1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50 
51 #include <trace/events/ext4.h>
52 
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 					      loff_t new_size)
57 {
58 	trace_ext4_begin_ordered_truncate(inode, new_size);
59 	/*
60 	 * If jinode is zero, then we never opened the file for
61 	 * writing, so there's no need to call
62 	 * jbd2_journal_begin_ordered_truncate() since there's no
63 	 * outstanding writes we need to flush.
64 	 */
65 	if (!EXT4_I(inode)->jinode)
66 		return 0;
67 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 						   EXT4_I(inode)->jinode,
69 						   new_size);
70 }
71 
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 				   struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 
80 /*
81  * Test whether an inode is a fast symlink.
82  */
ext4_inode_is_fast_symlink(struct inode * inode)83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 		(inode->i_sb->s_blocksize >> 9) : 0;
87 
88 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90 
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
blocks_for_truncate(struct inode * inode)95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 	ext4_lblk_t needed;
98 
99 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 
101 	/* Give ourselves just enough room to cope with inodes in which
102 	 * i_blocks is corrupt: we've seen disk corruptions in the past
103 	 * which resulted in random data in an inode which looked enough
104 	 * like a regular file for ext4 to try to delete it.  Things
105 	 * will go a bit crazy if that happens, but at least we should
106 	 * try not to panic the whole kernel. */
107 	if (needed < 2)
108 		needed = 2;
109 
110 	/* But we need to bound the transaction so we don't overflow the
111 	 * journal. */
112 	if (needed > EXT4_MAX_TRANS_DATA)
113 		needed = EXT4_MAX_TRANS_DATA;
114 
115 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117 
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
start_transaction(struct inode * inode)128 static handle_t *start_transaction(struct inode *inode)
129 {
130 	handle_t *result;
131 
132 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 	if (!IS_ERR(result))
134 		return result;
135 
136 	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 	return result;
138 }
139 
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 	if (!ext4_handle_valid(handle))
149 		return 0;
150 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 		return 0;
152 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 		return 0;
154 	return 1;
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
ext4_evict_inode(struct inode * inode)186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 	if (inode->i_nlink) {
193 		truncate_inode_pages(&inode->i_data, 0);
194 		goto no_delete;
195 	}
196 
197 	if (!is_bad_inode(inode))
198 		dquot_initialize(inode);
199 
200 	if (ext4_should_order_data(inode))
201 		ext4_begin_ordered_truncate(inode, 0);
202 	truncate_inode_pages(&inode->i_data, 0);
203 
204 	if (is_bad_inode(inode))
205 		goto no_delete;
206 
207 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 	if (IS_ERR(handle)) {
209 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 		/*
211 		 * If we're going to skip the normal cleanup, we still need to
212 		 * make sure that the in-core orphan linked list is properly
213 		 * cleaned up.
214 		 */
215 		ext4_orphan_del(NULL, inode);
216 		goto no_delete;
217 	}
218 
219 	if (IS_SYNC(inode))
220 		ext4_handle_sync(handle);
221 	inode->i_size = 0;
222 	err = ext4_mark_inode_dirty(handle, inode);
223 	if (err) {
224 		ext4_warning(inode->i_sb,
225 			     "couldn't mark inode dirty (err %d)", err);
226 		goto stop_handle;
227 	}
228 	if (inode->i_blocks)
229 		ext4_truncate(inode);
230 
231 	/*
232 	 * ext4_ext_truncate() doesn't reserve any slop when it
233 	 * restarts journal transactions; therefore there may not be
234 	 * enough credits left in the handle to remove the inode from
235 	 * the orphan list and set the dtime field.
236 	 */
237 	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 		err = ext4_journal_extend(handle, 3);
239 		if (err > 0)
240 			err = ext4_journal_restart(handle, 3);
241 		if (err != 0) {
242 			ext4_warning(inode->i_sb,
243 				     "couldn't extend journal (err %d)", err);
244 		stop_handle:
245 			ext4_journal_stop(handle);
246 			ext4_orphan_del(NULL, inode);
247 			goto no_delete;
248 		}
249 	}
250 
251 	/*
252 	 * Kill off the orphan record which ext4_truncate created.
253 	 * AKPM: I think this can be inside the above `if'.
254 	 * Note that ext4_orphan_del() has to be able to cope with the
255 	 * deletion of a non-existent orphan - this is because we don't
256 	 * know if ext4_truncate() actually created an orphan record.
257 	 * (Well, we could do this if we need to, but heck - it works)
258 	 */
259 	ext4_orphan_del(handle, inode);
260 	EXT4_I(inode)->i_dtime	= get_seconds();
261 
262 	/*
263 	 * One subtle ordering requirement: if anything has gone wrong
264 	 * (transaction abort, IO errors, whatever), then we can still
265 	 * do these next steps (the fs will already have been marked as
266 	 * having errors), but we can't free the inode if the mark_dirty
267 	 * fails.
268 	 */
269 	if (ext4_mark_inode_dirty(handle, inode))
270 		/* If that failed, just do the required in-core inode clear. */
271 		ext4_clear_inode(inode);
272 	else
273 		ext4_free_inode(handle, inode);
274 	ext4_journal_stop(handle);
275 	return;
276 no_delete:
277 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 }
279 
280 typedef struct {
281 	__le32	*p;
282 	__le32	key;
283 	struct buffer_head *bh;
284 } Indirect;
285 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 	p->key = *(p->p = v);
289 	p->bh = bh;
290 }
291 
292 /**
293  *	ext4_block_to_path - parse the block number into array of offsets
294  *	@inode: inode in question (we are only interested in its superblock)
295  *	@i_block: block number to be parsed
296  *	@offsets: array to store the offsets in
297  *	@boundary: set this non-zero if the referred-to block is likely to be
298  *	       followed (on disk) by an indirect block.
299  *
300  *	To store the locations of file's data ext4 uses a data structure common
301  *	for UNIX filesystems - tree of pointers anchored in the inode, with
302  *	data blocks at leaves and indirect blocks in intermediate nodes.
303  *	This function translates the block number into path in that tree -
304  *	return value is the path length and @offsets[n] is the offset of
305  *	pointer to (n+1)th node in the nth one. If @block is out of range
306  *	(negative or too large) warning is printed and zero returned.
307  *
308  *	Note: function doesn't find node addresses, so no IO is needed. All
309  *	we need to know is the capacity of indirect blocks (taken from the
310  *	inode->i_sb).
311  */
312 
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322 
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)323 static int ext4_block_to_path(struct inode *inode,
324 			      ext4_lblk_t i_block,
325 			      ext4_lblk_t offsets[4], int *boundary)
326 {
327 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 		indirect_blocks = ptrs,
331 		double_blocks = (1 << (ptrs_bits * 2));
332 	int n = 0;
333 	int final = 0;
334 
335 	if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 			     i_block + direct_blocks +
356 			     indirect_blocks + double_blocks, inode->i_ino);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
__ext4_check_blockref(const char * function,unsigned int line,struct inode * inode,__le32 * p,unsigned int max)363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 				 struct inode *inode,
365 				 __le32 *p, unsigned int max)
366 {
367 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 	__le32 *bref = p;
369 	unsigned int blk;
370 
371 	while (bref < p+max) {
372 		blk = le32_to_cpu(*bref++);
373 		if (blk &&
374 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 						    blk, 1))) {
376 			es->s_last_error_block = cpu_to_le64(blk);
377 			ext4_error_inode(inode, function, line, blk,
378 					 "invalid block");
379 			return -EIO;
380 		}
381 	}
382 	return 0;
383 }
384 
385 
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387 	__ext4_check_blockref(__func__, __LINE__, inode,		\
388 			      (__le32 *)(bh)->b_data,			\
389 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390 
391 #define ext4_check_inode_blockref(inode)                                \
392 	__ext4_check_blockref(__func__, __LINE__, inode,		\
393 			      EXT4_I(inode)->i_data,			\
394 			      EXT4_NDIR_BLOCKS)
395 
396 /**
397  *	ext4_get_branch - read the chain of indirect blocks leading to data
398  *	@inode: inode in question
399  *	@depth: depth of the chain (1 - direct pointer, etc.)
400  *	@offsets: offsets of pointers in inode/indirect blocks
401  *	@chain: place to store the result
402  *	@err: here we store the error value
403  *
404  *	Function fills the array of triples <key, p, bh> and returns %NULL
405  *	if everything went OK or the pointer to the last filled triple
406  *	(incomplete one) otherwise. Upon the return chain[i].key contains
407  *	the number of (i+1)-th block in the chain (as it is stored in memory,
408  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *	number (it points into struct inode for i==0 and into the bh->b_data
410  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *	block for i>0 and NULL for i==0. In other words, it holds the block
412  *	numbers of the chain, addresses they were taken from (and where we can
413  *	verify that chain did not change) and buffer_heads hosting these
414  *	numbers.
415  *
416  *	Function stops when it stumbles upon zero pointer (absent block)
417  *		(pointer to last triple returned, *@err == 0)
418  *	or when it gets an IO error reading an indirect block
419  *		(ditto, *@err == -EIO)
420  *	or when it reads all @depth-1 indirect blocks successfully and finds
421  *	the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 				 ext4_lblk_t  *offsets,
428 				 Indirect chain[4], int *err)
429 {
430 	struct super_block *sb = inode->i_sb;
431 	Indirect *p = chain;
432 	struct buffer_head *bh;
433 
434 	*err = 0;
435 	/* i_data is not going away, no lock needed */
436 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 	if (!p->key)
438 		goto no_block;
439 	while (--depth) {
440 		bh = sb_getblk(sb, le32_to_cpu(p->key));
441 		if (unlikely(!bh))
442 			goto failure;
443 
444 		if (!bh_uptodate_or_lock(bh)) {
445 			if (bh_submit_read(bh) < 0) {
446 				put_bh(bh);
447 				goto failure;
448 			}
449 			/* validate block references */
450 			if (ext4_check_indirect_blockref(inode, bh)) {
451 				put_bh(bh);
452 				goto failure;
453 			}
454 		}
455 
456 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 		/* Reader: end */
458 		if (!p->key)
459 			goto no_block;
460 	}
461 	return NULL;
462 
463 failure:
464 	*err = -EIO;
465 no_block:
466 	return p;
467 }
468 
469 /**
470  *	ext4_find_near - find a place for allocation with sufficient locality
471  *	@inode: owner
472  *	@ind: descriptor of indirect block.
473  *
474  *	This function returns the preferred place for block allocation.
475  *	It is used when heuristic for sequential allocation fails.
476  *	Rules are:
477  *	  + if there is a block to the left of our position - allocate near it.
478  *	  + if pointer will live in indirect block - allocate near that block.
479  *	  + if pointer will live in inode - allocate in the same
480  *	    cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *	Caller must make sure that @ind is valid and will stay that way.
488  */
ext4_find_near(struct inode * inode,Indirect * ind)489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 	struct ext4_inode_info *ei = EXT4_I(inode);
492 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 	__le32 *p;
494 	ext4_fsblk_t bg_start;
495 	ext4_fsblk_t last_block;
496 	ext4_grpblk_t colour;
497 	ext4_group_t block_group;
498 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 
500 	/* Try to find previous block */
501 	for (p = ind->p - 1; p >= start; p--) {
502 		if (*p)
503 			return le32_to_cpu(*p);
504 	}
505 
506 	/* No such thing, so let's try location of indirect block */
507 	if (ind->bh)
508 		return ind->bh->b_blocknr;
509 
510 	/*
511 	 * It is going to be referred to from the inode itself? OK, just put it
512 	 * into the same cylinder group then.
513 	 */
514 	block_group = ei->i_block_group;
515 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 		block_group &= ~(flex_size-1);
517 		if (S_ISREG(inode->i_mode))
518 			block_group++;
519 	}
520 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522 
523 	/*
524 	 * If we are doing delayed allocation, we don't need take
525 	 * colour into account.
526 	 */
527 	if (test_opt(inode->i_sb, DELALLOC))
528 		return bg_start;
529 
530 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 		colour = (current->pid % 16) *
532 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 	else
534 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 	return bg_start + colour;
536 }
537 
538 /**
539  *	ext4_find_goal - find a preferred place for allocation.
540  *	@inode: owner
541  *	@block:  block we want
542  *	@partial: pointer to the last triple within a chain
543  *
544  *	Normally this function find the preferred place for block allocation,
545  *	returns it.
546  *	Because this is only used for non-extent files, we limit the block nr
547  *	to 32 bits.
548  */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 				   Indirect *partial)
551 {
552 	ext4_fsblk_t goal;
553 
554 	/*
555 	 * XXX need to get goal block from mballoc's data structures
556 	 */
557 
558 	goal = ext4_find_near(inode, partial);
559 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 	return goal;
561 }
562 
563 /**
564  *	ext4_blks_to_allocate - Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 				 int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@handle: handle for this transaction
604  *	@inode: inode which needs allocated blocks
605  *	@iblock: the logical block to start allocated at
606  *	@goal: preferred physical block of allocation
607  *	@indirect_blks: the number of blocks need to allocate for indirect
608  *			blocks
609  *	@blks: number of desired blocks
610  *	@new_blocks: on return it will store the new block numbers for
611  *	the indirect blocks(if needed) and the first direct block,
612  *	@err: on return it will store the error code
613  *
614  *	This function will return the number of blocks allocated as
615  *	requested by the passed-in parameters.
616  */
ext4_alloc_blocks(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,ext4_fsblk_t goal,int indirect_blks,int blks,ext4_fsblk_t new_blocks[4],int * err)617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
619 			     int indirect_blks, int blks,
620 			     ext4_fsblk_t new_blocks[4], int *err)
621 {
622 	struct ext4_allocation_request ar;
623 	int target, i;
624 	unsigned long count = 0, blk_allocated = 0;
625 	int index = 0;
626 	ext4_fsblk_t current_block = 0;
627 	int ret = 0;
628 
629 	/*
630 	 * Here we try to allocate the requested multiple blocks at once,
631 	 * on a best-effort basis.
632 	 * To build a branch, we should allocate blocks for
633 	 * the indirect blocks(if not allocated yet), and at least
634 	 * the first direct block of this branch.  That's the
635 	 * minimum number of blocks need to allocate(required)
636 	 */
637 	/* first we try to allocate the indirect blocks */
638 	target = indirect_blks;
639 	while (target > 0) {
640 		count = target;
641 		/* allocating blocks for indirect blocks and direct blocks */
642 		current_block = ext4_new_meta_blocks(handle, inode,
643 							goal, &count, err);
644 		if (*err)
645 			goto failed_out;
646 
647 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 			EXT4_ERROR_INODE(inode,
649 					 "current_block %llu + count %lu > %d!",
650 					 current_block, count,
651 					 EXT4_MAX_BLOCK_FILE_PHYS);
652 			*err = -EIO;
653 			goto failed_out;
654 		}
655 
656 		target -= count;
657 		/* allocate blocks for indirect blocks */
658 		while (index < indirect_blks && count) {
659 			new_blocks[index++] = current_block++;
660 			count--;
661 		}
662 		if (count > 0) {
663 			/*
664 			 * save the new block number
665 			 * for the first direct block
666 			 */
667 			new_blocks[index] = current_block;
668 			printk(KERN_INFO "%s returned more blocks than "
669 						"requested\n", __func__);
670 			WARN_ON(1);
671 			break;
672 		}
673 	}
674 
675 	target = blks - count ;
676 	blk_allocated = count;
677 	if (!target)
678 		goto allocated;
679 	/* Now allocate data blocks */
680 	memset(&ar, 0, sizeof(ar));
681 	ar.inode = inode;
682 	ar.goal = goal;
683 	ar.len = target;
684 	ar.logical = iblock;
685 	if (S_ISREG(inode->i_mode))
686 		/* enable in-core preallocation only for regular files */
687 		ar.flags = EXT4_MB_HINT_DATA;
688 
689 	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 		EXT4_ERROR_INODE(inode,
692 				 "current_block %llu + ar.len %d > %d!",
693 				 current_block, ar.len,
694 				 EXT4_MAX_BLOCK_FILE_PHYS);
695 		*err = -EIO;
696 		goto failed_out;
697 	}
698 
699 	if (*err && (target == blks)) {
700 		/*
701 		 * if the allocation failed and we didn't allocate
702 		 * any blocks before
703 		 */
704 		goto failed_out;
705 	}
706 	if (!*err) {
707 		if (target == blks) {
708 			/*
709 			 * save the new block number
710 			 * for the first direct block
711 			 */
712 			new_blocks[index] = current_block;
713 		}
714 		blk_allocated += ar.len;
715 	}
716 allocated:
717 	/* total number of blocks allocated for direct blocks */
718 	ret = blk_allocated;
719 	*err = 0;
720 	return ret;
721 failed_out:
722 	for (i = 0; i < index; i++)
723 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 	return ret;
725 }
726 
727 /**
728  *	ext4_alloc_branch - allocate and set up a chain of blocks.
729  *	@handle: handle for this transaction
730  *	@inode: owner
731  *	@indirect_blks: number of allocated indirect blocks
732  *	@blks: number of allocated direct blocks
733  *	@goal: preferred place for allocation
734  *	@offsets: offsets (in the blocks) to store the pointers to next.
735  *	@branch: place to store the chain in.
736  *
737  *	This function allocates blocks, zeroes out all but the last one,
738  *	links them into chain and (if we are synchronous) writes them to disk.
739  *	In other words, it prepares a branch that can be spliced onto the
740  *	inode. It stores the information about that chain in the branch[], in
741  *	the same format as ext4_get_branch() would do. We are calling it after
742  *	we had read the existing part of chain and partial points to the last
743  *	triple of that (one with zero ->key). Upon the exit we have the same
744  *	picture as after the successful ext4_get_block(), except that in one
745  *	place chain is disconnected - *branch->p is still zero (we did not
746  *	set the last link), but branch->key contains the number that should
747  *	be placed into *branch->p to fill that gap.
748  *
749  *	If allocation fails we free all blocks we've allocated (and forget
750  *	their buffer_heads) and return the error value the from failed
751  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *	as described above and return 0.
753  */
ext4_alloc_branch(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,int indirect_blks,int * blks,ext4_fsblk_t goal,ext4_lblk_t * offsets,Indirect * branch)754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 			     ext4_lblk_t iblock, int indirect_blks,
756 			     int *blks, ext4_fsblk_t goal,
757 			     ext4_lblk_t *offsets, Indirect *branch)
758 {
759 	int blocksize = inode->i_sb->s_blocksize;
760 	int i, n = 0;
761 	int err = 0;
762 	struct buffer_head *bh;
763 	int num;
764 	ext4_fsblk_t new_blocks[4];
765 	ext4_fsblk_t current_block;
766 
767 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 				*blks, new_blocks, &err);
769 	if (err)
770 		return err;
771 
772 	branch[0].key = cpu_to_le32(new_blocks[0]);
773 	/*
774 	 * metadata blocks and data blocks are allocated.
