1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/indirect.c
4 *
5 * from
6 *
7 * linux/fs/ext4/inode.c
8 *
9 * Copyright (C) 1992, 1993, 1994, 1995
10 * Remy Card (card@masi.ibp.fr)
11 * Laboratoire MASI - Institut Blaise Pascal
12 * Universite Pierre et Marie Curie (Paris VI)
13 *
14 * from
15 *
16 * linux/fs/minix/inode.c
17 *
18 * Copyright (C) 1991, 1992 Linus Torvalds
19 *
20 * Goal-directed block allocation by Stephen Tweedie
21 * (sct@redhat.com), 1993, 1998
22 */
23
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28
29 #include <trace/events/ext4.h>
30
31 typedef struct {
32 __le32 *p;
33 __le32 key;
34 struct buffer_head *bh;
35 } Indirect;
36
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 p->key = *(p->p = v);
40 p->bh = bh;
41 }
42
43 /**
44 * ext4_block_to_path - parse the block number into array of offsets
45 * @inode: inode in question (we are only interested in its superblock)
46 * @i_block: block number to be parsed
47 * @offsets: array to store the offsets in
48 * @boundary: set this non-zero if the referred-to block is likely to be
49 * followed (on disk) by an indirect block.
50 *
51 * To store the locations of file's data ext4 uses a data structure common
52 * for UNIX filesystems - tree of pointers anchored in the inode, with
53 * data blocks at leaves and indirect blocks in intermediate nodes.
54 * This function translates the block number into path in that tree -
55 * return value is the path length and @offsets[n] is the offset of
56 * pointer to (n+1)th node in the nth one. If @block is out of range
57 * (negative or too large) warning is printed and zero returned.
58 *
59 * Note: function doesn't find node addresses, so no IO is needed. All
60 * we need to know is the capacity of indirect blocks (taken from the
61 * inode->i_sb).
62 */
63
64 /*
65 * Portability note: the last comparison (check that we fit into triple
66 * indirect block) is spelled differently, because otherwise on an
67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
68 * if our filesystem had 8Kb blocks. We might use long long, but that would
69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
70 * i_block would have to be negative in the very beginning, so we would not
71 * get there at all.
72 */
73
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)74 static int ext4_block_to_path(struct inode *inode,
75 ext4_lblk_t i_block,
76 ext4_lblk_t offsets[4], int *boundary)
77 {
78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 const long direct_blocks = EXT4_NDIR_BLOCKS,
81 indirect_blocks = ptrs,
82 double_blocks = (1 << (ptrs_bits * 2));
83 int n = 0;
84 int final = 0;
85
86 if (i_block < direct_blocks) {
87 offsets[n++] = i_block;
88 final = direct_blocks;
89 } else if ((i_block -= direct_blocks) < indirect_blocks) {
90 offsets[n++] = EXT4_IND_BLOCK;
91 offsets[n++] = i_block;
92 final = ptrs;
93 } else if ((i_block -= indirect_blocks) < double_blocks) {
94 offsets[n++] = EXT4_DIND_BLOCK;
95 offsets[n++] = i_block >> ptrs_bits;
96 offsets[n++] = i_block & (ptrs - 1);
97 final = ptrs;
98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 offsets[n++] = EXT4_TIND_BLOCK;
100 offsets[n++] = i_block >> (ptrs_bits * 2);
101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 offsets[n++] = i_block & (ptrs - 1);
103 final = ptrs;
104 } else {
105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 i_block + direct_blocks +
107 indirect_blocks + double_blocks, inode->i_ino);
108 }
109 if (boundary)
110 *boundary = final - 1 - (i_block & (ptrs - 1));
111 return n;
112 }
113
114 /**
115 * ext4_get_branch - read the chain of indirect blocks leading to data
116 * @inode: inode in question
117 * @depth: depth of the chain (1 - direct pointer, etc.)
118 * @offsets: offsets of pointers in inode/indirect blocks
119 * @chain: place to store the result
120 * @err: here we store the error value
121 *
122 * Function fills the array of triples <key, p, bh> and returns %NULL
123 * if everything went OK or the pointer to the last filled triple
124 * (incomplete one) otherwise. Upon the return chain[i].key contains
125 * the number of (i+1)-th block in the chain (as it is stored in memory,
126 * i.e. little-endian 32-bit), chain[i].p contains the address of that
127 * number (it points into struct inode for i==0 and into the bh->b_data
128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129 * block for i>0 and NULL for i==0. In other words, it holds the block
130 * numbers of the chain, addresses they were taken from (and where we can
131 * verify that chain did not change) and buffer_heads hosting these
132 * numbers.
133 *
134 * Function stops when it stumbles upon zero pointer (absent block)
135 * (pointer to last triple returned, *@err == 0)
136 * or when it gets an IO error reading an indirect block
137 * (ditto, *@err == -EIO)
138 * or when it reads all @depth-1 indirect blocks successfully and finds
139 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 *
141 * Need to be called with
142 * down_read(&EXT4_I(inode)->i_data_sem)
143 */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 ext4_lblk_t *offsets,
146 Indirect chain[4], int *err)
147 {
148 struct super_block *sb = inode->i_sb;
149 Indirect *p = chain;
150 struct buffer_head *bh;
151 int ret = -EIO;
152
153 *err = 0;
154 /* i_data is not going away, no lock needed */
155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
156 if (!p->key)
157 goto no_block;
158 while (--depth) {
159 bh = sb_getblk(sb, le32_to_cpu(p->key));
160 if (unlikely(!bh)) {
161 ret = -ENOMEM;
162 goto failure;
163 }
164
165 if (!bh_uptodate_or_lock(bh)) {
166 if (ext4_read_bh(bh, 0, NULL) < 0) {
167 put_bh(bh);
168 goto failure;
169 }
170 /* validate block references */
171 if (ext4_check_indirect_blockref(inode, bh)) {
172 put_bh(bh);
173 goto failure;
174 }
175 }
176
177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
178 /* Reader: end */
179 if (!p->key)
180 goto no_block;
181 }
182 return NULL;
183
184 failure:
185 *err = ret;
186 no_block:
187 return p;
188 }
189
190 /**
191 * ext4_find_near - find a place for allocation with sufficient locality
192 * @inode: owner
193 * @ind: descriptor of indirect block.
