_type != MB_GROUP_PA);
4077
4078 /* seems this one can be freed ... */
4079 pa->pa_deleted = 1;
4080 spin_unlock(&pa->pa_lock);
4081
4082 list_del_rcu(&pa->pa_inode_list);
4083 list_add(&pa->u.pa_tmp_list, &discard_list);
4084
4085 total_entries--;
4086 if (total_entries <= 5) {
4087 /*
4088 * we want to keep only 5 entries
4089 * allowing it to grow to 8. This
4090 * mak sure we don't call discard
4091 * soon for this list.
4092 */
4093 break;
4094 }
4095 }
4096 spin_unlock(&lg->lg_prealloc_lock);
4097
4098 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4099
4100 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4101 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4102 ext4_error(sb, "Error loading buddy information for %u",
4103 group);
4104 continue;
4105 }
4106 ext4_lock_group(sb, group);
4107 list_del(&pa->pa_group_list);
4108 ext4_mb_release_group_pa(&e4b, pa);
4109 ext4_unlock_group(sb, group);
4110
4111 ext4_mb_unload_buddy(&e4b);
4112 list_del(&pa->u.pa_tmp_list);
4113 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4114 }
4115 }
4116
4117 /*
4118 * We have incremented pa_count. So it cannot be freed at this
4119 * point. Also we hold lg_mutex. So no parallel allocation is
4120 * possible from this lg. That means pa_free cannot be updated.
4121 *
4122 * A parallel ext4_mb_discard_group_preallocations is possible.
4123 * which can cause the lg_prealloc_list to be updated.
4124 */
4125
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4126 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4127 {
4128 int order, added = 0, lg_prealloc_count = 1;
4129 struct super_block *sb = ac->ac_sb;
4130 struct ext4_locality_group *lg = ac->ac_lg;
4131 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4132
4133 order = fls(pa->pa_free) - 1;
4134 if (order > PREALLOC_TB_SIZE - 1)
4135 /* The max size of hash table is PREALLOC_TB_SIZE */
4136 order = PREALLOC_TB_SIZE - 1;
4137 /* Add the prealloc space to lg */
4138 spin_lock(&lg->lg_prealloc_lock);
4139 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4140 pa_inode_list) {
4141 spin_lock(&tmp_pa->pa_lock);
4142 if (tmp_pa->pa_deleted) {
4143 spin_unlock(&tmp_pa->pa_lock);
4144 continue;
4145 }
4146 if (!added && pa->pa_free < tmp_pa->pa_free) {
4147 /* Add to the tail of the previous entry */
4148 list_add_tail_rcu(&pa->pa_inode_list,
4149 &tmp_pa->pa_inode_list);
4150 added = 1;
4151 /*
4152 * we want to count the total
4153 * number of entries in the list
4154 */
4155 }
4156 spin_unlock(&tmp_pa->pa_lock);
4157 lg_prealloc_count++;
4158 }
4159 if (!added)
4160 list_add_tail_rcu(&pa->pa_inode_list,
4161 &lg->lg_prealloc_list[order]);
4162 spin_unlock(&lg->lg_prealloc_lock);
4163
4164 /* Now trim the list to be not more than 8 elements */
4165 if (lg_prealloc_count > 8) {
4166 ext4_mb_discard_lg_preallocations(sb, lg,
4167 order, lg_prealloc_count);
4168 return;
4169 }
4170 return ;
4171 }
4172
4173 /*
4174 * release all resource we used in allocation
4175 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4176 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4177 {
4178 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4179 struct ext4_prealloc_space *pa = ac->ac_pa;
4180 if (pa) {
4181 if (pa->pa_type == MB_GROUP_PA) {
4182 /* see comment in ext4_mb_use_group_pa() */
4183 spin_lock(&pa->pa_lock);
4184 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4185 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4186 pa->pa_free -= ac->ac_b_ex.fe_len;
4187 pa->pa_len -= ac->ac_b_ex.fe_len;
4188 spin_unlock(&pa->pa_lock);
4189 }
4190 }
4191 if (pa) {
4192 /*
4193 * We want to add the pa to the right bucket.
