1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 			     unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 					struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 				   struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 				     char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 	.owner		= THIS_MODULE,
91 	.name		= "ext2",
92 	.mount		= ext4_mount,
93 	.kill_sb	= kill_block_super,
94 	.fs_flags	= FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100 
101 
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 	.owner		= THIS_MODULE,
105 	.name		= "ext3",
106 	.mount		= ext4_mount,
107 	.kill_sb	= kill_block_super,
108 	.fs_flags	= FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114 
ext4_kvmalloc(size_t size,gfp_t flags)115 void *ext4_kvmalloc(size_t size, gfp_t flags)
116 {
117 	void *ret;
118 
119 	ret = kmalloc(size, flags);
120 	if (!ret)
121 		ret = __vmalloc(size, flags, PAGE_KERNEL);
122 	return ret;
123 }
124 
ext4_kvzalloc(size_t size,gfp_t flags)125 void *ext4_kvzalloc(size_t size, gfp_t flags)
126 {
127 	void *ret;
128 
129 	ret = kzalloc(size, flags);
130 	if (!ret)
131 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 	return ret;
133 }
134 
ext4_kvfree(void * ptr)135 void ext4_kvfree(void *ptr)
136 {
137 	if (is_vmalloc_addr(ptr))
138 		vfree(ptr);
139 	else
140 		kfree(ptr);
141 
142 }
143 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 			       struct ext4_group_desc *bg)
146 {
147 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150 }
151 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 			       struct ext4_group_desc *bg)
154 {
155 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158 }
159 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)160 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 			      struct ext4_group_desc *bg)
162 {
163 	return le32_to_cpu(bg->bg_inode_table_lo) |
164 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166 }
167 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)168 __u32 ext4_free_group_clusters(struct super_block *sb,
169 			       struct ext4_group_desc *bg)
170 {
171 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174 }
175 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)176 __u32 ext4_free_inodes_count(struct super_block *sb,
177 			      struct ext4_group_desc *bg)
178 {
179 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182 }
183 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)184 __u32 ext4_used_dirs_count(struct super_block *sb,
185 			      struct ext4_group_desc *bg)
186 {
187 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190 }
191 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)192 __u32 ext4_itable_unused_count(struct super_block *sb,
193 			      struct ext4_group_desc *bg)
194 {
195 	return le16_to_cpu(bg->bg_itable_unused_lo) |
196 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198 }
199 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)200 void ext4_block_bitmap_set(struct super_block *sb,
201 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
202 {
203 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206 }
207 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)208 void ext4_inode_bitmap_set(struct super_block *sb,
209 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
210 {
211 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
212 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214 }
215 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)216 void ext4_inode_table_set(struct super_block *sb,
217 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
218 {
219 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222 }
223 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)224 void ext4_free_group_clusters_set(struct super_block *sb,
225 				  struct ext4_group_desc *bg, __u32 count)
226 {
227 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230 }
231 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)232 void ext4_free_inodes_set(struct super_block *sb,
233 			  struct ext4_group_desc *bg, __u32 count)
234 {
235 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238 }
239 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)240 void ext4_used_dirs_set(struct super_block *sb,
241 			  struct ext4_group_desc *bg, __u32 count)
242 {
243 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246 }
247 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)248 void ext4_itable_unused_set(struct super_block *sb,
249 			  struct ext4_group_desc *bg, __u32 count)
250 {
251 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254 }
255 
256 
257 /* Just increment the non-pointer handle value */
ext4_get_nojournal(void)258 static handle_t *ext4_get_nojournal(void)
259 {
260 	handle_t *handle = current->journal_info;
261 	unsigned long ref_cnt = (unsigned long)handle;
262 
263 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264 
265 	ref_cnt++;
266 	handle = (handle_t *)ref_cnt;
267 
268 	current->journal_info = handle;
269 	return handle;
270 }
271 
272 
273 /* Decrement the non-pointer handle value */
ext4_put_nojournal(handle_t * handle)274 static void ext4_put_nojournal(handle_t *handle)
275 {
276 	unsigned long ref_cnt = (unsigned long)handle;
277 
278 	BUG_ON(ref_cnt == 0);
279 
280 	ref_cnt--;
281 	handle = (handle_t *)ref_cnt;
282 
283 	current->journal_info = handle;
284 }
285 
286 /*
287  * Wrappers for jbd2_journal_start/end.
288  *
289  * The only special thing we need to do here is to make sure that all
290  * journal_end calls result in the superblock being marked dirty, so
291  * that sync() will call the filesystem's write_super callback if
292  * appropriate.
293  *
294  * To avoid j_barrier hold in userspace when a user calls freeze(),
295  * ext4 prevents a new handle from being started by s_frozen, which
296  * is in an upper layer.
297  */
ext4_journal_start_sb(struct super_block * sb,int nblocks)298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299 {
300 	journal_t *journal;
301 	handle_t  *handle;
302 
303 	trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 	if (sb->s_flags & MS_RDONLY)
305 		return ERR_PTR(-EROFS);
306 
307 	journal = EXT4_SB(sb)->s_journal;
308 	handle = ext4_journal_current_handle();
309 
310 	/*
311 	 * If a handle has been started, it should be allowed to
312 	 * finish, otherwise deadlock could happen between freeze
313 	 * and others(e.g. truncate) due to the restart of the
314 	 * journal handle if the filesystem is forzen and active
315 	 * handles are not stopped.
316 	 */
317 	if (!handle)
318 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
319 
320 	if (!journal)
321 		return ext4_get_nojournal();
322 	/*
323 	 * Special case here: if the journal has aborted behind our
324 	 * backs (eg. EIO in the commit thread), then we still need to
325 	 * take the FS itself readonly cleanly.
326 	 */
327 	if (is_journal_aborted(journal)) {
328 		ext4_abort(sb, "Detected aborted journal");
329 		return ERR_PTR(-EROFS);
330 	}
331 	return jbd2_journal_start(journal, nblocks);
332 }
333 
334 /*
335  * The only special thing we need to do here is to make sure that all
336  * jbd2_journal_stop calls result in the superblock being marked dirty, so
337  * that sync() will call the filesystem's write_super callback if
338  * appropriate.
339  */
__ext4_journal_stop(const char * where,unsigned int line,handle_t * handle)340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341 {
342 	struct super_block *sb;
343 	int err;
344 	int rc;
345 
346 	if (!ext4_handle_valid(handle)) {
347 		ext4_put_nojournal(handle);
348 		return 0;
349 	}
350 	sb = handle->h_transaction->t_journal->j_private;
351 	err = handle->h_err;
352 	rc = jbd2_journal_stop(handle);
353 
354 	if (!err)
355 		err = rc;
356 	if (err)
357 		__ext4_std_error(sb, where, line, err);
358 	return err;
359 }
360 
ext4_journal_abort_handle(const char * caller,unsigned int line,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)361 void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 			       const char *err_fn, struct buffer_head *bh,
363 			       handle_t *handle, int err)
364 {
365 	char nbuf[16];
366 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
367 
368 	BUG_ON(!ext4_handle_valid(handle));
369 
370 	if (bh)
371 		BUFFER_TRACE(bh, "abort");
372 
373 	if (!handle->h_err)
374 		handle->h_err = err;
375 
376 	if (is_handle_aborted(handle))
377 		return;
378 
379 	printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 	       caller, line, errstr, err_fn);
381 
382 	jbd2_journal_abort_handle(handle);
383 }
384 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)385 static void __save_error_info(struct super_block *sb, const char *func,
386 			    unsigned int line)
387 {
388 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389 
390 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 	es->s_last_error_time = cpu_to_le32(get_seconds());
393 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 	es->s_last_error_line = cpu_to_le32(line);
395 	if (!es->s_first_error_time) {
396 		es->s_first_error_time = es->s_last_error_time;
397 		strncpy(es->s_first_error_func, func,
398 			sizeof(es->s_first_error_func));
399 		es->s_first_error_line = cpu_to_le32(line);
400 		es->s_first_error_ino = es->s_last_error_ino;
401 		es->s_first_error_block = es->s_last_error_block;
402 	}
403 	/*
404 	 * Start the daily error reporting function if it hasn't been
405 	 * started already
406 	 */
407 	if (!es->s_error_count)
408 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410 }
411 
save_error_info(struct super_block * sb,const char * func,unsigned int line)412 static void save_error_info(struct super_block *sb, const char *func,
413 			    unsigned int line)
414 {
415 	__save_error_info(sb, func, line);
416 	ext4_commit_super(sb, 1);
417 }
418 
419 /*
420  * The del_gendisk() function uninitializes the disk-specific data
421  * structures, including the bdi structure, without telling anyone
422  * else.  Once this happens, any attempt to call mark_buffer_dirty()
423  * (for example, by ext4_commit_super), will cause a kernel OOPS.
424  * This is a kludge to prevent these oops until we can put in a proper
425  * hook in del_gendisk() to inform the VFS and file system layers.
426  */
block_device_ejected(struct super_block * sb)427 static int block_device_ejected(struct super_block *sb)
428 {
429 	struct inode *bd_inode = sb->s_bdev->bd_inode;
430 	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431 
432 	return bdi->dev == NULL;
433 }
434 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436 {
437 	struct super_block		*sb = journal->j_private;
438 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
439 	int				error = is_journal_aborted(journal);
440 	struct ext4_journal_cb_entry	*jce;
441 
442 	BUG_ON(txn->t_state == T_FINISHED);
443 	spin_lock(&sbi->s_md_lock);
444 	while (!list_empty(&txn->t_private_list)) {
445 		jce = list_entry(txn->t_private_list.next,
446 				 struct ext4_journal_cb_entry, jce_list);
447 		list_del_init(&jce->jce_list);
448 		spin_unlock(&sbi->s_md_lock);
449 		jce->jce_func(sb, jce, error);
450 		spin_lock(&sbi->s_md_lock);
451 	}
452 	spin_unlock(&sbi->s_md_lock);
453 }
454 
455 /* Deal with the reporting of failure conditions on a filesystem such as
456  * inconsistencies detected or read IO failures.
457  *
458  * On ext2, we can store the error state of the filesystem in the
459  * superblock.  That is not possible on ext4, because we may have other
460  * write ordering constraints on the superblock which prevent us from
461  * writing it out straight away; and given that the journal is about to
462  * be aborted, we can't rely on the current, or future, transactions to
463  * write out the superblock safely.
464  *
465  * We'll just use the jbd2_journal_abort() error code to record an error in
466  * the journal instead.  On recovery, the journal will complain about
467  * that error until we've noted it down and cleared it.
468  */
469 
ext4_handle_error(struct super_block * sb)470 static void ext4_handle_error(struct super_block *sb)
471 {
472 	if (sb->s_flags & MS_RDONLY)
473 		return;
474 
475 	if (!test_opt(sb, ERRORS_CONT)) {
476 		journal_t *journal = EXT4_SB(sb)->s_journal;
477 
478 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
479 		if (journal)
480 			jbd2_journal_abort(journal, -EIO);
481 	}
482 	if (test_opt(sb, ERRORS_RO)) {
483 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
484 		sb->s_flags |= MS_RDONLY;
485 	}
486 	if (test_opt(sb, ERRORS_PANIC))
487 		panic("EXT4-fs (device %s): panic forced after error\n",
488 			sb->s_id);
489 }
490 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)491 void __ext4_error(struct super_block *sb, const char *function,
492 		  unsigned int line, const char *fmt, ...)
493 {
494 	struct va_format vaf;
495 	va_list args;
496 
497 	va_start(args, fmt);
498 	vaf.fmt = fmt;
499 	vaf.va = &args;
500 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
501 	       sb->s_id, function, line, current->comm, &vaf);
502 	va_end(args);
503 	save_error_info(sb, function, line);
504 
505 	ext4_handle_error(sb);
506 }
507 
ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)508 void ext4_error_inode(struct inode *inode, const char *function,
509 		      unsigned int line, ext4_fsblk_t block,
510 		      const char *fmt, ...)
511 {
512 	va_list args;
513 	struct va_format vaf;
514 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
515 
516 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
517 	es->s_last_error_block = cpu_to_le64(block);
518 	save_error_info(inode->i_sb, function, line);
519 	va_start(args, fmt);
520 	vaf.fmt = fmt;
521 	vaf.va = &args;
522 	if (block)
523 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
524 		       "inode #%lu: block %llu: comm %s: %pV\n",
525 		       inode->i_sb->s_id, function, line, inode->i_ino,
526 		       block, current->comm, &vaf);
527 	else
528 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
529 		       "inode #%lu: comm %s: %pV\n",
530 		       inode->i_sb->s_id, function, line, inode->i_ino,
531 		       current->comm, &vaf);
532 	va_end(args);
533 
534 	ext4_handle_error(inode->i_sb);
535 }
536 
ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)537 void ext4_error_file(struct file *file, const char *function,
538 		     unsigned int line, ext4_fsblk_t block,
539 		     const char *fmt, ...)
540 {
541 	va_list args;
542 	struct va_format vaf;
543 	struct ext4_super_block *es;
544 	struct inode *inode = file->f_dentry->d_inode;
545 	char pathname[80], *path;
546 
547 	es = EXT4_SB(inode->i_sb)->s_es;
548 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
549 	save_error_info(inode->i_sb, function, line);
550 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
551 	if (IS_ERR(path))
552 		path = "(unknown)";
553 	va_start(args, fmt);
554 	vaf.fmt = fmt;
555 	vaf.va = &args;
556 	if (block)
557 		printk(KERN_CRIT
558 		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
559 		       "block %llu: comm %s: path %s: %pV\n",
560 		       inode->i_sb->s_id, function, line, inode->i_ino,
561 		       block, current->comm, path, &vaf);
562 	else
563 		printk(KERN_CRIT
564 		       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
565 		       "comm %s: path %s: %pV\n",
566 		       inode->i_sb->s_id, function, line, inode->i_ino,
567 		       current->comm, path, &vaf);
568 	va_end(args);
569 
570 	ext4_handle_error(inode->i_sb);
571 }
572 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])573 static const char *ext4_decode_error(struct super_block *sb, int errno,
574 				     char nbuf[16])
575 {
576 	char *errstr = NULL;
577 
578 	switch (errno) {
579 	case -EIO:
580 		errstr = "IO failure";
581 		break;
582 	case -ENOMEM:
583 		errstr = "Out of memory";
584 		break;
585 	case -EROFS:
586 		if (!sb || (EXT4_SB(sb)->s_journal &&
587 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
588 			errstr = "Journal has aborted";
589 		else
590 			errstr = "Readonly filesystem";
591 		break;
592 	default:
593 		/* If the caller passed in an extra buffer for unknown
594 		 * errors, textualise them now.  Else we just return
595 		 * NULL. */
596 		if (nbuf) {
597 			/* Check for truncated error codes... */
598 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
599 				errstr = nbuf;
600 		}
601 		break;
602 	}
603 
604 	return errstr;
605 }
606 
607 /* __ext4_std_error decodes expected errors from journaling functions
608  * automatically and invokes the appropriate error response.  */
609 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)610 void __ext4_std_error(struct super_block *sb, const char *function,
611 		      unsigned int line, int errno)
612 {
613 	char nbuf[16];
614 	const char *errstr;
615 
616 	/* Special case: if the error is EROFS, and we're not already
617 	 * inside a transaction, then there's really no point in logging
618 	 * an error. */
619 	if (errno == -EROFS && journal_current_handle() == NULL &&
620 	    (sb->s_flags & MS_RDONLY))
621 		return;
622 
623 	errstr = ext4_decode_error(sb, errno, nbuf);
624 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
625 	       sb->s_id, function, line, errstr);
626 	save_error_info(sb, function, line);
627 
628 	ext4_handle_error(sb);
629 }
630 
631 /*
632  * ext4_abort is a much stronger failure handler than ext4_error.  The
633  * abort function may be used to deal with unrecoverable failures such
634  * as journal IO errors or ENOMEM at a critical moment in log management.
635  *
636  * We unconditionally force the filesystem into an ABORT|READONLY state,
637  * unless the error response on the fs has been set to panic in which
638  * case we take the easy way out and panic immediately.
639  */
640 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)641 void __ext4_abort(struct super_block *sb, const char *function,
642 		unsigned int line, const char *fmt, ...)
643 {
644 	va_list args;
645 
646 	save_error_info(sb, function, line);
647 	va_start(args, fmt);
648 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
649 	       function, line);
650 	vprintk(fmt, args);
651 	printk("\n");
652 	va_end(args);
653 
654 	if ((sb->s_flags & MS_RDONLY) == 0) {
655 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
656 		sb->s_flags |= MS_RDONLY;
657 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
658 		if (EXT4_SB(sb)->s_journal)
659 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
660 		save_error_info(sb, function, line);
661 	}
662 	if (test_opt(sb, ERRORS_PANIC))
663 		panic("EXT4-fs panic from previous error\n");
664 }
665 
ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)666 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
667 {
668 	struct va_format vaf;
669 	va_list args;
670 
671 	va_start(args, fmt);
672 	vaf.fmt = fmt;
673 	vaf.va = &args;
674 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
675 	va_end(args);
676 }
677 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)678 void __ext4_warning(struct super_block *sb, const char *function,
679 		    unsigned int line, const char *fmt, ...)
680 {
681 	struct va_format vaf;
682 	va_list args;
683 
684 	va_start(args, fmt);
685 	vaf.fmt = fmt;
686 	vaf.va = &args;
687 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
688 	       sb->s_id, function, line, &vaf);
689 	va_end(args);
690 }
691 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)692 void __ext4_grp_locked_error(const char *function, unsigned int line,
693 			     struct super_block *sb, ext4_group_t grp,
694 			     unsigned long ino, ext4_fsblk_t block,
695 			     const char *fmt, ...)
696 __releases(bitlock)
697 __acquires(bitlock)
698 {
699 	struct va_format vaf;
700 	va_list args;
701 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
702 
703 	es->s_last_error_ino = cpu_to_le32(ino);
704 	es->s_last_error_block = cpu_to_le64(block);
705 	__save_error_info(sb, function, line);
706 
707 	va_start(args, fmt);
708 
709 	vaf.fmt = fmt;
710 	vaf.va = &args;
711 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
712 	       sb->s_id, function, line, grp);
713 	if (ino)
714 		printk(KERN_CONT "inode %lu: ", ino);
715 	if (block)
716 		printk(KERN_CONT "block %llu:", (unsigned long long) block);
717 	printk(KERN_CONT "%pV\n", &vaf);
718 	va_end(args);
719 
720 	if (test_opt(sb, ERRORS_CONT)) {
721 		ext4_commit_super(sb, 0);
722 		return;
723 	}
724 
725 	ext4_unlock_group(sb, grp);
726 	ext4_handle_error(sb);
727 	/*
728 	 * We only get here in the ERRORS_RO case; relocking the group
729 	 * may be dangerous, but nothing bad will happen since the
730 	 * filesystem will have already been marked read/only and the
731 	 * journal has been aborted.  We return 1 as a hint to callers
732 	 * who might what to use the return value from
733 	 * ext4_grp_locked_error() to distinguish between the
734 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
735 	 * aggressively from the ext4 function in question, with a
736 	 * more appropriate error code.
737 	 */
738 	ext4_lock_group(sb, grp);
739 	return;
740 }
741 
ext4_update_dynamic_rev(struct super_block * sb)742 void ext4_update_dynamic_rev(struct super_block *sb)
743 {
744 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
745 
746 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
747 		return;
748 
749 	ext4_warning(sb,
750 		     "updating to rev %d because of new feature flag, "
751 		     "running e2fsck is recommended",
752 		     EXT4_DYNAMIC_REV);
753 
754 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
755 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
756 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
757 	/* leave es->s_feature_*compat flags alone */
758 	/* es->s_uuid will be set by e2fsck if empty */
759 
760 	/*
761 	 * The rest of the superblock fields should be zero, and if not it
762 	 * means they are likely already in use, so leave them alone.  We
763 	 * can leave it up to e2fsck to clean up any inconsistencies there.