775 	 */
776 	for (n = 1; n <= indirect_blks;  n++) {
777 		/*
778 		 * Get buffer_head for parent block, zero it out
779 		 * and set the pointer to new one, then send
780 		 * parent to disk.
781 		 */
782 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 		if (unlikely(!bh)) {
784 			err = -EIO;
785 			goto failed;
786 		}
787 
788 		branch[n].bh = bh;
789 		lock_buffer(bh);
790 		BUFFER_TRACE(bh, "call get_create_access");
791 		err = ext4_journal_get_create_access(handle, bh);
792 		if (err) {
793 			/* Don't brelse(bh) here; it's done in
794 			 * ext4_journal_forget() below */
795 			unlock_buffer(bh);
796 			goto failed;
797 		}
798 
799 		memset(bh->b_data, 0, blocksize);
800 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 		branch[n].key = cpu_to_le32(new_blocks[n]);
802 		*branch[n].p = branch[n].key;
803 		if (n == indirect_blks) {
804 			current_block = new_blocks[n];
805 			/*
806 			 * End of chain, update the last new metablock of
807 			 * the chain to point to the new allocated
808 			 * data blocks numbers
809 			 */
810 			for (i = 1; i < num; i++)
811 				*(branch[n].p + i) = cpu_to_le32(++current_block);
812 		}
813 		BUFFER_TRACE(bh, "marking uptodate");
814 		set_buffer_uptodate(bh);
815 		unlock_buffer(bh);
816 
817 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 		if (err)
820 			goto failed;
821 	}
822 	*blks = num;
823 	return err;
824 failed:
825 	/* Allocation failed, free what we already allocated */
826 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 	for (i = 1; i <= n ; i++) {
828 		/*
829 		 * branch[i].bh is newly allocated, so there is no
830 		 * need to revoke the block, which is why we don't
831 		 * need to set EXT4_FREE_BLOCKS_METADATA.
832 		 */
833 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 				 EXT4_FREE_BLOCKS_FORGET);
835 	}
836 	for (i = n+1; i < indirect_blks; i++)
837 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838 
839 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 
841 	return err;
842 }
843 
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *	ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
ext4_splice_branch(handle_t * handle,struct inode * inode,ext4_lblk_t block,Indirect * where,int num,int blks)859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 			      ext4_lblk_t block, Indirect *where, int num,
861 			      int blks)
862 {
863 	int i;
864 	int err = 0;
865 	ext4_fsblk_t current_block;
866 
867 	/*
868 	 * If we're splicing into a [td]indirect block (as opposed to the
869 	 * inode) then we need to get write access to the [td]indirect block
870 	 * before the splice.
871 	 */
872 	if (where->bh) {
873 		BUFFER_TRACE(where->bh, "get_write_access");
874 		err = ext4_journal_get_write_access(handle, where->bh);
875 		if (err)
876 			goto err_out;
877 	}
878 	/* That's it */
879 
880 	*where->p = where->key;
881 
882 	/*
883 	 * Update the host buffer_head or inode to point to more just allocated
884 	 * direct blocks blocks
885 	 */
886 	if (num == 0 && blks > 1) {
887 		current_block = le32_to_cpu(where->key) + 1;
888 		for (i = 1; i < blks; i++)
889 			*(where->p + i) = cpu_to_le32(current_block++);
890 	}
891 
892 	/* We are done with atomic stuff, now do the rest of housekeeping */
893 	/* had we spliced it onto indirect block? */
894 	if (where->bh) {
895 		/*
896 		 * If we spliced it onto an indirect block, we haven't
897 		 * altered the inode.  Note however that if it is being spliced
898 		 * onto an indirect block at the very end of the file (the
899 		 * file is growing) then we *will* alter the inode to reflect
900 		 * the new i_size.  But that is not done here - it is done in
901 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 		 */
903 		jbd_debug(5, "splicing indirect only\n");
904 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 		if (err)
907 			goto err_out;
908 	} else {
909 		/*
910 		 * OK, we spliced it into the inode itself on a direct block.
911 		 */
912 		ext4_mark_inode_dirty(handle, inode);
913 		jbd_debug(5, "splicing direct\n");
914 	}
915 	return err;
916 
917 err_out:
918 	for (i = 1; i <= num; i++) {
919 		/*
920 		 * branch[i].bh is newly allocated, so there is no
921 		 * need to revoke the block, which is why we don't
922 		 * need to set EXT4_FREE_BLOCKS_METADATA.
923 		 */
924 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 				 EXT4_FREE_BLOCKS_FORGET);
926 	}
927 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 			 blks, 0);
929 
930 	return err;
931 }
932 
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 			       struct ext4_map_blocks *map,
963 			       int flags)
964 {
965 	int err = -EIO;
966 	ext4_lblk_t offsets[4];
967 	Indirect chain[4];
968 	Indirect *partial;
969 	ext4_fsblk_t goal;
970 	int indirect_blks;
971 	int blocks_to_boundary = 0;
972 	int depth;
973 	int count = 0;
974 	ext4_fsblk_t first_block = 0;
975 
976 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980 				   &blocks_to_boundary);
981 
982 	if (depth == 0)
983 		goto out;
984 
985 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
986 
987 	/* Simplest case - block found, no allocation needed */
988 	if (!partial) {
989 		first_block = le32_to_cpu(chain[depth - 1].key);
990 		count++;
991 		/*map more blocks*/
992 		while (count < map->m_len && count <= blocks_to_boundary) {
993 			ext4_fsblk_t blk;
994 
995 			blk = le32_to_cpu(*(chain[depth-1].p + count));
996 
997 			if (blk == first_block + count)
998 				count++;
999 			else
1000 				break;
1001 		}
1002 		goto got_it;
1003 	}
1004 
1005 	/* Next simple case - plain lookup or failed read of indirect block */
1006 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007 		goto cleanup;
1008 
1009 	/*
1010 	 * Okay, we need to do block allocation.
1011 	*/
1012 	goal = ext4_find_goal(inode, map->m_lblk, partial);
1013 
1014 	/* the number of blocks need to allocate for [d,t]indirect blocks */
1015 	indirect_blks = (chain + depth) - partial - 1;
1016 
1017 	/*
1018 	 * Next look up the indirect map to count the totoal number of
1019 	 * direct blocks to allocate for this branch.
1020 	 */
1021 	count = ext4_blks_to_allocate(partial, indirect_blks,
1022 				      map->m_len, blocks_to_boundary);
1023 	/*
1024 	 * Block out ext4_truncate while we alter the tree
1025 	 */
1026 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027 				&count, goal,
1028 				offsets + (partial - chain), partial);
1029 
1030 	/*
1031 	 * The ext4_splice_branch call will free and forget any buffers
1032 	 * on the new chain if there is a failure, but that risks using
1033 	 * up transaction credits, especially for bitmaps where the
1034 	 * credits cannot be returned.  Can we handle this somehow?  We
1035 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1036 	 */
1037 	if (!err)
1038 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1039 					 partial, indirect_blks, count);
1040 	if (err)
1041 		goto cleanup;
1042 
1043 	map->m_flags |= EXT4_MAP_NEW;
1044 
1045 	ext4_update_inode_fsync_trans(handle, inode, 1);
1046 got_it:
1047 	map->m_flags |= EXT4_MAP_MAPPED;
1048 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1049 	map->m_len = count;
1050 	if (count > blocks_to_boundary)
1051 		map->m_flags |= EXT4_MAP_BOUNDARY;
1052 	err = count;
1053 	/* Clean up and exit */
1054 	partial = chain + depth - 1;	/* the whole chain */
1055 cleanup:
1056 	while (partial > chain) {
1057 		BUFFER_TRACE(partial->bh, "call brelse");
1058 		brelse(partial->bh);
1059 		partial--;
1060 	}
1061 out:
1062 	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1063 				map->m_pblk, map->m_len, err);
1064 	return err;
1065 }
1066 
1067 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)1068 qsize_t *ext4_get_reserved_space(struct inode *inode)
1069 {
1070 	return &EXT4_I(inode)->i_reserved_quota;
1071 }
1072 #endif
1073 
1074 /*
1075  * Calculate the number of metadata blocks need to reserve
1076  * to allocate a new block at @lblocks for non extent file based file
1077  */
ext4_indirect_calc_metadata_amount(struct inode * inode,sector_t lblock)1078 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1079 					      sector_t lblock)
1080 {
1081 	struct ext4_inode_info *ei = EXT4_I(inode);
1082 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1083 	int blk_bits;
1084 
1085 	if (lblock < EXT4_NDIR_BLOCKS)
1086 		return 0;
1087 
1088 	lblock -= EXT4_NDIR_BLOCKS;
1089 
1090 	if (ei->i_da_metadata_calc_len &&
1091 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1092 		ei->i_da_metadata_calc_len++;
1093 		return 0;
1094 	}
1095 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1096 	ei->i_da_metadata_calc_len = 1;
1097 	blk_bits = order_base_2(lblock);
1098 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1099 }
1100 
1101 /*
1102  * Calculate the number of metadata blocks need to reserve
1103  * to allocate a block located at @lblock
1104  */
ext4_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)1105 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1106 {
1107 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1108 		return ext4_ext_calc_metadata_amount(inode, lblock);
1109 
1110 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1111 }
1112 
1113 /*
1114  * Called with i_data_sem down, which is important since we can call
1115  * ext4_discard_preallocations() from here.
1116  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)1117 void ext4_da_update_reserve_space(struct inode *inode,
1118 					int used, int quota_claim)
1119 {
1120 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 	struct ext4_inode_info *ei = EXT4_I(inode);
1122 
1123 	spin_lock(&ei->i_block_reservation_lock);
1124 	trace_ext4_da_update_reserve_space(inode, used);
1125 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1126 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1127 			 "with only %d reserved data blocks\n",
1128 			 __func__, inode->i_ino, used,
1129 			 ei->i_reserved_data_blocks);
1130 		WARN_ON(1);
1131 		used = ei->i_reserved_data_blocks;
1132 	}
1133 
1134 	/* Update per-inode reservations */
1135 	ei->i_reserved_data_blocks -= used;
1136 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1137 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1138 			   used + ei->i_allocated_meta_blocks);
1139 	ei->i_allocated_meta_blocks = 0;
1140 
1141 	if (ei->i_reserved_data_blocks == 0) {
1142 		/*
1143 		 * We can release all of the reserved metadata blocks
1144 		 * only when we have written all of the delayed
1145 		 * allocation blocks.
1146 		 */
1147 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1148 				   ei->i_reserved_meta_blocks);
1149 		ei->i_reserved_meta_blocks = 0;
1150 		ei->i_da_metadata_calc_len = 0;
1151 	}
1152 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1153 
1154 	/* Update quota subsystem for data blocks */
1155 	if (quota_claim)
1156 		dquot_claim_block(inode, used);
1157 	else {
1158 		/*
1159 		 * We did fallocate with an offset that is already delayed
1160 		 * allocated. So on delayed allocated writeback we should
1161 		 * not re-claim the quota for fallocated blocks.
1162 		 */
1163 		dquot_release_reservation_block(inode, used);
1164 	}
1165 
1166 	/*
1167 	 * If we have done all the pending block allocations and if
1168 	 * there aren't any writers on the inode, we can discard the
1169 	 * inode's preallocations.
1170 	 */
1171 	if ((ei->i_reserved_data_blocks == 0) &&
1172 	    (atomic_read(&inode->i_writecount) == 0))
1173 		ext4_discard_preallocations(inode);
1174 }
1175 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)1176 static int __check_block_validity(struct inode *inode, const char *func,
1177 				unsigned int line,
1178 				struct ext4_map_blocks *map)
1179 {
1180 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1181 				   map->m_len)) {
1182 		ext4_error_inode(inode, func, line, map->m_pblk,
1183 				 "lblock %lu mapped to illegal pblock "
1184 				 "(length %d)", (unsigned long) map->m_lblk,
1185 				 map->m_len);
1186 		return -EIO;
1187 	}
1188 	return 0;
1189 }
1190 
1191 #define check_block_validity(inode, map)	\
1192 	__check_block_validity((inode), __func__, __LINE__, (map))
1193 
1194 /*
1195  * Return the number of contiguous dirty pages in a given inode
1196  * starting at page frame idx.
1197  */
ext4_num_dirty_pages(struct inode * inode,pgoff_t idx,unsigned int max_pages)1198 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1199 				    unsigned int max_pages)
1200 {
1201 	struct address_space *mapping = inode->i_mapping;
1202 	pgoff_t	index;
1203 	struct pagevec pvec;
1204 	pgoff_t num = 0;
1205 	int i, nr_pages, done = 0;
1206 
1207 	if (max_pages == 0)
1208 		return 0;
1209 	pagevec_init(&pvec, 0);
1210 	while (!done) {
1211 		index = idx;
1212 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1213 					      PAGECACHE_TAG_DIRTY,
1214 					      (pgoff_t)PAGEVEC_SIZE);
1215 		if (nr_pages == 0)
1216 			break;
1217 		for (i = 0; i < nr_pages; i++) {
1218 			struct page *page = pvec.pages[i];
1219 			struct buffer_head *bh, *head;
1220 
1221 			lock_page(page);
1222 			if (unlikely(page->mapping != mapping) ||
1223 			    !PageDirty(page) ||
1224 			    PageWriteback(page) ||
1225 			    page->index != idx) {
1226 				done = 1;
1227 				unlock_page(page);
1228 				break;
1229 			}
1230 			if (page_has_buffers(page)) {
1231 				bh = head = page_buffers(page);
1232 				do {
1233 					if (!buffer_delay(bh) &&
1234 					    !buffer_unwritten(bh))
1235 						done = 1;
1236 					bh = bh->b_this_page;
1237 				} while (!done && (bh != head));
1238 			}
1239 			unlock_page(page);
1240 			if (done)
1241 				break;
1242 			idx++;
1243 			num++;
1244 			if (num >= max_pages) {
1245 				done = 1;
1246 				break;
1247 			}
1248 		}
1249 		pagevec_release(&pvec);
1250 	}
1251 	return num;
1252 }
1253 
1254 /*
1255  * The ext4_map_blocks() function tries to look up the requested blocks,
1256  * and returns if the blocks are already mapped.
1257  *
1258  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1259  * and store the allocated blocks in the result buffer head and mark it
1260  * mapped.
1261  *
1262  * If file type is extents based, it will call ext4_ext_map_blocks(),
1263  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1264  * based files
1265  *
1266  * On success, it returns the number of blocks being mapped or allocate.
1267  * if create==0 and the blocks are pre-allocated and uninitialized block,
1268  * the result buffer head is unmapped. If the create ==1, it will make sure
1269  * the buffer head is mapped.
1270  *
1271  * It returns 0 if plain look up failed (blocks have not been allocated), in
1272  * that casem, buffer head is unmapped
1273  *
1274  * It returns the error in case of allocation failure.
1275  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)1276 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1277 		    struct ext4_map_blocks *map, int flags)
1278 {
1279 	int retval;
1280 
1281 	map->m_flags = 0;
1282 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1283 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1284 		  (unsigned long) map->m_lblk);
1285 	/*
1286 	 * Try to see if we can get the block without requesting a new
1287 	 * file system block.
1288 	 */
1289 	down_read((&EXT4_I(inode)->i_data_sem));
1290 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1291 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1292 	} else {
1293 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1294 	}
1295 	up_read((&EXT4_I(inode)->i_data_sem));
1296 
1297 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1298 		int ret = check_block_validity(inode, map);
1299 		if (ret != 0)
1300 			return ret;
1301 	}
1302 
1303 	/* If it is only a block(s) look up */
1304 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1305 		return retval;
1306 
1307 	/*
1308 	 * Returns if the blocks have already allocated
1309 	 *
1310 	 * Note that if blocks have been preallocated
1311 	 * ext4_ext_get_block() returns th create = 0
1312 	 * with buffer head unmapped.
1313 	 */
1314 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1315 		return retval;
1316 
1317 	/*
1318 	 * When we call get_blocks without the create flag, the
1319 	 * BH_Unwritten flag could have gotten set if the blocks
1320 	 * requested were part of a uninitialized extent.  We need to
1321 	 * clear this flag now that we are committed to convert all or
1322 	 * part of the uninitialized extent to be an initialized
1323 	 * extent.  This is because we need to avoid the combination
1324 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1325 	 * set on the buffer_head.
1326 	 */
1327 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1328 
1329 	/*
1330 	 * New blocks allocate and/or writing to uninitialized extent
1331 	 * will possibly result in updating i_data, so we take
1332 	 * the write lock of i_data_sem, and call get_blocks()
1333 	 * with create == 1 flag.
1334 	 */
1335 	down_write((&EXT4_I(inode)->i_data_sem));
1336 
1337 	/*
1338 	 * if the caller is from delayed allocation writeout path
1339 	 * we have already reserved fs blocks for allocation
1340 	 * let the underlying get_block() function know to
1341 	 * avoid double accounting
1342 	 */
1343 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1344 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1345 	/*
1346 	 * We need to check for EXT4 here because migrate
1347 	 * could have changed the inode type in between
1348 	 */
1349 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1350 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1351 	} else {
1352 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1353 
1354 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1355 			/*
1356 			 * We allocated new blocks which will result in
1357 			 * i_data's format changing.  Force the migrate
1358 			 * to fail by clearing migrate flags
1359 			 */
1360 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1361 		}
1362 
1363 		/*
1364 		 * Update reserved blocks/metadata blocks after successful
1365 		 * block allocation which had been deferred till now. We don't
1366 		 * support fallocate for non extent files. So we can update
1367 		 * reserve space here.