194 *
195 * This function returns the preferred place for block allocation.
196 * It is used when heuristic for sequential allocation fails.
197 * Rules are:
198 * + if there is a block to the left of our position - allocate near it.
199 * + if pointer will live in indirect block - allocate near that block.
200 * + if pointer will live in inode - allocate in the same
201 * cylinder group.
202 *
203 * In the latter case we colour the starting block by the callers PID to
204 * prevent it from clashing with concurrent allocations for a different inode
205 * in the same block group. The PID is used here so that functionally related
206 * files will be close-by on-disk.
207 *
208 * Caller must make sure that @ind is valid and will stay that way.
209 */
ext4_find_near(struct inode * inode,Indirect * ind)210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 {
212 struct ext4_inode_info *ei = EXT4_I(inode);
213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
214 __le32 *p;
215
216 /* Try to find previous block */
217 for (p = ind->p - 1; p >= start; p--) {
218 if (*p)
219 return le32_to_cpu(*p);
220 }
221
222 /* No such thing, so let's try location of indirect block */
223 if (ind->bh)
224 return ind->bh->b_blocknr;
225
226 /*
227 * It is going to be referred to from the inode itself? OK, just put it
228 * into the same cylinder group then.
229 */
230 return ext4_inode_to_goal_block(inode);
231 }
232
233 /**
234 * ext4_find_goal - find a preferred place for allocation.
235 * @inode: owner
236 * @block: block we want
237 * @partial: pointer to the last triple within a chain
238 *
239 * Normally this function find the preferred place for block allocation,
240 * returns it.
241 * Because this is only used for non-extent files, we limit the block nr
242 * to 32 bits.
243 */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
245 Indirect *partial)
246 {
247 ext4_fsblk_t goal;
248
249 /*
250 * XXX need to get goal block from mballoc's data structures
251 */
252
253 goal = ext4_find_near(inode, partial);
254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
255 return goal;
256 }
257
258 /**
259 * ext4_blks_to_allocate - Look up the block map and count the number
260 * of direct blocks need to be allocated for the given branch.
261 *
262 * @branch: chain of indirect blocks
263 * @k: number of blocks need for indirect blocks
264 * @blks: number of data blocks to be mapped.
265 * @blocks_to_boundary: the offset in the indirect block
266 *
267 * return the total number of blocks to be allocate, including the
268 * direct and indirect blocks.
269 */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
271 int blocks_to_boundary)
272 {
273 unsigned int count = 0;
274
275 /*
276 * Simple case, [t,d]Indirect block(s) has not allocated yet
277 * then it's clear blocks on that path have not allocated
278 */
279 if (k > 0) {
280 /* right now we don't handle cross boundary allocation */
281 if (blks < blocks_to_boundary + 1)
282 count += blks;
283 else
284 count += blocks_to_boundary + 1;
285 return count;
286 }
287
288 count++;
289 while (count < blks && count <= blocks_to_boundary &&
290 le32_to_cpu(*(branch[0].p + count)) == 0) {
291 count++;
292 }
293 return count;
294 }
295
296 /**
297 * ext4_alloc_branch() - allocate and set up a chain of blocks
298 * @handle: handle for this transaction
299 * @ar: structure describing the allocation request
300 * @indirect_blks: number of allocated indirect blocks
301 * @offsets: offsets (in the blocks) to store the pointers to next.
302 * @branch: place to store the chain in.
303 *
304 * This function allocates blocks, zeroes out all but the last one,
305 * links them into chain and (if we are synchronous) writes them to disk.
306 * In other words, it prepares a branch that can be spliced onto the
307 * inode. It stores the information about that chain in the branch[], in
308 * the same format as ext4_get_branch() would do. We are calling it after
309 * we had read the existing part of chain and partial points to the last
310 * triple of that (one with zero ->key). Upon the exit we have the same
311 * picture as after the successful ext4_get_block(), except that in one
312 * place chain is disconnected - *branch->p is still zero (we did not
313 * set the last link), but branch->key contains the number that should
314 * be placed into *branch->p to fill that gap.
315 *
316 * If allocation fails we free all blocks we've allocated (and forget
317 * their buffer_heads) and return the error value the from failed
318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319 * as described above and return 0.
320 */
ext4_alloc_branch(handle_t * handle,struct ext4_allocation_request * ar,int indirect_blks,ext4_lblk_t * offsets,Indirect * branch)321 static int ext4_alloc_branch(handle_t *handle,
322 struct ext4_allocation_request *ar,
323 int indirect_blks, ext4_lblk_t *offsets,
324 Indirect *branch)
325 {
326 struct buffer_head * bh;
327 ext4_fsblk_t b, new_blocks[4];
328 __le32 *p;
329 int i, j, err, len = 1;
330
331 for (i = 0; i <= indirect_blks; i++) {
332 if (i == indirect_blks) {
333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334 } else {
335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336 ar->inode, ar->goal,
337 ar->flags & EXT4_MB_DELALLOC_RESERVED,
338 NULL, &err);
339 /* Simplify error cleanup... */
340 branch[i+1].bh = NULL;
341 }
342 if (err) {
343 i--;
344 goto failed;
345 }
346 branch[i].key = cpu_to_le32(new_blocks[i]);
347 if (i == 0)
348 continue;
349
350 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
351 if (unlikely(!bh)) {
352 err = -ENOMEM;
353 goto failed;
354 }
355 lock_buffer(bh);
356 BUFFER_TRACE(bh, "call get_create_access");
357 err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
358 bh, EXT4_JTR_NONE);
359 if (err) {
360 unlock_buffer(bh);
361 goto failed;
362 }
363
364 memset(bh->b_data, 0, bh->b_size);
365 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
366 b = new_blocks[i];
367
368 if (i == indirect_blks)
369 len = ar->len;
370 for (j = 0; j < len; j++)
371 *p++ = cpu_to_le32(b++);
372
373 BUFFER_TRACE(bh, "marking uptodate");
374 set_buffer_uptodate(bh);
375 unlock_buffer(bh);
376
377 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
378 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
379 if (err)
380 goto failed;
381 }
382 return 0;
383 failed:
384 if (i == indirect_blks) {
385 /* Free data blocks */
386 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
387 ar->len, 0);
388 i--;
389 }
390 for (; i >= 0; i--) {
391 /*
392 * We want to ext4_forget() only freshly allocated indirect
393 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
394 * (buffer at branch[0].bh is indirect block / inode already
395 * existing before ext4_alloc_branch() was called). Also
396 * because blocks are freshly allocated, we don't need to
397 * revoke them which is why we don't set
398 * EXT4_FREE_BLOCKS_METADATA.