764 	 */
765 }
766 
767 /*
768  * Open the external journal device
769  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)770 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
771 {
772 	struct block_device *bdev;
773 	char b[BDEVNAME_SIZE];
774 
775 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
776 	if (IS_ERR(bdev))
777 		goto fail;
778 	return bdev;
779 
780 fail:
781 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
782 			__bdevname(dev, b), PTR_ERR(bdev));
783 	return NULL;
784 }
785 
786 /*
787  * Release the journal device
788  */
ext4_blkdev_put(struct block_device * bdev)789 static int ext4_blkdev_put(struct block_device *bdev)
790 {
791 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
792 }
793 
ext4_blkdev_remove(struct ext4_sb_info * sbi)794 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
795 {
796 	struct block_device *bdev;
797 	int ret = -ENODEV;
798 
799 	bdev = sbi->journal_bdev;
800 	if (bdev) {
801 		ret = ext4_blkdev_put(bdev);
802 		sbi->journal_bdev = NULL;
803 	}
804 	return ret;
805 }
806 
orphan_list_entry(struct list_head * l)807 static inline struct inode *orphan_list_entry(struct list_head *l)
808 {
809 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
810 }
811 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)812 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
813 {
814 	struct list_head *l;
815 
816 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
817 		 le32_to_cpu(sbi->s_es->s_last_orphan));
818 
819 	printk(KERN_ERR "sb_info orphan list:\n");
820 	list_for_each(l, &sbi->s_orphan) {
821 		struct inode *inode = orphan_list_entry(l);
822 		printk(KERN_ERR "  "
823 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
824 		       inode->i_sb->s_id, inode->i_ino, inode,
825 		       inode->i_mode, inode->i_nlink,
826 		       NEXT_ORPHAN(inode));
827 	}
828 }
829 
ext4_put_super(struct super_block * sb)830 static void ext4_put_super(struct super_block *sb)
831 {
832 	struct ext4_sb_info *sbi = EXT4_SB(sb);
833 	struct ext4_super_block *es = sbi->s_es;
834 	int i, err;
835 
836 	ext4_unregister_li_request(sb);
837 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
838 
839 	flush_workqueue(sbi->dio_unwritten_wq);
840 	destroy_workqueue(sbi->dio_unwritten_wq);
841 
842 	lock_super(sb);
843 	if (sbi->s_journal) {
844 		err = jbd2_journal_destroy(sbi->s_journal);
845 		sbi->s_journal = NULL;
846 		if (err < 0)
847 			ext4_abort(sb, "Couldn't clean up the journal");
848 	}
849 
850 	del_timer(&sbi->s_err_report);
851 	ext4_release_system_zone(sb);
852 	ext4_mb_release(sb);
853 	ext4_ext_release(sb);
854 	ext4_xattr_put_super(sb);
855 
856 	if (!(sb->s_flags & MS_RDONLY)) {
857 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
858 		es->s_state = cpu_to_le16(sbi->s_mount_state);
859 	}
860 	if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
861 		ext4_commit_super(sb, 1);
862 
863 	if (sbi->s_proc) {
864 		remove_proc_entry("options", sbi->s_proc);
865 		remove_proc_entry(sb->s_id, ext4_proc_root);
866 	}
867 	kobject_del(&sbi->s_kobj);
868 
869 	for (i = 0; i < sbi->s_gdb_count; i++)
870 		brelse(sbi->s_group_desc[i]);
871 	ext4_kvfree(sbi->s_group_desc);
872 	ext4_kvfree(sbi->s_flex_groups);
873 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
874 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
875 	percpu_counter_destroy(&sbi->s_dirs_counter);
876 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
877 	brelse(sbi->s_sbh);
878 #ifdef CONFIG_QUOTA
879 	for (i = 0; i < MAXQUOTAS; i++)
880 		kfree(sbi->s_qf_names[i]);
881 #endif
882 
883 	/* Debugging code just in case the in-memory inode orphan list
884 	 * isn't empty.  The on-disk one can be non-empty if we've
885 	 * detected an error and taken the fs readonly, but the
886 	 * in-memory list had better be clean by this point. */
887 	if (!list_empty(&sbi->s_orphan))
888 		dump_orphan_list(sb, sbi);
889 	J_ASSERT(list_empty(&sbi->s_orphan));
890 
891 	invalidate_bdev(sb->s_bdev);
892 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
893 		/*
894 		 * Invalidate the journal device's buffers.  We don't want them
895 		 * floating about in memory - the physical journal device may
896 		 * hotswapped, and it breaks the `ro-after' testing code.
897 		 */
898 		sync_blockdev(sbi->journal_bdev);
899 		invalidate_bdev(sbi->journal_bdev);
900 		ext4_blkdev_remove(sbi);
901 	}
902 	if (sbi->s_mmp_tsk)
903 		kthread_stop(sbi->s_mmp_tsk);
904 	sb->s_fs_info = NULL;
905 	/*
906 	 * Now that we are completely done shutting down the
907 	 * superblock, we need to actually destroy the kobject.
908 	 */
909 	unlock_super(sb);
910 	kobject_put(&sbi->s_kobj);
911 	wait_for_completion(&sbi->s_kobj_unregister);
912 	kfree(sbi->s_blockgroup_lock);
913 	kfree(sbi);
914 }
915 
916 static struct kmem_cache *ext4_inode_cachep;
917 
918 /*
919  * Called inside transaction, so use GFP_NOFS
920  */
ext4_alloc_inode(struct super_block * sb)921 static struct inode *ext4_alloc_inode(struct super_block *sb)
922 {
923 	struct ext4_inode_info *ei;
924 
925 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
926 	if (!ei)
927 		return NULL;
928 
929 	ei->vfs_inode.i_version = 1;
930 	ei->vfs_inode.i_data.writeback_index = 0;
931 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
932 	INIT_LIST_HEAD(&ei->i_prealloc_list);
933 	spin_lock_init(&ei->i_prealloc_lock);
934 	ei->i_reserved_data_blocks = 0;
935 	ei->i_reserved_meta_blocks = 0;
936 	ei->i_allocated_meta_blocks = 0;
937 	ei->i_da_metadata_calc_len = 0;
938 	ei->i_da_metadata_calc_last_lblock = 0;
939 	spin_lock_init(&(ei->i_block_reservation_lock));
940 #ifdef CONFIG_QUOTA
941 	ei->i_reserved_quota = 0;
942 #endif
943 	ei->jinode = NULL;
944 	INIT_LIST_HEAD(&ei->i_completed_io_list);
945 	spin_lock_init(&ei->i_completed_io_lock);
946 	ei->cur_aio_dio = NULL;
947 	ei->i_sync_tid = 0;
948 	ei->i_datasync_tid = 0;
949 	atomic_set(&ei->i_ioend_count, 0);
950 	atomic_set(&ei->i_aiodio_unwritten, 0);
951 
952 	return &ei->vfs_inode;
953 }
954 
ext4_drop_inode(struct inode * inode)955 static int ext4_drop_inode(struct inode *inode)
956 {
957 	int drop = generic_drop_inode(inode);
958 
959 	trace_ext4_drop_inode(inode, drop);
960 	return drop;
961 }
962 
ext4_i_callback(struct rcu_head * head)963 static void ext4_i_callback(struct rcu_head *head)
964 {
965 	struct inode *inode = container_of(head, struct inode, i_rcu);
966 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
967 }
968 
ext4_destroy_inode(struct inode * inode)969 static void ext4_destroy_inode(struct inode *inode)
970 {
971 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
972 		ext4_msg(inode->i_sb, KERN_ERR,
973 			 "Inode %lu (%p): orphan list check failed!",
974 			 inode->i_ino, EXT4_I(inode));
975 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
976 				EXT4_I(inode), sizeof(struct ext4_inode_info),
977 				true);
978 		dump_stack();
979 	}
980 	call_rcu(&inode->i_rcu, ext4_i_callback);
981 }
982 
init_once(void * foo)983 static void init_once(void *foo)
984 {
985 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
986 
987 	INIT_LIST_HEAD(&ei->i_orphan);
988 #ifdef CONFIG_EXT4_FS_XATTR
989 	init_rwsem(&ei->xattr_sem);
990 #endif
991 	init_rwsem(&ei->i_data_sem);
992 	inode_init_once(&ei->vfs_inode);
993 }
994 
init_inodecache(void)995 static int init_inodecache(void)
996 {
997 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 					     sizeof(struct ext4_inode_info),
999 					     0, (SLAB_RECLAIM_ACCOUNT|
1000 						SLAB_MEM_SPREAD),
1001 					     init_once);
1002 	if (ext4_inode_cachep == NULL)
1003 		return -ENOMEM;
1004 	return 0;
1005 }
1006 
destroy_inodecache(void)1007 static void destroy_inodecache(void)
1008 {
1009 	kmem_cache_destroy(ext4_inode_cachep);
1010 }
1011 
ext4_clear_inode(struct inode * inode)1012 void ext4_clear_inode(struct inode *inode)
1013 {
1014 	invalidate_inode_buffers(inode);
1015 	end_writeback(inode);
1016 	dquot_drop(inode);
1017 	ext4_discard_preallocations(inode);
1018 	if (EXT4_I(inode)->jinode) {
1019 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1020 					       EXT4_I(inode)->jinode);
1021 		jbd2_free_inode(EXT4_I(inode)->jinode);
1022 		EXT4_I(inode)->jinode = NULL;
1023 	}
1024 }
1025 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1026 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1027 					u64 ino, u32 generation)
1028 {
1029 	struct inode *inode;
1030 
1031 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1032 		return ERR_PTR(-ESTALE);
1033 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1034 		return ERR_PTR(-ESTALE);
1035 
1036 	/* iget isn't really right if the inode is currently unallocated!!
1037 	 *
1038 	 * ext4_read_inode will return a bad_inode if the inode had been
1039 	 * deleted, so we should be safe.
1040 	 *
1041 	 * Currently we don't know the generation for parent directory, so
1042 	 * a generation of 0 means "accept any"
1043 	 */
1044 	inode = ext4_iget(sb, ino);
1045 	if (IS_ERR(inode))
1046 		return ERR_CAST(inode);
1047 	if (generation && inode->i_generation != generation) {
1048 		iput(inode);
1049 		return ERR_PTR(-ESTALE);
1050 	}
1051 
1052 	return inode;
1053 }
1054 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1055 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1056 					int fh_len, int fh_type)
1057 {
1058 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1059 				    ext4_nfs_get_inode);
1060 }
1061 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1062 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1063 					int fh_len, int fh_type)
1064 {
1065 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1066 				    ext4_nfs_get_inode);
1067 }
1068 
1069 /*
1070  * Try to release metadata pages (indirect blocks, directories) which are
1071  * mapped via the block device.  Since these pages could have journal heads
1072  * which would prevent try_to_free_buffers() from freeing them, we must use
1073  * jbd2 layer's try_to_free_buffers() function to release them.
1074  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1075 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1076 				 gfp_t wait)
1077 {
1078 	journal_t *journal = EXT4_SB(sb)->s_journal;
1079 
1080 	WARN_ON(PageChecked(page));
1081 	if (!page_has_buffers(page))
1082 		return 0;
1083 	if (journal)
1084 		return jbd2_journal_try_to_free_buffers(journal, page,
1085 							wait & ~__GFP_WAIT);
1086 	return try_to_free_buffers(page);
1087 }
1088 
1089 #ifdef CONFIG_QUOTA
1090 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1091 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1092 
1093 static int ext4_write_dquot(struct dquot *dquot);
1094 static int ext4_acquire_dquot(struct dquot *dquot);
1095 static int ext4_release_dquot(struct dquot *dquot);
1096 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1097 static int ext4_write_info(struct super_block *sb, int type);
1098 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1099 			 struct path *path);
1100 static int ext4_quota_off(struct super_block *sb, int type);
1101 static int ext4_quota_on_mount(struct super_block *sb, int type);
1102 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1103 			       size_t len, loff_t off);
1104 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1105 				const char *data, size_t len, loff_t off);
1106 
1107 static const struct dquot_operations ext4_quota_operations = {
1108 	.get_reserved_space = ext4_get_reserved_space,
1109 	.write_dquot	= ext4_write_dquot,
1110 	.acquire_dquot	= ext4_acquire_dquot,
1111 	.release_dquot	= ext4_release_dquot,
1112 	.mark_dirty	= ext4_mark_dquot_dirty,
1113 	.write_info	= ext4_write_info,
1114 	.alloc_dquot	= dquot_alloc,
1115 	.destroy_dquot	= dquot_destroy,
1116 };
1117 
1118 static const struct quotactl_ops ext4_qctl_operations = {
1119 	.quota_on	= ext4_quota_on,
1120 	.quota_off	= ext4_quota_off,
1121 	.quota_sync	= dquot_quota_sync,
1122 	.get_info	= dquot_get_dqinfo,
1123 	.set_info	= dquot_set_dqinfo,
1124 	.get_dqblk	= dquot_get_dqblk,
1125 	.set_dqblk	= dquot_set_dqblk
1126 };
1127 #endif
1128 
1129 static const struct super_operations ext4_sops = {
1130 	.alloc_inode	= ext4_alloc_inode,
1131 	.destroy_inode	= ext4_destroy_inode,
1132 	.write_inode	= ext4_write_inode,
1133 	.dirty_inode	= ext4_dirty_inode,
1134 	.drop_inode	= ext4_drop_inode,
1135 	.evict_inode	= ext4_evict_inode,
1136 	.put_super	= ext4_put_super,
1137 	.sync_fs	= ext4_sync_fs,
1138 	.freeze_fs	= ext4_freeze,
1139 	.unfreeze_fs	= ext4_unfreeze,
1140 	.statfs		= ext4_statfs,
1141 	.remount_fs	= ext4_remount,
1142 	.show_options	= ext4_show_options,
1143 #ifdef CONFIG_QUOTA
1144 	.quota_read	= ext4_quota_read,
1145 	.quota_write	= ext4_quota_write,
1146 #endif
1147 	.bdev_try_to_free_page = bdev_try_to_free_page,
1148 };
1149 
1150 static const struct super_operations ext4_nojournal_sops = {
1151 	.alloc_inode	= ext4_alloc_inode,
1152 	.destroy_inode	= ext4_destroy_inode,
1153 	.write_inode	= ext4_write_inode,
1154 	.dirty_inode	= ext4_dirty_inode,
1155 	.drop_inode	= ext4_drop_inode,
1156 	.evict_inode	= ext4_evict_inode,
1157 	.write_super	= ext4_write_super,
1158 	.put_super	= ext4_put_super,
1159 	.statfs		= ext4_statfs,
1160 	.remount_fs	= ext4_remount,
1161 	.show_options	= ext4_show_options,
1162 #ifdef CONFIG_QUOTA
1163 	.quota_read	= ext4_quota_read,
1164 	.quota_write	= ext4_quota_write,
1165 #endif
1166 	.bdev_try_to_free_page = bdev_try_to_free_page,
1167 };
1168 
1169 static const struct export_operations ext4_export_ops = {
1170 	.fh_to_dentry = ext4_fh_to_dentry,
1171 	.fh_to_parent = ext4_fh_to_parent,
1172 	.get_parent = ext4_get_parent,
1173 };
1174 
1175 enum {
1176 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1177 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1178 	Opt_nouid32, Opt_debug, Opt_removed,
1179 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1180 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1181 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1182 	Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1183 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1184 	Opt_data_err_abort, Opt_data_err_ignore,
1185 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1186 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1187 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1188 	Opt_usrquota, Opt_grpquota, Opt_i_version,
1189 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1190 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1191 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1192 	Opt_dioread_nolock, Opt_dioread_lock,
1193 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1194 };
1195 
1196 static const match_table_t tokens = {
1197 	{Opt_bsd_df, "bsddf"},
1198 	{Opt_minix_df, "minixdf"},
1199 	{Opt_grpid, "grpid"},
1200 	{Opt_grpid, "bsdgroups"},
1201 	{Opt_nogrpid, "nogrpid"},
1202 	{Opt_nogrpid, "sysvgroups"},
1203 	{Opt_resgid, "resgid=%u"},
1204 	{Opt_resuid, "resuid=%u"},
1205 	{Opt_sb, "sb=%u"},
1206 	{Opt_err_cont, "errors=continue"},
1207 	{Opt_err_panic, "errors=panic"},
1208 	{Opt_err_ro, "errors=remount-ro"},
1209 	{Opt_nouid32, "nouid32"},
1210 	{Opt_debug, "debug"},
1211 	{Opt_removed, "oldalloc"},
1212 	{Opt_removed, "orlov"},
1213 	{Opt_user_xattr, "user_xattr"},
1214 	{Opt_nouser_xattr, "nouser_xattr"},
1215 	{Opt_acl, "acl"},
1216 	{Opt_noacl, "noacl"},
1217 	{Opt_noload, "norecovery"},
1218 	{Opt_noload, "noload"},
1219 	{Opt_removed, "nobh"},
1220 	{Opt_removed, "bh"},
1221 	{Opt_commit, "commit=%u"},
1222 	{Opt_min_batch_time, "min_batch_time=%u"},
1223 	{Opt_max_batch_time, "max_batch_time=%u"},
1224 	{Opt_journal_dev, "journal_dev=%u"},
1225 	{Opt_journal_checksum, "journal_checksum"},
1226 	{Opt_journal_async_commit, "journal_async_commit"},
1227 	{Opt_abort, "abort"},
1228 	{Opt_data_journal, "data=journal"},
1229 	{Opt_data_ordered, "data=ordered"},
1230 	{Opt_data_writeback, "data=writeback"},
1231 	{Opt_data_err_abort, "data_err=abort"},
1232 	{Opt_data_err_ignore, "data_err=ignore"},
1233 	{Opt_offusrjquota, "usrjquota="},
1234 	{Opt_usrjquota, "usrjquota=%s"},
1235 	{Opt_offgrpjquota, "grpjquota="},
1236 	{Opt_grpjquota, "grpjquota=%s"},
1237 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1238 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1239 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1240 	{Opt_grpquota, "grpquota"},
1241 	{Opt_noquota, "noquota"},
1242 	{Opt_quota, "quota"},
1243 	{Opt_usrquota, "usrquota"},
1244 	{Opt_barrier, "barrier=%u"},
1245 	{Opt_barrier, "barrier"},
1246 	{Opt_nobarrier, "nobarrier"},
1247 	{Opt_i_version, "i_version"},
1248 	{Opt_stripe, "stripe=%u"},
1249 	{Opt_delalloc, "delalloc"},
1250 	{Opt_nodelalloc, "nodelalloc"},
1251 	{Opt_mblk_io_submit, "mblk_io_submit"},
1252 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1253 	{Opt_block_validity, "block_validity"},
1254 	{Opt_noblock_validity, "noblock_validity"},
1255 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1256 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1257 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1258 	{Opt_auto_da_alloc, "auto_da_alloc"},
1259 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1260 	{Opt_dioread_nolock, "dioread_nolock"},
1261 	{Opt_dioread_lock, "dioread_lock"},
1262 	{Opt_discard, "discard"},
1263 	{Opt_nodiscard, "nodiscard"},
1264 	{Opt_init_itable, "init_itable=%u"},
1265 	{Opt_init_itable, "init_itable"},
1266 	{Opt_noinit_itable, "noinit_itable"},
1267 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1268 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1269 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1270 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1271 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1272 	{Opt_err, NULL},
1273 };
1274 
get_sb_block(void ** data)1275 static ext4_fsblk_t get_sb_block(void **data)
1276 {
1277 	ext4_fsblk_t	sb_block;
1278 	char		*options = (char *) *data;
1279 
1280 	if (!options || strncmp(options, "sb=", 3) != 0)
1281 		return 1;	/* Default location */
1282 
1283 	options += 3;
1284 	/* TODO: use simple_strtoll with >32bit ext4 */
1285 	sb_block = simple_strtoul(options, &options, 0);
1286 	if (*options && *options != ',') {
1287 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1288 		       (char *) *data);
1289 		return 1;
1290 	}
1291 	if (*options == ',')
1292 		options++;
1293 	*data = (void *) options;
1294 
1295 	return sb_block;
1296 }
1297 
1298 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1299 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1300 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1301 
1302 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1303 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1304 {
1305 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1306 	char *qname;
1307 
1308 	if (sb_any_quota_loaded(sb) &&
1309 		!sbi->s_qf_names[qtype]) {
1310 		ext4_msg(sb, KERN_ERR,
1311 			"Cannot change journaled "
1312 			"quota options when quota turned on");
1313 		return -1;
1314 	}
1315 	qname = match_strdup(args);
1316 	if (!qname) {
1317 		ext4_msg(sb, KERN_ERR,
1318 			"Not enough memory for storing quotafile name");
1319 		return -1;
1320 	}
1321 	if (sbi->s_qf_names[qtype] &&
1322 		strcmp(sbi->s_qf_names[qtype], qname)) {
1323 		ext4_msg(sb, KERN_ERR,
1324 			"%s quota file already specified", QTYPE2NAME(qtype));
1325 		kfree(qname);
1326 		return -1;
1327 	}
1328 	sbi->s_qf_names[qtype] = qname;
1329 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1330 		ext4_msg(sb, KERN_ERR,
1331 			"quotafile must be on filesystem root");
1332 		kfree(sbi->s_qf_names[qtype]);
1333 		sbi->s_qf_names[qtype] = NULL;
1334 		return -1;
1335 	}
1336 	set_opt(sb, QUOTA);
1337 	return 1;
1338 }
1339 
clear_qf_name(struct super_block * sb,int qtype)1340 static int clear_qf_name(struct super_block *sb, int qtype)
1341 {
1342 
1343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1344 
1345 	if (sb_any_quota_loaded(sb) &&
1346 		sbi->s_qf_names[qtype]) {
1347 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1348 			" when quota turned on");
1349 		return -1;
1350 	}
1351 	/*
1352 	 * The space will be released later when all options are confirmed
1353 	 * to be correct
1354 	 */
1355 	sbi->s_qf_names[qtype] = NULL;
1356 	return 1;
1357 }
1358 #endif
1359 
1360 #define MOPT_SET	0x0001
1361 #define MOPT_CLEAR	0x0002
1362 #define MOPT_NOSUPPORT	0x0004
1363 #define MOPT_EXPLICIT	0x0008
1364 #define MOPT_CLEAR_ERR	0x0010
1365 #define MOPT_GTE0	0x0020
1366 #ifdef CONFIG_QUOTA
1367 #define MOPT_Q		0
1368 #define MOPT_QFMT	0x0040
1369 #else
1370 #define MOPT_Q		MOPT_NOSUPPORT
1371 #define MOPT_QFMT	MOPT_NOSUPPORT
1372 #endif
1373 #define MOPT_DATAJ	0x0080
1374 
1375 static const struct mount_opts {
1376 	int	token;
1377 	int	mount_opt;
1378 	int	flags;
1379 } ext4_mount_opts[] = {
1380 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1381 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1382 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1383 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1384 	{Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1385 	{Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1386 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1387 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1388 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1389 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1390 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1391 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1392 	{Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1393 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1394 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1395 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1396 				    EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1397 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1398 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1399 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1400 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1401 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1402 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1403 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1404 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1405 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1406 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1407 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1408 	{Opt_commit, 0, MOPT_GTE0},
1409 	{Opt_max_batch_time, 0, MOPT_GTE0},