1368 		 */
1369 		if ((retval > 0) &&
1370 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1371 			ext4_da_update_reserve_space(inode, retval, 1);
1372 	}
1373 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1374 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1375 
1376 	up_write((&EXT4_I(inode)->i_data_sem));
1377 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1378 		int ret = check_block_validity(inode, map);
1379 		if (ret != 0)
1380 			return ret;
1381 	}
1382 	return retval;
1383 }
1384 
1385 /* Maximum number of blocks we map for direct IO at once. */
1386 #define DIO_MAX_BLOCKS 4096
1387 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)1388 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1389 			   struct buffer_head *bh, int flags)
1390 {
1391 	handle_t *handle = ext4_journal_current_handle();
1392 	struct ext4_map_blocks map;
1393 	int ret = 0, started = 0;
1394 	int dio_credits;
1395 
1396 	map.m_lblk = iblock;
1397 	map.m_len = bh->b_size >> inode->i_blkbits;
1398 
1399 	if (flags && !handle) {
1400 		/* Direct IO write... */
1401 		if (map.m_len > DIO_MAX_BLOCKS)
1402 			map.m_len = DIO_MAX_BLOCKS;
1403 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1404 		handle = ext4_journal_start(inode, dio_credits);
1405 		if (IS_ERR(handle)) {
1406 			ret = PTR_ERR(handle);
1407 			return ret;
1408 		}
1409 		started = 1;
1410 	}
1411 
1412 	ret = ext4_map_blocks(handle, inode, &map, flags);
1413 	if (ret > 0) {
1414 		map_bh(bh, inode->i_sb, map.m_pblk);
1415 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1416 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1417 		ret = 0;
1418 	}
1419 	if (started)
1420 		ext4_journal_stop(handle);
1421 	return ret;
1422 }
1423 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1424 int ext4_get_block(struct inode *inode, sector_t iblock,
1425 		   struct buffer_head *bh, int create)
1426 {
1427 	return _ext4_get_block(inode, iblock, bh,
1428 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1429 }
1430 
1431 /*
1432  * `handle' can be NULL if create is zero
1433  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * errp)1434 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1435 				ext4_lblk_t block, int create, int *errp)
1436 {
1437 	struct ext4_map_blocks map;
1438 	struct buffer_head *bh;
1439 	int fatal = 0, err;
1440 
1441 	J_ASSERT(handle != NULL || create == 0);
1442 
1443 	map.m_lblk = block;
1444 	map.m_len = 1;
1445 	err = ext4_map_blocks(handle, inode, &map,
1446 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1447 
1448 	if (err < 0)
1449 		*errp = err;
1450 	if (err <= 0)
1451 		return NULL;
1452 	*errp = 0;
1453 
1454 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1455 	if (!bh) {
1456 		*errp = -EIO;
1457 		return NULL;
1458 	}
1459 	if (map.m_flags & EXT4_MAP_NEW) {
1460 		J_ASSERT(create != 0);
1461 		J_ASSERT(handle != NULL);
1462 
1463 		/*
1464 		 * Now that we do not always journal data, we should
1465 		 * keep in mind whether this should always journal the
1466 		 * new buffer as metadata.  For now, regular file
1467 		 * writes use ext4_get_block instead, so it's not a
1468 		 * problem.
1469 		 */
1470 		lock_buffer(bh);
1471 		BUFFER_TRACE(bh, "call get_create_access");
1472 		fatal = ext4_journal_get_create_access(handle, bh);
1473 		if (!fatal && !buffer_uptodate(bh)) {
1474 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1475 			set_buffer_uptodate(bh);
1476 		}
1477 		unlock_buffer(bh);
1478 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1479 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1480 		if (!fatal)
1481 			fatal = err;
1482 	} else {
1483 		BUFFER_TRACE(bh, "not a new buffer");
1484 	}
1485 	if (fatal) {
1486 		*errp = fatal;
1487 		brelse(bh);
1488 		bh = NULL;
1489 	}
1490 	return bh;
1491 }
1492 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * err)1493 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1494 			       ext4_lblk_t block, int create, int *err)
1495 {
1496 	struct buffer_head *bh;
1497 
1498 	bh = ext4_getblk(handle, inode, block, create, err);
1499 	if (!bh)
1500 		return bh;
1501 	if (buffer_uptodate(bh))
1502 		return bh;
1503 	ll_rw_block(READ_META, 1, &bh);
1504 	wait_on_buffer(bh);
1505 	if (buffer_uptodate(bh))
1506 		return bh;
1507 	put_bh(bh);
1508 	*err = -EIO;
1509 	return NULL;
1510 }
1511 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1512 static int walk_page_buffers(handle_t *handle,
1513 			     struct buffer_head *head,
1514 			     unsigned from,
1515 			     unsigned to,
1516 			     int *partial,
1517 			     int (*fn)(handle_t *handle,
1518 				       struct buffer_head *bh))
1519 {
1520 	struct buffer_head *bh;
1521 	unsigned block_start, block_end;
1522 	unsigned blocksize = head->b_size;
1523 	int err, ret = 0;
1524 	struct buffer_head *next;
1525 
1526 	for (bh = head, block_start = 0;
1527 	     ret == 0 && (bh != head || !block_start);
1528 	     block_start = block_end, bh = next) {
1529 		next = bh->b_this_page;
1530 		block_end = block_start + blocksize;
1531 		if (block_end <= from || block_start >= to) {
1532 			if (partial && !buffer_uptodate(bh))
1533 				*partial = 1;
1534 			continue;
1535 		}
1536 		err = (*fn)(handle, bh);
1537 		if (!ret)
1538 			ret = err;
1539 	}
1540 	return ret;
1541 }
1542 
1543 /*
1544  * To preserve ordering, it is essential that the hole instantiation and
1545  * the data write be encapsulated in a single transaction.  We cannot
1546  * close off a transaction and start a new one between the ext4_get_block()
1547  * and the commit_write().  So doing the jbd2_journal_start at the start of
1548  * prepare_write() is the right place.
1549  *
1550  * Also, this function can nest inside ext4_writepage() ->
1551  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552  * has generated enough buffer credits to do the whole page.  So we won't
1553  * block on the journal in that case, which is good, because the caller may
1554  * be PF_MEMALLOC.
1555  *
1556  * By accident, ext4 can be reentered when a transaction is open via
1557  * quota file writes.  If we were to commit the transaction while thus
1558  * reentered, there can be a deadlock - we would be holding a quota
1559  * lock, and the commit would never complete if another thread had a
1560  * transaction open and was blocking on the quota lock - a ranking
1561  * violation.
1562  *
1563  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564  * will _not_ run commit under these circumstances because handle->h_ref
1565  * is elevated.  We'll still have enough credits for the tiny quotafile
1566  * write.
1567  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1568 static int do_journal_get_write_access(handle_t *handle,
1569 				       struct buffer_head *bh)
1570 {
1571 	int dirty = buffer_dirty(bh);
1572 	int ret;
1573 
1574 	if (!buffer_mapped(bh) || buffer_freed(bh))
1575 		return 0;
1576 	/*
1577 	 * __block_write_begin() could have dirtied some buffers. Clean
1578 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1579 	 * otherwise about fs integrity issues. Setting of the dirty bit
1580 	 * by __block_write_begin() isn't a real problem here as we clear
1581 	 * the bit before releasing a page lock and thus writeback cannot
1582 	 * ever write the buffer.
1583 	 */
1584 	if (dirty)
1585 		clear_buffer_dirty(bh);
1586 	ret = ext4_journal_get_write_access(handle, bh);
1587 	if (!ret && dirty)
1588 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1589 	return ret;
1590 }
1591 
1592 /*
1593  * Truncate blocks that were not used by write. We have to truncate the
1594  * pagecache as well so that corresponding buffers get properly unmapped.
1595  */
ext4_truncate_failed_write(struct inode * inode)1596 static void ext4_truncate_failed_write(struct inode *inode)
1597 {
1598 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1599 	ext4_truncate(inode);
1600 }
1601 
1602 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1603 		   struct buffer_head *bh_result, int create);
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1604 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1605 			    loff_t pos, unsigned len, unsigned flags,
1606 			    struct page **pagep, void **fsdata)
1607 {
1608 	struct inode *inode = mapping->host;
1609 	int ret, needed_blocks;
1610 	handle_t *handle;
1611 	int retries = 0;
1612 	struct page *page;
1613 	pgoff_t index;
1614 	unsigned from, to;
1615 
1616 	trace_ext4_write_begin(inode, pos, len, flags);
1617 	/*
1618 	 * Reserve one block more for addition to orphan list in case
1619 	 * we allocate blocks but write fails for some reason
1620 	 */
1621 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1622 	index = pos >> PAGE_CACHE_SHIFT;
1623 	from = pos & (PAGE_CACHE_SIZE - 1);
1624 	to = from + len;
1625 
1626 retry:
1627 	handle = ext4_journal_start(inode, needed_blocks);
1628 	if (IS_ERR(handle)) {
1629 		ret = PTR_ERR(handle);
1630 		goto out;
1631 	}
1632 
1633 	/* We cannot recurse into the filesystem as the transaction is already
1634 	 * started */
1635 	flags |= AOP_FLAG_NOFS;
1636 
1637 	page = grab_cache_page_write_begin(mapping, index, flags);
1638 	if (!page) {
1639 		ext4_journal_stop(handle);
1640 		ret = -ENOMEM;
1641 		goto out;
1642 	}
1643 	*pagep = page;
1644 
1645 	if (ext4_should_dioread_nolock(inode))
1646 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1647 	else
1648 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1649 
1650 	if (!ret && ext4_should_journal_data(inode)) {
1651 		ret = walk_page_buffers(handle, page_buffers(page),
1652 				from, to, NULL, do_journal_get_write_access);
1653 	}
1654 
1655 	if (ret) {
1656 		unlock_page(page);
1657 		page_cache_release(page);
1658 		/*
1659 		 * __block_write_begin may have instantiated a few blocks
1660 		 * outside i_size.  Trim these off again. Don't need
1661 		 * i_size_read because we hold i_mutex.
1662 		 *
1663 		 * Add inode to orphan list in case we crash before
1664 		 * truncate finishes
1665 		 */
1666 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1667 			ext4_orphan_add(handle, inode);
1668 
1669 		ext4_journal_stop(handle);
1670 		if (pos + len > inode->i_size) {
1671 			ext4_truncate_failed_write(inode);
1672 			/*
1673 			 * If truncate failed early the inode might
1674 			 * still be on the orphan list; we need to
1675 			 * make sure the inode is removed from the
1676 			 * orphan list in that case.
1677 			 */
1678 			if (inode->i_nlink)
1679 				ext4_orphan_del(NULL, inode);
1680 		}
1681 	}
1682 
1683 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1684 		goto retry;
1685 out:
1686 	return ret;
1687 }
1688 
1689 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1690 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1691 {
1692 	if (!buffer_mapped(bh) || buffer_freed(bh))
1693 		return 0;
1694 	set_buffer_uptodate(bh);
1695 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1696 }
1697 
ext4_generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1698 static int ext4_generic_write_end(struct file *file,
1699 				  struct address_space *mapping,
1700 				  loff_t pos, unsigned len, unsigned copied,
1701 				  struct page *page, void *fsdata)
1702 {
1703 	int i_size_changed = 0;
1704 	struct inode *inode = mapping->host;
1705 	handle_t *handle = ext4_journal_current_handle();
1706 
1707 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1708 
1709 	/*
1710 	 * No need to use i_size_read() here, the i_size
1711 	 * cannot change under us because we hold i_mutex.
1712 	 *
1713 	 * But it's important to update i_size while still holding page lock:
1714 	 * page writeout could otherwise come in and zero beyond i_size.
1715 	 */
1716 	if (pos + copied > inode->i_size) {
1717 		i_size_write(inode, pos + copied);
1718 		i_size_changed = 1;
1719 	}
1720 
1721 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1722 		/* We need to mark inode dirty even if
1723 		 * new_i_size is less that inode->i_size
1724 		 * bu greater than i_disksize.(hint delalloc)
1725 		 */
1726 		ext4_update_i_disksize(inode, (pos + copied));
1727 		i_size_changed = 1;
1728 	}
1729 	unlock_page(page);
1730 	page_cache_release(page);
1731 
1732 	/*
1733 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1734 	 * makes the holding time of page lock longer. Second, it forces lock
1735 	 * ordering of page lock and transaction start for journaling
1736 	 * filesystems.
1737 	 */
1738 	if (i_size_changed)
1739 		ext4_mark_inode_dirty(handle, inode);
1740 
1741 	return copied;
1742 }
1743 
1744 /*
1745  * We need to pick up the new inode size which generic_commit_write gave us
1746  * `file' can be NULL - eg, when called from page_symlink().
1747  *
1748  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1749  * buffers are managed internally.
1750  */
ext4_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1751 static int ext4_ordered_write_end(struct file *file,
1752 				  struct address_space *mapping,
1753 				  loff_t pos, unsigned len, unsigned copied,
1754 				  struct page *page, void *fsdata)
1755 {
1756 	handle_t *handle = ext4_journal_current_handle();
1757 	struct inode *inode = mapping->host;
1758 	int ret = 0, ret2;
1759 
1760 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1761 	ret = ext4_jbd2_file_inode(handle, inode);
1762 
1763 	if (ret == 0) {
1764 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1765 							page, fsdata);
1766 		copied = ret2;
1767 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1768 			/* if we have allocated more blocks and copied
1769 			 * less. We will have blocks allocated outside
1770 			 * inode->i_size. So truncate them
1771 			 */
1772 			ext4_orphan_add(handle, inode);
1773 		if (ret2 < 0)
1774 			ret = ret2;
1775 	}
1776 	ret2 = ext4_journal_stop(handle);
1777 	if (!ret)
1778 		ret = ret2;
1779 
1780 	if (pos + len > inode->i_size) {
1781 		ext4_truncate_failed_write(inode);
1782 		/*
1783 		 * If truncate failed early the inode might still be
1784 		 * on the orphan list; we need to make sure the inode
1785 		 * is removed from the orphan list in that case.
1786 		 */
1787 		if (inode->i_nlink)
1788 			ext4_orphan_del(NULL, inode);
1789 	}
1790 
1791 
1792 	return ret ? ret : copied;
1793 }
1794 
ext4_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1795 static int ext4_writeback_write_end(struct file *file,
1796 				    struct address_space *mapping,
1797 				    loff_t pos, unsigned len, unsigned copied,
1798 				    struct page *page, void *fsdata)
1799 {
1800 	handle_t *handle = ext4_journal_current_handle();
1801 	struct inode *inode = mapping->host;
1802 	int ret = 0, ret2;
1803 
1804 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1805 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1806 							page, fsdata);
1807 	copied = ret2;
1808 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1809 		/* if we have allocated more blocks and copied
1810 		 * less. We will have blocks allocated outside
1811 		 * inode->i_size. So truncate them
1812 		 */
1813 		ext4_orphan_add(handle, inode);
1814 
1815 	if (ret2 < 0)
1816 		ret = ret2;
1817 
1818 	ret2 = ext4_journal_stop(handle);
1819 	if (!ret)
1820 		ret = ret2;
1821 
1822 	if (pos + len > inode->i_size) {
1823 		ext4_truncate_failed_write(inode);
1824 		/*
1825 		 * If truncate failed early the inode might still be
1826 		 * on the orphan list; we need to make sure the inode
1827 		 * is removed from the orphan list in that case.
1828 		 */
1829 		if (inode->i_nlink)
1830 			ext4_orphan_del(NULL, inode);
1831 	}
1832 
1833 	return ret ? ret : copied;
1834 }
1835 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1836 static int ext4_journalled_write_end(struct file *file,
1837 				     struct address_space *mapping,
1838 				     loff_t pos, unsigned len, unsigned copied,
1839 				     struct page *page, void *fsdata)
1840 {
1841 	handle_t *handle = ext4_journal_current_handle();
1842 	struct inode *inode = mapping->host;
1843 	int ret = 0, ret2;
1844 	int partial = 0;
1845 	unsigned from, to;
1846 	loff_t new_i_size;
1847 
1848 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1849 	from = pos & (PAGE_CACHE_SIZE - 1);
1850 	to = from + len;
1851 
1852 	if (copied < len) {
1853 		if (!PageUptodate(page))
1854 			copied = 0;
1855 		page_zero_new_buffers(page, from+copied, to);
1856 	}
1857 
1858 	ret = walk_page_buffers(handle, page_buffers(page), from,
1859 				to, &partial, write_end_fn);
1860 	if (!partial)
1861 		SetPageUptodate(page);
1862 	new_i_size = pos + copied;
1863 	if (new_i_size > inode->i_size)
1864 		i_size_write(inode, pos+copied);
1865 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1866 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1867 		ext4_update_i_disksize(inode, new_i_size);
1868 		ret2 = ext4_mark_inode_dirty(handle, inode);
1869 		if (!ret)
1870 			ret = ret2;
1871 	}
1872 
1873 	unlock_page(page);
1874 	page_cache_release(page);
1875 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1876 		/* if we have allocated more blocks and copied
1877 		 * less. We will have blocks allocated outside
1878 		 * inode->i_size. So truncate them
1879 		 */
1880 		ext4_orphan_add(handle, inode);
1881 
1882 	ret2 = ext4_journal_stop(handle);
1883 	if (!ret)
1884 		ret = ret2;
1885 	if (pos + len > inode->i_size) {
1886 		ext4_truncate_failed_write(inode);
1887 		/*
1888 		 * If truncate failed early the inode might still be
1889 		 * on the orphan list; we need to make sure the inode
1890 		 * is removed from the orphan list in that case.
1891 		 */
1892 		if (inode->i_nlink)
1893 			ext4_orphan_del(NULL, inode);
1894 	}
1895 
1896 	return ret ? ret : copied;
1897 }
1898 
1899 /*
1900  * Reserve a single block located at lblock
1901  */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1902 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1903 {
1904 	int retries = 0;
1905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 	struct ext4_inode_info *ei = EXT4_I(inode);
1907 	unsigned long md_needed;
1908 	int ret;
1909 
1910 	/*
1911 	 * recalculate the amount of metadata blocks to reserve
1912 	 * in order to allocate nrblocks
1913 	 * worse case is one extent per block
1914 	 */
1915 repeat:
1916 	spin_lock(&ei->i_block_reservation_lock);
1917 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1918 	trace_ext4_da_reserve_space(inode, md_needed);
1919 	spin_unlock(&ei->i_block_reservation_lock);
1920 
1921 	/*
1922 	 * We will charge metadata quota at writeout time; this saves
1923 	 * us from metadata over-estimation, though we may go over by
1924 	 * a small amount in the end.  Here we just reserve for data.
1925 	 */
1926 	ret = dquot_reserve_block(inode, 1);
1927 	if (ret)
1928 		return ret;
1929 	/*
1930 	 * We do still charge estimated metadata to the sb though;
1931 	 * we cannot afford to run out of free blocks.
1932 	 */
1933 	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1934 		dquot_release_reservation_block(inode, 1);
1935 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1936 			yield();
1937 			goto repeat;
1938 		}
1939 		return -ENOSPC;
1940 	}
1941 	spin_lock(&ei->i_block_reservation_lock);
1942 	ei->i_reserved_data_blocks++;
1943 	ei->i_reserved_meta_blocks += md_needed;
1944 	spin_unlock(&ei->i_block_reservation_lock);
1945 
1946 	return 0;       /* success */
1947 }
1948 
ext4_da_release_space(struct inode * inode,int to_free)1949 static void ext4_da_release_space(struct inode *inode, int to_free)
1950 {
1951 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1952 	struct ext4_inode_info *ei = EXT4_I(inode);
1953 
1954 	if (!to_free)
1955 		return;		/* Nothing to release, exit */
1956 
1957 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1958 
1959 	trace_ext4_da_release_space(inode, to_free);
1960 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1961 		/*
1962 		 * if there aren't enough reserved blocks, then the
1963 		 * counter is messed up somewhere.  Since this
1964 		 * function is called from invalidate page, it's
1965 		 * harmless to return without any action.