399 */
400 ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
401 new_blocks[i], 1,
402 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
403 }
404 return err;
405 }
406
407 /**
408 * ext4_splice_branch() - splice the allocated branch onto inode.
409 * @handle: handle for this transaction
410 * @ar: structure describing the allocation request
411 * @where: location of missing link
412 * @num: number of indirect blocks we are adding
413 *
414 * This function fills the missing link and does all housekeeping needed in
415 * inode (->i_blocks, etc.). In case of success we end up with the full
416 * chain to new block and return 0.
417 */
ext4_splice_branch(handle_t * handle,struct ext4_allocation_request * ar,Indirect * where,int num)418 static int ext4_splice_branch(handle_t *handle,
419 struct ext4_allocation_request *ar,
420 Indirect *where, int num)
421 {
422 int i;
423 int err = 0;
424 ext4_fsblk_t current_block;
425
426 /*
427 * If we're splicing into a [td]indirect block (as opposed to the
428 * inode) then we need to get write access to the [td]indirect block
429 * before the splice.
430 */
431 if (where->bh) {
432 BUFFER_TRACE(where->bh, "get_write_access");
433 err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
434 where->bh, EXT4_JTR_NONE);
435 if (err)
436 goto err_out;
437 }
438 /* That's it */
439
440 *where->p = where->key;
441
442 /*
443 * Update the host buffer_head or inode to point to more just allocated
444 * direct blocks blocks
445 */
446 if (num == 0 && ar->len > 1) {
447 current_block = le32_to_cpu(where->key) + 1;
448 for (i = 1; i < ar->len; i++)
449 *(where->p + i) = cpu_to_le32(current_block++);
450 }
451
452 /* We are done with atomic stuff, now do the rest of housekeeping */
453 /* had we spliced it onto indirect block? */
454 if (where->bh) {
455 /*
456 * If we spliced it onto an indirect block, we haven't
457 * altered the inode. Note however that if it is being spliced
458 * onto an indirect block at the very end of the file (the
459 * file is growing) then we *will* alter the inode to reflect
460 * the new i_size. But that is not done here - it is done in
461 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
462 */
463 jbd_debug(5, "splicing indirect only\n");
464 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
465 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
466 if (err)
467 goto err_out;
468 } else {
469 /*
470 * OK, we spliced it into the inode itself on a direct block.
471 */
472 err = ext4_mark_inode_dirty(handle, ar->inode);
473 if (unlikely(err))
474 goto err_out;
475 jbd_debug(5, "splicing direct\n");
476 }
477 return err;
478
479 err_out:
480 for (i = 1; i <= num; i++) {
481 /*
482 * branch[i].bh is newly allocated, so there is no
483 * need to revoke the block, which is why we don't
484 * need to set EXT4_FREE_BLOCKS_METADATA.
485 */
486 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
487 EXT4_FREE_BLOCKS_FORGET);
488 }
489 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
490 ar->len, 0);
491
492 return err;
493 }
494
495 /*
496 * The ext4_ind_map_blocks() function handles non-extents inodes
497 * (i.e., using the traditional indirect/double-indirect i_blocks
498 * scheme) for ext4_map_blocks().
499 *
500 * Allocation strategy is simple: if we have to allocate something, we will
501 * have to go the whole way to leaf. So let's do it before attaching anything
502 * to tree, set linkage between the newborn blocks, write them if sync is
503 * required, recheck the path, free and repeat if check fails, otherwise
504 * set the last missing link (that will protect us from any truncate-generated
505 * removals - all blocks on the path are immune now) and possibly force the
506 * write on the parent block.
507 * That has a nice additional property: no special recovery from the failed
508 * allocations is needed - we simply release blocks and do not touch anything
509 * reachable from inode.
510 *
511 * `handle' can be NULL if create == 0.
512 *
513 * return > 0, # of blocks mapped or allocated.
514 * return = 0, if plain lookup failed.
515 * return < 0, error case.
516 *
517 * The ext4_ind_get_blocks() function should be called with
518 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
519 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
520 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
521 * blocks.
522 */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)523 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
524 struct ext4_map_blocks *map,
525 int flags)
526 {
527 struct ext4_allocation_request ar;
528 int err = -EIO;
529 ext4_lblk_t offsets[4];
530 Indirect chain[4];
531 Indirect *partial;
532 int indirect_blks;
533 int blocks_to_boundary = 0;
534 int depth;
535 int count = 0;
536 ext4_fsblk_t first_block = 0;
537
538 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
539 ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
540 ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
541 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
542 &blocks_to_boundary);
543
544 if (depth == 0)
545 goto out;
546
547 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
548
549 /* Simplest case - block found, no allocation needed */
550 if (!partial) {
551 first_block = le32_to_cpu(chain[depth - 1].key);
552 count++;
553 /*map more blocks*/
554 while (count < map->m_len && count <= blocks_to_boundary) {
555 ext4_fsblk_t blk;
556
557 blk = le32_to_cpu(*(chain[depth-1].p + count));
558
559 if (blk == first_block + count)
560 count++;
561 else
562 break;
563 }
564 goto got_it;
565 }
566
567 /* Next simple case - plain lookup failed */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
569 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
570 int i;
571
572 /*
573 * Count number blocks in a subtree under 'partial'. At each
574 * level we count number of complete empty subtrees beyond
575 * current offset and then descend into the subtree only
576 * partially beyond current offset.