1410 	{Opt_min_batch_time, 0, MOPT_GTE0},
1411 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1412 	{Opt_init_itable, 0, MOPT_GTE0},
1413 	{Opt_stripe, 0, MOPT_GTE0},
1414 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1415 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1416 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1417 #ifdef CONFIG_EXT4_FS_XATTR
1418 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1419 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1420 #else
1421 	{Opt_user_xattr, 0, MOPT_NOSUPPORT},
1422 	{Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1423 #endif
1424 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1425 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1426 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1427 #else
1428 	{Opt_acl, 0, MOPT_NOSUPPORT},
1429 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1430 #endif
1431 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1432 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1433 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1434 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1435 							MOPT_SET | MOPT_Q},
1436 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1437 							MOPT_SET | MOPT_Q},
1438 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1439 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1440 	{Opt_usrjquota, 0, MOPT_Q},
1441 	{Opt_grpjquota, 0, MOPT_Q},
1442 	{Opt_offusrjquota, 0, MOPT_Q},
1443 	{Opt_offgrpjquota, 0, MOPT_Q},
1444 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1445 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1446 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1447 	{Opt_err, 0, 0}
1448 };
1449 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1450 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1451 			    substring_t *args, unsigned long *journal_devnum,
1452 			    unsigned int *journal_ioprio, int is_remount)
1453 {
1454 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1455 	const struct mount_opts *m;
1456 	int arg = 0;
1457 
1458 #ifdef CONFIG_QUOTA
1459 	if (token == Opt_usrjquota)
1460 		return set_qf_name(sb, USRQUOTA, &args[0]);
1461 	else if (token == Opt_grpjquota)
1462 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1463 	else if (token == Opt_offusrjquota)
1464 		return clear_qf_name(sb, USRQUOTA);
1465 	else if (token == Opt_offgrpjquota)
1466 		return clear_qf_name(sb, GRPQUOTA);
1467 #endif
1468 	if (args->from && match_int(args, &arg))
1469 		return -1;
1470 	switch (token) {
1471 	case Opt_noacl:
1472 	case Opt_nouser_xattr:
1473 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1474 		break;
1475 	case Opt_sb:
1476 		return 1;	/* handled by get_sb_block() */
1477 	case Opt_removed:
1478 		ext4_msg(sb, KERN_WARNING,
1479 			 "Ignoring removed %s option", opt);
1480 		return 1;
1481 	case Opt_resuid:
1482 		sbi->s_resuid = arg;
1483 		return 1;
1484 	case Opt_resgid:
1485 		sbi->s_resgid = arg;
1486 		return 1;
1487 	case Opt_abort:
1488 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1489 		return 1;
1490 	case Opt_i_version:
1491 		sb->s_flags |= MS_I_VERSION;
1492 		return 1;
1493 	case Opt_journal_dev:
1494 		if (is_remount) {
1495 			ext4_msg(sb, KERN_ERR,
1496 				 "Cannot specify journal on remount");
1497 			return -1;
1498 		}
1499 		*journal_devnum = arg;
1500 		return 1;
1501 	case Opt_journal_ioprio:
1502 		if (arg < 0 || arg > 7)
1503 			return -1;
1504 		*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1505 		return 1;
1506 	}
1507 
1508 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1509 		if (token != m->token)
1510 			continue;
1511 		if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1512 			return -1;
1513 		if (m->flags & MOPT_EXPLICIT)
1514 			set_opt2(sb, EXPLICIT_DELALLOC);
1515 		if (m->flags & MOPT_CLEAR_ERR)
1516 			clear_opt(sb, ERRORS_MASK);
1517 		if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1518 			ext4_msg(sb, KERN_ERR, "Cannot change quota "
1519 				 "options when quota turned on");
1520 			return -1;
1521 		}
1522 
1523 		if (m->flags & MOPT_NOSUPPORT) {
1524 			ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1525 		} else if (token == Opt_commit) {
1526 			if (arg == 0)
1527 				arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1528 			sbi->s_commit_interval = HZ * arg;
1529 		} else if (token == Opt_max_batch_time) {
1530 			if (arg == 0)
1531 				arg = EXT4_DEF_MAX_BATCH_TIME;
1532 			sbi->s_max_batch_time = arg;
1533 		} else if (token == Opt_min_batch_time) {
1534 			sbi->s_min_batch_time = arg;
1535 		} else if (token == Opt_inode_readahead_blks) {
1536 			if (arg > (1 << 30))
1537 				return -1;
1538 			if (arg && !is_power_of_2(arg)) {
1539 				ext4_msg(sb, KERN_ERR,
1540 					 "EXT4-fs: inode_readahead_blks"
1541 					 " must be a power of 2");
1542 				return -1;
1543 			}
1544 			sbi->s_inode_readahead_blks = arg;
1545 		} else if (token == Opt_init_itable) {
1546 			set_opt(sb, INIT_INODE_TABLE);
1547 			if (!args->from)
1548 				arg = EXT4_DEF_LI_WAIT_MULT;
1549 			sbi->s_li_wait_mult = arg;
1550 		} else if (token == Opt_stripe) {
1551 			sbi->s_stripe = arg;
1552 		} else if (m->flags & MOPT_DATAJ) {
1553 			if (is_remount) {
1554 				if (!sbi->s_journal)
1555 					ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1556 				else if (test_opt(sb, DATA_FLAGS) !=
1557 					 m->mount_opt) {
1558 					ext4_msg(sb, KERN_ERR,
1559 					 "Cannot change data mode on remount");
1560 					return -1;
1561 				}
1562 			} else {
1563 				clear_opt(sb, DATA_FLAGS);
1564 				sbi->s_mount_opt |= m->mount_opt;
1565 			}
1566 #ifdef CONFIG_QUOTA
1567 		} else if (m->flags & MOPT_QFMT) {
1568 			if (sb_any_quota_loaded(sb) &&
1569 			    sbi->s_jquota_fmt != m->mount_opt) {
1570 				ext4_msg(sb, KERN_ERR, "Cannot "
1571 					 "change journaled quota options "
1572 					 "when quota turned on");
1573 				return -1;
1574 			}
1575 			sbi->s_jquota_fmt = m->mount_opt;
1576 #endif
1577 		} else {
1578 			if (!args->from)
1579 				arg = 1;
1580 			if (m->flags & MOPT_CLEAR)
1581 				arg = !arg;
1582 			else if (unlikely(!(m->flags & MOPT_SET))) {
1583 				ext4_msg(sb, KERN_WARNING,
1584 					 "buggy handling of option %s", opt);
1585 				WARN_ON(1);
1586 				return -1;
1587 			}
1588 			if (arg != 0)
1589 				sbi->s_mount_opt |= m->mount_opt;
1590 			else
1591 				sbi->s_mount_opt &= ~m->mount_opt;
1592 		}
1593 		return 1;
1594 	}
1595 	ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1596 		 "or missing value", opt);
1597 	return -1;
1598 }
1599 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1600 static int parse_options(char *options, struct super_block *sb,
1601 			 unsigned long *journal_devnum,
1602 			 unsigned int *journal_ioprio,
1603 			 int is_remount)
1604 {
1605 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1606 	char *p;
1607 	substring_t args[MAX_OPT_ARGS];
1608 	int token;
1609 
1610 	if (!options)
1611 		return 1;
1612 
1613 	while ((p = strsep(&options, ",")) != NULL) {
1614 		if (!*p)
1615 			continue;
1616 		/*
1617 		 * Initialize args struct so we know whether arg was
1618 		 * found; some options take optional arguments.
1619 		 */
1620 		args[0].to = args[0].from = 0;
1621 		token = match_token(p, tokens, args);
1622 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1623 				     journal_ioprio, is_remount) < 0)
1624 			return 0;
1625 	}
1626 #ifdef CONFIG_QUOTA
1627 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1628 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1629 			clear_opt(sb, USRQUOTA);
1630 
1631 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1632 			clear_opt(sb, GRPQUOTA);
1633 
1634 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1635 			ext4_msg(sb, KERN_ERR, "old and new quota "
1636 					"format mixing");
1637 			return 0;
1638 		}
1639 
1640 		if (!sbi->s_jquota_fmt) {
1641 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1642 					"not specified");
1643 			return 0;
1644 		}
1645 	} else {
1646 		if (sbi->s_jquota_fmt) {
1647 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1648 					"specified with no journaling "
1649 					"enabled");
1650 			return 0;
1651 		}
1652 	}
1653 #endif
1654 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1655 		int blocksize =
1656 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1657 
1658 		if (blocksize < PAGE_CACHE_SIZE) {
1659 			ext4_msg(sb, KERN_ERR, "can't mount with "
1660 				 "dioread_nolock if block size != PAGE_SIZE");
1661 			return 0;
1662 		}
1663 	}
1664 	return 1;
1665 }
1666 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1667 static inline void ext4_show_quota_options(struct seq_file *seq,
1668 					   struct super_block *sb)
1669 {
1670 #if defined(CONFIG_QUOTA)
1671 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1672 
1673 	if (sbi->s_jquota_fmt) {
1674 		char *fmtname = "";
1675 
1676 		switch (sbi->s_jquota_fmt) {
1677 		case QFMT_VFS_OLD:
1678 			fmtname = "vfsold";
1679 			break;
1680 		case QFMT_VFS_V0:
1681 			fmtname = "vfsv0";
1682 			break;
1683 		case QFMT_VFS_V1:
1684 			fmtname = "vfsv1";
1685 			break;
1686 		}
1687 		seq_printf(seq, ",jqfmt=%s", fmtname);
1688 	}
1689 
1690 	if (sbi->s_qf_names[USRQUOTA])
1691 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1692 
1693 	if (sbi->s_qf_names[GRPQUOTA])
1694 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1695 
1696 	if (test_opt(sb, USRQUOTA))
1697 		seq_puts(seq, ",usrquota");
1698 
1699 	if (test_opt(sb, GRPQUOTA))
1700 		seq_puts(seq, ",grpquota");
1701 #endif
1702 }
1703 
token2str(int token)1704 static const char *token2str(int token)
1705 {
1706 	const struct match_token *t;
1707 
1708 	for (t = tokens; t->token != Opt_err; t++)
1709 		if (t->token == token && !strchr(t->pattern, '='))
1710 			break;
1711 	return t->pattern;
1712 }
1713 
1714 /*
1715  * Show an option if
1716  *  - it's set to a non-default value OR
1717  *  - if the per-sb default is different from the global default
1718  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1719 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1720 			      int nodefs)
1721 {
1722 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1723 	struct ext4_super_block *es = sbi->s_es;
1724 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1725 	const struct mount_opts *m;
1726 	char sep = nodefs ? '\n' : ',';
1727 
1728 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1729 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1730 
1731 	if (sbi->s_sb_block != 1)
1732 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1733 
1734 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1735 		int want_set = m->flags & MOPT_SET;
1736 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1737 		    (m->flags & MOPT_CLEAR_ERR))
1738 			continue;
1739 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1740 			continue; /* skip if same as the default */
1741 		if ((want_set &&
1742 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1743 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1744 			continue; /* select Opt_noFoo vs Opt_Foo */
1745 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1746 	}
1747 
1748 	if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID ||
1749 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1750 		SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1751 	if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID ||
1752 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1753 		SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1754 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1755 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1756 		SEQ_OPTS_PUTS("errors=remount-ro");
1757 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1758 		SEQ_OPTS_PUTS("errors=continue");
1759 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1760 		SEQ_OPTS_PUTS("errors=panic");
1761 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1762 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1763 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1764 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1765 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1766 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1767 	if (sb->s_flags & MS_I_VERSION)
1768 		SEQ_OPTS_PUTS("i_version");
1769 	if (nodefs || sbi->s_stripe)
1770 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1771 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1772 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1773 			SEQ_OPTS_PUTS("data=journal");
1774 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1775 			SEQ_OPTS_PUTS("data=ordered");
1776 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1777 			SEQ_OPTS_PUTS("data=writeback");
1778 	}
1779 	if (nodefs ||
1780 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1781 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1782 			       sbi->s_inode_readahead_blks);
1783 
1784 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1785 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1786 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1787 
1788 	ext4_show_quota_options(seq, sb);
1789 	return 0;
1790 }
1791 
ext4_show_options(struct seq_file * seq,struct dentry * root)1792 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1793 {
1794 	return _ext4_show_options(seq, root->d_sb, 0);
1795 }
1796 
options_seq_show(struct seq_file * seq,void * offset)1797 static int options_seq_show(struct seq_file *seq, void *offset)
1798 {
1799 	struct super_block *sb = seq->private;
1800 	int rc;
1801 
1802 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1803 	rc = _ext4_show_options(seq, sb, 1);
1804 	seq_puts(seq, "\n");
1805 	return rc;
1806 }
1807 
options_open_fs(struct inode * inode,struct file * file)1808 static int options_open_fs(struct inode *inode, struct file *file)
1809 {
1810 	return single_open(file, options_seq_show, PDE(inode)->data);
1811 }
1812 
1813 static const struct file_operations ext4_seq_options_fops = {
1814 	.owner = THIS_MODULE,
1815 	.open = options_open_fs,
1816 	.read = seq_read,
1817 	.llseek = seq_lseek,
1818 	.release = single_release,
1819 };
1820 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1821 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1822 			    int read_only)
1823 {
1824 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 	int res = 0;
1826 
1827 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1828 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1829 			 "forcing read-only mode");
1830 		res = MS_RDONLY;
1831 	}
1832 	if (read_only)
1833 		goto done;
1834 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1835 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1836 			 "running e2fsck is recommended");
1837 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1838 		ext4_msg(sb, KERN_WARNING,
1839 			 "warning: mounting fs with errors, "
1840 			 "running e2fsck is recommended");
1841 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1842 		 le16_to_cpu(es->s_mnt_count) >=
1843 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1844 		ext4_msg(sb, KERN_WARNING,
1845 			 "warning: maximal mount count reached, "
1846 			 "running e2fsck is recommended");
1847 	else if (le32_to_cpu(es->s_checkinterval) &&
1848 		(le32_to_cpu(es->s_lastcheck) +
1849 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1850 		ext4_msg(sb, KERN_WARNING,
1851 			 "warning: checktime reached, "
1852 			 "running e2fsck is recommended");
1853 	if (!sbi->s_journal)
1854 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1855 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1856 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1857 	le16_add_cpu(&es->s_mnt_count, 1);
1858 	es->s_mtime = cpu_to_le32(get_seconds());
1859 	ext4_update_dynamic_rev(sb);
1860 	if (sbi->s_journal)
1861 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1862 
1863 	ext4_commit_super(sb, 1);
1864 done:
1865 	if (test_opt(sb, DEBUG))
1866 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1867 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1868 			sb->s_blocksize,
1869 			sbi->s_groups_count,
1870 			EXT4_BLOCKS_PER_GROUP(sb),
1871 			EXT4_INODES_PER_GROUP(sb),
1872 			sbi->s_mount_opt, sbi->s_mount_opt2);
1873 
1874 	cleancache_init_fs(sb);
1875 	return res;
1876 }
1877 
ext4_fill_flex_info(struct super_block * sb)1878 static int ext4_fill_flex_info(struct super_block *sb)
1879 {
1880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1881 	struct ext4_group_desc *gdp = NULL;
1882 	ext4_group_t flex_group_count;
1883 	ext4_group_t flex_group;
1884 	unsigned int groups_per_flex = 0;
1885 	size_t size;
1886 	int i;
1887 
1888 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1889 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1890 		sbi->s_log_groups_per_flex = 0;
1891 		return 1;
1892 	}
1893 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1894 
1895 	/* We allocate both existing and potentially added groups */
1896 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1897 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1898 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1899 	size = flex_group_count * sizeof(struct flex_groups);
1900 	sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1901 	if (sbi->s_flex_groups == NULL) {
1902 		ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1903 			 flex_group_count);
1904 		goto failed;
1905 	}
1906 
1907 	for (i = 0; i < sbi->s_groups_count; i++) {
1908 		gdp = ext4_get_group_desc(sb, i, NULL);
1909 
1910 		flex_group = ext4_flex_group(sbi, i);
1911 		atomic_add(ext4_free_inodes_count(sb, gdp),
1912 			   &sbi->s_flex_groups[flex_group].free_inodes);
1913 		atomic64_add(ext4_free_group_clusters(sb, gdp),
1914 			     &sbi->s_flex_groups[flex_group].free_clusters);
1915 		atomic_add(ext4_used_dirs_count(sb, gdp),
1916 			   &sbi->s_flex_groups[flex_group].used_dirs);
1917 	}
1918 
1919 	return 1;
1920 failed:
1921 	return 0;
1922 }
1923 
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1924 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1925 			    struct ext4_group_desc *gdp)
1926 {
1927 	__u16 crc = 0;
1928 
1929 	if (sbi->s_es->s_feature_ro_compat &
1930 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1931 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1932 		__le32 le_group = cpu_to_le32(block_group);
1933 
1934 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1935 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1936 		crc = crc16(crc, (__u8 *)gdp, offset);
1937 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1938 		/* for checksum of struct ext4_group_desc do the rest...*/
1939 		if ((sbi->s_es->s_feature_incompat &
1940 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1941 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1942 			crc = crc16(crc, (__u8 *)gdp + offset,
1943 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1944 					offset);
1945 	}
1946 
1947 	return cpu_to_le16(crc);
1948 }
1949 
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)1950 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1951 				struct ext4_group_desc *gdp)
1952 {
1953 	if ((sbi->s_es->s_feature_ro_compat &
1954 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1955 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1956 		return 0;
1957 
1958 	return 1;
1959 }
1960 
1961 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)1962 static int ext4_check_descriptors(struct super_block *sb,
1963 				  ext4_group_t *first_not_zeroed)
1964 {
1965 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1966 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1967 	ext4_fsblk_t last_block;
1968 	ext4_fsblk_t block_bitmap;
1969 	ext4_fsblk_t inode_bitmap;
1970 	ext4_fsblk_t inode_table;
1971 	int flexbg_flag = 0;
1972 	ext4_group_t i, grp = sbi->s_groups_count;
1973 
1974 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1975 		flexbg_flag = 1;
1976 
1977 	ext4_debug("Checking group descriptors");
1978 
1979 	for (i = 0; i < sbi->s_groups_count; i++) {
1980 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1981 
1982 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
1983 			last_block = ext4_blocks_count(sbi->s_es) - 1;
1984 		else
1985 			last_block = first_block +
1986 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
1987 
1988 		if ((grp == sbi->s_groups_count) &&
1989 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1990 			grp = i;
1991 
1992 		block_bitmap = ext4_block_bitmap(sb, gdp);
1993 		if (block_bitmap < first_block || block_bitmap > last_block) {
1994 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1995 			       "Block bitmap for group %u not in group "
1996 			       "(block %llu)!", i, block_bitmap);
1997 			return 0;
1998 		}
1999 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2000 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2001 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2002 			       "Inode bitmap for group %u not in group "
2003 			       "(block %llu)!", i, inode_bitmap);
2004 			return 0;
2005 		}
2006 		inode_table = ext4_inode_table(sb, gdp);
2007 		if (inode_table < first_block ||
2008 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2009 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2010 			       "Inode table for group %u not in group "
2011 			       "(block %llu)!", i, inode_table);
2012 			return 0;
2013 		}
2014 		ext4_lock_group(sb, i);
2015 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2016 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2017 				 "Checksum for group %u failed (%u!=%u)",
2018 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2019 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2020 			if (!(sb->s_flags & MS_RDONLY)) {
2021 				ext4_unlock_group(sb, i);
2022 				return 0;
2023 			}
2024 		}
2025 		ext4_unlock_group(sb, i);
2026 		if (!flexbg_flag)
2027 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2028 	}
2029 	if (NULL != first_not_zeroed)
2030 		*first_not_zeroed = grp;
2031 
2032 	ext4_free_blocks_count_set(sbi->s_es,
2033 				   EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2034 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2035 	return 1;
2036 }
2037 
2038 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2039  * the superblock) which were deleted from all directories, but held open by
2040  * a process at the time of a crash.  We walk the list and try to delete these
2041  * inodes at recovery time (only with a read-write filesystem).