1966 		 */
1967 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1968 			 "ino %lu, to_free %d with only %d reserved "
1969 			 "data blocks\n", inode->i_ino, to_free,
1970 			 ei->i_reserved_data_blocks);
1971 		WARN_ON(1);
1972 		to_free = ei->i_reserved_data_blocks;
1973 	}
1974 	ei->i_reserved_data_blocks -= to_free;
1975 
1976 	if (ei->i_reserved_data_blocks == 0) {
1977 		/*
1978 		 * We can release all of the reserved metadata blocks
1979 		 * only when we have written all of the delayed
1980 		 * allocation blocks.
1981 		 */
1982 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1983 				   ei->i_reserved_meta_blocks);
1984 		ei->i_reserved_meta_blocks = 0;
1985 		ei->i_da_metadata_calc_len = 0;
1986 	}
1987 
1988 	/* update fs dirty data blocks counter */
1989 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1990 
1991 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1992 
1993 	dquot_release_reservation_block(inode, to_free);
1994 }
1995 
ext4_da_page_release_reservation(struct page * page,unsigned long offset)1996 static void ext4_da_page_release_reservation(struct page *page,
1997 					     unsigned long offset)
1998 {
1999 	int to_release = 0;
2000 	struct buffer_head *head, *bh;
2001 	unsigned int curr_off = 0;
2002 
2003 	head = page_buffers(page);
2004 	bh = head;
2005 	do {
2006 		unsigned int next_off = curr_off + bh->b_size;
2007 
2008 		if ((offset <= curr_off) && (buffer_delay(bh))) {
2009 			to_release++;
2010 			clear_buffer_delay(bh);
2011 		}
2012 		curr_off = next_off;
2013 	} while ((bh = bh->b_this_page) != head);
2014 	ext4_da_release_space(page->mapping->host, to_release);
2015 }
2016 
2017 /*
2018  * Delayed allocation stuff
2019  */
2020 
2021 /*
2022  * mpage_da_submit_io - walks through extent of pages and try to write
2023  * them with writepage() call back
2024  *
2025  * @mpd->inode: inode
2026  * @mpd->first_page: first page of the extent
2027  * @mpd->next_page: page after the last page of the extent
2028  *
2029  * By the time mpage_da_submit_io() is called we expect all blocks
2030  * to be allocated. this may be wrong if allocation failed.
2031  *
2032  * As pages are already locked by write_cache_pages(), we can't use it
2033  */
mpage_da_submit_io(struct mpage_da_data * mpd,struct ext4_map_blocks * map)2034 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2035 			      struct ext4_map_blocks *map)
2036 {
2037 	struct pagevec pvec;
2038 	unsigned long index, end;
2039 	int ret = 0, err, nr_pages, i;
2040 	struct inode *inode = mpd->inode;
2041 	struct address_space *mapping = inode->i_mapping;
2042 	loff_t size = i_size_read(inode);
2043 	unsigned int len, block_start;
2044 	struct buffer_head *bh, *page_bufs = NULL;
2045 	int journal_data = ext4_should_journal_data(inode);
2046 	sector_t pblock = 0, cur_logical = 0;
2047 	struct ext4_io_submit io_submit;
2048 
2049 	BUG_ON(mpd->next_page <= mpd->first_page);
2050 	memset(&io_submit, 0, sizeof(io_submit));
2051 	/*
2052 	 * We need to start from the first_page to the next_page - 1
2053 	 * to make sure we also write the mapped dirty buffer_heads.
2054 	 * If we look at mpd->b_blocknr we would only be looking
2055 	 * at the currently mapped buffer_heads.
2056 	 */
2057 	index = mpd->first_page;
2058 	end = mpd->next_page - 1;
2059 
2060 	pagevec_init(&pvec, 0);
2061 	while (index <= end) {
2062 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2063 		if (nr_pages == 0)
2064 			break;
2065 		for (i = 0; i < nr_pages; i++) {
2066 			int commit_write = 0, skip_page = 0;
2067 			struct page *page = pvec.pages[i];
2068 
2069 			index = page->index;
2070 			if (index > end)
2071 				break;
2072 
2073 			if (index == size >> PAGE_CACHE_SHIFT)
2074 				len = size & ~PAGE_CACHE_MASK;
2075 			else
2076 				len = PAGE_CACHE_SIZE;
2077 			if (map) {
2078 				cur_logical = index << (PAGE_CACHE_SHIFT -
2079 							inode->i_blkbits);
2080 				pblock = map->m_pblk + (cur_logical -
2081 							map->m_lblk);
2082 			}
2083 			index++;
2084 
2085 			BUG_ON(!PageLocked(page));
2086 			BUG_ON(PageWriteback(page));
2087 
2088 			/*
2089 			 * If the page does not have buffers (for
2090 			 * whatever reason), try to create them using
2091 			 * __block_write_begin.  If this fails,
2092 			 * skip the page and move on.
2093 			 */
2094 			if (!page_has_buffers(page)) {
2095 				if (__block_write_begin(page, 0, len,
2096 						noalloc_get_block_write)) {
2097 				skip_page:
2098 					unlock_page(page);
2099 					continue;
2100 				}
2101 				commit_write = 1;
2102 			}
2103 
2104 			bh = page_bufs = page_buffers(page);
2105 			block_start = 0;
2106 			do {
2107 				if (!bh)
2108 					goto skip_page;
2109 				if (map && (cur_logical >= map->m_lblk) &&
2110 				    (cur_logical <= (map->m_lblk +
2111 						     (map->m_len - 1)))) {
2112 					if (buffer_delay(bh)) {
2113 						clear_buffer_delay(bh);
2114 						bh->b_blocknr = pblock;
2115 					}
2116 					if (buffer_unwritten(bh) ||
2117 					    buffer_mapped(bh))
2118 						BUG_ON(bh->b_blocknr != pblock);
2119 					if (map->m_flags & EXT4_MAP_UNINIT)
2120 						set_buffer_uninit(bh);
2121 					clear_buffer_unwritten(bh);
2122 				}
2123 
2124 				/* skip page if block allocation undone */
2125 				if (buffer_delay(bh) || buffer_unwritten(bh))
2126 					skip_page = 1;
2127 				bh = bh->b_this_page;
2128 				block_start += bh->b_size;
2129 				cur_logical++;
2130 				pblock++;
2131 			} while (bh != page_bufs);
2132 
2133 			if (skip_page)
2134 				goto skip_page;
2135 
2136 			if (commit_write)
2137 				/* mark the buffer_heads as dirty & uptodate */
2138 				block_commit_write(page, 0, len);
2139 
2140 			clear_page_dirty_for_io(page);
2141 			/*
2142 			 * Delalloc doesn't support data journalling,
2143 			 * but eventually maybe we'll lift this
2144 			 * restriction.
2145 			 */
2146 			if (unlikely(journal_data && PageChecked(page)))
2147 				err = __ext4_journalled_writepage(page, len);
2148 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2149 				err = ext4_bio_write_page(&io_submit, page,
2150 							  len, mpd->wbc);
2151 			else
2152 				err = block_write_full_page(page,
2153 					noalloc_get_block_write, mpd->wbc);
2154 
2155 			if (!err)
2156 				mpd->pages_written++;
2157 			/*
2158 			 * In error case, we have to continue because
2159 			 * remaining pages are still locked
2160 			 */
2161 			if (ret == 0)
2162 				ret = err;
2163 		}
2164 		pagevec_release(&pvec);
2165 	}
2166 	ext4_io_submit(&io_submit);
2167 	return ret;
2168 }
2169 
ext4_da_block_invalidatepages(struct mpage_da_data * mpd)2170 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2171 {
2172 	int nr_pages, i;
2173 	pgoff_t index, end;
2174 	struct pagevec pvec;
2175 	struct inode *inode = mpd->inode;
2176 	struct address_space *mapping = inode->i_mapping;
2177 
2178 	index = mpd->first_page;
2179 	end   = mpd->next_page - 1;
2180 	while (index <= end) {
2181 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 		if (nr_pages == 0)
2183 			break;
2184 		for (i = 0; i < nr_pages; i++) {
2185 			struct page *page = pvec.pages[i];
2186 			if (page->index > end)
2187 				break;
2188 			BUG_ON(!PageLocked(page));
2189 			BUG_ON(PageWriteback(page));
2190 			block_invalidatepage(page, 0);
2191 			ClearPageUptodate(page);
2192 			unlock_page(page);
2193 		}
2194 		index = pvec.pages[nr_pages - 1]->index + 1;
2195 		pagevec_release(&pvec);
2196 	}
2197 	return;
2198 }
2199 
ext4_print_free_blocks(struct inode * inode)2200 static void ext4_print_free_blocks(struct inode *inode)
2201 {
2202 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 	printk(KERN_CRIT "Total free blocks count %lld\n",
2204 	       ext4_count_free_blocks(inode->i_sb));
2205 	printk(KERN_CRIT "Free/Dirty block details\n");
2206 	printk(KERN_CRIT "free_blocks=%lld\n",
2207 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 	printk(KERN_CRIT "Block reservation details\n");
2211 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 	       EXT4_I(inode)->i_reserved_data_blocks);
2213 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 	       EXT4_I(inode)->i_reserved_meta_blocks);
2215 	return;
2216 }
2217 
2218 /*
2219  * mpage_da_map_and_submit - go through given space, map them
2220  *       if necessary, and then submit them for I/O
2221  *
2222  * @mpd - bh describing space
2223  *
2224  * The function skips space we know is already mapped to disk blocks.
2225  *
2226  */
mpage_da_map_and_submit(struct mpage_da_data * mpd)2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 {
2229 	int err, blks, get_blocks_flags;
2230 	struct ext4_map_blocks map, *mapp = NULL;
2231 	sector_t next = mpd->b_blocknr;
2232 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 	handle_t *handle = NULL;
2235 
2236 	/*
2237 	 * If the blocks are mapped already, or we couldn't accumulate
2238 	 * any blocks, then proceed immediately to the submission stage.
2239 	 */
2240 	if ((mpd->b_size == 0) ||
2241 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2242 	     !(mpd->b_state & (1 << BH_Delay)) &&
2243 	     !(mpd->b_state & (1 << BH_Unwritten))))
2244 		goto submit_io;
2245 
2246 	handle = ext4_journal_current_handle();
2247 	BUG_ON(!handle);
2248 
2249 	/*
2250 	 * Call ext4_map_blocks() to allocate any delayed allocation
2251 	 * blocks, or to convert an uninitialized extent to be
2252 	 * initialized (in the case where we have written into
2253 	 * one or more preallocated blocks).
2254 	 *
2255 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 	 * indicate that we are on the delayed allocation path.  This
2257 	 * affects functions in many different parts of the allocation
2258 	 * call path.  This flag exists primarily because we don't
2259 	 * want to change *many* call functions, so ext4_map_blocks()
2260 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 	 * inode's allocation semaphore is taken.
2262 	 *
2263 	 * If the blocks in questions were delalloc blocks, set
2264 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 	 * variables are updated after the blocks have been allocated.
2266 	 */
2267 	map.m_lblk = next;
2268 	map.m_len = max_blocks;
2269 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 	if (ext4_should_dioread_nolock(mpd->inode))
2271 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 	if (mpd->b_state & (1 << BH_Delay))
2273 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274 
2275 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 	if (blks < 0) {
2277 		struct super_block *sb = mpd->inode->i_sb;
2278 
2279 		err = blks;
2280 		/*
2281 		 * If get block returns EAGAIN or ENOSPC and there
2282 		 * appears to be free blocks we will just let
2283 		 * mpage_da_submit_io() unlock all of the pages.
2284 		 */
2285 		if (err == -EAGAIN)
2286 			goto submit_io;
2287 
2288 		if (err == -ENOSPC &&
2289 		    ext4_count_free_blocks(sb)) {
2290 			mpd->retval = err;
2291 			goto submit_io;
2292 		}
2293 
2294 		/*
2295 		 * get block failure will cause us to loop in
2296 		 * writepages, because a_ops->writepage won't be able
2297 		 * to make progress. The page will be redirtied by
2298 		 * writepage and writepages will again try to write
2299 		 * the same.
2300 		 */
2301 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302 			ext4_msg(sb, KERN_CRIT,
2303 				 "delayed block allocation failed for inode %lu "
2304 				 "at logical offset %llu with max blocks %zd "
2305 				 "with error %d", mpd->inode->i_ino,
2306 				 (unsigned long long) next,
2307 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2308 			ext4_msg(sb, KERN_CRIT,
2309 				"This should not happen!! Data will be lost\n");
2310 			if (err == -ENOSPC)
2311 				ext4_print_free_blocks(mpd->inode);
2312 		}
2313 		/* invalidate all the pages */
2314 		ext4_da_block_invalidatepages(mpd);
2315 
2316 		/* Mark this page range as having been completed */
2317 		mpd->io_done = 1;
2318 		return;
2319 	}
2320 	BUG_ON(blks == 0);
2321 
2322 	mapp = &map;
2323 	if (map.m_flags & EXT4_MAP_NEW) {
2324 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2325 		int i;
2326 
2327 		for (i = 0; i < map.m_len; i++)
2328 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2329 	}
2330 
2331 	if (ext4_should_order_data(mpd->inode)) {
2332 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2333 		if (err)
2334 			/* This only happens if the journal is aborted */
2335 			return;
2336 	}
2337 
2338 	/*
2339 	 * Update on-disk size along with block allocation.
2340 	 */
2341 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2342 	if (disksize > i_size_read(mpd->inode))
2343 		disksize = i_size_read(mpd->inode);
2344 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2345 		ext4_update_i_disksize(mpd->inode, disksize);
2346 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2347 		if (err)
2348 			ext4_error(mpd->inode->i_sb,
2349 				   "Failed to mark inode %lu dirty",
2350 				   mpd->inode->i_ino);
2351 	}
2352 
2353 submit_io:
2354 	mpage_da_submit_io(mpd, mapp);
2355 	mpd->io_done = 1;
2356 }
2357 
2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2359 		(1 << BH_Delay) | (1 << BH_Unwritten))
2360 
2361 /*
2362  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2363  *
2364  * @mpd->lbh - extent of blocks
2365  * @logical - logical number of the block in the file
2366  * @bh - bh of the block (used to access block's state)
2367  *
2368  * the function is used to collect contig. blocks in same state
2369  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,sector_t logical,size_t b_size,unsigned long b_state)2370 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2371 				   sector_t logical, size_t b_size,
2372 				   unsigned long b_state)
2373 {
2374 	sector_t next;
2375 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2376 
2377 	/*
2378 	 * XXX Don't go larger than mballoc is willing to allocate
2379 	 * This is a stopgap solution.  We eventually need to fold
2380 	 * mpage_da_submit_io() into this function and then call
2381 	 * ext4_map_blocks() multiple times in a loop
2382 	 */
2383 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2384 		goto flush_it;
2385 
2386 	/* check if thereserved journal credits might overflow */
2387 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2388 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2389 			/*
2390 			 * With non-extent format we are limited by the journal
2391 			 * credit available.  Total credit needed to insert
2392 			 * nrblocks contiguous blocks is dependent on the
2393 			 * nrblocks.  So limit nrblocks.
2394 			 */
2395 			goto flush_it;
2396 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2397 				EXT4_MAX_TRANS_DATA) {
2398 			/*
2399 			 * Adding the new buffer_head would make it cross the
2400 			 * allowed limit for which we have journal credit
2401 			 * reserved. So limit the new bh->b_size
2402 			 */
2403 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2404 						mpd->inode->i_blkbits;
2405 			/* we will do mpage_da_submit_io in the next loop */
2406 		}
2407 	}
2408 	/*
2409 	 * First block in the extent
2410 	 */
2411 	if (mpd->b_size == 0) {
2412 		mpd->b_blocknr = logical;
2413 		mpd->b_size = b_size;
2414 		mpd->b_state = b_state & BH_FLAGS;
2415 		return;
2416 	}
2417 
2418 	next = mpd->b_blocknr + nrblocks;
2419 	/*
2420 	 * Can we merge the block to our big extent?
2421 	 */
2422 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2423 		mpd->b_size += b_size;
2424 		return;
2425 	}
2426 
2427 flush_it:
2428 	/*
2429 	 * We couldn't merge the block to our extent, so we
2430 	 * need to flush current  extent and start new one
2431 	 */
2432 	mpage_da_map_and_submit(mpd);
2433 	return;
2434 }
2435 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)2436 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2437 {
2438 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2439 }
2440 
2441 /*
2442  * This is a special get_blocks_t callback which is used by
2443  * ext4_da_write_begin().  It will either return mapped block or
2444  * reserve space for a single block.
2445  *
2446  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447  * We also have b_blocknr = -1 and b_bdev initialized properly
2448  *
2449  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451  * initialized properly.
2452  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 				  struct buffer_head *bh, int create)
2455 {
2456 	struct ext4_map_blocks map;
2457 	int ret = 0;
2458 	sector_t invalid_block = ~((sector_t) 0xffff);
2459 
2460 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2461 		invalid_block = ~0;
2462 
2463 	BUG_ON(create == 0);
2464 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2465 
2466 	map.m_lblk = iblock;
2467 	map.m_len = 1;
2468 
2469 	/*
2470 	 * first, we need to know whether the block is allocated already
2471 	 * preallocated blocks are unmapped but should treated
2472 	 * the same as allocated blocks.
2473 	 */
2474 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2475 	if (ret < 0)
2476 		return ret;
2477 	if (ret == 0) {
2478 		if (buffer_delay(bh))
2479 			return 0; /* Not sure this could or should happen */
2480 		/*
2481 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2482 		 */
2483 		ret = ext4_da_reserve_space(inode, iblock);
2484 		if (ret)
2485 			/* not enough space to reserve */
2486 			return ret;
2487 
2488 		map_bh(bh, inode->i_sb, invalid_block);
2489 		set_buffer_new(bh);
2490 		set_buffer_delay(bh);
2491 		return 0;
2492 	}
2493 
2494 	map_bh(bh, inode->i_sb, map.m_pblk);
2495 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2496 
2497 	if (buffer_unwritten(bh)) {
2498 		/* A delayed write to unwritten bh should be marked
2499 		 * new and mapped.  Mapped ensures that we don't do
2500 		 * get_block multiple times when we write to the same
2501 		 * offset and new ensures that we do proper zero out
2502 		 * for partial write.