577 */
578 count = 0;
579 for (i = partial - chain + 1; i < depth; i++)
580 count = count * epb + (epb - offsets[i] - 1);
581 count++;
582 /* Fill in size of a hole we found */
583 map->m_pblk = 0;
584 map->m_len = min_t(unsigned int, map->m_len, count);
585 goto cleanup;
586 }
587
588 /* Failed read of indirect block */
589 if (err == -EIO)
590 goto cleanup;
591
592 /*
593 * Okay, we need to do block allocation.
594 */
595 if (ext4_has_feature_bigalloc(inode->i_sb)) {
596 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
597 "non-extent mapped inodes with bigalloc");
598 err = -EFSCORRUPTED;
599 goto out;
600 }
601
602 /* Set up for the direct block allocation */
603 memset(&ar, 0, sizeof(ar));
604 ar.inode = inode;
605 ar.logical = map->m_lblk;
606 if (S_ISREG(inode->i_mode))
607 ar.flags = EXT4_MB_HINT_DATA;
608 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
609 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
610 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
611 ar.flags |= EXT4_MB_USE_RESERVED;
612
613 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
614
615 /* the number of blocks need to allocate for [d,t]indirect blocks */
616 indirect_blks = (chain + depth) - partial - 1;
617
618 /*
619 * Next look up the indirect map to count the totoal number of
620 * direct blocks to allocate for this branch.
621 */
622 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
623 map->m_len, blocks_to_boundary);
624
625 /*
626 * Block out ext4_truncate while we alter the tree
627 */
628 err = ext4_alloc_branch(handle, &ar, indirect_blks,
629 offsets + (partial - chain), partial);
630
631 /*
632 * The ext4_splice_branch call will free and forget any buffers
633 * on the new chain if there is a failure, but that risks using
634 * up transaction credits, especially for bitmaps where the
635 * credits cannot be returned. Can we handle this somehow? We
636 * may need to return -EAGAIN upwards in the worst case. --sct
637 */
638 if (!err)
639 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
640 if (err)
641 goto cleanup;
642
643 map->m_flags |= EXT4_MAP_NEW;
644
645 ext4_update_inode_fsync_trans(handle, inode, 1);
646 count = ar.len;
647 got_it:
648 map->m_flags |= EXT4_MAP_MAPPED;
649 map->m_pblk = le32_to_cpu(chain[depth-1].key);
650 map->m_len = count;
651 if (count > blocks_to_boundary)
652 map->m_flags |= EXT4_MAP_BOUNDARY;
653 err = count;
654 /* Clean up and exit */
655 partial = chain + depth - 1; /* the whole chain */
656 cleanup:
657 while (partial > chain) {
658 BUFFER_TRACE(partial->bh, "call brelse");
659 brelse(partial->bh);
660 partial--;
661 }
662 out:
663 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
664 return err;
665 }
666
667 /*
668 * Calculate number of indirect blocks touched by mapping @nrblocks logically
669 * contiguous blocks
670 */
ext4_ind_trans_blocks(struct inode * inode,int nrblocks)671 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
672 {
673 /*
674 * With N contiguous data blocks, we need at most
675 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
676 * 2 dindirect blocks, and 1 tindirect block
677 */
678 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
679 }
680
ext4_ind_trunc_restart_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh,int * dropped)681 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
682 struct buffer_head *bh, int *dropped)
683 {
684 int err;
685
686 if (bh) {
687 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
688 err = ext4_handle_dirty_metadata(handle, inode, bh);
689 if (unlikely(err))
690 return err;
691 }
692 err = ext4_mark_inode_dirty(handle, inode);
693 if (unlikely(err))
694 return err;
695 /*
696 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
697 * moment, get_block can be called only for blocks inside i_size since
698 * page cache has been already dropped and writes are blocked by
699 * i_rwsem. So we can safely drop the i_data_sem here.
700 */
701 BUG_ON(EXT4_JOURNAL(inode) == NULL);
702 ext4_discard_preallocations(inode, 0);
703 up_write(&EXT4_I(inode)->i_data_sem);
704 *dropped = 1;
705 return 0;
706 }
707
708 /*
709 * Truncate transactions can be complex and absolutely huge. So we need to
710 * be able to restart the transaction at a convenient checkpoint to make
711 * sure we don't overflow the journal.
712 *
713 * Try to extend this transaction for the purposes of truncation. If
714 * extend fails, we restart transaction.
715 */
ext4_ind_truncate_ensure_credits(handle_t * handle,struct inode * inode,struct buffer_head * bh,int revoke_creds)716 static int ext4_ind_truncate_ensure_credits(handle_t *handle,
717 struct inode *inode,
718 struct buffer_head *bh,
719 int revoke_creds)
720 {
721 int ret;
722 int dropped = 0;
723
724 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
725 ext4_blocks_for_truncate(inode), revoke_creds,
726 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
727 if (dropped)
728 down_write(&EXT4_I(inode)->i_data_sem);
729 if (ret <= 0)
730 return ret;
731 if (bh) {
732 BUFFER_TRACE(bh, "retaking write access");
733 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
734 EXT4_JTR_NONE);
735 if (unlikely(ret))
736 return ret;
737 }
738 return 0;
739 }
740
741 /*
742 * Probably it should be a library function... search for first non-zero word
743 * or memcmp with zero_page, whatever is better for particular architecture.