2042  *
2043  * In order to keep the orphan inode chain consistent during traversal (in
2044  * case of crash during recovery), we link each inode into the superblock
2045  * orphan list_head and handle it the same way as an inode deletion during
2046  * normal operation (which journals the operations for us).
2047  *
2048  * We only do an iget() and an iput() on each inode, which is very safe if we
2049  * accidentally point at an in-use or already deleted inode.  The worst that
2050  * can happen in this case is that we get a "bit already cleared" message from
2051  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2052  * e2fsck was run on this filesystem, and it must have already done the orphan
2053  * inode cleanup for us, so we can safely abort without any further action.
2054  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2055 static void ext4_orphan_cleanup(struct super_block *sb,
2056 				struct ext4_super_block *es)
2057 {
2058 	unsigned int s_flags = sb->s_flags;
2059 	int nr_orphans = 0, nr_truncates = 0;
2060 #ifdef CONFIG_QUOTA
2061 	int i;
2062 #endif
2063 	if (!es->s_last_orphan) {
2064 		jbd_debug(4, "no orphan inodes to clean up\n");
2065 		return;
2066 	}
2067 
2068 	if (bdev_read_only(sb->s_bdev)) {
2069 		ext4_msg(sb, KERN_ERR, "write access "
2070 			"unavailable, skipping orphan cleanup");
2071 		return;
2072 	}
2073 
2074 	/* Check if feature set would not allow a r/w mount */
2075 	if (!ext4_feature_set_ok(sb, 0)) {
2076 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2077 			 "unknown ROCOMPAT features");
2078 		return;
2079 	}
2080 
2081 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2082 		if (es->s_last_orphan)
2083 			jbd_debug(1, "Errors on filesystem, "
2084 				  "clearing orphan list.\n");
2085 		es->s_last_orphan = 0;
2086 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2087 		return;
2088 	}
2089 
2090 	if (s_flags & MS_RDONLY) {
2091 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2092 		sb->s_flags &= ~MS_RDONLY;
2093 	}
2094 #ifdef CONFIG_QUOTA
2095 	/* Needed for iput() to work correctly and not trash data */
2096 	sb->s_flags |= MS_ACTIVE;
2097 	/* Turn on quotas so that they are updated correctly */
2098 	for (i = 0; i < MAXQUOTAS; i++) {
2099 		if (EXT4_SB(sb)->s_qf_names[i]) {
2100 			int ret = ext4_quota_on_mount(sb, i);
2101 			if (ret < 0)
2102 				ext4_msg(sb, KERN_ERR,
2103 					"Cannot turn on journaled "
2104 					"quota: error %d", ret);
2105 		}
2106 	}
2107 #endif
2108 
2109 	while (es->s_last_orphan) {
2110 		struct inode *inode;
2111 
2112 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2113 		if (IS_ERR(inode)) {
2114 			es->s_last_orphan = 0;
2115 			break;
2116 		}
2117 
2118 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2119 		dquot_initialize(inode);
2120 		if (inode->i_nlink) {
2121 			ext4_msg(sb, KERN_DEBUG,
2122 				"%s: truncating inode %lu to %lld bytes",
2123 				__func__, inode->i_ino, inode->i_size);
2124 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2125 				  inode->i_ino, inode->i_size);
2126 			mutex_lock(&inode->i_mutex);
2127 			ext4_truncate(inode);
2128 			mutex_unlock(&inode->i_mutex);
2129 			nr_truncates++;
2130 		} else {
2131 			ext4_msg(sb, KERN_DEBUG,
2132 				"%s: deleting unreferenced inode %lu",
2133 				__func__, inode->i_ino);
2134 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2135 				  inode->i_ino);
2136 			nr_orphans++;
2137 		}
2138 		iput(inode);  /* The delete magic happens here! */
2139 	}
2140 
2141 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2142 
2143 	if (nr_orphans)
2144 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2145 		       PLURAL(nr_orphans));
2146 	if (nr_truncates)
2147 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2148 		       PLURAL(nr_truncates));
2149 #ifdef CONFIG_QUOTA
2150 	/* Turn quotas off */
2151 	for (i = 0; i < MAXQUOTAS; i++) {
2152 		if (sb_dqopt(sb)->files[i])
2153 			dquot_quota_off(sb, i);
2154 	}
2155 #endif
2156 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2157 }
2158 
2159 /*
2160  * Maximal extent format file size.
2161  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2162  * extent format containers, within a sector_t, and within i_blocks
2163  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2164  * so that won't be a limiting factor.
2165  *
2166  * However there is other limiting factor. We do store extents in the form
2167  * of starting block and length, hence the resulting length of the extent
2168  * covering maximum file size must fit into on-disk format containers as
2169  * well. Given that length is always by 1 unit bigger than max unit (because
2170  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2171  *
2172  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2173  */
ext4_max_size(int blkbits,int has_huge_files)2174 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2175 {
2176 	loff_t res;
2177 	loff_t upper_limit = MAX_LFS_FILESIZE;
2178 
2179 	/* small i_blocks in vfs inode? */
2180 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2181 		/*
2182 		 * CONFIG_LBDAF is not enabled implies the inode
2183 		 * i_block represent total blocks in 512 bytes
2184 		 * 32 == size of vfs inode i_blocks * 8
2185 		 */
2186 		upper_limit = (1LL << 32) - 1;
2187 
2188 		/* total blocks in file system block size */
2189 		upper_limit >>= (blkbits - 9);
2190 		upper_limit <<= blkbits;
2191 	}
2192 
2193 	/*
2194 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2195 	 * by one fs block, so ee_len can cover the extent of maximum file
2196 	 * size
2197 	 */
2198 	res = (1LL << 32) - 1;
2199 	res <<= blkbits;
2200 
2201 	/* Sanity check against vm- & vfs- imposed limits */
2202 	if (res > upper_limit)
2203 		res = upper_limit;
2204 
2205 	return res;
2206 }
2207 
2208 /*
2209  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2210  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2211  * We need to be 1 filesystem block less than the 2^48 sector limit.
2212  */
ext4_max_bitmap_size(int bits,int has_huge_files)2213 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2214 {
2215 	loff_t res = EXT4_NDIR_BLOCKS;
2216 	int meta_blocks;
2217 	loff_t upper_limit;
2218 	/* This is calculated to be the largest file size for a dense, block
2219 	 * mapped file such that the file's total number of 512-byte sectors,
2220 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2221 	 *
2222 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2223 	 * number of 512-byte sectors of the file.
2224 	 */
2225 
2226 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2227 		/*
2228 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2229 		 * the inode i_block field represents total file blocks in
2230 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2231 		 */
2232 		upper_limit = (1LL << 32) - 1;
2233 
2234 		/* total blocks in file system block size */
2235 		upper_limit >>= (bits - 9);
2236 
2237 	} else {
2238 		/*
2239 		 * We use 48 bit ext4_inode i_blocks
2240 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2241 		 * represent total number of blocks in
2242 		 * file system block size
2243 		 */
2244 		upper_limit = (1LL << 48) - 1;
2245 
2246 	}
2247 
2248 	/* indirect blocks */
2249 	meta_blocks = 1;
2250 	/* double indirect blocks */
2251 	meta_blocks += 1 + (1LL << (bits-2));
2252 	/* tripple indirect blocks */
2253 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2254 
2255 	upper_limit -= meta_blocks;
2256 	upper_limit <<= bits;
2257 
2258 	res += 1LL << (bits-2);
2259 	res += 1LL << (2*(bits-2));
2260 	res += 1LL << (3*(bits-2));
2261 	res <<= bits;
2262 	if (res > upper_limit)
2263 		res = upper_limit;
2264 
2265 	if (res > MAX_LFS_FILESIZE)
2266 		res = MAX_LFS_FILESIZE;
2267 
2268 	return res;
2269 }
2270 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2271 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2272 				   ext4_fsblk_t logical_sb_block, int nr)
2273 {
2274 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2275 	ext4_group_t bg, first_meta_bg;
2276 	int has_super = 0;
2277 
2278 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2279 
2280 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2281 	    nr < first_meta_bg)
2282 		return logical_sb_block + nr + 1;
2283 	bg = sbi->s_desc_per_block * nr;
2284 	if (ext4_bg_has_super(sb, bg))
2285 		has_super = 1;
2286 
2287 	return (has_super + ext4_group_first_block_no(sb, bg));
2288 }
2289 
2290 /**
2291  * ext4_get_stripe_size: Get the stripe size.
2292  * @sbi: In memory super block info
2293  *
2294  * If we have specified it via mount option, then
2295  * use the mount option value. If the value specified at mount time is
2296  * greater than the blocks per group use the super block value.
2297  * If the super block value is greater than blocks per group return 0.
2298  * Allocator needs it be less than blocks per group.
2299  *
2300  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2301 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2302 {
2303 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2304 	unsigned long stripe_width =
2305 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2306 	int ret;
2307 
2308 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2309 		ret = sbi->s_stripe;
2310 	else if (stripe_width <= sbi->s_blocks_per_group)
2311 		ret = stripe_width;
2312 	else if (stride <= sbi->s_blocks_per_group)
2313 		ret = stride;
2314 	else
2315 		ret = 0;
2316 
2317 	/*
2318 	 * If the stripe width is 1, this makes no sense and
2319 	 * we set it to 0 to turn off stripe handling code.
2320 	 */
2321 	if (ret <= 1)
2322 		ret = 0;
2323 
2324 	return ret;
2325 }
2326 
2327 /* sysfs supprt */
2328 
2329 struct ext4_attr {
2330 	struct attribute attr;
2331 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2332 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2333 			 const char *, size_t);
2334 	int offset;
2335 };
2336 
parse_strtoul(const char * buf,unsigned long max,unsigned long * value)2337 static int parse_strtoul(const char *buf,
2338 		unsigned long max, unsigned long *value)
2339 {
2340 	char *endp;
2341 
2342 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2343 	endp = skip_spaces(endp);
2344 	if (*endp || *value > max)
2345 		return -EINVAL;
2346 
2347 	return 0;
2348 }
2349 
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2350 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2351 					      struct ext4_sb_info *sbi,
2352 					      char *buf)
2353 {
2354 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2355 		(s64) EXT4_C2B(sbi,
2356 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2357 }
2358 
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2359 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2360 					 struct ext4_sb_info *sbi, char *buf)
2361 {
2362 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2363 
2364 	if (!sb->s_bdev->bd_part)
2365 		return snprintf(buf, PAGE_SIZE, "0\n");
2366 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2367 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2368 			 sbi->s_sectors_written_start) >> 1);
2369 }
2370 
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2371 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2372 					  struct ext4_sb_info *sbi, char *buf)
2373 {
2374 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2375 
2376 	if (!sb->s_bdev->bd_part)
2377 		return snprintf(buf, PAGE_SIZE, "0\n");
2378 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2379 			(unsigned long long)(sbi->s_kbytes_written +
2380 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2381 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2382 }
2383 
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2384 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2385 					  struct ext4_sb_info *sbi,
2386 					  const char *buf, size_t count)
2387 {
2388 	unsigned long t;
2389 
2390 	if (parse_strtoul(buf, 0x40000000, &t))
2391 		return -EINVAL;
2392 
2393 	if (t && !is_power_of_2(t))
2394 		return -EINVAL;
2395 
2396 	sbi->s_inode_readahead_blks = t;
2397 	return count;
2398 }
2399 
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2400 static ssize_t sbi_ui_show(struct ext4_attr *a,
2401 			   struct ext4_sb_info *sbi, char *buf)
2402 {
2403 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2404 
2405 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2406 }
2407 
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2408 static ssize_t sbi_ui_store(struct ext4_attr *a,
2409 			    struct ext4_sb_info *sbi,
2410 			    const char *buf, size_t count)
2411 {
2412 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2413 	unsigned long t;
2414 
2415 	if (parse_strtoul(buf, 0xffffffff, &t))
2416 		return -EINVAL;
2417 	*ui = t;
2418 	return count;
2419 }
2420 
2421 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2422 static struct ext4_attr ext4_attr_##_name = {			\
2423 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2424 	.show	= _show,					\
2425 	.store	= _store,					\
2426 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2427 }
2428 #define EXT4_ATTR(name, mode, show, store) \
2429 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2430 
2431 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2432 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2433 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2434 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2435 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2436 #define ATTR_LIST(name) &ext4_attr_##name.attr
2437 
2438 EXT4_RO_ATTR(delayed_allocation_blocks);
2439 EXT4_RO_ATTR(session_write_kbytes);
2440 EXT4_RO_ATTR(lifetime_write_kbytes);
2441 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2442 		 inode_readahead_blks_store, s_inode_readahead_blks);
2443 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2444 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2445 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2446 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2447 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2448 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2449 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2450 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2451 
2452 static struct attribute *ext4_attrs[] = {
2453 	ATTR_LIST(delayed_allocation_blocks),
2454 	ATTR_LIST(session_write_kbytes),
2455 	ATTR_LIST(lifetime_write_kbytes),
2456 	ATTR_LIST(inode_readahead_blks),
2457 	ATTR_LIST(inode_goal),
2458 	ATTR_LIST(mb_stats),
2459 	ATTR_LIST(mb_max_to_scan),
2460 	ATTR_LIST(mb_min_to_scan),
2461 	ATTR_LIST(mb_order2_req),
2462 	ATTR_LIST(mb_stream_req),
2463 	ATTR_LIST(mb_group_prealloc),
2464 	ATTR_LIST(max_writeback_mb_bump),
2465 	NULL,
2466 };
2467 
2468 /* Features this copy of ext4 supports */
2469 EXT4_INFO_ATTR(lazy_itable_init);
2470 EXT4_INFO_ATTR(batched_discard);
2471 
2472 static struct attribute *ext4_feat_attrs[] = {
2473 	ATTR_LIST(lazy_itable_init),
2474 	ATTR_LIST(batched_discard),
2475 	NULL,
2476 };
2477 
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2478 static ssize_t ext4_attr_show(struct kobject *kobj,
2479 			      struct attribute *attr, char *buf)
2480 {
2481 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2482 						s_kobj);
2483 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2484 
2485 	return a->show ? a->show(a, sbi, buf) : 0;
2486 }
2487 
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2488 static ssize_t ext4_attr_store(struct kobject *kobj,
2489 			       struct attribute *attr,
2490 			       const char *buf, size_t len)
2491 {
2492 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2493 						s_kobj);
2494 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2495 
2496 	return a->store ? a->store(a, sbi, buf, len) : 0;
2497 }
2498 
ext4_sb_release(struct kobject * kobj)2499 static void ext4_sb_release(struct kobject *kobj)
2500 {
2501 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2502 						s_kobj);
2503 	complete(&sbi->s_kobj_unregister);
2504 }
2505 
2506 static const struct sysfs_ops ext4_attr_ops = {
2507 	.show	= ext4_attr_show,
2508 	.store	= ext4_attr_store,
2509 };
2510 
2511 static struct kobj_type ext4_ktype = {
2512 	.default_attrs	= ext4_attrs,
2513 	.sysfs_ops	= &ext4_attr_ops,
2514 	.release	= ext4_sb_release,
2515 };
2516 
ext4_feat_release(struct kobject * kobj)2517 static void ext4_feat_release(struct kobject *kobj)
2518 {
2519 	complete(&ext4_feat->f_kobj_unregister);
2520 }
2521 
2522 static struct kobj_type ext4_feat_ktype = {
2523 	.default_attrs	= ext4_feat_attrs,
2524 	.sysfs_ops	= &ext4_attr_ops,
2525 	.release	= ext4_feat_release,
2526 };
2527 
2528 /*
2529  * Check whether this filesystem can be mounted based on
2530  * the features present and the RDONLY/RDWR mount requested.
2531  * Returns 1 if this filesystem can be mounted as requested,
2532  * 0 if it cannot be.