2503 		 */
2504 		set_buffer_new(bh);
2505 		set_buffer_mapped(bh);
2506 	}
2507 	return 0;
2508 }
2509 
2510 /*
2511  * This function is used as a standard get_block_t calback function
2512  * when there is no desire to allocate any blocks.  It is used as a
2513  * callback function for block_write_begin() and block_write_full_page().
2514  * These functions should only try to map a single block at a time.
2515  *
2516  * Since this function doesn't do block allocations even if the caller
2517  * requests it by passing in create=1, it is critically important that
2518  * any caller checks to make sure that any buffer heads are returned
2519  * by this function are either all already mapped or marked for
2520  * delayed allocation before calling  block_write_full_page().  Otherwise,
2521  * b_blocknr could be left unitialized, and the page write functions will
2522  * be taken by surprise.
2523  */
noalloc_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2524 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2525 				   struct buffer_head *bh_result, int create)
2526 {
2527 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2528 	return _ext4_get_block(inode, iblock, bh_result, 0);
2529 }
2530 
bget_one(handle_t * handle,struct buffer_head * bh)2531 static int bget_one(handle_t *handle, struct buffer_head *bh)
2532 {
2533 	get_bh(bh);
2534 	return 0;
2535 }
2536 
bput_one(handle_t * handle,struct buffer_head * bh)2537 static int bput_one(handle_t *handle, struct buffer_head *bh)
2538 {
2539 	put_bh(bh);
2540 	return 0;
2541 }
2542 
__ext4_journalled_writepage(struct page * page,unsigned int len)2543 static int __ext4_journalled_writepage(struct page *page,
2544 				       unsigned int len)
2545 {
2546 	struct address_space *mapping = page->mapping;
2547 	struct inode *inode = mapping->host;
2548 	struct buffer_head *page_bufs;
2549 	handle_t *handle = NULL;
2550 	int ret = 0;
2551 	int err;
2552 
2553 	ClearPageChecked(page);
2554 	page_bufs = page_buffers(page);
2555 	BUG_ON(!page_bufs);
2556 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2557 	/* As soon as we unlock the page, it can go away, but we have
2558 	 * references to buffers so we are safe */
2559 	unlock_page(page);
2560 
2561 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2562 	if (IS_ERR(handle)) {
2563 		ret = PTR_ERR(handle);
2564 		goto out;
2565 	}
2566 
2567 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 				do_journal_get_write_access);
2569 
2570 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2571 				write_end_fn);
2572 	if (ret == 0)
2573 		ret = err;
2574 	err = ext4_journal_stop(handle);
2575 	if (!ret)
2576 		ret = err;
2577 
2578 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2579 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2580 out:
2581 	return ret;
2582 }
2583 
2584 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2585 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2586 
2587 /*
2588  * Note that we don't need to start a transaction unless we're journaling data
2589  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2590  * need to file the inode to the transaction's list in ordered mode because if
2591  * we are writing back data added by write(), the inode is already there and if
2592  * we are writing back data modified via mmap(), no one guarantees in which
2593  * transaction the data will hit the disk. In case we are journaling data, we
2594  * cannot start transaction directly because transaction start ranks above page
2595  * lock so we have to do some magic.
2596  *
2597  * This function can get called via...
2598  *   - ext4_da_writepages after taking page lock (have journal handle)
2599  *   - journal_submit_inode_data_buffers (no journal handle)
2600  *   - shrink_page_list via pdflush (no journal handle)
2601  *   - grab_page_cache when doing write_begin (have journal handle)
2602  *
2603  * We don't do any block allocation in this function. If we have page with
2604  * multiple blocks we need to write those buffer_heads that are mapped. This
2605  * is important for mmaped based write. So if we do with blocksize 1K
2606  * truncate(f, 1024);
2607  * a = mmap(f, 0, 4096);
2608  * a[0] = 'a';
2609  * truncate(f, 4096);
2610  * we have in the page first buffer_head mapped via page_mkwrite call back
2611  * but other bufer_heads would be unmapped but dirty(dirty done via the
2612  * do_wp_page). So writepage should write the first block. If we modify
2613  * the mmap area beyond 1024 we will again get a page_fault and the
2614  * page_mkwrite callback will do the block allocation and mark the
2615  * buffer_heads mapped.
2616  *
2617  * We redirty the page if we have any buffer_heads that is either delay or
2618  * unwritten in the page.
2619  *
2620  * We can get recursively called as show below.
2621  *
2622  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2623  *		ext4_writepage()
2624  *
2625  * But since we don't do any block allocation we should not deadlock.
2626  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2627  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2628 static int ext4_writepage(struct page *page,
2629 			  struct writeback_control *wbc)
2630 {
2631 	int ret = 0, commit_write = 0;
2632 	loff_t size;
2633 	unsigned int len;
2634 	struct buffer_head *page_bufs = NULL;
2635 	struct inode *inode = page->mapping->host;
2636 
2637 	trace_ext4_writepage(inode, page);
2638 	size = i_size_read(inode);
2639 	if (page->index == size >> PAGE_CACHE_SHIFT)
2640 		len = size & ~PAGE_CACHE_MASK;
2641 	else
2642 		len = PAGE_CACHE_SIZE;
2643 
2644 	/*
2645 	 * If the page does not have buffers (for whatever reason),
2646 	 * try to create them using __block_write_begin.  If this
2647 	 * fails, redirty the page and move on.
2648 	 */
2649 	if (!page_has_buffers(page)) {
2650 		if (__block_write_begin(page, 0, len,
2651 					noalloc_get_block_write)) {
2652 		redirty_page:
2653 			redirty_page_for_writepage(wbc, page);
2654 			unlock_page(page);
2655 			return 0;
2656 		}
2657 		commit_write = 1;
2658 	}
2659 	page_bufs = page_buffers(page);
2660 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2661 			      ext4_bh_delay_or_unwritten)) {
2662 		/*
2663 		 * We don't want to do block allocation, so redirty
2664 		 * the page and return.  We may reach here when we do
2665 		 * a journal commit via journal_submit_inode_data_buffers.
2666 		 * We can also reach here via shrink_page_list
2667 		 */
2668 		goto redirty_page;
2669 	}
2670 	if (commit_write)
2671 		/* now mark the buffer_heads as dirty and uptodate */
2672 		block_commit_write(page, 0, len);
2673 
2674 	if (PageChecked(page) && ext4_should_journal_data(inode))
2675 		/*
2676 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2677 		 * doesn't seem much point in redirtying the page here.
2678 		 */
2679 		return __ext4_journalled_writepage(page, len);
2680 
2681 	if (buffer_uninit(page_bufs)) {
2682 		ext4_set_bh_endio(page_bufs, inode);
2683 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2684 					    wbc, ext4_end_io_buffer_write);
2685 	} else
2686 		ret = block_write_full_page(page, noalloc_get_block_write,
2687 					    wbc);
2688 
2689 	return ret;
2690 }
2691 
2692 /*
2693  * This is called via ext4_da_writepages() to
2694  * calculate the total number of credits to reserve to fit
2695  * a single extent allocation into a single transaction,
2696  * ext4_da_writpeages() will loop calling this before
2697  * the block allocation.
2698  */
2699 
ext4_da_writepages_trans_blocks(struct inode * inode)2700 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2701 {
2702 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2703 
2704 	/*
2705 	 * With non-extent format the journal credit needed to
2706 	 * insert nrblocks contiguous block is dependent on
2707 	 * number of contiguous block. So we will limit
2708 	 * number of contiguous block to a sane value
2709 	 */
2710 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2711 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2712 		max_blocks = EXT4_MAX_TRANS_DATA;
2713 
2714 	return ext4_chunk_trans_blocks(inode, max_blocks);
2715 }
2716 
2717 /*
2718  * write_cache_pages_da - walk the list of dirty pages of the given
2719  * address space and accumulate pages that need writing, and call
2720  * mpage_da_map_and_submit to map a single contiguous memory region
2721  * and then write them.
2722  */
write_cache_pages_da(struct address_space * mapping,struct writeback_control * wbc,struct mpage_da_data * mpd,pgoff_t * done_index)2723 static int write_cache_pages_da(struct address_space *mapping,
2724 				struct writeback_control *wbc,
2725 				struct mpage_da_data *mpd,
2726 				pgoff_t *done_index)
2727 {
2728 	struct buffer_head	*bh, *head;
2729 	struct inode		*inode = mapping->host;
2730 	struct pagevec		pvec;
2731 	unsigned int		nr_pages;
2732 	sector_t		logical;
2733 	pgoff_t			index, end;
2734 	long			nr_to_write = wbc->nr_to_write;
2735 	int			i, tag, ret = 0;
2736 
2737 	memset(mpd, 0, sizeof(struct mpage_da_data));
2738 	mpd->wbc = wbc;
2739 	mpd->inode = inode;
2740 	pagevec_init(&pvec, 0);
2741 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2742 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2743 
2744 	if (wbc->sync_mode == WB_SYNC_ALL)
2745 		tag = PAGECACHE_TAG_TOWRITE;
2746 	else
2747 		tag = PAGECACHE_TAG_DIRTY;
2748 
2749 	*done_index = index;
2750 	while (index <= end) {
2751 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2752 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2753 		if (nr_pages == 0)
2754 			return 0;
2755 
2756 		for (i = 0; i < nr_pages; i++) {
2757 			struct page *page = pvec.pages[i];
2758 
2759 			/*
2760 			 * At this point, the page may be truncated or
2761 			 * invalidated (changing page->mapping to NULL), or
2762 			 * even swizzled back from swapper_space to tmpfs file
2763 			 * mapping. However, page->index will not change
2764 			 * because we have a reference on the page.
2765 			 */
2766 			if (page->index > end)
2767 				goto out;
2768 
2769 			*done_index = page->index + 1;
2770 
2771 			/*
2772 			 * If we can't merge this page, and we have
2773 			 * accumulated an contiguous region, write it
2774 			 */
2775 			if ((mpd->next_page != page->index) &&
2776 			    (mpd->next_page != mpd->first_page)) {
2777 				mpage_da_map_and_submit(mpd);
2778 				goto ret_extent_tail;
2779 			}
2780 
2781 			lock_page(page);
2782 
2783 			/*
2784 			 * If the page is no longer dirty, or its
2785 			 * mapping no longer corresponds to inode we
2786 			 * are writing (which means it has been
2787 			 * truncated or invalidated), or the page is
2788 			 * already under writeback and we are not
2789 			 * doing a data integrity writeback, skip the page
2790 			 */
2791 			if (!PageDirty(page) ||
2792 			    (PageWriteback(page) &&
2793 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2794 			    unlikely(page->mapping != mapping)) {
2795 				unlock_page(page);
2796 				continue;
2797 			}
2798 
2799 			if (PageWriteback(page))
2800 				wait_on_page_writeback(page);
2801 
2802 			BUG_ON(PageWriteback(page));
2803 
2804 			if (mpd->next_page != page->index)
2805 				mpd->first_page = page->index;
2806 			mpd->next_page = page->index + 1;
2807 			logical = (sector_t) page->index <<
2808 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2809 
2810 			if (!page_has_buffers(page)) {
2811 				mpage_add_bh_to_extent(mpd, logical,
2812 						       PAGE_CACHE_SIZE,
2813 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2814 				if (mpd->io_done)
2815 					goto ret_extent_tail;
2816 			} else {
2817 				/*
2818 				 * Page with regular buffer heads,
2819 				 * just add all dirty ones
2820 				 */
2821 				head = page_buffers(page);
2822 				bh = head;
2823 				do {
2824 					BUG_ON(buffer_locked(bh));
2825 					/*
2826 					 * We need to try to allocate
2827 					 * unmapped blocks in the same page.
2828 					 * Otherwise we won't make progress
2829 					 * with the page in ext4_writepage
2830 					 */
2831 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2832 						mpage_add_bh_to_extent(mpd, logical,
2833 								       bh->b_size,
2834 								       bh->b_state);
2835 						if (mpd->io_done)
2836 							goto ret_extent_tail;
2837 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2838 						/*
2839 						 * mapped dirty buffer. We need
2840 						 * to update the b_state
2841 						 * because we look at b_state
2842 						 * in mpage_da_map_blocks.  We
2843 						 * don't update b_size because
2844 						 * if we find an unmapped
2845 						 * buffer_head later we need to
2846 						 * use the b_state flag of that
2847 						 * buffer_head.
2848 						 */
2849 						if (mpd->b_size == 0)
2850 							mpd->b_state = bh->b_state & BH_FLAGS;
2851 					}
2852 					logical++;
2853 				} while ((bh = bh->b_this_page) != head);
2854 			}
2855 
2856 			if (nr_to_write > 0) {
2857 				nr_to_write--;
2858 				if (nr_to_write == 0 &&
2859 				    wbc->sync_mode == WB_SYNC_NONE)
2860 					/*
2861 					 * We stop writing back only if we are
2862 					 * not doing integrity sync. In case of
2863 					 * integrity sync we have to keep going
2864 					 * because someone may be concurrently
2865 					 * dirtying pages, and we might have
2866 					 * synced a lot of newly appeared dirty
2867 					 * pages, but have not synced all of the
2868 					 * old dirty pages.
2869 					 */
2870 					goto out;
2871 			}
2872 		}
2873 		pagevec_release(&pvec);
2874 		cond_resched();
2875 	}
2876 	return 0;
2877 ret_extent_tail:
2878 	ret = MPAGE_DA_EXTENT_TAIL;
2879 out:
2880 	pagevec_release(&pvec);
2881 	cond_resched();
2882 	return ret;
2883 }
2884 
2885 
ext4_da_writepages(struct address_space * mapping,struct writeback_control * wbc)2886 static int ext4_da_writepages(struct address_space *mapping,
2887 			      struct writeback_control *wbc)
2888 {
2889 	pgoff_t	index;
2890 	int range_whole = 0;
2891 	handle_t *handle = NULL;
2892 	struct mpage_da_data mpd;
2893 	struct inode *inode = mapping->host;
2894 	int pages_written = 0;
2895 	unsigned int max_pages;
2896 	int range_cyclic, cycled = 1, io_done = 0;
2897 	int needed_blocks, ret = 0;
2898 	long desired_nr_to_write, nr_to_writebump = 0;
2899 	loff_t range_start = wbc->range_start;
2900 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2901 	pgoff_t done_index = 0;
2902 	pgoff_t end;
2903 
2904 	trace_ext4_da_writepages(inode, wbc);
2905 
2906 	/*
2907 	 * No pages to write? This is mainly a kludge to avoid starting
2908 	 * a transaction for special inodes like journal inode on last iput()
2909 	 * because that could violate lock ordering on umount
2910 	 */
2911 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2912 		return 0;
2913 
2914 	/*
2915 	 * If the filesystem has aborted, it is read-only, so return
2916 	 * right away instead of dumping stack traces later on that
2917 	 * will obscure the real source of the problem.  We test
2918 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2919 	 * the latter could be true if the filesystem is mounted
2920 	 * read-only, and in that case, ext4_da_writepages should
2921 	 * *never* be called, so if that ever happens, we would want
2922 	 * the stack trace.
2923 	 */
2924 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2925 		return -EROFS;
2926 
2927 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2928 		range_whole = 1;
2929 
2930 	range_cyclic = wbc->range_cyclic;
2931 	if (wbc->range_cyclic) {
2932 		index = mapping->writeback_index;
2933 		if (index)
2934 			cycled = 0;
2935 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2936 		wbc->range_end  = LLONG_MAX;
2937 		wbc->range_cyclic = 0;
2938 		end = -1;
2939 	} else {
2940 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2941 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2942 	}
2943 
2944 	/*
2945 	 * This works around two forms of stupidity.  The first is in
2946 	 * the writeback code, which caps the maximum number of pages
2947 	 * written to be 1024 pages.  This is wrong on multiple
2948 	 * levels; different architectues have a different page size,
2949 	 * which changes the maximum amount of data which gets
2950 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2951 	 * forces this value to be 16 megabytes by multiplying
2952 	 * nr_to_write parameter by four, and then relies on its
2953 	 * allocator to allocate larger extents to make them
2954 	 * contiguous.  Unfortunately this brings us to the second
2955 	 * stupidity, which is that ext4's mballoc code only allocates
2956 	 * at most 2048 blocks.  So we force contiguous writes up to
2957 	 * the number of dirty blocks in the inode, or
2958 	 * sbi->max_writeback_mb_bump whichever is smaller.
2959 	 */
2960 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2961 	if (!range_cyclic && range_whole) {
2962 		if (wbc->nr_to_write == LONG_MAX)
2963 			desired_nr_to_write = wbc->nr_to_write;
2964 		else
2965 			desired_nr_to_write = wbc->nr_to_write * 8;
2966 	} else
2967 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2968 							   max_pages);
2969 	if (desired_nr_to_write > max_pages)
2970 		desired_nr_to_write = max_pages;
2971 
2972 	if (wbc->nr_to_write < desired_nr_to_write) {
2973 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2974 		wbc->nr_to_write = desired_nr_to_write;
2975 	}
2976 
2977 retry:
2978 	if (wbc->sync_mode == WB_SYNC_ALL)
2979 		tag_pages_for_writeback(mapping, index, end);
2980 
2981 	while (!ret && wbc->nr_to_write > 0) {
2982 
2983 		/*
2984 		 * we  insert one extent at a time. So we need
2985 		 * credit needed for single extent allocation.
2986 		 * journalled mode is currently not supported
2987 		 * by delalloc
2988 		 */
2989 		BUG_ON(ext4_should_journal_data(inode));
2990 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2991 
2992 		/* start a new transaction*/
2993 		handle = ext4_journal_start(inode, needed_blocks);
2994 		if (IS_ERR(handle)) {
2995 			ret = PTR_ERR(handle);
2996 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2997 			       "%ld pages, ino %lu; err %d", __func__,
2998 				wbc->nr_to_write, inode->i_ino, ret);
2999 			goto out_writepages;
3000 		}
3001 
3002 		/*
3003 		 * Now call write_cache_pages_da() to find the next
3004 		 * contiguous region of logical blocks that need
3005 		 * blocks to be allocated by ext4 and submit them.
3006 		 */
3007 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3008 		/*
3009 		 * If we have a contiguous extent of pages and we
3010 		 * haven't done the I/O yet, map the blocks and submit
3011 		 * them for I/O.