744 * Linus?
745 */
all_zeroes(__le32 * p,__le32 * q)746 static inline int all_zeroes(__le32 *p, __le32 *q)
747 {
748 while (p < q)
749 if (*p++)
750 return 0;
751 return 1;
752 }
753
754 /**
755 * ext4_find_shared - find the indirect blocks for partial truncation.
756 * @inode: inode in question
757 * @depth: depth of the affected branch
758 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
759 * @chain: place to store the pointers to partial indirect blocks
760 * @top: place to the (detached) top of branch
761 *
762 * This is a helper function used by ext4_truncate().
763 *
764 * When we do truncate() we may have to clean the ends of several
765 * indirect blocks but leave the blocks themselves alive. Block is
766 * partially truncated if some data below the new i_size is referred
767 * from it (and it is on the path to the first completely truncated
768 * data block, indeed). We have to free the top of that path along
769 * with everything to the right of the path. Since no allocation
770 * past the truncation point is possible until ext4_truncate()
771 * finishes, we may safely do the latter, but top of branch may
772 * require special attention - pageout below the truncation point
773 * might try to populate it.
774 *
775 * We atomically detach the top of branch from the tree, store the
776 * block number of its root in *@top, pointers to buffer_heads of
777 * partially truncated blocks - in @chain[].bh and pointers to
778 * their last elements that should not be removed - in
779 * @chain[].p. Return value is the pointer to last filled element
780 * of @chain.
781 *
782 * The work left to caller to do the actual freeing of subtrees:
783 * a) free the subtree starting from *@top
784 * b) free the subtrees whose roots are stored in
785 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
786 * c) free the subtrees growing from the inode past the @chain[0].
787 * (no partially truncated stuff there). */
788
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)789 static Indirect *ext4_find_shared(struct inode *inode, int depth,
790 ext4_lblk_t offsets[4], Indirect chain[4],
791 __le32 *top)
792 {
793 Indirect *partial, *p;
794 int k, err;
795
796 *top = 0;
797 /* Make k index the deepest non-null offset + 1 */
798 for (k = depth; k > 1 && !offsets[k-1]; k--)
799 ;
800 partial = ext4_get_branch(inode, k, offsets, chain, &err);
801 /* Writer: pointers */
802 if (!partial)
803 partial = chain + k-1;
804 /*
805 * If the branch acquired continuation since we've looked at it -
806 * fine, it should all survive and (new) top doesn't belong to us.
807 */
808 if (!partial->key && *partial->p)
809 /* Writer: end */
810 goto no_top;
811 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
812 ;
813 /*
814 * OK, we've found the last block that must survive. The rest of our
815 * branch should be detached before unlocking. However, if that rest
816 * of branch is all ours and does not grow immediately from the inode
817 * it's easier to cheat and just decrement partial->p.
818 */
819 if (p == chain + k - 1 && p > chain) {
820 p->p--;
821 } else {
822 *top = *p->p;
823 /* Nope, don't do this in ext4. Must leave the tree intact */
824 #if 0
825 *p->p = 0;
826 #endif
827 }
828 /* Writer: end */
829
830 while (partial > p) {
831 brelse(partial->bh);
832 partial--;
833 }
834 no_top:
835 return partial;
836 }
837
838 /*
839 * Zero a number of block pointers in either an inode or an indirect block.
840 * If we restart the transaction we must again get write access to the
841 * indirect block for further modification.
842 *
843 * We release `count' blocks on disk, but (last - first) may be greater
844 * than `count' because there can be holes in there.
845 *
846 * Return 0 on success, 1 on invalid block range
847 * and < 0 on fatal error.
848 */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)849 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
850 struct buffer_head *bh,
851 ext4_fsblk_t block_to_free,
852 unsigned long count, __le32 *first,
853 __le32 *last)
854 {
855 __le32 *p;
856 int flags = EXT4_FREE_BLOCKS_VALIDATED;
857 int err;
858
859 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
860 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
861 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
862 else if (ext4_should_journal_data(inode))
863 flags |= EXT4_FREE_BLOCKS_FORGET;
864
865 if (!ext4_inode_block_valid(inode, block_to_free, count)) {
866 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
867 "blocks %llu len %lu",
868 (unsigned long long) block_to_free, count);
869 return 1;
870 }
871
872 err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
873 ext4_free_data_revoke_credits(inode, count));
874 if (err < 0)
875 goto out_err;
876
877 for (p = first; p < last; p++)
878 *p = 0;
879
880 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
881 return 0;
882 out_err:
883 ext4_std_error(inode->i_sb, err);
884 return err;
885 }
886
887 /**
888 * ext4_free_data - free a list of data blocks
889 * @handle: handle for this transaction
890 * @inode: inode we are dealing with
891 * @this_bh: indirect buffer_head which contains *@first and *@last
892 * @first: array of block numbers
893 * @last: points immediately past the end of array
894 *
895 * We are freeing all blocks referred from that array (numbers are stored as
896 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
897 *
898 * We accumulate contiguous runs of blocks to free. Conveniently, if these
899 * blocks are contiguous then releasing them at one time will only affect one
900 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
901 * actually use a lot of journal space.
902 *
903 * @this_bh will be %NULL if @first and @last point into the inode's direct
904 * block pointers.