4194 * Remove it from the list and while adding
4195 * make sure the list to which we are adding
4196 * doesn't grow big.
4197 */
4198 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4199 spin_lock(pa->pa_obj_lock);
4200 list_del_rcu(&pa->pa_inode_list);
4201 spin_unlock(pa->pa_obj_lock);
4202 ext4_mb_add_n_trim(ac);
4203 }
4204 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4205 }
4206 if (ac->ac_bitmap_page)
4207 page_cache_release(ac->ac_bitmap_page);
4208 if (ac->ac_buddy_page)
4209 page_cache_release(ac->ac_buddy_page);
4210 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4211 mutex_unlock(&ac->ac_lg->lg_mutex);
4212 ext4_mb_collect_stats(ac);
4213 return 0;
4214 }
4215
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4216 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4217 {
4218 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4219 int ret;
4220 int freed = 0;
4221
4222 trace_ext4_mb_discard_preallocations(sb, needed);
4223 for (i = 0; i < ngroups && needed > 0; i++) {
4224 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4225 freed += ret;
4226 needed -= ret;
4227 }
4228
4229 return freed;
4230 }
4231
4232 /*
4233 * Main entry point into mballoc to allocate blocks
4234 * it tries to use preallocation first, then falls back
4235 * to usual allocation
4236 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4237 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4238 struct ext4_allocation_request *ar, int *errp)
4239 {
4240 int freed;
4241 struct ext4_allocation_context *ac = NULL;
4242 struct ext4_sb_info *sbi;
4243 struct super_block *sb;
4244 ext4_fsblk_t block = 0;
4245 unsigned int inquota = 0;
4246 unsigned int reserv_clstrs = 0;
4247
4248 sb = ar->inode->i_sb;
4249 sbi = EXT4_SB(sb);
4250
4251 trace_ext4_request_blocks(ar);
4252
4253 /* Allow to use superuser reservation for quota file */
4254 if (IS_NOQUOTA(ar->inode))
4255 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4256
4257 /*
4258 * For delayed allocation, we could skip the ENOSPC and
4259 * EDQUOT check, as blocks and quotas have been already
4260 * reserved when data being copied into pagecache.
4261 */
4262 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4263 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4264 else {
4265 /* Without delayed allocation we need to verify
4266 * there is enough free blocks to do block allocation
4267 * and verify allocation doesn't exceed the quota limits.
4268 */
4269 while (ar->len &&
4270 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4271
4272 /* let others to free the space */
4273 yield();
4274 ar->len = ar->len >> 1;
4275 }
4276 if (!ar->len) {
4277 *errp = -ENOSPC;
4278 return 0;
4279 }
4280 reserv_clstrs = ar->len;
4281 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4282 dquot_alloc_block_nofail(ar->inode,
4283 EXT4_C2B(sbi, ar->len));
4284 } else {
4285 while (ar->len &&
4286 dquot_alloc_block(ar->inode,
4287 EXT4_C2B(sbi, ar->len))) {
4288
4289 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4290 ar->len--;
4291 }
4292 }
4293 inquota = ar->len;
4294 if (ar->len == 0) {
4295 *errp = -EDQUOT;
4296 goto out;
4297 }
4298 }
4299
4300 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4301 if (!ac) {
4302 ar->len = 0;
4303 *errp = -ENOMEM;
4304 goto out;
4305 }
4306
4307 *errp = ext4_mb_initialize_context(ac, ar);
4308 if (*errp) {
4309 ar->len = 0;
4310 goto out;
4311 }
4312
4313 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4314 if (!ext4_mb_use_preallocated(ac)) {