3012 		 */
3013 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3014 			mpage_da_map_and_submit(&mpd);
3015 			ret = MPAGE_DA_EXTENT_TAIL;
3016 		}
3017 		trace_ext4_da_write_pages(inode, &mpd);
3018 		wbc->nr_to_write -= mpd.pages_written;
3019 
3020 		ext4_journal_stop(handle);
3021 
3022 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3023 			/* commit the transaction which would
3024 			 * free blocks released in the transaction
3025 			 * and try again
3026 			 */
3027 			jbd2_journal_force_commit_nested(sbi->s_journal);
3028 			ret = 0;
3029 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3030 			/*
3031 			 * got one extent now try with
3032 			 * rest of the pages
3033 			 */
3034 			pages_written += mpd.pages_written;
3035 			ret = 0;
3036 			io_done = 1;
3037 		} else if (wbc->nr_to_write)
3038 			/*
3039 			 * There is no more writeout needed
3040 			 * or we requested for a noblocking writeout
3041 			 * and we found the device congested
3042 			 */
3043 			break;
3044 	}
3045 	if (!io_done && !cycled) {
3046 		cycled = 1;
3047 		index = 0;
3048 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3049 		wbc->range_end  = mapping->writeback_index - 1;
3050 		goto retry;
3051 	}
3052 
3053 	/* Update index */
3054 	wbc->range_cyclic = range_cyclic;
3055 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3056 		/*
3057 		 * set the writeback_index so that range_cyclic
3058 		 * mode will write it back later
3059 		 */
3060 		mapping->writeback_index = done_index;
3061 
3062 out_writepages:
3063 	wbc->nr_to_write -= nr_to_writebump;
3064 	wbc->range_start = range_start;
3065 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3066 	return ret;
3067 }
3068 
3069 #define FALL_BACK_TO_NONDELALLOC 1
ext4_nonda_switch(struct super_block * sb)3070 static int ext4_nonda_switch(struct super_block *sb)
3071 {
3072 	s64 free_blocks, dirty_blocks;
3073 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 
3075 	/*
3076 	 * switch to non delalloc mode if we are running low
3077 	 * on free block. The free block accounting via percpu
3078 	 * counters can get slightly wrong with percpu_counter_batch getting
3079 	 * accumulated on each CPU without updating global counters
3080 	 * Delalloc need an accurate free block accounting. So switch
3081 	 * to non delalloc when we are near to error range.
3082 	 */
3083 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3084 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3085 	if (2 * free_blocks < 3 * dirty_blocks ||
3086 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3087 		/*
3088 		 * free block count is less than 150% of dirty blocks
3089 		 * or free blocks is less than watermark
3090 		 */
3091 		return 1;
3092 	}
3093 	/*
3094 	 * Even if we don't switch but are nearing capacity,
3095 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3096 	 */
3097 	if (free_blocks < 2 * dirty_blocks)
3098 		writeback_inodes_sb_if_idle(sb);
3099 
3100 	return 0;
3101 }
3102 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3103 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3104 			       loff_t pos, unsigned len, unsigned flags,
3105 			       struct page **pagep, void **fsdata)
3106 {
3107 	int ret, retries = 0;
3108 	struct page *page;
3109 	pgoff_t index;
3110 	struct inode *inode = mapping->host;
3111 	handle_t *handle;
3112 
3113 	index = pos >> PAGE_CACHE_SHIFT;
3114 
3115 	if (ext4_nonda_switch(inode->i_sb)) {
3116 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3117 		return ext4_write_begin(file, mapping, pos,
3118 					len, flags, pagep, fsdata);
3119 	}
3120 	*fsdata = (void *)0;
3121 	trace_ext4_da_write_begin(inode, pos, len, flags);
3122 retry:
3123 	/*
3124 	 * With delayed allocation, we don't log the i_disksize update
3125 	 * if there is delayed block allocation. But we still need
3126 	 * to journalling the i_disksize update if writes to the end
3127 	 * of file which has an already mapped buffer.
3128 	 */
3129 	handle = ext4_journal_start(inode, 1);
3130 	if (IS_ERR(handle)) {
3131 		ret = PTR_ERR(handle);
3132 		goto out;
3133 	}
3134 	/* We cannot recurse into the filesystem as the transaction is already
3135 	 * started */
3136 	flags |= AOP_FLAG_NOFS;
3137 
3138 	page = grab_cache_page_write_begin(mapping, index, flags);
3139 	if (!page) {
3140 		ext4_journal_stop(handle);
3141 		ret = -ENOMEM;
3142 		goto out;
3143 	}
3144 	*pagep = page;
3145 
3146 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3147 	if (ret < 0) {
3148 		unlock_page(page);
3149 		ext4_journal_stop(handle);
3150 		page_cache_release(page);
3151 		/*
3152 		 * block_write_begin may have instantiated a few blocks
3153 		 * outside i_size.  Trim these off again. Don't need
3154 		 * i_size_read because we hold i_mutex.
3155 		 */
3156 		if (pos + len > inode->i_size)
3157 			ext4_truncate_failed_write(inode);
3158 	}
3159 
3160 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3161 		goto retry;
3162 out:
3163 	return ret;
3164 }
3165 
3166 /*
3167  * Check if we should update i_disksize
3168  * when write to the end of file but not require block allocation
3169  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3170 static int ext4_da_should_update_i_disksize(struct page *page,
3171 					    unsigned long offset)
3172 {
3173 	struct buffer_head *bh;
3174 	struct inode *inode = page->mapping->host;
3175 	unsigned int idx;
3176 	int i;
3177 
3178 	bh = page_buffers(page);
3179 	idx = offset >> inode->i_blkbits;
3180 
3181 	for (i = 0; i < idx; i++)
3182 		bh = bh->b_this_page;
3183 
3184 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3185 		return 0;
3186 	return 1;
3187 }
3188 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3189 static int ext4_da_write_end(struct file *file,
3190 			     struct address_space *mapping,
3191 			     loff_t pos, unsigned len, unsigned copied,
3192 			     struct page *page, void *fsdata)
3193 {
3194 	struct inode *inode = mapping->host;
3195 	int ret = 0, ret2;
3196 	handle_t *handle = ext4_journal_current_handle();
3197 	loff_t new_i_size;
3198 	unsigned long start, end;
3199 	int write_mode = (int)(unsigned long)fsdata;
3200 
3201 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3202 		if (ext4_should_order_data(inode)) {
3203 			return ext4_ordered_write_end(file, mapping, pos,
3204 					len, copied, page, fsdata);
3205 		} else if (ext4_should_writeback_data(inode)) {
3206 			return ext4_writeback_write_end(file, mapping, pos,
3207 					len, copied, page, fsdata);
3208 		} else {
3209 			BUG();
3210 		}
3211 	}
3212 
3213 	trace_ext4_da_write_end(inode, pos, len, copied);
3214 	start = pos & (PAGE_CACHE_SIZE - 1);
3215 	end = start + copied - 1;
3216 
3217 	/*
3218 	 * generic_write_end() will run mark_inode_dirty() if i_size
3219 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3220 	 * into that.
3221 	 */
3222 
3223 	new_i_size = pos + copied;
3224 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3225 		if (ext4_da_should_update_i_disksize(page, end)) {
3226 			down_write(&EXT4_I(inode)->i_data_sem);
3227 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3228 				/*
3229 				 * Updating i_disksize when extending file
3230 				 * without needing block allocation
3231 				 */
3232 				if (ext4_should_order_data(inode))
3233 					ret = ext4_jbd2_file_inode(handle,
3234 								   inode);
3235 
3236 				EXT4_I(inode)->i_disksize = new_i_size;
3237 			}
3238 			up_write(&EXT4_I(inode)->i_data_sem);
3239 			/* We need to mark inode dirty even if
3240 			 * new_i_size is less that inode->i_size
3241 			 * bu greater than i_disksize.(hint delalloc)
3242 			 */
3243 			ext4_mark_inode_dirty(handle, inode);
3244 		}
3245 	}
3246 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3247 							page, fsdata);
3248 	copied = ret2;
3249 	if (ret2 < 0)
3250 		ret = ret2;
3251 	ret2 = ext4_journal_stop(handle);
3252 	if (!ret)
3253 		ret = ret2;
3254 
3255 	return ret ? ret : copied;
3256 }
3257 
ext4_da_invalidatepage(struct page * page,unsigned long offset)3258 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3259 {
3260 	/*
3261 	 * Drop reserved blocks
3262 	 */
3263 	BUG_ON(!PageLocked(page));
3264 	if (!page_has_buffers(page))
3265 		goto out;
3266 
3267 	ext4_da_page_release_reservation(page, offset);
3268 
3269 out:
3270 	ext4_invalidatepage(page, offset);
3271 
3272 	return;
3273 }
3274 
3275 /*
3276  * Force all delayed allocation blocks to be allocated for a given inode.
3277  */
ext4_alloc_da_blocks(struct inode * inode)3278 int ext4_alloc_da_blocks(struct inode *inode)
3279 {
3280 	trace_ext4_alloc_da_blocks(inode);
3281 
3282 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3283 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3284 		return 0;
3285 
3286 	/*
3287 	 * We do something simple for now.  The filemap_flush() will
3288 	 * also start triggering a write of the data blocks, which is
3289 	 * not strictly speaking necessary (and for users of
3290 	 * laptop_mode, not even desirable).  However, to do otherwise
3291 	 * would require replicating code paths in:
3292 	 *
3293 	 * ext4_da_writepages() ->
3294 	 *    write_cache_pages() ---> (via passed in callback function)
3295 	 *        __mpage_da_writepage() -->
3296 	 *           mpage_add_bh_to_extent()
3297 	 *           mpage_da_map_blocks()
3298 	 *
3299 	 * The problem is that write_cache_pages(), located in
3300 	 * mm/page-writeback.c, marks pages clean in preparation for
3301 	 * doing I/O, which is not desirable if we're not planning on
3302 	 * doing I/O at all.
3303 	 *
3304 	 * We could call write_cache_pages(), and then redirty all of
3305 	 * the pages by calling redirty_page_for_writepage() but that
3306 	 * would be ugly in the extreme.  So instead we would need to
3307 	 * replicate parts of the code in the above functions,
3308 	 * simplifying them because we wouldn't actually intend to
3309 	 * write out the pages, but rather only collect contiguous
3310 	 * logical block extents, call the multi-block allocator, and
3311 	 * then update the buffer heads with the block allocations.
3312 	 *
3313 	 * For now, though, we'll cheat by calling filemap_flush(),
3314 	 * which will map the blocks, and start the I/O, but not
3315 	 * actually wait for the I/O to complete.
3316 	 */
3317 	return filemap_flush(inode->i_mapping);
3318 }
3319 
3320 /*
3321  * bmap() is special.  It gets used by applications such as lilo and by
3322  * the swapper to find the on-disk block of a specific piece of data.
3323  *
3324  * Naturally, this is dangerous if the block concerned is still in the
3325  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3326  * filesystem and enables swap, then they may get a nasty shock when the
3327  * data getting swapped to that swapfile suddenly gets overwritten by
3328  * the original zero's written out previously to the journal and
3329  * awaiting writeback in the kernel's buffer cache.
3330  *
3331  * So, if we see any bmap calls here on a modified, data-journaled file,
3332  * take extra steps to flush any blocks which might be in the cache.
3333  */
ext4_bmap(struct address_space * mapping,sector_t block)3334 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3335 {
3336 	struct inode *inode = mapping->host;
3337 	journal_t *journal;
3338 	int err;
3339 
3340 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3341 			test_opt(inode->i_sb, DELALLOC)) {
3342 		/*
3343 		 * With delalloc we want to sync the file
3344 		 * so that we can make sure we allocate
3345 		 * blocks for file
3346 		 */
3347 		filemap_write_and_wait(mapping);
3348 	}
3349 
3350 	if (EXT4_JOURNAL(inode) &&
3351 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3352 		/*
3353 		 * This is a REALLY heavyweight approach, but the use of
3354 		 * bmap on dirty files is expected to be extremely rare:
3355 		 * only if we run lilo or swapon on a freshly made file
3356 		 * do we expect this to happen.
3357 		 *
3358 		 * (bmap requires CAP_SYS_RAWIO so this does not
3359 		 * represent an unprivileged user DOS attack --- we'd be
3360 		 * in trouble if mortal users could trigger this path at
3361 		 * will.)
3362 		 *
3363 		 * NB. EXT4_STATE_JDATA is not set on files other than
3364 		 * regular files.  If somebody wants to bmap a directory
3365 		 * or symlink and gets confused because the buffer
3366 		 * hasn't yet been flushed to disk, they deserve
3367 		 * everything they get.
3368 		 */
3369 
3370 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3371 		journal = EXT4_JOURNAL(inode);
3372 		jbd2_journal_lock_updates(journal);
3373 		err = jbd2_journal_flush(journal);
3374 		jbd2_journal_unlock_updates(journal);
3375 
3376 		if (err)
3377 			return 0;
3378 	}
3379 
3380 	return generic_block_bmap(mapping, block, ext4_get_block);
3381 }
3382 
ext4_readpage(struct file * file,struct page * page)3383 static int ext4_readpage(struct file *file, struct page *page)
3384 {
3385 	trace_ext4_readpage(page);
3386 	return mpage_readpage(page, ext4_get_block);
3387 }
3388 
3389 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3390 ext4_readpages(struct file *file, struct address_space *mapping,
3391 		struct list_head *pages, unsigned nr_pages)
3392 {
3393 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3394 }
3395 
ext4_invalidatepage_free_endio(struct page * page,unsigned long offset)3396 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3397 {
3398 	struct buffer_head *head, *bh;
3399 	unsigned int curr_off = 0;
3400 
3401 	if (!page_has_buffers(page))
3402 		return;
3403 	head = bh = page_buffers(page);
3404 	do {
3405 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3406 					&& bh->b_private) {
3407 			ext4_free_io_end(bh->b_private);
3408 			bh->b_private = NULL;
3409 			bh->b_end_io = NULL;
3410 		}
3411 		curr_off = curr_off + bh->b_size;
3412 		bh = bh->b_this_page;
3413 	} while (bh != head);
3414 }
3415 
ext4_invalidatepage(struct page * page,unsigned long offset)3416 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417 {
3418 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419 
3420 	trace_ext4_invalidatepage(page, offset);
3421 
3422 	/*
3423 	 * free any io_end structure allocated for buffers to be discarded
3424 	 */
3425 	if (ext4_should_dioread_nolock(page->mapping->host))
3426 		ext4_invalidatepage_free_endio(page, offset);
3427 	/*
3428 	 * If it's a full truncate we just forget about the pending dirtying
3429 	 */
3430 	if (offset == 0)
3431 		ClearPageChecked(page);
3432 
3433 	if (journal)
3434 		jbd2_journal_invalidatepage(journal, page, offset);
3435 	else
3436 		block_invalidatepage(page, offset);
3437 }
3438 
ext4_releasepage(struct page * page,gfp_t wait)3439 static int ext4_releasepage(struct page *page, gfp_t wait)
3440 {
3441 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442 
3443 	trace_ext4_releasepage(page);
3444 
3445 	WARN_ON(PageChecked(page));
3446 	if (!page_has_buffers(page))
3447 		return 0;
3448 	if (journal)
3449 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3450 	else
3451 		return try_to_free_buffers(page);
3452 }
3453 
3454 /*
3455  * O_DIRECT for ext3 (or indirect map) based files
3456  *
3457  * If the O_DIRECT write will extend the file then add this inode to the
3458  * orphan list.  So recovery will truncate it back to the original size
3459  * if the machine crashes during the write.
3460  *
3461  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3462  * crashes then stale disk data _may_ be exposed inside the file. But current
3463  * VFS code falls back into buffered path in that case so we are safe.
3464  */
ext4_ind_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3465 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3466 			      const struct iovec *iov, loff_t offset,
3467 			      unsigned long nr_segs)
3468 {
3469 	struct file *file = iocb->ki_filp;
3470 	struct inode *inode = file->f_mapping->host;
3471 	struct ext4_inode_info *ei = EXT4_I(inode);
3472 	handle_t *handle;
3473 	ssize_t ret;
3474 	int orphan = 0;
3475 	size_t count = iov_length(iov, nr_segs);
3476 	int retries = 0;
3477 
3478 	if (rw == WRITE) {
3479 		loff_t final_size = offset + count;
3480 
3481 		if (final_size > inode->i_size) {
3482 			/* Credits for sb + inode write */
3483 			handle = ext4_journal_start(inode, 2);
3484 			if (IS_ERR(handle)) {
3485 				ret = PTR_ERR(handle);
3486 				goto out;
3487 			}
3488 			ret = ext4_orphan_add(handle, inode);
3489 			if (ret) {
3490 				ext4_journal_stop(handle);
3491 				goto out;
3492 			}
3493 			orphan = 1;
3494 			ei->i_disksize = inode->i_size;
3495 			ext4_journal_stop(handle);
3496 		}
3497 	}
3498 
3499 retry:
3500 	if (rw == READ && ext4_should_dioread_nolock(inode))
3501 		ret = __blockdev_direct_IO(rw, iocb, inode,
3502 				 inode->i_sb->s_bdev, iov,
3503 				 offset, nr_segs,
3504 				 ext4_get_block, NULL, NULL, 0);
3505 	else {
3506 		ret = blockdev_direct_IO(rw, iocb, inode,
3507 				 inode->i_sb->s_bdev, iov,
3508 				 offset, nr_segs,
3509 				 ext4_get_block, NULL);
3510 
3511 		if (unlikely((rw & WRITE) && ret < 0)) {
3512 			loff_t isize = i_size_read(inode);
3513 			loff_t end = offset + iov_length(iov, nr_segs);
3514 
3515 			if (end > isize)
3516 				vmtruncate(inode, isize);
3517 		}
3518 	}
3519 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3520 		goto retry;
3521 
3522 	if (orphan) {
3523 		int err;
3524 
3525 		/* Credits for sb + inode write */
3526 		handle = ext4_journal_start(inode, 2);
3527 		if (IS_ERR(handle)) {
3528 			/* This is really bad luck. We've written the data
3529 			 * but cannot extend i_size. Bail out and pretend
3530 			 * the write failed... */
3531 			ret = PTR_ERR(handle);
3532 			if (inode->i_nlink)
3533 				ext4_orphan_del(NULL, inode);
3534 
3535 			goto out;
3536 		}
3537 		if (inode->i_nlink)
3538 			ext4_orphan_del(handle, inode);
3539 		if (ret > 0) {
3540 			loff_t end = offset + ret;
3541 			if (end > inode->i_size) {
3542 				ei->i_disksize = end;
3543 				i_size_write(inode, end);
3544 				/*
3545 				 * We're going to return a positive `ret'
3546 				 * here due to non-zero-length I/O, so there's
3547 				 * no way of reporting error returns from
3548 				 * ext4_mark_inode_dirty() to userspace.  So
3549 				 * ignore it.
3550 				 */
3551 				ext4_mark_inode_dirty(handle, inode);
3552 			}
3553 		}
3554 		err = ext4_journal_stop(handle);
3555 		if (ret == 0)
3556 			ret = err;
3557 	}
3558 out:
3559 	return ret;
3560 }
3561 
3562 /*
3563  * ext4_get_block used when preparing for a DIO write or buffer write.
3564  * We allocate an uinitialized extent if blocks haven't been allocated.