905 */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)906 static void ext4_free_data(handle_t *handle, struct inode *inode,
907 struct buffer_head *this_bh,
908 __le32 *first, __le32 *last)
909 {
910 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
911 unsigned long count = 0; /* Number of blocks in the run */
912 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
913 corresponding to
914 block_to_free */
915 ext4_fsblk_t nr; /* Current block # */
916 __le32 *p; /* Pointer into inode/ind
917 for current block */
918 int err = 0;
919
920 if (this_bh) { /* For indirect block */
921 BUFFER_TRACE(this_bh, "get_write_access");
922 err = ext4_journal_get_write_access(handle, inode->i_sb,
923 this_bh, EXT4_JTR_NONE);
924 /* Important: if we can't update the indirect pointers
925 * to the blocks, we can't free them. */
926 if (err)
927 return;
928 }
929
930 for (p = first; p < last; p++) {
931 nr = le32_to_cpu(*p);
932 if (nr) {
933 /* accumulate blocks to free if they're contiguous */
934 if (count == 0) {
935 block_to_free = nr;
936 block_to_free_p = p;
937 count = 1;
938 } else if (nr == block_to_free + count) {
939 count++;
940 } else {
941 err = ext4_clear_blocks(handle, inode, this_bh,
942 block_to_free, count,
943 block_to_free_p, p);
944 if (err)
945 break;
946 block_to_free = nr;
947 block_to_free_p = p;
948 count = 1;
949 }
950 }
951 }
952
953 if (!err && count > 0)
954 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
955 count, block_to_free_p, p);
956 if (err < 0)
957 /* fatal error */
958 return;
959
960 if (this_bh) {
961 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
962
963 /*
964 * The buffer head should have an attached journal head at this
965 * point. However, if the data is corrupted and an indirect
966 * block pointed to itself, it would have been detached when
967 * the block was cleared. Check for this instead of OOPSing.
968 */
969 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
970 ext4_handle_dirty_metadata(handle, inode, this_bh);
971 else
972 EXT4_ERROR_INODE(inode,
973 "circular indirect block detected at "
974 "block %llu",
975 (unsigned long long) this_bh->b_blocknr);
976 }
977 }
978
979 /**
980 * ext4_free_branches - free an array of branches
981 * @handle: JBD handle for this transaction
982 * @inode: inode we are dealing with
983 * @parent_bh: the buffer_head which contains *@first and *@last
984 * @first: array of block numbers
985 * @last: pointer immediately past the end of array
986 * @depth: depth of the branches to free
987 *
988 * We are freeing all blocks referred from these branches (numbers are
989 * stored as little-endian 32-bit) and updating @inode->i_blocks
990 * appropriately.
991 */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)992 static void ext4_free_branches(handle_t *handle, struct inode *inode,
993 struct buffer_head *parent_bh,
994 __le32 *first, __le32 *last, int depth)
995 {
996 ext4_fsblk_t nr;
997 __le32 *p;
998
999 if (ext4_handle_is_aborted(handle))
1000 return;
1001
1002 if (depth--) {
1003 struct buffer_head *bh;
1004 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1005 p = last;
1006 while (--p >= first) {
1007 nr = le32_to_cpu(*p);
1008 if (!nr)
1009 continue; /* A hole */
1010
1011 if (!ext4_inode_block_valid(inode, nr, 1)) {
1012 EXT4_ERROR_INODE(inode,
1013 "invalid indirect mapped "
1014 "block %lu (level %d)",
1015 (unsigned long) nr, depth);
1016 break;
1017 }
1018
1019 /* Go read the buffer for the next level down */
1020 bh = ext4_sb_bread(inode->i_sb, nr, 0);
1021
1022 /*
1023 * A read failure? Report error and clear slot
1024 * (should be rare).
1025 */
1026 if (IS_ERR(bh)) {
1027 ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
1028 "Read failure");
1029 continue;
1030 }
1031
1032 /* This zaps the entire block. Bottom up. */
1033 BUFFER_TRACE(bh, "free child branches");
1034 ext4_free_branches(handle, inode, bh,
1035 (__le32 *) bh->b_data,
1036 (__le32 *) bh->b_data + addr_per_block,
1037 depth);
1038 brelse(bh);
1039
1040 /*
1041 * Everything below this pointer has been
1042 * released. Now let this top-of-subtree go.
1043 *
1044 * We want the freeing of this indirect block to be
1045 * atomic in the journal with the updating of the
1046 * bitmap block which owns it. So make some room in
1047 * the journal.
1048 *
1049 * We zero the parent pointer *after* freeing its
1050 * pointee in the bitmaps, so if extend_transaction()
1051 * for some reason fails to put the bitmap changes and
1052 * the release into the same transaction, recovery
1053 * will merely complain about releasing a free block,
1054 * rather than leaking blocks.
1055 */
1056 if (ext4_handle_is_aborted(handle))
1057 return;
1058 if (ext4_ind_truncate_ensure_credits(handle, inode,
1059 NULL,
1060 ext4_free_metadata_revoke_credits(
1061 inode->i_sb, 1)) < 0)
1062 return;
1063
1064 /*
1065 * The forget flag here is critical because if
1066 * we are journaling (and not doing data
1067 * journaling), we have to make sure a revoke
1068 * record is written to prevent the journal
1069 * replay from overwriting the (former)
1070 * indirect block if it gets reallocated as a
1071 * data block. This must happen in the same
1072 * transaction where the data blocks are
1073 * actually freed.
1074 */
1075 ext4_free_blocks(handle, inode, NULL, nr, 1,
1076 EXT4_FREE_BLOCKS_METADATA|
1077 EXT4_FREE_BLOCKS_FORGET);
1078
1079 if (parent_bh) {
1080 /*
1081 * The block which we have just freed is
1082 * pointed to by an indirect block: journal it
1083 */
1084 BUFFER_TRACE(parent_bh, "get_write_access");
1085 if (!ext4_journal_get_write_access(handle,
1086 inode->i_sb, parent_bh,
1087 EXT4_JTR_NONE)) {
1088 *p = 0;
1089 BUFFER_TRACE(parent_bh,
1090 "call ext4_handle_dirty_metadata");
1091 ext4_handle_dirty_metadata(handle,
1092 inode,
1093 parent_bh);
1094 }
1095 }
1096 }
1097 } else {
1098 /* We have reached the bottom of the tree. */
1099 BUFFER_TRACE(parent_bh, "free data blocks");
1100 ext4_free_data(handle, inode, parent_bh, first, last);
1101 }
1102 }
1103
ext4_ind_truncate(handle_t * handle,struct inode * inode)1104 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1105 {
1106 struct ext4_inode_info *ei = EXT4_I(inode);
1107 __le32 *i_data = ei->i_data;
1108 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1109 ext4_lblk_t offsets[4];
1110 Indirect chain[4];
1111 Indirect *partial;
1112 __le32 nr = 0;
1113 int n = 0;
1114 ext4_lblk_t last_block, max_block;
1115 unsigned blocksize = inode->i_sb->s_blocksize;
1116
1117 last_block = (inode->i_size + blocksize-1)
1118 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1119 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1120 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1121
1122 if (last_block != max_block) {
1123 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1124 if (n == 0)
1125 return;
1126 }
1127
1128 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1129
1130 /*
1131 * The orphan list entry will now protect us from any crash which
1132 * occurs before the truncate completes, so it is now safe to propagate
1133 * the new, shorter inode size (held for now in i_size) into the
1134 * on-disk inode. We do this via i_disksize, which is the value which
1135 * ext4 *really* writes onto the disk inode.