2533  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2534 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2535 {
2536 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2537 		ext4_msg(sb, KERN_ERR,
2538 			"Couldn't mount because of "
2539 			"unsupported optional features (%x)",
2540 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2541 			~EXT4_FEATURE_INCOMPAT_SUPP));
2542 		return 0;
2543 	}
2544 
2545 	if (readonly)
2546 		return 1;
2547 
2548 	/* Check that feature set is OK for a read-write mount */
2549 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2550 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2551 			 "unsupported optional features (%x)",
2552 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2553 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2554 		return 0;
2555 	}
2556 	/*
2557 	 * Large file size enabled file system can only be mounted
2558 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2559 	 */
2560 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2561 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2562 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2563 				 "cannot be mounted RDWR without "
2564 				 "CONFIG_LBDAF");
2565 			return 0;
2566 		}
2567 	}
2568 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2569 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2570 		ext4_msg(sb, KERN_ERR,
2571 			 "Can't support bigalloc feature without "
2572 			 "extents feature\n");
2573 		return 0;
2574 	}
2575 	return 1;
2576 }
2577 
2578 /*
2579  * This function is called once a day if we have errors logged
2580  * on the file system
2581  */
print_daily_error_info(unsigned long arg)2582 static void print_daily_error_info(unsigned long arg)
2583 {
2584 	struct super_block *sb = (struct super_block *) arg;
2585 	struct ext4_sb_info *sbi;
2586 	struct ext4_super_block *es;
2587 
2588 	sbi = EXT4_SB(sb);
2589 	es = sbi->s_es;
2590 
2591 	if (es->s_error_count)
2592 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2593 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2594 			 le32_to_cpu(es->s_error_count));
2595 	if (es->s_first_error_time) {
2596 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2597 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 		       (int) sizeof(es->s_first_error_func),
2599 		       es->s_first_error_func,
2600 		       le32_to_cpu(es->s_first_error_line));
2601 		if (es->s_first_error_ino)
2602 			printk(": inode %u",
2603 			       le32_to_cpu(es->s_first_error_ino));
2604 		if (es->s_first_error_block)
2605 			printk(": block %llu", (unsigned long long)
2606 			       le64_to_cpu(es->s_first_error_block));
2607 		printk("\n");
2608 	}
2609 	if (es->s_last_error_time) {
2610 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2611 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 		       (int) sizeof(es->s_last_error_func),
2613 		       es->s_last_error_func,
2614 		       le32_to_cpu(es->s_last_error_line));
2615 		if (es->s_last_error_ino)
2616 			printk(": inode %u",
2617 			       le32_to_cpu(es->s_last_error_ino));
2618 		if (es->s_last_error_block)
2619 			printk(": block %llu", (unsigned long long)
2620 			       le64_to_cpu(es->s_last_error_block));
2621 		printk("\n");
2622 	}
2623 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2624 }
2625 
2626 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2627 static int ext4_run_li_request(struct ext4_li_request *elr)
2628 {
2629 	struct ext4_group_desc *gdp = NULL;
2630 	ext4_group_t group, ngroups;
2631 	struct super_block *sb;
2632 	unsigned long timeout = 0;
2633 	int ret = 0;
2634 
2635 	sb = elr->lr_super;
2636 	ngroups = EXT4_SB(sb)->s_groups_count;
2637 
2638 	for (group = elr->lr_next_group; group < ngroups; group++) {
2639 		gdp = ext4_get_group_desc(sb, group, NULL);
2640 		if (!gdp) {
2641 			ret = 1;
2642 			break;
2643 		}
2644 
2645 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 			break;
2647 	}
2648 
2649 	if (group == ngroups)
2650 		ret = 1;
2651 
2652 	if (!ret) {
2653 		timeout = jiffies;
2654 		ret = ext4_init_inode_table(sb, group,
2655 					    elr->lr_timeout ? 0 : 1);
2656 		if (elr->lr_timeout == 0) {
2657 			timeout = (jiffies - timeout) *
2658 				  elr->lr_sbi->s_li_wait_mult;
2659 			elr->lr_timeout = timeout;
2660 		}
2661 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 		elr->lr_next_group = group + 1;
2663 	}
2664 
2665 	return ret;
2666 }
2667 
2668 /*
2669  * Remove lr_request from the list_request and free the
2670  * request structure. Should be called with li_list_mtx held
2671  */
ext4_remove_li_request(struct ext4_li_request * elr)2672 static void ext4_remove_li_request(struct ext4_li_request *elr)
2673 {
2674 	struct ext4_sb_info *sbi;
2675 
2676 	if (!elr)
2677 		return;
2678 
2679 	sbi = elr->lr_sbi;
2680 
2681 	list_del(&elr->lr_request);
2682 	sbi->s_li_request = NULL;
2683 	kfree(elr);
2684 }
2685 
ext4_unregister_li_request(struct super_block * sb)2686 static void ext4_unregister_li_request(struct super_block *sb)
2687 {
2688 	mutex_lock(&ext4_li_mtx);
2689 	if (!ext4_li_info) {
2690 		mutex_unlock(&ext4_li_mtx);
2691 		return;
2692 	}
2693 
2694 	mutex_lock(&ext4_li_info->li_list_mtx);
2695 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2696 	mutex_unlock(&ext4_li_info->li_list_mtx);
2697 	mutex_unlock(&ext4_li_mtx);
2698 }
2699 
2700 static struct task_struct *ext4_lazyinit_task;
2701 
2702 /*
2703  * This is the function where ext4lazyinit thread lives. It walks
2704  * through the request list searching for next scheduled filesystem.
2705  * When such a fs is found, run the lazy initialization request
2706  * (ext4_rn_li_request) and keep track of the time spend in this
2707  * function. Based on that time we compute next schedule time of
2708  * the request. When walking through the list is complete, compute
2709  * next waking time and put itself into sleep.
2710  */
ext4_lazyinit_thread(void * arg)2711 static int ext4_lazyinit_thread(void *arg)
2712 {
2713 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2714 	struct list_head *pos, *n;
2715 	struct ext4_li_request *elr;
2716 	unsigned long next_wakeup, cur;
2717 
2718 	BUG_ON(NULL == eli);
2719 
2720 cont_thread:
2721 	while (true) {
2722 		next_wakeup = MAX_JIFFY_OFFSET;
2723 
2724 		mutex_lock(&eli->li_list_mtx);
2725 		if (list_empty(&eli->li_request_list)) {
2726 			mutex_unlock(&eli->li_list_mtx);
2727 			goto exit_thread;
2728 		}
2729 
2730 		list_for_each_safe(pos, n, &eli->li_request_list) {
2731 			elr = list_entry(pos, struct ext4_li_request,
2732 					 lr_request);
2733 
2734 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2735 				if (ext4_run_li_request(elr) != 0) {
2736 					/* error, remove the lazy_init job */
2737 					ext4_remove_li_request(elr);
2738 					continue;
2739 				}
2740 			}
2741 
2742 			if (time_before(elr->lr_next_sched, next_wakeup))
2743 				next_wakeup = elr->lr_next_sched;
2744 		}
2745 		mutex_unlock(&eli->li_list_mtx);
2746 
2747 		try_to_freeze();
2748 
2749 		cur = jiffies;
2750 		if ((time_after_eq(cur, next_wakeup)) ||
2751 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2752 			cond_resched();
2753 			continue;
2754 		}
2755 
2756 		schedule_timeout_interruptible(next_wakeup - cur);
2757 
2758 		if (kthread_should_stop()) {
2759 			ext4_clear_request_list();
2760 			goto exit_thread;
2761 		}
2762 	}
2763 
2764 exit_thread:
2765 	/*
2766 	 * It looks like the request list is empty, but we need
2767 	 * to check it under the li_list_mtx lock, to prevent any
2768 	 * additions into it, and of course we should lock ext4_li_mtx
2769 	 * to atomically free the list and ext4_li_info, because at
2770 	 * this point another ext4 filesystem could be registering
2771 	 * new one.
2772 	 */
2773 	mutex_lock(&ext4_li_mtx);
2774 	mutex_lock(&eli->li_list_mtx);
2775 	if (!list_empty(&eli->li_request_list)) {
2776 		mutex_unlock(&eli->li_list_mtx);
2777 		mutex_unlock(&ext4_li_mtx);
2778 		goto cont_thread;
2779 	}
2780 	mutex_unlock(&eli->li_list_mtx);
2781 	kfree(ext4_li_info);
2782 	ext4_li_info = NULL;
2783 	mutex_unlock(&ext4_li_mtx);
2784 
2785 	return 0;
2786 }
2787 
ext4_clear_request_list(void)2788 static void ext4_clear_request_list(void)
2789 {
2790 	struct list_head *pos, *n;
2791 	struct ext4_li_request *elr;
2792 
2793 	mutex_lock(&ext4_li_info->li_list_mtx);
2794 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2795 		elr = list_entry(pos, struct ext4_li_request,
2796 				 lr_request);
2797 		ext4_remove_li_request(elr);
2798 	}
2799 	mutex_unlock(&ext4_li_info->li_list_mtx);
2800 }
2801 
ext4_run_lazyinit_thread(void)2802 static int ext4_run_lazyinit_thread(void)
2803 {
2804 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2805 					 ext4_li_info, "ext4lazyinit");
2806 	if (IS_ERR(ext4_lazyinit_task)) {
2807 		int err = PTR_ERR(ext4_lazyinit_task);
2808 		ext4_clear_request_list();
2809 		kfree(ext4_li_info);
2810 		ext4_li_info = NULL;
2811 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2812 				 "initialization thread\n",
2813 				 err);
2814 		return err;
2815 	}
2816 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2817 	return 0;
2818 }
2819 
2820 /*
2821  * Check whether it make sense to run itable init. thread or not.
2822  * If there is at least one uninitialized inode table, return
2823  * corresponding group number, else the loop goes through all
2824  * groups and return total number of groups.
2825  */
ext4_has_uninit_itable(struct super_block * sb)2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2827 {
2828 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2829 	struct ext4_group_desc *gdp = NULL;
2830 
2831 	for (group = 0; group < ngroups; group++) {
2832 		gdp = ext4_get_group_desc(sb, group, NULL);
2833 		if (!gdp)
2834 			continue;
2835 
2836 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837 			break;
2838 	}
2839 
2840 	return group;
2841 }
2842 
ext4_li_info_new(void)2843 static int ext4_li_info_new(void)
2844 {
2845 	struct ext4_lazy_init *eli = NULL;
2846 
2847 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2848 	if (!eli)
2849 		return -ENOMEM;
2850 
2851 	INIT_LIST_HEAD(&eli->li_request_list);
2852 	mutex_init(&eli->li_list_mtx);
2853 
2854 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2855 
2856 	ext4_li_info = eli;
2857 
2858 	return 0;
2859 }
2860 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2862 					    ext4_group_t start)
2863 {
2864 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 	struct ext4_li_request *elr;
2866 	unsigned long rnd;
2867 
2868 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 	if (!elr)
2870 		return NULL;
2871 
2872 	elr->lr_super = sb;
2873 	elr->lr_sbi = sbi;
2874 	elr->lr_next_group = start;
2875 
2876 	/*
2877 	 * Randomize first schedule time of the request to
2878 	 * spread the inode table initialization requests
2879 	 * better.
2880 	 */
2881 	get_random_bytes(&rnd, sizeof(rnd));
2882 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2883 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2884 
2885 	return elr;
2886 }
2887 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)2888 static int ext4_register_li_request(struct super_block *sb,
2889 				    ext4_group_t first_not_zeroed)
2890 {
2891 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2892 	struct ext4_li_request *elr;
2893 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2894 	int ret = 0;
2895 
2896 	if (sbi->s_li_request != NULL) {
2897 		/*
2898 		 * Reset timeout so it can be computed again, because
2899 		 * s_li_wait_mult might have changed.
2900 		 */
2901 		sbi->s_li_request->lr_timeout = 0;
2902 		return 0;
2903 	}
2904 
2905 	if (first_not_zeroed == ngroups ||
2906 	    (sb->s_flags & MS_RDONLY) ||
2907 	    !test_opt(sb, INIT_INODE_TABLE))
2908 		return 0;
2909 
2910 	elr = ext4_li_request_new(sb, first_not_zeroed);
2911 	if (!elr)
2912 		return -ENOMEM;
2913 
2914 	mutex_lock(&ext4_li_mtx);
2915 
2916 	if (NULL == ext4_li_info) {
2917 		ret = ext4_li_info_new();
2918 		if (ret)
2919 			goto out;
2920 	}
2921 
2922 	mutex_lock(&ext4_li_info->li_list_mtx);
2923 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2924 	mutex_unlock(&ext4_li_info->li_list_mtx);
2925 
2926 	sbi->s_li_request = elr;
2927 	/*
2928 	 * set elr to NULL here since it has been inserted to
2929 	 * the request_list and the removal and free of it is
2930 	 * handled by ext4_clear_request_list from now on.
2931 	 */
2932 	elr = NULL;
2933 
2934 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2935 		ret = ext4_run_lazyinit_thread();
2936 		if (ret)
2937 			goto out;
2938 	}
2939 out:
2940 	mutex_unlock(&ext4_li_mtx);
2941 	if (ret)
2942 		kfree(elr);
2943 	return ret;
2944 }
2945 
2946 /*
2947  * We do not need to lock anything since this is called on
2948  * module unload.
2949  */
ext4_destroy_lazyinit_thread(void)2950 static void ext4_destroy_lazyinit_thread(void)
2951 {
2952 	/*
2953 	 * If thread exited earlier
2954 	 * there's nothing to be done.
2955 	 */
2956 	if (!ext4_li_info || !ext4_lazyinit_task)
2957 		return;
2958 
2959 	kthread_stop(ext4_lazyinit_task);
2960 }
2961 
2962 /*
2963  * Note: calculating the overhead so we can be compatible with
2964  * historical BSD practice is quite difficult in the face of
2965  * clusters/bigalloc.  This is because multiple metadata blocks from
2966  * different block group can end up in the same allocation cluster.
2967  * Calculating the exact overhead in the face of clustered allocation
2968  * requires either O(all block bitmaps) in memory or O(number of block
2969  * groups**2) in time.  We will still calculate the superblock for
2970  * older file systems --- and if we come across with a bigalloc file
2971  * system with zero in s_overhead_clusters the estimate will be close to
2972  * correct especially for very large cluster sizes --- but for newer
2973  * file systems, it's better to calculate this figure once at mkfs
2974  * time, and store it in the superblock.  If the superblock value is
2975  * present (even for non-bigalloc file systems), we will use it.
2976  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)2977 static int count_overhead(struct super_block *sb, ext4_group_t grp,
2978 			  char *buf)
2979 {
2980 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
2981 	struct ext4_group_desc	*gdp;
2982 	ext4_fsblk_t		first_block, last_block, b;
2983 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
2984 	int			s, j, count = 0;
2985 
2986 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
2987 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
2988 			sbi->s_itb_per_group + 2);
2989 
2990 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
2991 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
2992 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
2993 	for (i = 0; i < ngroups; i++) {
2994 		gdp = ext4_get_group_desc(sb, i, NULL);
2995 		b = ext4_block_bitmap(sb, gdp);
2996 		if (b >= first_block && b <= last_block) {
2997 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2998 			count++;
2999 		}
3000 		b = ext4_inode_bitmap(sb, gdp);
3001 		if (b >= first_block && b <= last_block) {
3002 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3003 			count++;
3004 		}
3005 		b = ext4_inode_table(sb, gdp);
3006 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3007 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3008 				int c = EXT4_B2C(sbi, b - first_block);
3009 				ext4_set_bit(c, buf);
3010 				count++;
3011 			}
3012 		if (i != grp)
3013 			continue;
3014 		s = 0;
3015 		if (ext4_bg_has_super(sb, grp)) {
3016 			ext4_set_bit(s++, buf);
3017 			count++;
3018 		}
3019 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3020 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3021 			count++;
3022 		}
3023 	}
3024 	if (!count)
3025 		return 0;
3026 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3027 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3028 }
3029 
3030 /*
3031  * Compute the overhead and stash it in sbi->s_overhead
3032  */
ext4_calculate_overhead(struct super_block * sb)3033 int ext4_calculate_overhead(struct super_block *sb)
3034 {
3035 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3036 	struct ext4_super_block *es = sbi->s_es;
3037 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3038 	ext4_fsblk_t overhead = 0;
3039 	char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3040 
3041 	memset(buf, 0, PAGE_SIZE);
3042 	if (!buf)
3043 		return -ENOMEM;
3044 
3045 	/*
3046 	 * Compute the overhead (FS structures).  This is constant
3047 	 * for a given filesystem unless the number of block groups
3048 	 * changes so we cache the previous value until it does.
3049 	 */
3050 
3051 	/*
3052 	 * All of the blocks before first_data_block are overhead
3053 	 */
3054 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3055 
3056 	/*
3057 	 * Add the overhead found in each block group
3058 	 */
3059 	for (i = 0; i < ngroups; i++) {
3060 		int blks;
3061 
3062 		blks = count_overhead(sb, i, buf);
3063 		overhead += blks;
3064 		if (blks)
3065 			memset(buf, 0, PAGE_SIZE);
3066 		cond_resched();
3067 	}
3068 	sbi->s_overhead = overhead;
3069 	smp_wmb();
3070 	free_page((unsigned long) buf);
3071 	return 0;
3072 }
3073 
ext4_fill_super(struct super_block * sb,void * data,int silent)3074 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3075 {
3076 	char *orig_data = kstrdup(data, GFP_KERNEL);
3077 	struct buffer_head *bh;
3078 	struct ext4_super_block *es = NULL;
3079 	struct ext4_sb_info *sbi;
3080 	ext4_fsblk_t block;
3081 	ext4_fsblk_t sb_block = get_sb_block(&data);
3082 	ext4_fsblk_t logical_sb_block;
3083 	unsigned long offset = 0;
3084 	unsigned long journal_devnum = 0;
3085 	unsigned long def_mount_opts;
3086 	struct inode *root;
3087 	char *cp;
3088 	const char *descr;
3089 	int ret = -ENOMEM;
3090 	int blocksize, clustersize;
3091 	unsigned int db_count;
3092 	unsigned int i;
3093 	int needs_recovery, has_huge_files, has_bigalloc;
3094 	__u64 blocks_count;
3095 	int err;
3096 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3097 	ext4_group_t first_not_zeroed;
3098 
3099 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3100 	if (!sbi)
3101 		goto out_free_orig;
3102 
3103 	sbi->s_blockgroup_lock =
3104 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3105 	if (!sbi->s_blockgroup_lock) {
3106 		kfree(sbi);
3107 		goto out_free_orig;
3108 	}
3109 	sb->s_fs_info = sbi;
3110 	sbi->s_mount_opt = 0;
3111 	sbi->s_resuid = EXT4_DEF_RESUID;
3112 	sbi->s_resgid = EXT4_DEF_RESGID;
3113 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3114 	sbi->s_sb_block = sb_block;
3115 	if (sb->s_bdev->bd_part)
3116 		sbi->s_sectors_written_start =
3117 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3118 
3119 	/* Cleanup superblock name */
3120 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3121 		*cp = '!';
3122 
3123 	ret = -EINVAL;
3124 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3125 	if (!blocksize) {
3126 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3127 		goto out_fail;
3128 	}
3129 
3130 	/*
3131 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3132 	 * block sizes.  We need to calculate the offset from buffer start.
3133 	 */
3134 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3135 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3136 		offset = do_div(logical_sb_block, blocksize);
3137 	} else {
3138 		logical_sb_block = sb_block;
3139 	}
3140 
3141 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3142 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3143 		goto out_fail;
3144 	}
3145 	/*
3146 	 * Note: s_es must be initialized as soon as possible because
3147 	 *       some ext4 macro-instructions depend on its value
3148 	 */
3149 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3150 	sbi->s_es = es;
3151 	sb->s_magic = le16_to_cpu(es->s_magic);
3152 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3153 		goto cantfind_ext4;
3154 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3155 
3156 	/* Set defaults before we parse the mount options */
3157 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3158 	set_opt(sb, INIT_INODE_TABLE);
3159 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3160 		set_opt(sb, DEBUG);
3161 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3162 		set_opt(sb, GRPID);
3163 	if (def_mount_opts & EXT4_DEFM_UID16)
3164 		set_opt(sb, NO_UID32);
3165 	/* xattr user namespace & acls are now defaulted on */
3166 #ifdef CONFIG_EXT4_FS_XATTR
3167 	set_opt(sb, XATTR_USER);
3168 #endif
3169 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3170 	set_opt(sb, POSIX_ACL);
3171 #endif
3172 	set_opt(sb, MBLK_IO_SUBMIT);
3173 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3174 		set_opt(sb, JOURNAL_DATA);
3175 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3176 		set_opt(sb, ORDERED_DATA);
3177 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3178 		set_opt(sb, WRITEBACK_DATA);
3179 
3180 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3181 		set_opt(sb, ERRORS_PANIC);
3182 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3183 		set_opt(sb, ERRORS_CONT);
3184 	else
3185 		set_opt(sb, ERRORS_RO);
3186 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3187 		set_opt(sb, BLOCK_VALIDITY);
3188 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3189 		set_opt(sb, DISCARD);
3190 
3191 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3192 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3193 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3194 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3195 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3196 
3197 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3198 		set_opt(sb, BARRIER);
3199 
3200 	/*
3201 	 * enable delayed allocation by default
3202 	 * Use -o nodelalloc to turn it off
3203 	 */
3204 	if (!IS_EXT3_SB(sb) &&
3205 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3206 		set_opt(sb, DELALLOC);
3207 
3208 	/*
3209 	 * set default s_li_wait_mult for lazyinit, for the case there is
3210 	 * no mount option specified.