4315 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4316 ext4_mb_normalize_request(ac, ar);
4317 repeat:
4318 /* allocate space in core */
4319 *errp = ext4_mb_regular_allocator(ac);
4320 if (*errp)
4321 goto errout;
4322
4323 /* as we've just preallocated more space than
4324 * user requested orinally, we store allocated
4325 * space in a special descriptor */
4326 if (ac->ac_status == AC_STATUS_FOUND &&
4327 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4328 ext4_mb_new_preallocation(ac);
4329 }
4330 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4331 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4332 if (*errp == -EAGAIN) {
4333 /*
4334 * drop the reference that we took
4335 * in ext4_mb_use_best_found
4336 */
4337 ext4_mb_release_context(ac);
4338 ac->ac_b_ex.fe_group = 0;
4339 ac->ac_b_ex.fe_start = 0;
4340 ac->ac_b_ex.fe_len = 0;
4341 ac->ac_status = AC_STATUS_CONTINUE;
4342 goto repeat;
4343 } else if (*errp)
4344 errout:
4345 ext4_discard_allocated_blocks(ac);
4346 else {
4347 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4348 ar->len = ac->ac_b_ex.fe_len;
4349 }
4350 } else {
4351 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4352 if (freed)
4353 goto repeat;
4354 *errp = -ENOSPC;
4355 }
4356
4357 if (*errp) {
4358 ac->ac_b_ex.fe_len = 0;
4359 ar->len = 0;
4360 ext4_mb_show_ac(ac);
4361 }
4362 ext4_mb_release_context(ac);
4363 out:
4364 if (ac)
4365 kmem_cache_free(ext4_ac_cachep, ac);
4366 if (inquota && ar->len < inquota)
4367 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4368 if (!ar->len) {
4369 if (!ext4_test_inode_state(ar->inode,
4370 EXT4_STATE_DELALLOC_RESERVED))
4371 /* release all the reserved blocks if non delalloc */
4372 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4373 reserv_clstrs);
4374 }
4375
4376 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4377
4378 return block;
4379 }
4380
4381 /*
4382 * We can merge two free data extents only if the physical blocks
4383 * are contiguous, AND the extents were freed by the same transaction,
4384 * AND the blocks are associated with the same group.
4385 */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4386 static int can_merge(struct ext4_free_data *entry1,
4387 struct ext4_free_data *entry2)
4388 {
4389 if ((entry1->efd_tid == entry2->efd_tid) &&
4390 (entry1->efd_group == entry2->efd_group) &&
4391 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4392 return 1;
4393 return 0;
4394 }
4395
4396 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4397 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4398 struct ext4_free_data *new_entry)
4399 {
4400 ext4_group_t group = e4b->bd_group;
4401 ext4_grpblk_t cluster;
4402 struct ext4_free_data *entry;
4403 struct ext4_group_info *db = e4b->bd_info;
4404 struct super_block *sb = e4b->bd_sb;
4405 struct ext4_sb_info *sbi = EXT4_SB(sb);
4406 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4407 struct rb_node *parent = NULL, *new_node;
4408
4409 BUG_ON(!ext4_handle_valid(handle));
4410 BUG_ON(e4b->bd_bitmap_page == NULL);
4411 BUG_ON(e4b->bd_buddy_page == NULL);
4412
4413 new_node = &new_entry->efd_node;
4414 cluster = new_entry->efd_start_cluster;
4415
4416 if (!*n) {
4417 /* first free block exent. We need to
4418 protect buddy cache from being freed,
4419 * otherwise we'll refresh it from
4420 * on-disk bitmap and lose not-yet-available
4421 * blocks */
4422 page_cache_get(e4b->bd_buddy_page);
4423 page_cache_get(e4b->bd_bitmap_page);
4424 }
4425 while (*n) {
4426 parent = *n;
4427 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4428 if (cluster < entry->efd_start_cluster)