3565  * The extent will be converted to initialized after the IO is complete.
3566  */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3567 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3568 		   struct buffer_head *bh_result, int create)
3569 {
3570 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3571 		   inode->i_ino, create);
3572 	return _ext4_get_block(inode, iblock, bh_result,
3573 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3574 }
3575 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private,int ret,bool is_async)3576 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3577 			    ssize_t size, void *private, int ret,
3578 			    bool is_async)
3579 {
3580         ext4_io_end_t *io_end = iocb->private;
3581 	struct workqueue_struct *wq;
3582 	unsigned long flags;
3583 	struct ext4_inode_info *ei;
3584 
3585 	/* if not async direct IO or dio with 0 bytes write, just return */
3586 	if (!io_end || !size)
3587 		goto out;
3588 
3589 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3590 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3591  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3592 		  size);
3593 
3594 	/* if not aio dio with unwritten extents, just free io and return */
3595 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3596 		ext4_free_io_end(io_end);
3597 		iocb->private = NULL;
3598 out:
3599 		if (is_async)
3600 			aio_complete(iocb, ret, 0);
3601 		return;
3602 	}
3603 
3604 	io_end->offset = offset;
3605 	io_end->size = size;
3606 	if (is_async) {
3607 		io_end->iocb = iocb;
3608 		io_end->result = ret;
3609 	}
3610 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3611 
3612 	/* Add the io_end to per-inode completed aio dio list*/
3613 	ei = EXT4_I(io_end->inode);
3614 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3615 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3616 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3617 
3618 	/* queue the work to convert unwritten extents to written */
3619 	queue_work(wq, &io_end->work);
3620 	iocb->private = NULL;
3621 }
3622 
ext4_end_io_buffer_write(struct buffer_head * bh,int uptodate)3623 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3624 {
3625 	ext4_io_end_t *io_end = bh->b_private;
3626 	struct workqueue_struct *wq;
3627 	struct inode *inode;
3628 	unsigned long flags;
3629 
3630 	if (!test_clear_buffer_uninit(bh) || !io_end)
3631 		goto out;
3632 
3633 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3634 		printk("sb umounted, discard end_io request for inode %lu\n",
3635 			io_end->inode->i_ino);
3636 		ext4_free_io_end(io_end);
3637 		goto out;
3638 	}
3639 
3640 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3641 	inode = io_end->inode;
3642 
3643 	/* Add the io_end to per-inode completed io list*/
3644 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3645 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3646 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3647 
3648 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3649 	/* queue the work to convert unwritten extents to written */
3650 	queue_work(wq, &io_end->work);
3651 out:
3652 	bh->b_private = NULL;
3653 	bh->b_end_io = NULL;
3654 	clear_buffer_uninit(bh);
3655 	end_buffer_async_write(bh, uptodate);
3656 }
3657 
ext4_set_bh_endio(struct buffer_head * bh,struct inode * inode)3658 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3659 {
3660 	ext4_io_end_t *io_end;
3661 	struct page *page = bh->b_page;
3662 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3663 	size_t size = bh->b_size;
3664 
3665 retry:
3666 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3667 	if (!io_end) {
3668 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3669 		schedule();
3670 		goto retry;
3671 	}
3672 	io_end->offset = offset;
3673 	io_end->size = size;
3674 	/*
3675 	 * We need to hold a reference to the page to make sure it
3676 	 * doesn't get evicted before ext4_end_io_work() has a chance
3677 	 * to convert the extent from written to unwritten.
3678 	 */
3679 	io_end->page = page;
3680 	get_page(io_end->page);
3681 
3682 	bh->b_private = io_end;
3683 	bh->b_end_io = ext4_end_io_buffer_write;
3684 	return 0;
3685 }
3686 
3687 /*
3688  * For ext4 extent files, ext4 will do direct-io write to holes,
3689  * preallocated extents, and those write extend the file, no need to
3690  * fall back to buffered IO.
3691  *
3692  * For holes, we fallocate those blocks, mark them as uninitialized
3693  * If those blocks were preallocated, we mark sure they are splited, but
3694  * still keep the range to write as uninitialized.
3695  *
3696  * The unwrritten extents will be converted to written when DIO is completed.
3697  * For async direct IO, since the IO may still pending when return, we
3698  * set up an end_io call back function, which will do the conversion
3699  * when async direct IO completed.
3700  *
3701  * If the O_DIRECT write will extend the file then add this inode to the
3702  * orphan list.  So recovery will truncate it back to the original size
3703  * if the machine crashes during the write.
3704  *
3705  */
ext4_ext_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3706 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3707 			      const struct iovec *iov, loff_t offset,
3708 			      unsigned long nr_segs)
3709 {
3710 	struct file *file = iocb->ki_filp;
3711 	struct inode *inode = file->f_mapping->host;
3712 	ssize_t ret;
3713 	size_t count = iov_length(iov, nr_segs);
3714 
3715 	loff_t final_size = offset + count;
3716 	if (rw == WRITE && final_size <= inode->i_size) {
3717 		/*
3718  		 * We could direct write to holes and fallocate.
3719 		 *
3720  		 * Allocated blocks to fill the hole are marked as uninitialized
3721  		 * to prevent parallel buffered read to expose the stale data
3722  		 * before DIO complete the data IO.
3723 		 *
3724  		 * As to previously fallocated extents, ext4 get_block
3725  		 * will just simply mark the buffer mapped but still
3726  		 * keep the extents uninitialized.
3727  		 *
3728 		 * for non AIO case, we will convert those unwritten extents
3729 		 * to written after return back from blockdev_direct_IO.
3730 		 *
3731 		 * for async DIO, the conversion needs to be defered when
3732 		 * the IO is completed. The ext4 end_io callback function
3733 		 * will be called to take care of the conversion work.
3734 		 * Here for async case, we allocate an io_end structure to
3735 		 * hook to the iocb.
3736  		 */
3737 		iocb->private = NULL;
3738 		EXT4_I(inode)->cur_aio_dio = NULL;
3739 		if (!is_sync_kiocb(iocb)) {
3740 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3741 			if (!iocb->private)
3742 				return -ENOMEM;
3743 			/*
3744 			 * we save the io structure for current async
3745 			 * direct IO, so that later ext4_map_blocks()
3746 			 * could flag the io structure whether there
3747 			 * is a unwritten extents needs to be converted
3748 			 * when IO is completed.
3749 			 */
3750 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3751 		}
3752 
3753 		ret = blockdev_direct_IO(rw, iocb, inode,
3754 					 inode->i_sb->s_bdev, iov,
3755 					 offset, nr_segs,
3756 					 ext4_get_block_write,
3757 					 ext4_end_io_dio);
3758 		if (iocb->private)
3759 			EXT4_I(inode)->cur_aio_dio = NULL;
3760 		/*
3761 		 * The io_end structure takes a reference to the inode,
3762 		 * that structure needs to be destroyed and the
3763 		 * reference to the inode need to be dropped, when IO is
3764 		 * complete, even with 0 byte write, or failed.
3765 		 *
3766 		 * In the successful AIO DIO case, the io_end structure will be
3767 		 * desctroyed and the reference to the inode will be dropped
3768 		 * after the end_io call back function is called.
3769 		 *
3770 		 * In the case there is 0 byte write, or error case, since
3771 		 * VFS direct IO won't invoke the end_io call back function,
3772 		 * we need to free the end_io structure here.
3773 		 */
3774 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3775 			ext4_free_io_end(iocb->private);
3776 			iocb->private = NULL;
3777 		} else if (ret > 0 && ext4_test_inode_state(inode,
3778 						EXT4_STATE_DIO_UNWRITTEN)) {
3779 			int err;
3780 			/*
3781 			 * for non AIO case, since the IO is already
3782 			 * completed, we could do the conversion right here
3783 			 */
3784 			err = ext4_convert_unwritten_extents(inode,
3785 							     offset, ret);
3786 			if (err < 0)
3787 				ret = err;
3788 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3789 		}
3790 		return ret;
3791 	}
3792 
3793 	/* for write the the end of file case, we fall back to old way */
3794 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3795 }
3796 
ext4_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3797 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3798 			      const struct iovec *iov, loff_t offset,
3799 			      unsigned long nr_segs)
3800 {
3801 	struct file *file = iocb->ki_filp;
3802 	struct inode *inode = file->f_mapping->host;
3803 	ssize_t ret;
3804 
3805 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3806 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3807 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3808 	else
3809 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3810 	trace_ext4_direct_IO_exit(inode, offset,
3811 				iov_length(iov, nr_segs), rw, ret);
3812 	return ret;
3813 }
3814 
3815 /*
3816  * Pages can be marked dirty completely asynchronously from ext4's journalling
3817  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3818  * much here because ->set_page_dirty is called under VFS locks.  The page is
3819  * not necessarily locked.
3820  *
3821  * We cannot just dirty the page and leave attached buffers clean, because the
3822  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3823  * or jbddirty because all the journalling code will explode.
3824  *
3825  * So what we do is to mark the page "pending dirty" and next time writepage
3826  * is called, propagate that into the buffers appropriately.
3827  */
ext4_journalled_set_page_dirty(struct page * page)3828 static int ext4_journalled_set_page_dirty(struct page *page)
3829 {
3830 	SetPageChecked(page);
3831 	return __set_page_dirty_nobuffers(page);
3832 }
3833 
3834 static const struct address_space_operations ext4_ordered_aops = {
3835 	.readpage		= ext4_readpage,
3836 	.readpages		= ext4_readpages,
3837 	.writepage		= ext4_writepage,
3838 	.write_begin		= ext4_write_begin,
3839 	.write_end		= ext4_ordered_write_end,
3840 	.bmap			= ext4_bmap,
3841 	.invalidatepage		= ext4_invalidatepage,
3842 	.releasepage		= ext4_releasepage,
3843 	.direct_IO		= ext4_direct_IO,
3844 	.migratepage		= buffer_migrate_page,
3845 	.is_partially_uptodate  = block_is_partially_uptodate,
3846 	.error_remove_page	= generic_error_remove_page,
3847 };
3848 
3849 static const struct address_space_operations ext4_writeback_aops = {
3850 	.readpage		= ext4_readpage,
3851 	.readpages		= ext4_readpages,
3852 	.writepage		= ext4_writepage,
3853 	.write_begin		= ext4_write_begin,
3854 	.write_end		= ext4_writeback_write_end,
3855 	.bmap			= ext4_bmap,
3856 	.invalidatepage		= ext4_invalidatepage,
3857 	.releasepage		= ext4_releasepage,
3858 	.direct_IO		= ext4_direct_IO,
3859 	.migratepage		= buffer_migrate_page,
3860 	.is_partially_uptodate  = block_is_partially_uptodate,
3861 	.error_remove_page	= generic_error_remove_page,
3862 };
3863 
3864 static const struct address_space_operations ext4_journalled_aops = {
3865 	.readpage		= ext4_readpage,
3866 	.readpages		= ext4_readpages,
3867 	.writepage		= ext4_writepage,
3868 	.write_begin		= ext4_write_begin,
3869 	.write_end		= ext4_journalled_write_end,
3870 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3871 	.bmap			= ext4_bmap,
3872 	.invalidatepage		= ext4_invalidatepage,
3873 	.releasepage		= ext4_releasepage,
3874 	.is_partially_uptodate  = block_is_partially_uptodate,
3875 	.error_remove_page	= generic_error_remove_page,
3876 };
3877 
3878 static const struct address_space_operations ext4_da_aops = {
3879 	.readpage		= ext4_readpage,
3880 	.readpages		= ext4_readpages,
3881 	.writepage		= ext4_writepage,
3882 	.writepages		= ext4_da_writepages,
3883 	.write_begin		= ext4_da_write_begin,
3884 	.write_end		= ext4_da_write_end,
3885 	.bmap			= ext4_bmap,
3886 	.invalidatepage		= ext4_da_invalidatepage,
3887 	.releasepage		= ext4_releasepage,
3888 	.direct_IO		= ext4_direct_IO,
3889 	.migratepage		= buffer_migrate_page,
3890 	.is_partially_uptodate  = block_is_partially_uptodate,
3891 	.error_remove_page	= generic_error_remove_page,
3892 };
3893 
ext4_set_aops(struct inode * inode)3894 void ext4_set_aops(struct inode *inode)
3895 {
3896 	if (ext4_should_order_data(inode) &&
3897 		test_opt(inode->i_sb, DELALLOC))
3898 		inode->i_mapping->a_ops = &ext4_da_aops;
3899 	else if (ext4_should_order_data(inode))
3900 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3901 	else if (ext4_should_writeback_data(inode) &&
3902 		 test_opt(inode->i_sb, DELALLOC))
3903 		inode->i_mapping->a_ops = &ext4_da_aops;
3904 	else if (ext4_should_writeback_data(inode))
3905 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3906 	else
3907 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3908 }
3909 
3910 /*
3911  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3912  * up to the end of the block which corresponds to `from'.
3913  * This required during truncate. We need to physically zero the tail end
3914  * of that block so it doesn't yield old data if the file is later grown.
3915  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3916 int ext4_block_truncate_page(handle_t *handle,
3917 		struct address_space *mapping, loff_t from)
3918 {
3919 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3920 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3921 	unsigned blocksize, length, pos;
3922 	ext4_lblk_t iblock;
3923 	struct inode *inode = mapping->host;
3924 	struct buffer_head *bh;
3925 	struct page *page;
3926 	int err = 0;
3927 
3928 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3929 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3930 	if (!page)
3931 		return -EINVAL;
3932 
3933 	blocksize = inode->i_sb->s_blocksize;
3934 	length = blocksize - (offset & (blocksize - 1));
3935 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3936 
3937 	if (!page_has_buffers(page))
3938 		create_empty_buffers(page, blocksize, 0);
3939 
3940 	/* Find the buffer that contains "offset" */
3941 	bh = page_buffers(page);
3942 	pos = blocksize;
3943 	while (offset >= pos) {
3944 		bh = bh->b_this_page;
3945 		iblock++;
3946 		pos += blocksize;
3947 	}
3948 
3949 	err = 0;
3950 	if (buffer_freed(bh)) {
3951 		BUFFER_TRACE(bh, "freed: skip");
3952 		goto unlock;
3953 	}
3954 
3955 	if (!buffer_mapped(bh)) {
3956 		BUFFER_TRACE(bh, "unmapped");
3957 		ext4_get_block(inode, iblock, bh, 0);
3958 		/* unmapped? It's a hole - nothing to do */
3959 		if (!buffer_mapped(bh)) {
3960 			BUFFER_TRACE(bh, "still unmapped");
3961 			goto unlock;
3962 		}
3963 	}
3964 
3965 	/* Ok, it's mapped. Make sure it's up-to-date */
3966 	if (PageUptodate(page))
3967 		set_buffer_uptodate(bh);
3968 
3969 	if (!buffer_uptodate(bh)) {
3970 		err = -EIO;
3971 		ll_rw_block(READ, 1, &bh);
3972 		wait_on_buffer(bh);
3973 		/* Uhhuh. Read error. Complain and punt. */
3974 		if (!buffer_uptodate(bh))
3975 			goto unlock;
3976 	}
3977 
3978 	if (ext4_should_journal_data(inode)) {
3979 		BUFFER_TRACE(bh, "get write access");
3980 		err = ext4_journal_get_write_access(handle, bh);
3981 		if (err)
3982 			goto unlock;
3983 	}
3984 
3985 	zero_user(page, offset, length);
3986 
3987 	BUFFER_TRACE(bh, "zeroed end of block");
3988 
3989 	err = 0;
3990 	if (ext4_should_journal_data(inode)) {
3991 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3992 	} else {
3993 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3994 			err = ext4_jbd2_file_inode(handle, inode);
3995 		mark_buffer_dirty(bh);
3996 	}
3997 
3998 unlock:
3999 	unlock_page(page);
4000 	page_cache_release(page);
4001 	return err;
4002 }
4003 
4004 /*
4005  * Probably it should be a library function... search for first non-zero word
4006  * or memcmp with zero_page, whatever is better for particular architecture.
4007  * Linus?
4008  */
all_zeroes(__le32 * p,__le32 * q)4009 static inline int all_zeroes(__le32 *p, __le32 *q)
4010 {
4011 	while (p < q)
4012 		if (*p++)
4013 			return 0;
4014 	return 1;
4015 }
4016 
4017 /**
4018  *	ext4_find_shared - find the indirect blocks for partial truncation.
4019  *	@inode:	  inode in question
4020  *	@depth:	  depth of the affected branch
4021  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4022  *	@chain:	  place to store the pointers to partial indirect blocks
4023  *	@top:	  place to the (detached) top of branch
4024  *
4025  *	This is a helper function used by ext4_truncate().
4026  *
4027  *	When we do truncate() we may have to clean the ends of several
4028  *	indirect blocks but leave the blocks themselves alive. Block is
4029  *	partially truncated if some data below the new i_size is referred
4030  *	from it (and it is on the path to the first completely truncated
4031  *	data block, indeed).  We have to free the top of that path along
4032  *	with everything to the right of the path. Since no allocation
4033  *	past the truncation point is possible until ext4_truncate()
4034  *	finishes, we may safely do the latter, but top of branch may
4035  *	require special attention - pageout below the truncation point
4036  *	might try to populate it.
4037  *
4038  *	We atomically detach the top of branch from the tree, store the
4039  *	block number of its root in *@top, pointers to buffer_heads of
4040  *	partially truncated blocks - in @chain[].bh and pointers to
4041  *	their last elements that should not be removed - in
4042  *	@chain[].p. Return value is the pointer to last filled element
4043  *	of @chain.
4044  *
4045  *	The work left to caller to do the actual freeing of subtrees:
4046  *		a) free the subtree starting from *@top
4047  *		b) free the subtrees whose roots are stored in
4048  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4049  *		c) free the subtrees growing from the inode past the @chain[0].
4050  *			(no partially truncated stuff there).  */
4051 
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)4052 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4053 				  ext4_lblk_t offsets[4], Indirect chain[4],
4054 				  __le32 *top)
4055 {
4056 	Indirect *partial, *p;
4057 	int k, err;
4058 
4059 	*top = 0;
4060 	/* Make k index the deepest non-null offset + 1 */
4061 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4062 		;
4063 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4064 	/* Writer: pointers */
4065 	if (!partial)
4066 		partial = chain + k-1;
4067 	/*
4068 	 * If the branch acquired continuation since we've looked at it -
4069 	 * fine, it should all survive and (new) top doesn't belong to us.
4070 	 */
4071 	if (!partial->key && *partial->p)
4072 		/* Writer: end */
4073 		goto no_top;
4074 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4075 		;
4076 	/*
4077 	 * OK, we've found the last block that must survive. The rest of our
4078 	 * branch should be detached before unlocking. However, if that rest
4079 	 * of branch is all ours and does not grow immediately from the inode
4080 	 * it's easier to cheat and just decrement partial->p.