1136 */
1137 ei->i_disksize = inode->i_size;
1138
1139 if (last_block == max_block) {
1140 /*
1141 * It is unnecessary to free any data blocks if last_block is
1142 * equal to the indirect block limit.
1143 */
1144 return;
1145 } else if (n == 1) { /* direct blocks */
1146 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1147 i_data + EXT4_NDIR_BLOCKS);
1148 goto do_indirects;
1149 }
1150
1151 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1152 /* Kill the top of shared branch (not detached) */
1153 if (nr) {
1154 if (partial == chain) {
1155 /* Shared branch grows from the inode */
1156 ext4_free_branches(handle, inode, NULL,
1157 &nr, &nr+1, (chain+n-1) - partial);
1158 *partial->p = 0;
1159 /*
1160 * We mark the inode dirty prior to restart,
1161 * and prior to stop. No need for it here.
1162 */
1163 } else {
1164 /* Shared branch grows from an indirect block */
1165 BUFFER_TRACE(partial->bh, "get_write_access");
1166 ext4_free_branches(handle, inode, partial->bh,
1167 partial->p,
1168 partial->p+1, (chain+n-1) - partial);
1169 }
1170 }
1171 /* Clear the ends of indirect blocks on the shared branch */
1172 while (partial > chain) {
1173 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1174 (__le32*)partial->bh->b_data+addr_per_block,
1175 (chain+n-1) - partial);
1176 BUFFER_TRACE(partial->bh, "call brelse");
1177 brelse(partial->bh);
1178 partial--;
1179 }
1180 do_indirects:
1181 /* Kill the remaining (whole) subtrees */
1182 switch (offsets[0]) {
1183 default:
1184 nr = i_data[EXT4_IND_BLOCK];
1185 if (nr) {
1186 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1187 i_data[EXT4_IND_BLOCK] = 0;
1188 }
1189 fallthrough;
1190 case EXT4_IND_BLOCK:
1191 nr = i_data[EXT4_DIND_BLOCK];
1192 if (nr) {
1193 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1194 i_data[EXT4_DIND_BLOCK] = 0;
1195 }
1196 fallthrough;
1197 case EXT4_DIND_BLOCK:
1198 nr = i_data[EXT4_TIND_BLOCK];
1199 if (nr) {
1200 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1201 i_data[EXT4_TIND_BLOCK] = 0;
1202 }
1203 fallthrough;
1204 case EXT4_TIND_BLOCK:
1205 ;
1206 }
1207 }
1208
1209 /**
1210 * ext4_ind_remove_space - remove space from the range
1211 * @handle: JBD handle for this transaction
1212 * @inode: inode we are dealing with
1213 * @start: First block to remove
1214 * @end: One block after the last block to remove (exclusive)
1215 *
1216 * Free the blocks in the defined range (end is exclusive endpoint of
1217 * range). This is used by ext4_punch_hole().
1218 */
ext4_ind_remove_space(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)1219 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1220 ext4_lblk_t start, ext4_lblk_t end)
1221 {
1222 struct ext4_inode_info *ei = EXT4_I(inode);
1223 __le32 *i_data = ei->i_data;
1224 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1225 ext4_lblk_t offsets[4], offsets2[4];
1226 Indirect chain[4], chain2[4];
1227 Indirect *partial, *partial2;
1228 Indirect *p = NULL, *p2 = NULL;
1229 ext4_lblk_t max_block;
1230 __le32 nr = 0, nr2 = 0;
1231 int n = 0, n2 = 0;
1232 unsigned blocksize = inode->i_sb->s_blocksize;
1233
1234 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1235 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1236 if (end >= max_block)
1237 end = max_block;
1238 if ((start >= end) || (start > max_block))
1239 return 0;
1240
1241 n = ext4_block_to_path(inode, start, offsets, NULL);
1242 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1243
1244 BUG_ON(n > n2);
1245
1246 if ((n == 1) && (n == n2)) {
1247 /* We're punching only within direct block range */
1248 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1249 i_data + offsets2[0]);
1250 return 0;
1251 } else if (n2 > n) {
1252 /*
1253 * Start and end are on a different levels so we're going to
1254 * free partial block at start, and partial block at end of
1255 * the range. If there are some levels in between then
1256 * do_indirects label will take care of that.
1257 */
1258
1259 if (n == 1) {
1260 /*
1261 * Start is at the direct block level, free
1262 * everything to the end of the level.