4429 n = &(*n)->rb_left;
4430 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4431 n = &(*n)->rb_right;
4432 else {
4433 ext4_grp_locked_error(sb, group, 0,
4434 ext4_group_first_block_no(sb, group) +
4435 EXT4_C2B(sbi, cluster),
4436 "Block already on to-be-freed list");
4437 return 0;
4438 }
4439 }
4440
4441 rb_link_node(new_node, parent, n);
4442 rb_insert_color(new_node, &db->bb_free_root);
4443
4444 /* Now try to see the extent can be merged to left and right */
4445 node = rb_prev(new_node);
4446 if (node) {
4447 entry = rb_entry(node, struct ext4_free_data, efd_node);
4448 if (can_merge(entry, new_entry) &&
4449 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4450 new_entry->efd_start_cluster = entry->efd_start_cluster;
4451 new_entry->efd_count += entry->efd_count;
4452 rb_erase(node, &(db->bb_free_root));
4453 kmem_cache_free(ext4_free_data_cachep, entry);
4454 }
4455 }
4456
4457 node = rb_next(new_node);
4458 if (node) {
4459 entry = rb_entry(node, struct ext4_free_data, efd_node);
4460 if (can_merge(new_entry, entry) &&
4461 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4462 new_entry->efd_count += entry->efd_count;
4463 rb_erase(node, &(db->bb_free_root));
4464 kmem_cache_free(ext4_free_data_cachep, entry);
4465 }
4466 }
4467 /* Add the extent to transaction's private list */
4468 ext4_journal_callback_add(handle, ext4_free_data_callback,
4469 &new_entry->efd_jce);
4470 return 0;
4471 }
4472
4473 /**
4474 * ext4_free_blocks() -- Free given blocks and update quota
4475 * @handle: handle for this transaction
4476 * @inode: inode
4477 * @block: start physical block to free
4478 * @count: number of blocks to count
4479 * @flags: flags used by ext4_free_blocks
4480 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4481 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4482 struct buffer_head *bh, ext4_fsblk_t block,
4483 unsigned long count, int flags)
4484 {
4485 struct buffer_head *bitmap_bh = NULL;
4486 struct super_block *sb = inode->i_sb;
4487 struct ext4_group_desc *gdp;
4488 unsigned long freed = 0;
4489 unsigned int overflow;
4490 ext4_grpblk_t bit;
4491 struct buffer_head *gd_bh;
4492 ext4_group_t block_group;
4493 struct ext4_sb_info *sbi;
4494 struct ext4_buddy e4b;
4495 unsigned int count_clusters;
4496 int err = 0;
4497 int ret;
4498
4499 if (bh) {
4500 if (block)
4501 BUG_ON(block != bh->b_blocknr);
4502 else
4503 block = bh->b_blocknr;
4504 }
4505
4506 sbi = EXT4_SB(sb);
4507 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4508 !ext4_data_block_valid(sbi, block, count)) {
4509 ext4_error(sb, "Freeing blocks not in datazone - "
4510 "block = %llu, count = %lu", block, count);
4511 goto error_return;
4512 }
4513
4514 ext4_debug("freeing block %llu\n", block);
4515 trace_ext4_free_blocks(inode, block, count, flags);
4516
4517 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4518 struct buffer_head *tbh = bh;
4519 int i;
4520
4521 BUG_ON(bh && (count > 1));
4522
4523 for (i = 0; i < count; i++) {
4524 if (!bh)
4525 tbh = sb_find_get_block(inode->i_sb,
4526 block + i);
4527 if (unlikely(!tbh))
4528 continue;
4529 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4530 inode, tbh, block + i);
4531 }
4532 }
4533
4534 /*
4535 * We need to make sure we don't reuse the freed block until
4536 * after the transaction is committed, which we can do by
4537 * treating the block as metadata, below. We make an
4538 * exception if the inode is to be written in writeback mode
4539 * since writeback mode has weak data consistency guarantees.