3211 	 */
3212 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3213 
3214 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3215 			   &journal_devnum, &journal_ioprio, 0)) {
3216 		ext4_msg(sb, KERN_WARNING,
3217 			 "failed to parse options in superblock: %s",
3218 			 sbi->s_es->s_mount_opts);
3219 	}
3220 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3221 	if (!parse_options((char *) data, sb, &journal_devnum,
3222 			   &journal_ioprio, 0))
3223 		goto failed_mount;
3224 
3225 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3226 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3227 			    "with data=journal disables delayed "
3228 			    "allocation and O_DIRECT support!\n");
3229 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3230 			ext4_msg(sb, KERN_ERR, "can't mount with "
3231 				 "both data=journal and delalloc");
3232 			goto failed_mount;
3233 		}
3234 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3235 			ext4_msg(sb, KERN_ERR, "can't mount with "
3236 				 "both data=journal and dioread_nolock");
3237 			goto failed_mount;
3238 		}
3239 		if (test_opt(sb, DELALLOC))
3240 			clear_opt(sb, DELALLOC);
3241 	}
3242 
3243 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3244 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3245 
3246 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3247 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3248 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3249 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3250 		ext4_msg(sb, KERN_WARNING,
3251 		       "feature flags set on rev 0 fs, "
3252 		       "running e2fsck is recommended");
3253 
3254 	if (IS_EXT2_SB(sb)) {
3255 		if (ext2_feature_set_ok(sb))
3256 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3257 				 "using the ext4 subsystem");
3258 		else {
3259 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3260 				 "to feature incompatibilities");
3261 			goto failed_mount;
3262 		}
3263 	}
3264 
3265 	if (IS_EXT3_SB(sb)) {
3266 		if (ext3_feature_set_ok(sb))
3267 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3268 				 "using the ext4 subsystem");
3269 		else {
3270 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3271 				 "to feature incompatibilities");
3272 			goto failed_mount;
3273 		}
3274 	}
3275 
3276 	/*
3277 	 * Check feature flags regardless of the revision level, since we
3278 	 * previously didn't change the revision level when setting the flags,
3279 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3280 	 */
3281 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3282 		goto failed_mount;
3283 
3284 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3285 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3286 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3287 		ext4_msg(sb, KERN_ERR,
3288 		       "Unsupported filesystem blocksize %d", blocksize);
3289 		goto failed_mount;
3290 	}
3291 
3292 	if (sb->s_blocksize != blocksize) {
3293 		/* Validate the filesystem blocksize */
3294 		if (!sb_set_blocksize(sb, blocksize)) {
3295 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3296 					blocksize);
3297 			goto failed_mount;
3298 		}
3299 
3300 		brelse(bh);
3301 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3302 		offset = do_div(logical_sb_block, blocksize);
3303 		bh = sb_bread(sb, logical_sb_block);
3304 		if (!bh) {
3305 			ext4_msg(sb, KERN_ERR,
3306 			       "Can't read superblock on 2nd try");
3307 			goto failed_mount;
3308 		}
3309 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3310 		sbi->s_es = es;
3311 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3312 			ext4_msg(sb, KERN_ERR,
3313 			       "Magic mismatch, very weird!");
3314 			goto failed_mount;
3315 		}
3316 	}
3317 
3318 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3319 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3320 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3321 						      has_huge_files);
3322 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3323 
3324 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3325 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3326 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3327 	} else {
3328 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3329 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3330 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3331 		    (!is_power_of_2(sbi->s_inode_size)) ||
3332 		    (sbi->s_inode_size > blocksize)) {
3333 			ext4_msg(sb, KERN_ERR,
3334 			       "unsupported inode size: %d",
3335 			       sbi->s_inode_size);
3336 			goto failed_mount;
3337 		}
3338 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3339 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3340 	}
3341 
3342 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3343 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3344 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3345 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3346 		    !is_power_of_2(sbi->s_desc_size)) {
3347 			ext4_msg(sb, KERN_ERR,
3348 			       "unsupported descriptor size %lu",
3349 			       sbi->s_desc_size);
3350 			goto failed_mount;
3351 		}
3352 	} else
3353 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3354 
3355 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3356 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3357 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3358 		goto cantfind_ext4;
3359 
3360 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3361 	if (sbi->s_inodes_per_block == 0)
3362 		goto cantfind_ext4;
3363 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3364 					sbi->s_inodes_per_block;
3365 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3366 	sbi->s_sbh = bh;
3367 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3368 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3369 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3370 
3371 	for (i = 0; i < 4; i++)
3372 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3373 	sbi->s_def_hash_version = es->s_def_hash_version;
3374 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3375 		i = le32_to_cpu(es->s_flags);
3376 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3377 			sbi->s_hash_unsigned = 3;
3378 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3379 #ifdef __CHAR_UNSIGNED__
3380 			if (!(sb->s_flags & MS_RDONLY))
3381 				es->s_flags |=
3382 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3383 			sbi->s_hash_unsigned = 3;
3384 #else
3385 			if (!(sb->s_flags & MS_RDONLY))
3386 				es->s_flags |=
3387 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3388 #endif
3389 		}
3390 	}
3391 
3392 	/* Handle clustersize */
3393 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3394 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3395 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3396 	if (has_bigalloc) {
3397 		if (clustersize < blocksize) {
3398 			ext4_msg(sb, KERN_ERR,
3399 				 "cluster size (%d) smaller than "
3400 				 "block size (%d)", clustersize, blocksize);
3401 			goto failed_mount;
3402 		}
3403 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3404 			le32_to_cpu(es->s_log_block_size);
3405 		sbi->s_clusters_per_group =
3406 			le32_to_cpu(es->s_clusters_per_group);
3407 		if (sbi->s_clusters_per_group > blocksize * 8) {
3408 			ext4_msg(sb, KERN_ERR,
3409 				 "#clusters per group too big: %lu",
3410 				 sbi->s_clusters_per_group);
3411 			goto failed_mount;
3412 		}
3413 		if (sbi->s_blocks_per_group !=
3414 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3415 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3416 				 "clusters per group (%lu) inconsistent",
3417 				 sbi->s_blocks_per_group,
3418 				 sbi->s_clusters_per_group);
3419 			goto failed_mount;
3420 		}
3421 	} else {
3422 		if (clustersize != blocksize) {
3423 			ext4_warning(sb, "fragment/cluster size (%d) != "
3424 				     "block size (%d)", clustersize,
3425 				     blocksize);
3426 			clustersize = blocksize;
3427 		}
3428 		if (sbi->s_blocks_per_group > blocksize * 8) {
3429 			ext4_msg(sb, KERN_ERR,
3430 				 "#blocks per group too big: %lu",
3431 				 sbi->s_blocks_per_group);
3432 			goto failed_mount;
3433 		}
3434 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3435 		sbi->s_cluster_bits = 0;
3436 	}
3437 	sbi->s_cluster_ratio = clustersize / blocksize;
3438 
3439 	if (sbi->s_inodes_per_group > blocksize * 8) {
3440 		ext4_msg(sb, KERN_ERR,
3441 		       "#inodes per group too big: %lu",
3442 		       sbi->s_inodes_per_group);
3443 		goto failed_mount;
3444 	}
3445 
3446 	/*
3447 	 * Test whether we have more sectors than will fit in sector_t,
3448 	 * and whether the max offset is addressable by the page cache.
3449 	 */
3450 	err = generic_check_addressable(sb->s_blocksize_bits,
3451 					ext4_blocks_count(es));
3452 	if (err) {
3453 		ext4_msg(sb, KERN_ERR, "filesystem"
3454 			 " too large to mount safely on this system");
3455 		if (sizeof(sector_t) < 8)
3456 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3457 		ret = err;
3458 		goto failed_mount;
3459 	}
3460 
3461 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3462 		goto cantfind_ext4;
3463 
3464 	/* check blocks count against device size */
3465 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3466 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3467 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3468 		       "exceeds size of device (%llu blocks)",
3469 		       ext4_blocks_count(es), blocks_count);
3470 		goto failed_mount;
3471 	}
3472 
3473 	/*
3474 	 * It makes no sense for the first data block to be beyond the end
3475 	 * of the filesystem.
3476 	 */
3477 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3478 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3479 			 "block %u is beyond end of filesystem (%llu)",
3480 			 le32_to_cpu(es->s_first_data_block),
3481 			 ext4_blocks_count(es));
3482 		goto failed_mount;
3483 	}
3484 	blocks_count = (ext4_blocks_count(es) -
3485 			le32_to_cpu(es->s_first_data_block) +
3486 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3487 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3488 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3489 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3490 		       "(block count %llu, first data block %u, "
3491 		       "blocks per group %lu)", sbi->s_groups_count,
3492 		       ext4_blocks_count(es),
3493 		       le32_to_cpu(es->s_first_data_block),
3494 		       EXT4_BLOCKS_PER_GROUP(sb));
3495 		goto failed_mount;
3496 	}
3497 	sbi->s_groups_count = blocks_count;
3498 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3499 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3500 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3501 		   EXT4_DESC_PER_BLOCK(sb);
3502 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3503 					  sizeof(struct buffer_head *),
3504 					  GFP_KERNEL);
3505 	if (sbi->s_group_desc == NULL) {
3506 		ext4_msg(sb, KERN_ERR, "not enough memory");
3507 		goto failed_mount;
3508 	}
3509 
3510 	if (ext4_proc_root)
3511 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3512 
3513 	if (sbi->s_proc)
3514 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3515 				 &ext4_seq_options_fops, sb);
3516 
3517 	bgl_lock_init(sbi->s_blockgroup_lock);
3518 
3519 	for (i = 0; i < db_count; i++) {
3520 		block = descriptor_loc(sb, logical_sb_block, i);
3521 		sbi->s_group_desc[i] = sb_bread(sb, block);
3522 		if (!sbi->s_group_desc[i]) {
3523 			ext4_msg(sb, KERN_ERR,
3524 			       "can't read group descriptor %d", i);
3525 			db_count = i;
3526 			goto failed_mount2;
3527 		}
3528 	}
3529 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3530 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3531 		goto failed_mount2;
3532 	}
3533 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3534 		if (!ext4_fill_flex_info(sb)) {
3535 			ext4_msg(sb, KERN_ERR,
3536 			       "unable to initialize "
3537 			       "flex_bg meta info!");
3538 			goto failed_mount2;
3539 		}
3540 
3541 	sbi->s_gdb_count = db_count;
3542 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3543 	spin_lock_init(&sbi->s_next_gen_lock);
3544 
3545 	init_timer(&sbi->s_err_report);
3546 	sbi->s_err_report.function = print_daily_error_info;
3547 	sbi->s_err_report.data = (unsigned long) sb;
3548 
3549 	err = percpu_counter_init(&sbi->s_freeclusters_counter,
3550 			ext4_count_free_clusters(sb));
3551 	if (!err) {
3552 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3553 				ext4_count_free_inodes(sb));
3554 	}
3555 	if (!err) {
3556 		err = percpu_counter_init(&sbi->s_dirs_counter,
3557 				ext4_count_dirs(sb));
3558 	}
3559 	if (!err) {
3560 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3561 	}
3562 	if (err) {
3563 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3564 		goto failed_mount3;
3565 	}
3566 
3567 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3568 	sbi->s_max_writeback_mb_bump = 128;
3569 
3570 	/*
3571 	 * set up enough so that it can read an inode
3572 	 */
3573 	if (!test_opt(sb, NOLOAD) &&
3574 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3575 		sb->s_op = &ext4_sops;
3576 	else
3577 		sb->s_op = &ext4_nojournal_sops;
3578 	sb->s_export_op = &ext4_export_ops;
3579 	sb->s_xattr = ext4_xattr_handlers;
3580 #ifdef CONFIG_QUOTA
3581 	sb->s_qcop = &ext4_qctl_operations;
3582 	sb->dq_op = &ext4_quota_operations;
3583 #endif
3584 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3585 
3586 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3587 	mutex_init(&sbi->s_orphan_lock);
3588 	sbi->s_resize_flags = 0;
3589 
3590 	sb->s_root = NULL;
3591 
3592 	needs_recovery = (es->s_last_orphan != 0 ||
3593 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3594 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3595 
3596 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3597 	    !(sb->s_flags & MS_RDONLY))
3598 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3599 			goto failed_mount3;
3600 
3601 	/*
3602 	 * The first inode we look at is the journal inode.  Don't try
3603 	 * root first: it may be modified in the journal!
3604 	 */
3605 	if (!test_opt(sb, NOLOAD) &&
3606 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3607 		if (ext4_load_journal(sb, es, journal_devnum))
3608 			goto failed_mount3;
3609 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3610 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3611 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3612 		       "suppressed and not mounted read-only");
3613 		goto failed_mount_wq;
3614 	} else {
3615 		clear_opt(sb, DATA_FLAGS);
3616 		sbi->s_journal = NULL;
3617 		needs_recovery = 0;
3618 		goto no_journal;
3619 	}
3620 
3621 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3622 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3623 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3624 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3625 		goto failed_mount_wq;
3626 	}
3627 
3628 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3629 		jbd2_journal_set_features(sbi->s_journal,
3630 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3631 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3632 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3633 		jbd2_journal_set_features(sbi->s_journal,
3634 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3635 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3636 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3637 	} else {
3638 		jbd2_journal_clear_features(sbi->s_journal,
3639 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3640 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3641 	}
3642 
3643 	/* We have now updated the journal if required, so we can
3644 	 * validate the data journaling mode. */
3645 	switch (test_opt(sb, DATA_FLAGS)) {
3646 	case 0:
3647 		/* No mode set, assume a default based on the journal
3648 		 * capabilities: ORDERED_DATA if the journal can
3649 		 * cope, else JOURNAL_DATA
3650 		 */
3651 		if (jbd2_journal_check_available_features
3652 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3653 			set_opt(sb, ORDERED_DATA);
3654 		else
3655 			set_opt(sb, JOURNAL_DATA);
3656 		break;
3657 
3658 	case EXT4_MOUNT_ORDERED_DATA:
3659 	case EXT4_MOUNT_WRITEBACK_DATA:
3660 		if (!jbd2_journal_check_available_features
3661 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3662 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3663 			       "requested data journaling mode");
3664 			goto failed_mount_wq;
3665 		}
3666 	default:
3667 		break;
3668 	}
3669 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3670 
3671 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3672 
3673 	/*
3674 	 * The journal may have updated the bg summary counts, so we
3675 	 * need to update the global counters.
3676 	 */
3677 	percpu_counter_set(&sbi->s_freeclusters_counter,
3678 			   ext4_count_free_clusters(sb));
3679 	percpu_counter_set(&sbi->s_freeinodes_counter,
3680 			   ext4_count_free_inodes(sb));
3681 	percpu_counter_set(&sbi->s_dirs_counter,
3682 			   ext4_count_dirs(sb));
3683 	percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3684 
3685 no_journal:
3686 	/*
3687 	 * Get the # of file system overhead blocks from the
3688 	 * superblock if present.
3689 	 */
3690 	if (es->s_overhead_clusters)
3691 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3692 	else {
3693 		ret = ext4_calculate_overhead(sb);
3694 		if (ret)
3695 			goto failed_mount_wq;
3696 	}
3697 
3698 	/*
3699 	 * The maximum number of concurrent works can be high and
3700 	 * concurrency isn't really necessary.  Limit it to 1.
3701 	 */
3702 	EXT4_SB(sb)->dio_unwritten_wq =
3703 		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3704 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3705 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3706 		goto failed_mount_wq;
3707 	}
3708 
3709 	/*
3710 	 * The jbd2_journal_load will have done any necessary log recovery,
3711 	 * so we can safely mount the rest of the filesystem now.
3712 	 */
3713 
3714 	root = ext4_iget(sb, EXT4_ROOT_INO);
3715 	if (IS_ERR(root)) {
3716 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3717 		ret = PTR_ERR(root);
3718 		root = NULL;
3719 		goto failed_mount4;
3720 	}
3721 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3722 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3723 		iput(root);
3724 		goto failed_mount4;
3725 	}
3726 	sb->s_root = d_make_root(root);
3727 	if (!sb->s_root) {
3728 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3729 		ret = -ENOMEM;
3730 		goto failed_mount4;
3731 	}
3732 
3733 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3734 		sb->s_flags |= MS_RDONLY;
3735 
3736 	/* determine the minimum size of new large inodes, if present */
3737 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3738 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3739 						     EXT4_GOOD_OLD_INODE_SIZE;
3740 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3741 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3742 			if (sbi->s_want_extra_isize <
3743 			    le16_to_cpu(es->s_want_extra_isize))
3744 				sbi->s_want_extra_isize =
3745 					le16_to_cpu(es->s_want_extra_isize);
3746 			if (sbi->s_want_extra_isize <
3747 			    le16_to_cpu(es->s_min_extra_isize))
3748 				sbi->s_want_extra_isize =
3749 					le16_to_cpu(es->s_min_extra_isize);
3750 		}
3751 	}
3752 	/* Check if enough inode space is available */
3753 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3754 							sbi->s_inode_size) {
3755 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3756 						       EXT4_GOOD_OLD_INODE_SIZE;
3757 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3758 			 "available");
3759 	}
3760 
3761 	err = ext4_setup_system_zone(sb);
3762 	if (err) {
3763 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3764 			 "zone (%d)", err);
3765 		goto failed_mount4a;
3766 	}
3767 
3768 	ext4_ext_init(sb);
3769 	err = ext4_mb_init(sb, needs_recovery);
3770 	if (err) {
3771 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3772 			 err);
3773 		goto failed_mount5;
3774 	}
3775 
3776 	err = ext4_register_li_request(sb, first_not_zeroed);
3777 	if (err)
3778 		goto failed_mount6;
3779 
3780 	sbi->s_kobj.kset = ext4_kset;
3781 	init_completion(&sbi->s_kobj_unregister);
3782 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3783 				   "%s", sb->s_id);
3784 	if (err)
3785 		goto failed_mount7;
3786 
3787 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3788 	ext4_orphan_cleanup(sb, es);
3789 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3790 	if (needs_recovery) {
3791 		ext4_msg(sb, KERN_INFO, "recovery complete");
3792 		ext4_mark_recovery_complete(sb, es);
3793 	}
3794 	if (EXT4_SB(sb)->s_journal) {
3795 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3796 			descr = " journalled data mode";
3797 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3798 			descr = " ordered data mode";
3799 		else
3800 			descr = " writeback data mode";
3801 	} else
3802 		descr = "out journal";
3803 
3804 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3805 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3806 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3807 
3808 	if (es->s_error_count)
3809 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3810 
3811 	kfree(orig_data);
3812 	return 0;
3813 
3814 cantfind_ext4:
3815 	if (!silent)
3816 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3817 	goto failed_mount;
3818 
3819 failed_mount7:
3820 	ext4_unregister_li_request(sb);
3821 failed_mount6:
3822 	ext4_mb_release(sb);
3823 failed_mount5:
3824 	ext4_ext_release(sb);
3825 	ext4_release_system_zone(sb);
3826 failed_mount4a:
3827 	dput(sb->s_root);
3828 	sb->s_root = NULL;
3829 failed_mount4:
3830 	ext4_msg(sb, KERN_ERR, "mount failed");
3831 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3832 failed_mount_wq:
3833 	if (sbi->s_journal) {
3834 		jbd2_journal_destroy(sbi->s_journal);
3835 		sbi->s_journal = NULL;
3836 	}
3837 failed_mount3:
3838 	del_timer(&sbi->s_err_report);
3839 	if (sbi->s_flex_groups)
3840 		ext4_kvfree(sbi->s_flex_groups);
3841 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
3842 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3843 	percpu_counter_destroy(&sbi->s_dirs_counter);
3844 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3845 	if (sbi->s_mmp_tsk)
3846 		kthread_stop(sbi->s_mmp_tsk);
3847 failed_mount2:
3848 	for (i = 0; i < db_count; i++)
3849 		brelse(sbi->s_group_desc[i]);
3850 	ext4_kvfree(sbi->s_group_desc);
3851 failed_mount:
3852 	if (sbi->s_proc) {
3853 		remove_proc_entry("options", sbi->s_proc);
3854 		remove_proc_entry(sb->s_id, ext4_proc_root);
3855 	}
3856 #ifdef CONFIG_QUOTA
3857 	for (i = 0; i < MAXQUOTAS; i++)
3858 		kfree(sbi->s_qf_names[i]);
3859 #endif
3860 	ext4_blkdev_remove(sbi);
3861 	brelse(bh);
3862 out_fail:
3863 	sb->s_fs_info = NULL;
3864 	kfree(sbi->s_blockgroup_lock);
3865 	kfree(sbi);
3866 out_free_orig:
3867 	kfree(orig_data);
3868 	return ret;
3869 }
3870 
3871 /*
3872  * Setup any per-fs journal parameters now.  We'll do this both on
3873  * initial mount, once the journal has been initialised but before we've
3874  * done any recovery; and again on any subsequent remount.