1263 */
1264 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1265 i_data + EXT4_NDIR_BLOCKS);
1266 goto end_range;
1267 }
1268
1269
1270 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1271 if (nr) {
1272 if (partial == chain) {
1273 /* Shared branch grows from the inode */
1274 ext4_free_branches(handle, inode, NULL,
1275 &nr, &nr+1, (chain+n-1) - partial);
1276 *partial->p = 0;
1277 } else {
1278 /* Shared branch grows from an indirect block */
1279 BUFFER_TRACE(partial->bh, "get_write_access");
1280 ext4_free_branches(handle, inode, partial->bh,
1281 partial->p,
1282 partial->p+1, (chain+n-1) - partial);
1283 }
1284 }
1285
1286 /*
1287 * Clear the ends of indirect blocks on the shared branch
1288 * at the start of the range
1289 */
1290 while (partial > chain) {
1291 ext4_free_branches(handle, inode, partial->bh,
1292 partial->p + 1,
1293 (__le32 *)partial->bh->b_data+addr_per_block,
1294 (chain+n-1) - partial);
1295 partial--;
1296 }
1297
1298 end_range:
1299 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1300 if (nr2) {
1301 if (partial2 == chain2) {
1302 /*
1303 * Remember, end is exclusive so here we're at
1304 * the start of the next level we're not going
1305 * to free. Everything was covered by the start
1306 * of the range.
1307 */
1308 goto do_indirects;
1309 }
1310 } else {
1311 /*
1312 * ext4_find_shared returns Indirect structure which
1313 * points to the last element which should not be
1314 * removed by truncate. But this is end of the range
1315 * in punch_hole so we need to point to the next element
1316 */
1317 partial2->p++;
1318 }
1319
1320 /*
1321 * Clear the ends of indirect blocks on the shared branch
1322 * at the end of the range
1323 */
1324 while (partial2 > chain2) {
1325 ext4_free_branches(handle, inode, partial2->bh,
1326 (__le32 *)partial2->bh->b_data,
1327 partial2->p,
1328 (chain2+n2-1) - partial2);
1329 partial2--;
1330 }
1331 goto do_indirects;
1332 }
1333
1334 /* Punch happened within the same level (n == n2) */
1335 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1336 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1337
1338 /* Free top, but only if partial2 isn't its subtree. */
1339 if (nr) {
1340 int level = min(partial - chain, partial2 - chain2);
1341 int i;
1342 int subtree = 1;
1343
1344 for (i = 0; i <= level; i++) {
1345 if (offsets[i] != offsets2[i]) {
1346 subtree = 0;
1347 break;
1348 }
1349 }
1350
1351 if (!subtree) {
1352 if (partial == chain) {
1353 /* Shared branch grows from the inode */
1354 ext4_free_branches(handle, inode, NULL,
1355 &nr, &nr+1,
1356 (chain+n-1) - partial);
1357 *partial->p = 0;
1358 } else {
1359 /* Shared branch grows from an indirect block */
1360 BUFFER_TRACE(partial->bh, "get_write_access");
1361 ext4_free_branches(handle, inode, partial->bh,
1362 partial->p,
1363 partial->p+1,
1364 (chain+n-1) - partial);
1365 }
1366 }
1367 }
1368
1369 if (!nr2) {
1370 /*
1371 * ext4_find_shared returns Indirect structure which
1372 * points to the last element which should not be
1373 * removed by truncate. But this is end of the range
1374 * in punch_hole so we need to point to the next element
1375 */
1376 partial2->p++;
1377 }
1378
1379 while (partial > chain || partial2 > chain2) {
1380 int depth = (chain+n-1) - partial;
1381 int depth2 = (chain2+n2-1) - partial2;
1382
1383 if (partial > chain && partial2 > chain2 &&
1384 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1385 /*
1386 * We've converged on the same block. Clear the range,
1387 * then we're done.
1388 */
1389 ext4_free_branches(handle, inode, partial->bh,
1390 partial->p + 1,
1391 partial2->p,
1392 (chain+n-1) - partial);
1393 goto cleanup;
1394 }
1395
1396 /*
1397 * The start and end partial branches may not be at the same
1398 * level even though the punch happened within one level. So, we
1399 * give them a chance to arrive at the same level, then walk
1400 * them in step with each other until we converge on the same
1401 * block.
1402 */
1403 if (partial > chain && depth <= depth2) {
1404 ext4_free_branches(handle, inode, partial->bh,
1405 partial->p + 1,
1406 (__le32 *)partial->bh->b_data+addr_per_block,
1407 (chain+n-1) - partial);
1408 partial--;
1409 }
1410 if (partial2 > chain2 && depth2 <= depth) {
1411 ext4_free_branches(handle, inode, partial2->bh,
1412 (__le32 *)partial2->bh->b_data,
1413 partial2->p,
1414 (chain2+n2-1) - partial2);
1415 partial2--;
1416 }
1417 }
1418
1419 cleanup:
1420 while (p && p > chain) {
1421 BUFFER_TRACE(p->bh, "call brelse");
1422 brelse(p->bh);
1423 p--;
1424 }
1425 while (p2 && p2 > chain2) {
1426 BUFFER_TRACE(p2->bh, "call brelse");
1427 brelse(p2->bh);
1428 p2--;
1429 }
1430 return 0;
1431
1432 do_indirects:
1433 /* Kill the remaining (whole) subtrees */
1434 switch (offsets[0]) {
1435 default:
1436 if (++n >= n2)
1437 break;
1438 nr = i_data[EXT4_IND_BLOCK];
1439 if (nr) {
1440 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1441 i_data[EXT4_IND_BLOCK] = 0;
1442 }
1443 fallthrough;
1444 case EXT4_IND_BLOCK:
1445 if (++n >= n2)
1446 break;
1447 nr = i_data[EXT4_DIND_BLOCK];
1448 if (nr) {
1449 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1450 i_data[EXT4_DIND_BLOCK] = 0;
1451 }
1452 fallthrough;
1453 case EXT4_DIND_BLOCK:
1454 if (++n >= n2)
1455 break;
1456 nr = i_data[EXT4_TIND_BLOCK];
1457 if (nr) {
1458 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1459 i_data[EXT4_TIND_BLOCK] = 0;
1460 }
1461 fallthrough;
1462 case EXT4_TIND_BLOCK:
1463 ;
1464 }
1465 goto cleanup;
1466 }
1467