4540 */
4541 if (!ext4_should_writeback_data(inode))
4542 flags |= EXT4_FREE_BLOCKS_METADATA;
4543
4544 /*
4545 * If the extent to be freed does not begin on a cluster
4546 * boundary, we need to deal with partial clusters at the
4547 * beginning and end of the extent. Normally we will free
4548 * blocks at the beginning or the end unless we are explicitly
4549 * requested to avoid doing so.
4550 */
4551 overflow = block & (sbi->s_cluster_ratio - 1);
4552 if (overflow) {
4553 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4554 overflow = sbi->s_cluster_ratio - overflow;
4555 block += overflow;
4556 if (count > overflow)
4557 count -= overflow;
4558 else
4559 return;
4560 } else {
4561 block -= overflow;
4562 count += overflow;
4563 }
4564 }
4565 overflow = count & (sbi->s_cluster_ratio - 1);
4566 if (overflow) {
4567 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4568 if (count > overflow)
4569 count -= overflow;
4570 else
4571 return;
4572 } else
4573 count += sbi->s_cluster_ratio - overflow;
4574 }
4575
4576 do_more:
4577 overflow = 0;
4578 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4579
4580 /*
4581 * Check to see if we are freeing blocks across a group
4582 * boundary.
4583 */
4584 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4585 overflow = EXT4_C2B(sbi, bit) + count -
4586 EXT4_BLOCKS_PER_GROUP(sb);
4587 count -= overflow;
4588 }
4589 count_clusters = EXT4_NUM_B2C(sbi, count);
4590 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4591 if (!bitmap_bh) {
4592 err = -EIO;
4593 goto error_return;
4594 }
4595 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4596 if (!gdp) {
4597 err = -EIO;
4598 goto error_return;
4599 }
4600
4601 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4602 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4603 in_range(block, ext4_inode_table(sb, gdp),
4604 EXT4_SB(sb)->s_itb_per_group) ||
4605 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4606 EXT4_SB(sb)->s_itb_per_group)) {
4607
4608 ext4_error(sb, "Freeing blocks in system zone - "
4609 "Block = %llu, count = %lu", block, count);
4610 /* err = 0. ext4_std_error should be a no op */
4611 goto error_return;
4612 }
4613
4614 BUFFER_TRACE(bitmap_bh, "getting write access");
4615 err = ext4_journal_get_write_access(handle, bitmap_bh);
4616 if (err)
4617 goto error_return;
4618
4619 /*
4620 * We are about to modify some metadata. Call the journal APIs
4621 * to unshare ->b_data if a currently-committing transaction is
4622 * using it
4623 */
4624 BUFFER_TRACE(gd_bh, "get_write_access");
4625 err = ext4_journal_get_write_access(handle, gd_bh);
4626 if (err)
4627 goto error_return;
4628 #ifdef AGGRESSIVE_CHECK
4629 {
4630 int i;
4631 for (i = 0; i < count_clusters; i++)
4632 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4633 }
4634 #endif
4635 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4636
4637 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4638 if (err)
4639 goto error_return;
4640
4641 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4642 struct ext4_free_data *new_entry;
4643 /*
4644 * blocks being freed are metadata. these blocks shouldn't
4645 * be used until this transaction is committed
4646 */
4647 retry:
4648 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4649 if (!new_entry) {
4650 /*
4651 * We use a retry loop because
4652 * ext4_free_blocks() is not allowed to fail.