3875  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)3876 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3877 {
3878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3879 
3880 	journal->j_commit_interval = sbi->s_commit_interval;
3881 	journal->j_min_batch_time = sbi->s_min_batch_time;
3882 	journal->j_max_batch_time = sbi->s_max_batch_time;
3883 
3884 	write_lock(&journal->j_state_lock);
3885 	if (test_opt(sb, BARRIER))
3886 		journal->j_flags |= JBD2_BARRIER;
3887 	else
3888 		journal->j_flags &= ~JBD2_BARRIER;
3889 	if (test_opt(sb, DATA_ERR_ABORT))
3890 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3891 	else
3892 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3893 	write_unlock(&journal->j_state_lock);
3894 }
3895 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)3896 static journal_t *ext4_get_journal(struct super_block *sb,
3897 				   unsigned int journal_inum)
3898 {
3899 	struct inode *journal_inode;
3900 	journal_t *journal;
3901 
3902 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3903 
3904 	/* First, test for the existence of a valid inode on disk.  Bad
3905 	 * things happen if we iget() an unused inode, as the subsequent
3906 	 * iput() will try to delete it. */
3907 
3908 	journal_inode = ext4_iget(sb, journal_inum);
3909 	if (IS_ERR(journal_inode)) {
3910 		ext4_msg(sb, KERN_ERR, "no journal found");
3911 		return NULL;
3912 	}
3913 	if (!journal_inode->i_nlink) {
3914 		make_bad_inode(journal_inode);
3915 		iput(journal_inode);
3916 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3917 		return NULL;
3918 	}
3919 
3920 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3921 		  journal_inode, journal_inode->i_size);
3922 	if (!S_ISREG(journal_inode->i_mode)) {
3923 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3924 		iput(journal_inode);
3925 		return NULL;
3926 	}
3927 
3928 	journal = jbd2_journal_init_inode(journal_inode);
3929 	if (!journal) {
3930 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3931 		iput(journal_inode);
3932 		return NULL;
3933 	}
3934 	journal->j_private = sb;
3935 	ext4_init_journal_params(sb, journal);
3936 	return journal;
3937 }
3938 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)3939 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3940 				       dev_t j_dev)
3941 {
3942 	struct buffer_head *bh;
3943 	journal_t *journal;
3944 	ext4_fsblk_t start;
3945 	ext4_fsblk_t len;
3946 	int hblock, blocksize;
3947 	ext4_fsblk_t sb_block;
3948 	unsigned long offset;
3949 	struct ext4_super_block *es;
3950 	struct block_device *bdev;
3951 
3952 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3953 
3954 	bdev = ext4_blkdev_get(j_dev, sb);
3955 	if (bdev == NULL)
3956 		return NULL;
3957 
3958 	blocksize = sb->s_blocksize;
3959 	hblock = bdev_logical_block_size(bdev);
3960 	if (blocksize < hblock) {
3961 		ext4_msg(sb, KERN_ERR,
3962 			"blocksize too small for journal device");
3963 		goto out_bdev;
3964 	}
3965 
3966 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3967 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3968 	set_blocksize(bdev, blocksize);
3969 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3970 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3971 		       "external journal");
3972 		goto out_bdev;
3973 	}
3974 
3975 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3976 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3977 	    !(le32_to_cpu(es->s_feature_incompat) &
3978 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3979 		ext4_msg(sb, KERN_ERR, "external journal has "
3980 					"bad superblock");
3981 		brelse(bh);
3982 		goto out_bdev;
3983 	}
3984 
3985 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3986 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3987 		brelse(bh);
3988 		goto out_bdev;
3989 	}
3990 
3991 	len = ext4_blocks_count(es);
3992 	start = sb_block + 1;
3993 	brelse(bh);	/* we're done with the superblock */
3994 
3995 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3996 					start, len, blocksize);
3997 	if (!journal) {
3998 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3999 		goto out_bdev;
4000 	}
4001 	journal->j_private = sb;
4002 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
4003 	wait_on_buffer(journal->j_sb_buffer);
4004 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4005 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4006 		goto out_journal;
4007 	}
4008 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4009 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4010 					"user (unsupported) - %d",
4011 			be32_to_cpu(journal->j_superblock->s_nr_users));
4012 		goto out_journal;
4013 	}
4014 	EXT4_SB(sb)->journal_bdev = bdev;
4015 	ext4_init_journal_params(sb, journal);
4016 	return journal;
4017 
4018 out_journal:
4019 	jbd2_journal_destroy(journal);
4020 out_bdev:
4021 	ext4_blkdev_put(bdev);
4022 	return NULL;
4023 }
4024 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4025 static int ext4_load_journal(struct super_block *sb,
4026 			     struct ext4_super_block *es,
4027 			     unsigned long journal_devnum)
4028 {
4029 	journal_t *journal;
4030 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4031 	dev_t journal_dev;
4032 	int err = 0;
4033 	int really_read_only;
4034 
4035 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4036 
4037 	if (journal_devnum &&
4038 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4039 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4040 			"numbers have changed");
4041 		journal_dev = new_decode_dev(journal_devnum);
4042 	} else
4043 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4044 
4045 	really_read_only = bdev_read_only(sb->s_bdev);
4046 
4047 	/*
4048 	 * Are we loading a blank journal or performing recovery after a
4049 	 * crash?  For recovery, we need to check in advance whether we
4050 	 * can get read-write access to the device.
4051 	 */
4052 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4053 		if (sb->s_flags & MS_RDONLY) {
4054 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4055 					"required on readonly filesystem");
4056 			if (really_read_only) {
4057 				ext4_msg(sb, KERN_ERR, "write access "
4058 					"unavailable, cannot proceed");
4059 				return -EROFS;
4060 			}
4061 			ext4_msg(sb, KERN_INFO, "write access will "
4062 			       "be enabled during recovery");
4063 		}
4064 	}
4065 
4066 	if (journal_inum && journal_dev) {
4067 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4068 		       "and inode journals!");
4069 		return -EINVAL;
4070 	}
4071 
4072 	if (journal_inum) {
4073 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4074 			return -EINVAL;
4075 	} else {
4076 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4077 			return -EINVAL;
4078 	}
4079 
4080 	if (!(journal->j_flags & JBD2_BARRIER))
4081 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4082 
4083 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4084 		err = jbd2_journal_wipe(journal, !really_read_only);
4085 	if (!err) {
4086 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4087 		if (save)
4088 			memcpy(save, ((char *) es) +
4089 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4090 		err = jbd2_journal_load(journal);
4091 		if (save)
4092 			memcpy(((char *) es) + EXT4_S_ERR_START,
4093 			       save, EXT4_S_ERR_LEN);
4094 		kfree(save);
4095 	}
4096 
4097 	if (err) {
4098 		ext4_msg(sb, KERN_ERR, "error loading journal");
4099 		jbd2_journal_destroy(journal);
4100 		return err;
4101 	}
4102 
4103 	EXT4_SB(sb)->s_journal = journal;
4104 	ext4_clear_journal_err(sb, es);
4105 
4106 	if (!really_read_only && journal_devnum &&
4107 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4108 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4109 
4110 		/* Make sure we flush the recovery flag to disk. */
4111 		ext4_commit_super(sb, 1);
4112 	}
4113 
4114 	return 0;
4115 }
4116 
ext4_commit_super(struct super_block * sb,int sync)4117 static int ext4_commit_super(struct super_block *sb, int sync)
4118 {
4119 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4120 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4121 	int error = 0;
4122 
4123 	if (!sbh || block_device_ejected(sb))
4124 		return error;
4125 	if (buffer_write_io_error(sbh)) {
4126 		/*
4127 		 * Oh, dear.  A previous attempt to write the
4128 		 * superblock failed.  This could happen because the
4129 		 * USB device was yanked out.  Or it could happen to
4130 		 * be a transient write error and maybe the block will
4131 		 * be remapped.  Nothing we can do but to retry the
4132 		 * write and hope for the best.
4133 		 */
4134 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4135 		       "superblock detected");
4136 		clear_buffer_write_io_error(sbh);
4137 		set_buffer_uptodate(sbh);
4138 	}
4139 	/*
4140 	 * If the file system is mounted read-only, don't update the
4141 	 * superblock write time.  This avoids updating the superblock
4142 	 * write time when we are mounting the root file system
4143 	 * read/only but we need to replay the journal; at that point,
4144 	 * for people who are east of GMT and who make their clock
4145 	 * tick in localtime for Windows bug-for-bug compatibility,
4146 	 * the clock is set in the future, and this will cause e2fsck
4147 	 * to complain and force a full file system check.
4148 	 */
4149 	if (!(sb->s_flags & MS_RDONLY))
4150 		es->s_wtime = cpu_to_le32(get_seconds());
4151 	if (sb->s_bdev->bd_part)
4152 		es->s_kbytes_written =
4153 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4154 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4155 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4156 	else
4157 		es->s_kbytes_written =
4158 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4159 	ext4_free_blocks_count_set(es,
4160 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4161 				&EXT4_SB(sb)->s_freeclusters_counter)));
4162 	es->s_free_inodes_count =
4163 		cpu_to_le32(percpu_counter_sum_positive(
4164 				&EXT4_SB(sb)->s_freeinodes_counter));
4165 	sb->s_dirt = 0;
4166 	BUFFER_TRACE(sbh, "marking dirty");
4167 	mark_buffer_dirty(sbh);
4168 	if (sync) {
4169 		error = sync_dirty_buffer(sbh);
4170 		if (error)
4171 			return error;
4172 
4173 		error = buffer_write_io_error(sbh);
4174 		if (error) {
4175 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4176 			       "superblock");
4177 			clear_buffer_write_io_error(sbh);
4178 			set_buffer_uptodate(sbh);
4179 		}
4180 	}
4181 	return error;
4182 }
4183 
4184 /*
4185  * Have we just finished recovery?  If so, and if we are mounting (or
4186  * remounting) the filesystem readonly, then we will end up with a
4187  * consistent fs on disk.  Record that fact.
4188  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4189 static void ext4_mark_recovery_complete(struct super_block *sb,
4190 					struct ext4_super_block *es)
4191 {
4192 	journal_t *journal = EXT4_SB(sb)->s_journal;
4193 
4194 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4195 		BUG_ON(journal != NULL);
4196 		return;
4197 	}
4198 	jbd2_journal_lock_updates(journal);
4199 	if (jbd2_journal_flush(journal) < 0)
4200 		goto out;
4201 
4202 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4203 	    sb->s_flags & MS_RDONLY) {
4204 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4205 		ext4_commit_super(sb, 1);
4206 	}
4207 
4208 out:
4209 	jbd2_journal_unlock_updates(journal);
4210 }
4211 
4212 /*
4213  * If we are mounting (or read-write remounting) a filesystem whose journal
4214  * has recorded an error from a previous lifetime, move that error to the
4215  * main filesystem now.
4216  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4217 static void ext4_clear_journal_err(struct super_block *sb,
4218 				   struct ext4_super_block *es)
4219 {
4220 	journal_t *journal;
4221 	int j_errno;
4222 	const char *errstr;
4223 
4224 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4225 
4226 	journal = EXT4_SB(sb)->s_journal;
4227 
4228 	/*
4229 	 * Now check for any error status which may have been recorded in the
4230 	 * journal by a prior ext4_error() or ext4_abort()
4231 	 */
4232 
4233 	j_errno = jbd2_journal_errno(journal);
4234 	if (j_errno) {
4235 		char nbuf[16];
4236 
4237 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4238 		ext4_warning(sb, "Filesystem error recorded "
4239 			     "from previous mount: %s", errstr);
4240 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4241 
4242 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4243 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4244 		ext4_commit_super(sb, 1);
4245 
4246 		jbd2_journal_clear_err(journal);
4247 		jbd2_journal_update_sb_errno(journal);
4248 	}
4249 }
4250 
4251 /*
4252  * Force the running and committing transactions to commit,
4253  * and wait on the commit.
4254  */
ext4_force_commit(struct super_block * sb)4255 int ext4_force_commit(struct super_block *sb)
4256 {
4257 	journal_t *journal;
4258 	int ret = 0;
4259 
4260 	if (sb->s_flags & MS_RDONLY)
4261 		return 0;
4262 
4263 	journal = EXT4_SB(sb)->s_journal;
4264 	if (journal) {
4265 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4266 		ret = ext4_journal_force_commit(journal);
4267 	}
4268 
4269 	return ret;
4270 }
4271 
ext4_write_super(struct super_block * sb)4272 static void ext4_write_super(struct super_block *sb)
4273 {
4274 	lock_super(sb);
4275 	ext4_commit_super(sb, 1);
4276 	unlock_super(sb);
4277 }
4278 
ext4_sync_fs(struct super_block * sb,int wait)4279 static int ext4_sync_fs(struct super_block *sb, int wait)
4280 {
4281 	int ret = 0;
4282 	tid_t target;
4283 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4284 
4285 	trace_ext4_sync_fs(sb, wait);
4286 	flush_workqueue(sbi->dio_unwritten_wq);
4287 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4288 		if (wait)
4289 			jbd2_log_wait_commit(sbi->s_journal, target);
4290 	}
4291 	return ret;
4292 }
4293 
4294 /*
4295  * LVM calls this function before a (read-only) snapshot is created.  This
4296  * gives us a chance to flush the journal completely and mark the fs clean.
4297  *
4298  * Note that only this function cannot bring a filesystem to be in a clean
4299  * state independently, because ext4 prevents a new handle from being started
4300  * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4301  * the upper layer.
4302  */
ext4_freeze(struct super_block * sb)4303 static int ext4_freeze(struct super_block *sb)
4304 {
4305 	int error = 0;
4306 	journal_t *journal;
4307 
4308 	if (sb->s_flags & MS_RDONLY)
4309 		return 0;
4310 
4311 	journal = EXT4_SB(sb)->s_journal;
4312 
4313 	/* Now we set up the journal barrier. */
4314 	jbd2_journal_lock_updates(journal);
4315 
4316 	/*
4317 	 * Don't clear the needs_recovery flag if we failed to flush
4318 	 * the journal.
4319 	 */
4320 	error = jbd2_journal_flush(journal);
4321 	if (error < 0)
4322 		goto out;
4323 
4324 	/* Journal blocked and flushed, clear needs_recovery flag. */
4325 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4326 	error = ext4_commit_super(sb, 1);
4327 out:
4328 	/* we rely on s_frozen to stop further updates */
4329 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4330 	return error;
4331 }
4332 
4333 /*
4334  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4335  * flag here, even though the filesystem is not technically dirty yet.
4336  */
ext4_unfreeze(struct super_block * sb)4337 static int ext4_unfreeze(struct super_block *sb)
4338 {
4339 	if (sb->s_flags & MS_RDONLY)
4340 		return 0;
4341 
4342 	lock_super(sb);
4343 	/* Reset the needs_recovery flag before the fs is unlocked. */
4344 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4345 	ext4_commit_super(sb, 1);
4346 	unlock_super(sb);
4347 	return 0;
4348 }
4349 
4350 /*
4351  * Structure to save mount options for ext4_remount's benefit
4352  */
4353 struct ext4_mount_options {
4354 	unsigned long s_mount_opt;
4355 	unsigned long s_mount_opt2;
4356 	uid_t s_resuid;
4357 	gid_t s_resgid;
4358 	unsigned long s_commit_interval;
4359 	u32 s_min_batch_time, s_max_batch_time;
4360 #ifdef CONFIG_QUOTA
4361 	int s_jquota_fmt;
4362 	char *s_qf_names[MAXQUOTAS];
4363 #endif
4364 };
4365 
ext4_remount(struct super_block * sb,int * flags,char * data)4366 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4367 {
4368 	struct ext4_super_block *es;
4369 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4370 	unsigned long old_sb_flags;
4371 	struct ext4_mount_options old_opts;
4372 	int enable_quota = 0;
4373 	ext4_group_t g;
4374 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4375 	int err = 0;
4376 #ifdef CONFIG_QUOTA
4377 	int i;
4378 #endif
4379 	char *orig_data = kstrdup(data, GFP_KERNEL);
4380 
4381 	/* Store the original options */
4382 	lock_super(sb);
4383 	old_sb_flags = sb->s_flags;
4384 	old_opts.s_mount_opt = sbi->s_mount_opt;
4385 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4386 	old_opts.s_resuid = sbi->s_resuid;
4387 	old_opts.s_resgid = sbi->s_resgid;
4388 	old_opts.s_commit_interval = sbi->s_commit_interval;
4389 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4390 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4391 #ifdef CONFIG_QUOTA
4392 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4393 	for (i = 0; i < MAXQUOTAS; i++)
4394 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4395 #endif
4396 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4397 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4398 
4399 	/*
4400 	 * Allow the "check" option to be passed as a remount option.
4401 	 */
4402 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4403 		err = -EINVAL;
4404 		goto restore_opts;
4405 	}
4406 
4407 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4408 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4409 			ext4_msg(sb, KERN_ERR, "can't mount with "
4410 				 "both data=journal and delalloc");
4411 			err = -EINVAL;
4412 			goto restore_opts;
4413 		}
4414 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4415 			ext4_msg(sb, KERN_ERR, "can't mount with "
4416 				 "both data=journal and dioread_nolock");
4417 			err = -EINVAL;
4418 			goto restore_opts;
4419 		}
4420 	}
4421 
4422 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4423 		ext4_abort(sb, "Abort forced by user");
4424 
4425 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4426 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4427 
4428 	es = sbi->s_es;
4429 
4430 	if (sbi->s_journal) {
4431 		ext4_init_journal_params(sb, sbi->s_journal);
4432 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4433 	}
4434 
4435 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4436 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4437 			err = -EROFS;
4438 			goto restore_opts;
4439 		}
4440 
4441 		if (*flags & MS_RDONLY) {
4442 			err = dquot_suspend(sb, -1);
4443 			if (err < 0)
4444 				goto restore_opts;
4445 
4446 			/*
4447 			 * First of all, the unconditional stuff we have to do
4448 			 * to disable replay of the journal when we next remount
4449 			 */
4450 			sb->s_flags |= MS_RDONLY;
4451 
4452 			/*
4453 			 * OK, test if we are remounting a valid rw partition
4454 			 * readonly, and if so set the rdonly flag and then
4455 			 * mark the partition as valid again.