4653 */
4654 cond_resched();
4655 congestion_wait(BLK_RW_ASYNC, HZ/50);
4656 goto retry;
4657 }
4658 new_entry->efd_start_cluster = bit;
4659 new_entry->efd_group = block_group;
4660 new_entry->efd_count = count_clusters;
4661 new_entry->efd_tid = handle->h_transaction->t_tid;
4662
4663 ext4_lock_group(sb, block_group);
4664 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4665 ext4_mb_free_metadata(handle, &e4b, new_entry);
4666 } else {
4667 /* need to update group_info->bb_free and bitmap
4668 * with group lock held. generate_buddy look at
4669 * them with group lock_held
4670 */
4671 ext4_lock_group(sb, block_group);
4672 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4673 mb_free_blocks(inode, &e4b, bit, count_clusters);
4674 }
4675
4676 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4677 ext4_free_group_clusters_set(sb, gdp, ret);
4678 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4679 ext4_unlock_group(sb, block_group);
4680 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4681
4682 if (sbi->s_log_groups_per_flex) {
4683 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4684 atomic64_add(count_clusters,
4685 &sbi->s_flex_groups[flex_group].free_clusters);
4686 }
4687
4688 ext4_mb_unload_buddy(&e4b);
4689
4690 freed += count;
4691
4692 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4693 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4694
4695 /* We dirtied the bitmap block */
4696 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4697 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4698
4699 /* And the group descriptor block */
4700 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4701 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4702 if (!err)
4703 err = ret;
4704
4705 if (overflow && !err) {
4706 block += count;
4707 count = overflow;
4708 put_bh(bitmap_bh);
4709 goto do_more;
4710 }
4711 ext4_mark_super_dirty(sb);
4712 error_return:
4713 brelse(bitmap_bh);
4714 ext4_std_error(sb, err);
4715 return;
4716 }
4717
4718 /**
4719 * ext4_group_add_blocks() -- Add given blocks to an existing group
4720 * @handle: handle to this transaction
4721 * @sb: super block
4722 * @block: start physcial block to add to the block group
4723 * @count: number of blocks to free
4724 *
4725 * This marks the blocks as free in the bitmap and buddy.
4726 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4727 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4728 ext4_fsblk_t block, unsigned long count)
4729 {
4730 struct buffer_head *bitmap_bh = NULL;
4731 struct buffer_head *gd_bh;
4732 ext4_group_t block_group;
4733 ext4_grpblk_t bit;
4734 unsigned int i;
4735 struct ext4_group_desc *desc;
4736 struct ext4_sb_info *sbi = EXT4_SB(sb);
4737 struct ext4_buddy e4b;
4738 int err = 0, ret, blk_free_count;
4739 ext4_grpblk_t blocks_freed;
4740
4741 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4742
4743 if (count == 0)
4744 return 0;
4745
4746 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4747 /*
4748 * Check to see if we are freeing blocks across a group
4749 * boundary.
4750 */
4751 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4752 ext4_warning(sb, "too much blocks added to group %u\n",
4753 block_group);
4754 err = -EINVAL;
4755 goto error_return;
4756 }
4757
4758 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4759 if (!bitmap_bh) {
4760 err = -EIO;
4761 goto error_return;
4762 }
4763
4764 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4765 if (!desc) {
4766 err = -EIO;
4767 goto error_return;
4768 }
4769
4770 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4771 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4772 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4773 in_range(block + count - 1, ext4_inode_table(sb, desc),
4774 sbi->s_itb_per_group)) {
4775 ext4_error(sb, "Adding blocks in system zones - "
4776 "Block = %llu, count = %lu",
4777 block, count);
4778 err = -EINVAL;
4779 goto error_return;
4780 }
4781
4782 BUFFER_TRACE(bitmap_bh, "getting write access");
4783 err = ext4_journal_get_write_access(handle, bitmap_bh);
4784 if (err)
4785 goto error_return;
4786
4787 /*
4788 * We are about to modify some metadata. Call the journal APIs
4789 * to unshare ->b_data if a currently-committing transaction is
4790 * using it
4791 */
4792 BUFFER_TRACE(gd_bh, "get_write_access");
4793 err = ext4_journal_get_write_access(handle, gd_bh);
4794 if (err)
4795 goto error_return;
4796
4797 for (i = 0, blocks_freed = 0; i < count; i++) {
4798 BUFFER_TRACE(bitmap_bh, "clear bit");
4799 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4800 ext4_error(sb, "bit already cleared for block %llu",
4801 (ext4_fsblk_t)(block + i));
4802 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4803 } else {
4804 blocks_freed++;
4805 }
4806 }
4807
4808 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4809 if (err)
4810 goto error_return;
4811
4812 /*
4813 * need to update group_info->bb_free and bitmap
4814 * with group lock held. generate_buddy look at
4815 * them with group lock_held
4816 */
4817 ext4_lock_group(sb, block_group);
4818 mb_clear_bits(bitmap_bh->b_data, bit, count);
4819 mb_free_blocks(NULL, &e4b, bit, count);
4820 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4821 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4822 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4823 ext4_unlock_group(sb, block_group);
4824 percpu_counter_add(&sbi->s_freeclusters_counter,
4825 EXT4_NUM_B2C(sbi, blocks_freed));
4826
4827 if (sbi->s_log_groups_per_flex) {
4828 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4829 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4830 &sbi->s_flex_groups[flex_group].free_clusters);
4831 }
4832
4833 ext4_mb_unload_buddy(&e4b);
4834
4835 /* We dirtied the bitmap block */
4836 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4837 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4838
4839 /* And the group descriptor block */
4840 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4841 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4842 if (!err)
4843 err = ret;
4844
4845 error_return:
4846 brelse(bitmap_bh);
4847 ext4_std_error(sb, err);
4848 return err;
4849 }
4850
4851 /**
4852 * ext4_trim_extent -- function to TRIM one single free extent in the group
4853 * @sb: super block for the file system
4854 * @start: starting block of the free extent in the alloc. group
4855 * @count: number of blocks to TRIM
4856 * @group: alloc. group we are working with
4857 * @e4b: ext4 buddy for the group
4858 *
4859 * Trim "count" blocks starting at "start" in the "group". To assure that no
4860 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4861 * be called with under the group lock.
4862 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)4863 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4864 ext4_group_t group, struct ext4_buddy *e4b)
4865 {
4866 struct ext4_free_extent ex;
4867
4868 trace_ext4_trim_extent(sb, group, start, count);
4869
4870 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4871
4872 ex.fe_start = start;
4873 ex.fe_group = group;
4874 ex.fe_len = count;
4875
4876 /*
4877 * Mark blocks used, so no one can reuse them while
4878 * being trimmed.
4879 */
4880 mb_mark_used(e4b, &ex);
4881 ext4_unlock_group(sb, group);
4882 ext4_issue_discard(sb, group, start, count);
4883 ext4_lock_group(sb, group);
4884 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4885 }
4886
4887 /**
4888 * ext4_trim_all_free -- function to trim all free space in alloc. group
4889 * @sb: super block for file system
4890 * @group: group to be trimmed
4891 * @start: first group block to examine
4892 * @max: last group block to examine
4893 * @minblocks: minimum extent block count
4894 *
4895 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4896 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4897 * the extent.
4898 *
4899 *
4900 * ext4_trim_all_free walks through group's block bitmap searching for free
4901 * extents. When the free extent is found, mark it as used in group buddy
4902 * bitmap. Then issue a TRIM command on this extent and free the extent in
4903 * the group buddy bitmap. This is done until whole group is scanned.
4904 */
4905 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)4906 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4907 ext4_grpblk_t start, ext4_grpblk_t max,
4908 ext4_grpblk_t minblocks)
4909 {
4910 void *bitmap;
4911 ext4_grpblk_t next, count = 0, free_count = 0;
4912 struct ext4_buddy e4b;
4913 int ret;
4914
4915 trace_ext4_trim_all_free(sb, group, start, max);
4916
4917 ret = ext4_mb_load_buddy(sb, group, &e4b);
4918 if (ret) {
4919 ext4_error(sb, "Error in loading buddy "
4920 "information for %u", group);
4921 return ret;
4922 }
4923 bitmap = e4b.bd_bitmap;
4924
4925 ext4_lock_group(sb, group);
4926 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4927 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4928 goto out;
4929
4930 start = (e4b.bd_info->bb_first_free > start) ?