4456 			 */
4457 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4458 			    (sbi->s_mount_state & EXT4_VALID_FS))
4459 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4460 
4461 			if (sbi->s_journal)
4462 				ext4_mark_recovery_complete(sb, es);
4463 		} else {
4464 			/* Make sure we can mount this feature set readwrite */
4465 			if (!ext4_feature_set_ok(sb, 0)) {
4466 				err = -EROFS;
4467 				goto restore_opts;
4468 			}
4469 			/*
4470 			 * Make sure the group descriptor checksums
4471 			 * are sane.  If they aren't, refuse to remount r/w.
4472 			 */
4473 			for (g = 0; g < sbi->s_groups_count; g++) {
4474 				struct ext4_group_desc *gdp =
4475 					ext4_get_group_desc(sb, g, NULL);
4476 
4477 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4478 					ext4_msg(sb, KERN_ERR,
4479 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4480 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4481 					       le16_to_cpu(gdp->bg_checksum));
4482 					err = -EINVAL;
4483 					goto restore_opts;
4484 				}
4485 			}
4486 
4487 			/*
4488 			 * If we have an unprocessed orphan list hanging
4489 			 * around from a previously readonly bdev mount,
4490 			 * require a full umount/remount for now.
4491 			 */
4492 			if (es->s_last_orphan) {
4493 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4494 				       "remount RDWR because of unprocessed "
4495 				       "orphan inode list.  Please "
4496 				       "umount/remount instead");
4497 				err = -EINVAL;
4498 				goto restore_opts;
4499 			}
4500 
4501 			/*
4502 			 * Mounting a RDONLY partition read-write, so reread
4503 			 * and store the current valid flag.  (It may have
4504 			 * been changed by e2fsck since we originally mounted
4505 			 * the partition.)
4506 			 */
4507 			if (sbi->s_journal)
4508 				ext4_clear_journal_err(sb, es);
4509 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4510 			if (!ext4_setup_super(sb, es, 0))
4511 				sb->s_flags &= ~MS_RDONLY;
4512 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4513 						     EXT4_FEATURE_INCOMPAT_MMP))
4514 				if (ext4_multi_mount_protect(sb,
4515 						le64_to_cpu(es->s_mmp_block))) {
4516 					err = -EROFS;
4517 					goto restore_opts;
4518 				}
4519 			enable_quota = 1;
4520 		}
4521 	}
4522 
4523 	/*
4524 	 * Reinitialize lazy itable initialization thread based on
4525 	 * current settings
4526 	 */
4527 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4528 		ext4_unregister_li_request(sb);
4529 	else {
4530 		ext4_group_t first_not_zeroed;
4531 		first_not_zeroed = ext4_has_uninit_itable(sb);
4532 		ext4_register_li_request(sb, first_not_zeroed);
4533 	}
4534 
4535 	ext4_setup_system_zone(sb);
4536 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4537 		ext4_commit_super(sb, 1);
4538 
4539 #ifdef CONFIG_QUOTA
4540 	/* Release old quota file names */
4541 	for (i = 0; i < MAXQUOTAS; i++)
4542 		if (old_opts.s_qf_names[i] &&
4543 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4544 			kfree(old_opts.s_qf_names[i]);
4545 #endif
4546 	unlock_super(sb);
4547 	if (enable_quota)
4548 		dquot_resume(sb, -1);
4549 
4550 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4551 	kfree(orig_data);
4552 	return 0;
4553 
4554 restore_opts:
4555 	sb->s_flags = old_sb_flags;
4556 	sbi->s_mount_opt = old_opts.s_mount_opt;
4557 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4558 	sbi->s_resuid = old_opts.s_resuid;
4559 	sbi->s_resgid = old_opts.s_resgid;
4560 	sbi->s_commit_interval = old_opts.s_commit_interval;
4561 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4562 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4563 #ifdef CONFIG_QUOTA
4564 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4565 	for (i = 0; i < MAXQUOTAS; i++) {
4566 		if (sbi->s_qf_names[i] &&
4567 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4568 			kfree(sbi->s_qf_names[i]);
4569 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4570 	}
4571 #endif
4572 	unlock_super(sb);
4573 	kfree(orig_data);
4574 	return err;
4575 }
4576 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4577 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4578 {
4579 	struct super_block *sb = dentry->d_sb;
4580 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4581 	struct ext4_super_block *es = sbi->s_es;
4582 	ext4_fsblk_t overhead = 0;
4583 	u64 fsid;
4584 	s64 bfree;
4585 
4586 	if (!test_opt(sb, MINIX_DF))
4587 		overhead = sbi->s_overhead;
4588 
4589 	buf->f_type = EXT4_SUPER_MAGIC;
4590 	buf->f_bsize = sb->s_blocksize;
4591 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4592 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4593 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4594 	/* prevent underflow in case that few free space is available */
4595 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4596 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4597 	if (buf->f_bfree < ext4_r_blocks_count(es))
4598 		buf->f_bavail = 0;
4599 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4600 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4601 	buf->f_namelen = EXT4_NAME_LEN;
4602 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4603 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4604 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4605 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4606 
4607 	return 0;
4608 }
4609 
4610 /* Helper function for writing quotas on sync - we need to start transaction
4611  * before quota file is locked for write. Otherwise the are possible deadlocks:
4612  * Process 1                         Process 2
4613  * ext4_create()                     quota_sync()
4614  *   jbd2_journal_start()                  write_dquot()
4615  *   dquot_initialize()                         down(dqio_mutex)
4616  *     down(dqio_mutex)                    jbd2_journal_start()
4617  *
4618  */
4619 
4620 #ifdef CONFIG_QUOTA
4621 
dquot_to_inode(struct dquot * dquot)4622 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4623 {
4624 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4625 }
4626 
ext4_write_dquot(struct dquot * dquot)4627 static int ext4_write_dquot(struct dquot *dquot)
4628 {
4629 	int ret, err;
4630 	handle_t *handle;
4631 	struct inode *inode;
4632 
4633 	inode = dquot_to_inode(dquot);
4634 	handle = ext4_journal_start(inode,
4635 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4636 	if (IS_ERR(handle))
4637 		return PTR_ERR(handle);
4638 	ret = dquot_commit(dquot);
4639 	err = ext4_journal_stop(handle);
4640 	if (!ret)
4641 		ret = err;
4642 	return ret;
4643 }
4644 
ext4_acquire_dquot(struct dquot * dquot)4645 static int ext4_acquire_dquot(struct dquot *dquot)
4646 {
4647 	int ret, err;
4648 	handle_t *handle;
4649 
4650 	handle = ext4_journal_start(dquot_to_inode(dquot),
4651 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4652 	if (IS_ERR(handle))
4653 		return PTR_ERR(handle);
4654 	ret = dquot_acquire(dquot);
4655 	err = ext4_journal_stop(handle);
4656 	if (!ret)
4657 		ret = err;
4658 	return ret;
4659 }
4660 
ext4_release_dquot(struct dquot * dquot)4661 static int ext4_release_dquot(struct dquot *dquot)
4662 {
4663 	int ret, err;
4664 	handle_t *handle;
4665 
4666 	handle = ext4_journal_start(dquot_to_inode(dquot),
4667 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4668 	if (IS_ERR(handle)) {
4669 		/* Release dquot anyway to avoid endless cycle in dqput() */
4670 		dquot_release(dquot);
4671 		return PTR_ERR(handle);
4672 	}
4673 	ret = dquot_release(dquot);
4674 	err = ext4_journal_stop(handle);
4675 	if (!ret)
4676 		ret = err;
4677 	return ret;
4678 }
4679 
ext4_mark_dquot_dirty(struct dquot * dquot)4680 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4681 {
4682 	/* Are we journaling quotas? */
4683 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4684 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4685 		dquot_mark_dquot_dirty(dquot);
4686 		return ext4_write_dquot(dquot);
4687 	} else {
4688 		return dquot_mark_dquot_dirty(dquot);
4689 	}
4690 }
4691 
ext4_write_info(struct super_block * sb,int type)4692 static int ext4_write_info(struct super_block *sb, int type)
4693 {
4694 	int ret, err;
4695 	handle_t *handle;
4696 
4697 	/* Data block + inode block */
4698 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4699 	if (IS_ERR(handle))
4700 		return PTR_ERR(handle);
4701 	ret = dquot_commit_info(sb, type);
4702 	err = ext4_journal_stop(handle);
4703 	if (!ret)
4704 		ret = err;
4705 	return ret;
4706 }
4707 
4708 /*
4709  * Turn on quotas during mount time - we need to find
4710  * the quota file and such...
4711  */
ext4_quota_on_mount(struct super_block * sb,int type)4712 static int ext4_quota_on_mount(struct super_block *sb, int type)
4713 {
4714 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4715 					EXT4_SB(sb)->s_jquota_fmt, type);
4716 }
4717 
4718 /*
4719  * Standard function to be called on quota_on
4720  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4721 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4722 			 struct path *path)
4723 {
4724 	int err;
4725 
4726 	if (!test_opt(sb, QUOTA))
4727 		return -EINVAL;
4728 
4729 	/* Quotafile not on the same filesystem? */
4730 	if (path->dentry->d_sb != sb)
4731 		return -EXDEV;
4732 	/* Journaling quota? */
4733 	if (EXT4_SB(sb)->s_qf_names[type]) {
4734 		/* Quotafile not in fs root? */
4735 		if (path->dentry->d_parent != sb->s_root)
4736 			ext4_msg(sb, KERN_WARNING,
4737 				"Quota file not on filesystem root. "
4738 				"Journaled quota will not work");
4739 	}
4740 
4741 	/*
4742 	 * When we journal data on quota file, we have to flush journal to see
4743 	 * all updates to the file when we bypass pagecache...
4744 	 */
4745 	if (EXT4_SB(sb)->s_journal &&
4746 	    ext4_should_journal_data(path->dentry->d_inode)) {
4747 		/*
4748 		 * We don't need to lock updates but journal_flush() could
4749 		 * otherwise be livelocked...
4750 		 */
4751 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4752 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4753 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4754 		if (err)
4755 			return err;
4756 	}
4757 
4758 	return dquot_quota_on(sb, type, format_id, path);
4759 }
4760 
ext4_quota_off(struct super_block * sb,int type)4761 static int ext4_quota_off(struct super_block *sb, int type)
4762 {
4763 	struct inode *inode = sb_dqopt(sb)->files[type];
4764 	handle_t *handle;
4765 
4766 	/* Force all delayed allocation blocks to be allocated.
4767 	 * Caller already holds s_umount sem */
4768 	if (test_opt(sb, DELALLOC))
4769 		sync_filesystem(sb);
4770 
4771 	if (!inode)
4772 		goto out;
4773 
4774 	/* Update modification times of quota files when userspace can
4775 	 * start looking at them */
4776 	handle = ext4_journal_start(inode, 1);
4777 	if (IS_ERR(handle))
4778 		goto out;
4779 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4780 	ext4_mark_inode_dirty(handle, inode);
4781 	ext4_journal_stop(handle);
4782 
4783 out:
4784 	return dquot_quota_off(sb, type);
4785 }
4786 
4787 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4788  * acquiring the locks... As quota files are never truncated and quota code
4789  * itself serializes the operations (and no one else should touch the files)
4790  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)4791 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4792 			       size_t len, loff_t off)
4793 {
4794 	struct inode *inode = sb_dqopt(sb)->files[type];
4795 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4796 	int err = 0;
4797 	int offset = off & (sb->s_blocksize - 1);
4798 	int tocopy;
4799 	size_t toread;
4800 	struct buffer_head *bh;
4801 	loff_t i_size = i_size_read(inode);
4802 
4803 	if (off > i_size)
4804 		return 0;
4805 	if (off+len > i_size)
4806 		len = i_size-off;
4807 	toread = len;
4808 	while (toread > 0) {
4809 		tocopy = sb->s_blocksize - offset < toread ?
4810 				sb->s_blocksize - offset : toread;
4811 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4812 		if (err)
4813 			return err;
4814 		if (!bh)	/* A hole? */
4815 			memset(data, 0, tocopy);
4816 		else
4817 			memcpy(data, bh->b_data+offset, tocopy);
4818 		brelse(bh);
4819 		offset = 0;
4820 		toread -= tocopy;
4821 		data += tocopy;
4822 		blk++;
4823 	}
4824 	return len;
4825 }
4826 
4827 /* Write to quotafile (we know the transaction is already started and has
4828  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)4829 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4830 				const char *data, size_t len, loff_t off)
4831 {
4832 	struct inode *inode = sb_dqopt(sb)->files[type];
4833 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4834 	int err = 0;
4835 	int offset = off & (sb->s_blocksize - 1);
4836 	struct buffer_head *bh;
4837 	handle_t *handle = journal_current_handle();
4838 
4839 	if (EXT4_SB(sb)->s_journal && !handle) {
4840 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4841 			" cancelled because transaction is not started",
4842 			(unsigned long long)off, (unsigned long long)len);
4843 		return -EIO;
4844 	}
4845 	/*
4846 	 * Since we account only one data block in transaction credits,
4847 	 * then it is impossible to cross a block boundary.
4848 	 */
4849 	if (sb->s_blocksize - offset < len) {
4850 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4851 			" cancelled because not block aligned",
4852 			(unsigned long long)off, (unsigned long long)len);
4853 		return -EIO;
4854 	}
4855 
4856 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4857 	bh = ext4_bread(handle, inode, blk, 1, &err);
4858 	if (!bh)
4859 		goto out;
4860 	err = ext4_journal_get_write_access(handle, bh);
4861 	if (err) {
4862 		brelse(bh);
4863 		goto out;
4864 	}
4865 	lock_buffer(bh);
4866 	memcpy(bh->b_data+offset, data, len);
4867 	flush_dcache_page(bh->b_page);
4868 	unlock_buffer(bh);
4869 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4870 	brelse(bh);
4871 out:
4872 	if (err) {
4873 		mutex_unlock(&inode->i_mutex);
4874 		return err;
4875 	}
4876 	if (inode->i_size < off + len) {
4877 		i_size_write(inode, off + len);
4878 		EXT4_I(inode)->i_disksize = inode->i_size;
4879 		ext4_mark_inode_dirty(handle, inode);
4880 	}
4881 	mutex_unlock(&inode->i_mutex);
4882 	return len;
4883 }
4884 
4885 #endif
4886 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4887 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4888 		       const char *dev_name, void *data)
4889 {
4890 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4891 }
4892 
4893 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)4894 static inline void register_as_ext2(void)
4895 {
4896 	int err = register_filesystem(&ext2_fs_type);
4897 	if (err)
4898 		printk(KERN_WARNING
4899 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4900 }
4901 
unregister_as_ext2(void)4902 static inline void unregister_as_ext2(void)
4903 {
4904 	unregister_filesystem(&ext2_fs_type);
4905 }
4906 
ext2_feature_set_ok(struct super_block * sb)4907 static inline int ext2_feature_set_ok(struct super_block *sb)
4908 {
4909 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4910 		return 0;
4911 	if (sb->s_flags & MS_RDONLY)
4912 		return 1;
4913 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4914 		return 0;
4915 	return 1;
4916 }
4917 MODULE_ALIAS("ext2");
4918 #else
register_as_ext2(void)4919 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)4920 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)4921 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4922 #endif
4923 
4924 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)4925 static inline void register_as_ext3(void)
4926 {
4927 	int err = register_filesystem(&ext3_fs_type);
4928 	if (err)
4929 		printk(KERN_WARNING
4930 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4931 }
4932 
unregister_as_ext3(void)4933 static inline void unregister_as_ext3(void)
4934 {
4935 	unregister_filesystem(&ext3_fs_type);
4936 }
4937 
ext3_feature_set_ok(struct super_block * sb)4938 static inline int ext3_feature_set_ok(struct super_block *sb)
4939 {
4940 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4941 		return 0;
4942 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4943 		return 0;
4944 	if (sb->s_flags & MS_RDONLY)
4945 		return 1;
4946 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4947 		return 0;
4948 	return 1;
4949 }
4950 MODULE_ALIAS("ext3");
4951 #else
register_as_ext3(void)4952 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)4953 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)4954 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4955 #endif
4956 
4957 static struct file_system_type ext4_fs_type = {
4958 	.owner		= THIS_MODULE,
4959 	.name		= "ext4",
4960 	.mount		= ext4_mount,
4961 	.kill_sb	= kill_block_super,
4962 	.fs_flags	= FS_REQUIRES_DEV,
4963 };
4964 
ext4_init_feat_adverts(void)4965 static int __init ext4_init_feat_adverts(void)
4966 {
4967 	struct ext4_features *ef;
4968 	int ret = -ENOMEM;
4969 
4970 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4971 	if (!ef)
4972 		goto out;
4973 
4974 	ef->f_kobj.kset = ext4_kset;
4975 	init_completion(&ef->f_kobj_unregister);
4976 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4977 				   "features");
4978 	if (ret) {
4979 		kfree(ef);
4980 		goto out;
4981 	}
4982 
4983 	ext4_feat = ef;
4984 	ret = 0;
4985 out:
4986 	return ret;
4987 }
4988 
ext4_exit_feat_adverts(void)4989 static void ext4_exit_feat_adverts(void)
4990 {
4991 	kobject_put(&ext4_feat->f_kobj);
4992 	wait_for_completion(&ext4_feat->f_kobj_unregister);
4993 	kfree(ext4_feat);
4994 }
4995 
4996 /* Shared across all ext4 file systems */
4997 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4998 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4999 
ext4_init_fs(void)5000 static int __init ext4_init_fs(void)
5001 {
5002 	int i, err;
5003 
5004 	ext4_li_info = NULL;
5005 	mutex_init(&ext4_li_mtx);
5006 
5007 	ext4_check_flag_values();
5008 
5009 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5010 		mutex_init(&ext4__aio_mutex[i]);
5011 		init_waitqueue_head(&ext4__ioend_wq[i]);
5012 	}
5013 
5014 	err = ext4_init_pageio();
5015 	if (err)
5016 		return err;
5017 	err = ext4_init_system_zone();
5018 	if (err)
5019 		goto out6;
5020 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5021 	if (!ext4_kset)
5022 		goto out5;
5023 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5024 
5025 	err = ext4_init_feat_adverts();
5026 	if (err)
5027 		goto out4;
5028 
5029 	err = ext4_init_mballoc();
5030 	if (err)
5031 		goto out3;
5032 
5033 	err = ext4_init_xattr();
5034 	if (err)
5035 		goto out2;
5036 	err = init_inodecache();
5037 	if (err)
5038 		goto out1;
5039 	register_as_ext3();
5040 	register_as_ext2();
5041 	err = register_filesystem(&ext4_fs_type);
5042 	if (err)
5043 		goto out;
5044 
5045 	return 0;
5046 out:
5047 	unregister_as_ext2();
5048 	unregister_as_ext3();
5049 	destroy_inodecache();
5050 out1:
5051 	ext4_exit_xattr();
5052 out2:
5053 	ext4_exit_mballoc();
5054 out3:
5055 	ext4_exit_feat_adverts();
5056 out4:
5057 	if (ext4_proc_root)
5058 		remove_proc_entry("fs/ext4", NULL);
5059 	kset_unregister(ext4_kset);
5060 out5:
5061 	ext4_exit_system_zone();
5062 out6:
5063 	ext4_exit_pageio();
5064 	return err;
5065 }
5066 
ext4_exit_fs(void)5067 static void __exit ext4_exit_fs(void)
5068 {
5069 	ext4_destroy_lazyinit_thread();
5070 	unregister_as_ext2();
5071 	unregister_as_ext3();
5072 	unregister_filesystem(&ext4_fs_type);
5073 	destroy_inodecache();
5074 	ext4_exit_xattr();
5075 	ext4_exit_mballoc();
5076 	ext4_exit_feat_adverts();
5077 	remove_proc_entry("fs/ext4", NULL);
5078 	kset_unregister(ext4_kset);
5079 	ext4_exit_system_zone();
5080 	ext4_exit_pageio();
5081 }
5082 
5083 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5084 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5085 MODULE_LICENSE("GPL");
5086 module_init(ext4_init_fs)
5087 module_exit(ext4_exit_fs)
5088