4931 e4b.bd_info->bb_first_free : start;
4932
4933 while (start <= max) {
4934 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4935 if (start > max)
4936 break;
4937 next = mb_find_next_bit(bitmap, max + 1, start);
4938
4939 if ((next - start) >= minblocks) {
4940 ext4_trim_extent(sb, start,
4941 next - start, group, &e4b);
4942 count += next - start;
4943 }
4944 free_count += next - start;
4945 start = next + 1;
4946
4947 if (fatal_signal_pending(current)) {
4948 count = -ERESTARTSYS;
4949 break;
4950 }
4951
4952 if (need_resched()) {
4953 ext4_unlock_group(sb, group);
4954 cond_resched();
4955 ext4_lock_group(sb, group);
4956 }
4957
4958 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4959 break;
4960 }
4961
4962 if (!ret)
4963 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4964 out:
4965 ext4_unlock_group(sb, group);
4966 ext4_mb_unload_buddy(&e4b);
4967
4968 ext4_debug("trimmed %d blocks in the group %d\n",
4969 count, group);
4970
4971 return count;
4972 }
4973
4974 /**
4975 * ext4_trim_fs() -- trim ioctl handle function
4976 * @sb: superblock for filesystem
4977 * @range: fstrim_range structure
4978 *
4979 * start: First Byte to trim
4980 * len: number of Bytes to trim from start
4981 * minlen: minimum extent length in Bytes
4982 * ext4_trim_fs goes through all allocation groups containing Bytes from
4983 * start to start+len. For each such a group ext4_trim_all_free function
4984 * is invoked to trim all free space.
4985 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)4986 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4987 {
4988 struct ext4_group_info *grp;
4989 ext4_group_t group, first_group, last_group;
4990 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4991 uint64_t start, end, minlen, trimmed = 0;
4992 ext4_fsblk_t first_data_blk =
4993 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4994 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4995 int ret = 0;
4996
4997 start = range->start >> sb->s_blocksize_bits;
4998 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4999 minlen = range->minlen >> sb->s_blocksize_bits;
5000
5001 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5002 start >= max_blks ||
5003 range->len < sb->s_blocksize)
5004 return -EINVAL;
5005 if (end >= max_blks)
5006 end = max_blks - 1;
5007 if (end <= first_data_blk)
5008 goto out;
5009 if (start < first_data_blk)
5010 start = first_data_blk;
5011
5012 /* Determine first and last group to examine based on start and end */
5013 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5014 &first_group, &first_cluster);
5015 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5016 &last_group, &last_cluster);
5017
5018 /* end now represents the last cluster to discard in this group */
5019 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5020
5021 for (group = first_group; group <= last_group; group++) {
5022 grp = ext4_get_group_info(sb, group);
5023 /* We only do this if the grp has never been initialized */
5024 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5025 ret = ext4_mb_init_group(sb, group);
5026 if (ret)
5027 break;
5028 }
5029
5030 /*
5031 * For all the groups except the last one, last cluster will
5032 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5033 * change it for the last group, note that last_cluster is
5034 * already computed earlier by ext4_get_group_no_and_offset()
5035 */
5036 if (group == last_group)
5037 end = last_cluster;
5038
5039 if (grp->bb_free >= minlen) {
5040 cnt = ext4_trim_all_free(sb, group, first_cluster,
5041 end, minlen);
5042 if (cnt < 0) {
5043 ret = cnt;
5044 break;
5045 }
5046 trimmed += cnt;
5047 }
5048
5049 /*
5050 * For every group except the first one, we are sure
5051 * that the first cluster to discard will be cluster #0.
5052 */
5053 first_cluster = 0;
5054 }
5055
5056 if (!ret)
5057 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5058
5059 out:
5060 range->len = trimmed * sb->s_blocksize;
5061 return ret;
5062 }
5063