4081 	 */
4082 	if (p == chain + k - 1 && p > chain) {
4083 		p->p--;
4084 	} else {
4085 		*top = *p->p;
4086 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4087 #if 0
4088 		*p->p = 0;
4089 #endif
4090 	}
4091 	/* Writer: end */
4092 
4093 	while (partial > p) {
4094 		brelse(partial->bh);
4095 		partial--;
4096 	}
4097 no_top:
4098 	return partial;
4099 }
4100 
4101 /*
4102  * Zero a number of block pointers in either an inode or an indirect block.
4103  * If we restart the transaction we must again get write access to the
4104  * indirect block for further modification.
4105  *
4106  * We release `count' blocks on disk, but (last - first) may be greater
4107  * than `count' because there can be holes in there.
4108  *
4109  * Return 0 on success, 1 on invalid block range
4110  * and < 0 on fatal error.
4111  */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)4112 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4113 			     struct buffer_head *bh,
4114 			     ext4_fsblk_t block_to_free,
4115 			     unsigned long count, __le32 *first,
4116 			     __le32 *last)
4117 {
4118 	__le32 *p;
4119 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4120 	int	err;
4121 
4122 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4123 		flags |= EXT4_FREE_BLOCKS_METADATA;
4124 
4125 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4126 				   count)) {
4127 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4128 				 "blocks %llu len %lu",
4129 				 (unsigned long long) block_to_free, count);
4130 		return 1;
4131 	}
4132 
4133 	if (try_to_extend_transaction(handle, inode)) {
4134 		if (bh) {
4135 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4136 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4137 			if (unlikely(err))
4138 				goto out_err;
4139 		}
4140 		err = ext4_mark_inode_dirty(handle, inode);
4141 		if (unlikely(err))
4142 			goto out_err;
4143 		err = ext4_truncate_restart_trans(handle, inode,
4144 						  blocks_for_truncate(inode));
4145 		if (unlikely(err))
4146 			goto out_err;
4147 		if (bh) {
4148 			BUFFER_TRACE(bh, "retaking write access");
4149 			err = ext4_journal_get_write_access(handle, bh);
4150 			if (unlikely(err))
4151 				goto out_err;
4152 		}
4153 	}
4154 
4155 	for (p = first; p < last; p++)
4156 		*p = 0;
4157 
4158 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4159 	return 0;
4160 out_err:
4161 	ext4_std_error(inode->i_sb, err);
4162 	return err;
4163 }
4164 
4165 /**
4166  * ext4_free_data - free a list of data blocks
4167  * @handle:	handle for this transaction
4168  * @inode:	inode we are dealing with
4169  * @this_bh:	indirect buffer_head which contains *@first and *@last
4170  * @first:	array of block numbers
4171  * @last:	points immediately past the end of array
4172  *
4173  * We are freeing all blocks referred from that array (numbers are stored as
4174  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4175  *
4176  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4177  * blocks are contiguous then releasing them at one time will only affect one
4178  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4179  * actually use a lot of journal space.
4180  *
4181  * @this_bh will be %NULL if @first and @last point into the inode's direct
4182  * block pointers.
4183  */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)4184 static void ext4_free_data(handle_t *handle, struct inode *inode,
4185 			   struct buffer_head *this_bh,
4186 			   __le32 *first, __le32 *last)
4187 {
4188 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4189 	unsigned long count = 0;	    /* Number of blocks in the run */
4190 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4191 					       corresponding to
4192 					       block_to_free */
4193 	ext4_fsblk_t nr;		    /* Current block # */
4194 	__le32 *p;			    /* Pointer into inode/ind
4195 					       for current block */
4196 	int err = 0;
4197 
4198 	if (this_bh) {				/* For indirect block */
4199 		BUFFER_TRACE(this_bh, "get_write_access");
4200 		err = ext4_journal_get_write_access(handle, this_bh);
4201 		/* Important: if we can't update the indirect pointers
4202 		 * to the blocks, we can't free them. */
4203 		if (err)
4204 			return;
4205 	}
4206 
4207 	for (p = first; p < last; p++) {
4208 		nr = le32_to_cpu(*p);
4209 		if (nr) {
4210 			/* accumulate blocks to free if they're contiguous */
4211 			if (count == 0) {
4212 				block_to_free = nr;
4213 				block_to_free_p = p;
4214 				count = 1;
4215 			} else if (nr == block_to_free + count) {
4216 				count++;
4217 			} else {
4218 				err = ext4_clear_blocks(handle, inode, this_bh,
4219 						        block_to_free, count,
4220 						        block_to_free_p, p);
4221 				if (err)
4222 					break;
4223 				block_to_free = nr;
4224 				block_to_free_p = p;
4225 				count = 1;
4226 			}
4227 		}
4228 	}
4229 
4230 	if (!err && count > 0)
4231 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4232 					count, block_to_free_p, p);
4233 	if (err < 0)
4234 		/* fatal error */
4235 		return;
4236 
4237 	if (this_bh) {
4238 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4239 
4240 		/*
4241 		 * The buffer head should have an attached journal head at this
4242 		 * point. However, if the data is corrupted and an indirect
4243 		 * block pointed to itself, it would have been detached when
4244 		 * the block was cleared. Check for this instead of OOPSing.
4245 		 */
4246 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4247 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4248 		else
4249 			EXT4_ERROR_INODE(inode,
4250 					 "circular indirect block detected at "
4251 					 "block %llu",
4252 				(unsigned long long) this_bh->b_blocknr);
4253 	}
4254 }
4255 
4256 /**
4257  *	ext4_free_branches - free an array of branches
4258  *	@handle: JBD handle for this transaction
4259  *	@inode:	inode we are dealing with
4260  *	@parent_bh: the buffer_head which contains *@first and *@last
4261  *	@first:	array of block numbers
4262  *	@last:	pointer immediately past the end of array
4263  *	@depth:	depth of the branches to free
4264  *
4265  *	We are freeing all blocks referred from these branches (numbers are
4266  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4267  *	appropriately.
4268  */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)4269 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4270 			       struct buffer_head *parent_bh,
4271 			       __le32 *first, __le32 *last, int depth)
4272 {
4273 	ext4_fsblk_t nr;
4274 	__le32 *p;
4275 
4276 	if (ext4_handle_is_aborted(handle))
4277 		return;
4278 
4279 	if (depth--) {
4280 		struct buffer_head *bh;
4281 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4282 		p = last;
4283 		while (--p >= first) {
4284 			nr = le32_to_cpu(*p);
4285 			if (!nr)
4286 				continue;		/* A hole */
4287 
4288 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4289 						   nr, 1)) {
4290 				EXT4_ERROR_INODE(inode,
4291 						 "invalid indirect mapped "
4292 						 "block %lu (level %d)",
4293 						 (unsigned long) nr, depth);
4294 				break;
4295 			}
4296 
4297 			/* Go read the buffer for the next level down */
4298 			bh = sb_bread(inode->i_sb, nr);
4299 
4300 			/*
4301 			 * A read failure? Report error and clear slot
4302 			 * (should be rare).
4303 			 */
4304 			if (!bh) {
4305 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4306 						       "Read failure");
4307 				continue;
4308 			}
4309 
4310 			/* This zaps the entire block.  Bottom up. */
4311 			BUFFER_TRACE(bh, "free child branches");
4312 			ext4_free_branches(handle, inode, bh,
4313 					(__le32 *) bh->b_data,
4314 					(__le32 *) bh->b_data + addr_per_block,
4315 					depth);
4316 			brelse(bh);
4317 
4318 			/*
4319 			 * Everything below this this pointer has been
4320 			 * released.  Now let this top-of-subtree go.
4321 			 *
4322 			 * We want the freeing of this indirect block to be
4323 			 * atomic in the journal with the updating of the
4324 			 * bitmap block which owns it.  So make some room in
4325 			 * the journal.
4326 			 *
4327 			 * We zero the parent pointer *after* freeing its
4328 			 * pointee in the bitmaps, so if extend_transaction()
4329 			 * for some reason fails to put the bitmap changes and
4330 			 * the release into the same transaction, recovery
4331 			 * will merely complain about releasing a free block,
4332 			 * rather than leaking blocks.
4333 			 */
4334 			if (ext4_handle_is_aborted(handle))
4335 				return;
4336 			if (try_to_extend_transaction(handle, inode)) {
4337 				ext4_mark_inode_dirty(handle, inode);
4338 				ext4_truncate_restart_trans(handle, inode,
4339 					    blocks_for_truncate(inode));
4340 			}
4341 
4342 			/*
4343 			 * The forget flag here is critical because if
4344 			 * we are journaling (and not doing data
4345 			 * journaling), we have to make sure a revoke
4346 			 * record is written to prevent the journal
4347 			 * replay from overwriting the (former)
4348 			 * indirect block if it gets reallocated as a
4349 			 * data block.  This must happen in the same
4350 			 * transaction where the data blocks are
4351 			 * actually freed.
4352 			 */
4353 			ext4_free_blocks(handle, inode, NULL, nr, 1,
4354 					 EXT4_FREE_BLOCKS_METADATA|
4355 					 EXT4_FREE_BLOCKS_FORGET);
4356 
4357 			if (parent_bh) {
4358 				/*
4359 				 * The block which we have just freed is
4360 				 * pointed to by an indirect block: journal it
4361 				 */
4362 				BUFFER_TRACE(parent_bh, "get_write_access");
4363 				if (!ext4_journal_get_write_access(handle,
4364 								   parent_bh)){
4365 					*p = 0;
4366 					BUFFER_TRACE(parent_bh,
4367 					"call ext4_handle_dirty_metadata");
4368 					ext4_handle_dirty_metadata(handle,
4369 								   inode,
4370 								   parent_bh);
4371 				}
4372 			}
4373 		}
4374 	} else {
4375 		/* We have reached the bottom of the tree. */
4376 		BUFFER_TRACE(parent_bh, "free data blocks");
4377 		ext4_free_data(handle, inode, parent_bh, first, last);
4378 	}
4379 }
4380 
ext4_can_truncate(struct inode * inode)4381 int ext4_can_truncate(struct inode *inode)
4382 {
4383 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4384 		return 0;
4385 	if (S_ISREG(inode->i_mode))
4386 		return 1;
4387 	if (S_ISDIR(inode->i_mode))
4388 		return 1;
4389 	if (S_ISLNK(inode->i_mode))
4390 		return !ext4_inode_is_fast_symlink(inode);
4391 	return 0;
4392 }
4393 
4394 /*
4395  * ext4_truncate()
4396  *
4397  * We block out ext4_get_block() block instantiations across the entire
4398  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4399  * simultaneously on behalf of the same inode.
4400  *
4401  * As we work through the truncate and commmit bits of it to the journal there
4402  * is one core, guiding principle: the file's tree must always be consistent on
4403  * disk.  We must be able to restart the truncate after a crash.
4404  *
4405  * The file's tree may be transiently inconsistent in memory (although it
4406  * probably isn't), but whenever we close off and commit a journal transaction,
4407  * the contents of (the filesystem + the journal) must be consistent and
4408  * restartable.  It's pretty simple, really: bottom up, right to left (although
4409  * left-to-right works OK too).
4410  *
4411  * Note that at recovery time, journal replay occurs *before* the restart of
4412  * truncate against the orphan inode list.
4413  *
4414  * The committed inode has the new, desired i_size (which is the same as
4415  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4416  * that this inode's truncate did not complete and it will again call
4417  * ext4_truncate() to have another go.  So there will be instantiated blocks
4418  * to the right of the truncation point in a crashed ext4 filesystem.  But
4419  * that's fine - as long as they are linked from the inode, the post-crash
4420  * ext4_truncate() run will find them and release them.
4421  */
ext4_truncate(struct inode * inode)4422 void ext4_truncate(struct inode *inode)
4423 {
4424 	handle_t *handle;
4425 	struct ext4_inode_info *ei = EXT4_I(inode);
4426 	__le32 *i_data = ei->i_data;
4427 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4428 	struct address_space *mapping = inode->i_mapping;
4429 	ext4_lblk_t offsets[4];
4430 	Indirect chain[4];
4431 	Indirect *partial;
4432 	__le32 nr = 0;
4433 	int n = 0;
4434 	ext4_lblk_t last_block, max_block;
4435 	unsigned blocksize = inode->i_sb->s_blocksize;
4436 
4437 	trace_ext4_truncate_enter(inode);
4438 
4439 	if (!ext4_can_truncate(inode))
4440 		return;
4441 
4442 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4443 
4444 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4445 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4446 
4447 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4448 		ext4_ext_truncate(inode);
4449 		trace_ext4_truncate_exit(inode);
4450 		return;
4451 	}
4452 
4453 	handle = start_transaction(inode);
4454 	if (IS_ERR(handle))
4455 		return;		/* AKPM: return what? */
4456 
4457 	last_block = (inode->i_size + blocksize-1)
4458 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4459 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4460 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4461 
4462 	if (inode->i_size & (blocksize - 1))
4463 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4464 			goto out_stop;
4465 
4466 	if (last_block != max_block) {
4467 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
4468 		if (n == 0)
4469 			goto out_stop;	/* error */
4470 	}
4471 
4472 	/*
4473 	 * OK.  This truncate is going to happen.  We add the inode to the
4474 	 * orphan list, so that if this truncate spans multiple transactions,
4475 	 * and we crash, we will resume the truncate when the filesystem
4476 	 * recovers.  It also marks the inode dirty, to catch the new size.
4477 	 *
4478 	 * Implication: the file must always be in a sane, consistent
4479 	 * truncatable state while each transaction commits.
4480 	 */
4481 	if (ext4_orphan_add(handle, inode))
4482 		goto out_stop;
4483 
4484 	/*
4485 	 * From here we block out all ext4_get_block() callers who want to
4486 	 * modify the block allocation tree.
4487 	 */
4488 	down_write(&ei->i_data_sem);
4489 
4490 	ext4_discard_preallocations(inode);
4491 
4492 	/*
4493 	 * The orphan list entry will now protect us from any crash which
4494 	 * occurs before the truncate completes, so it is now safe to propagate
4495 	 * the new, shorter inode size (held for now in i_size) into the
4496 	 * on-disk inode. We do this via i_disksize, which is the value which
4497 	 * ext4 *really* writes onto the disk inode.
4498 	 */
4499 	ei->i_disksize = inode->i_size;
4500 
4501 	if (last_block == max_block) {
4502 		/*
4503 		 * It is unnecessary to free any data blocks if last_block is
4504 		 * equal to the indirect block limit.
4505 		 */
4506 		goto out_unlock;
4507 	} else if (n == 1) {		/* direct blocks */
4508 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4509 			       i_data + EXT4_NDIR_BLOCKS);
4510 		goto do_indirects;
4511 	}
4512 
4513 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4514 	/* Kill the top of shared branch (not detached) */
4515 	if (nr) {
4516 		if (partial == chain) {
4517 			/* Shared branch grows from the inode */
4518 			ext4_free_branches(handle, inode, NULL,
4519 					   &nr, &nr+1, (chain+n-1) - partial);
4520 			*partial->p = 0;
4521 			/*
4522 			 * We mark the inode dirty prior to restart,
4523 			 * and prior to stop.  No need for it here.
4524 			 */
4525 		} else {
4526 			/* Shared branch grows from an indirect block */
4527 			BUFFER_TRACE(partial->bh, "get_write_access");
4528 			ext4_free_branches(handle, inode, partial->bh,
4529 					partial->p,
4530 					partial->p+1, (chain+n-1) - partial);
4531 		}
4532 	}
4533 	/* Clear the ends of indirect blocks on the shared branch */
4534 	while (partial > chain) {
4535 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4536 				   (__le32*)partial->bh->b_data+addr_per_block,
4537 				   (chain+n-1) - partial);
4538 		BUFFER_TRACE(partial->bh, "call brelse");
4539 		brelse(partial->bh);
4540 		partial--;
4541 	}
4542 do_indirects:
4543 	/* Kill the remaining (whole) subtrees */
4544 	switch (offsets[0]) {
4545 	default:
4546 		nr = i_data[EXT4_IND_BLOCK];
4547 		if (nr) {
4548 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4549 			i_data[EXT4_IND_BLOCK] = 0;
4550 		}
4551 	case EXT4_IND_BLOCK:
4552 		nr = i_data[EXT4_DIND_BLOCK];
4553 		if (nr) {
4554 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4555 			i_data[EXT4_DIND_BLOCK] = 0;
4556 		}
4557 	case EXT4_DIND_BLOCK:
4558 		nr = i_data[EXT4_TIND_BLOCK];
4559 		if (nr) {
4560 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4561 			i_data[EXT4_TIND_BLOCK] = 0;
4562 		}
4563 	case EXT4_TIND_BLOCK:
4564 		;
4565 	}
4566 
4567 out_unlock:
4568 	up_write(&ei->i_data_sem);
4569 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4570 	ext4_mark_inode_dirty(handle, inode);
4571 
4572 	/*
4573 	 * In a multi-transaction truncate, we only make the final transaction
4574 	 * synchronous
4575 	 */
4576 	if (IS_SYNC(inode))
4577 		ext4_handle_sync(handle);
4578 out_stop:
4579 	/*
4580 	 * If this was a simple ftruncate(), and the file will remain alive
4581 	 * then we need to clear up the orphan record which we created above.
4582 	 * However, if this was a real unlink then we were called by
4583 	 * ext4_delete_inode(), and we allow that function to clean up the
4584 	 * orphan info for us.
4585 	 */
4586 	if (inode->i_nlink)
4587 		ext4_orphan_del(handle, inode);
4588 
4589 	ext4_journal_stop(handle);
4590 	trace_ext4_truncate_exit(inode);
4591 }
4592 
4593 /*
4594  * ext4_get_inode_loc returns with an extra refcount against the inode's
4595  * underlying buffer_head on success. If 'in_mem' is true, we have all
4596  * data in memory that is needed to recreate the on-disk version of this
4597  * inode.
4598  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4599 static int __ext4_get_inode_loc(struct inode *inode,
4600 				struct ext4_iloc *iloc, int in_mem)
4601 {
4602 	struct ext4_group_desc	*gdp;
4603 	struct buffer_head	*bh;
4604 	struct super_block	*sb = inode->i_sb;
4605 	ext4_fsblk_t		block;
4606 	int			inodes_per_block, inode_offset;
4607 
4608 	iloc->bh = NULL;
4609 	if (!ext4_valid_inum(sb, inode->i_ino))
4610 		return -EIO;
4611 
4612 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4613 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4614 	if (!gdp)
4615 		return -EIO;
4616 
4617 	/*
4618 	 * Figure out the offset within the block group inode table
4619 	 */
4620 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4621 	inode_offset = ((inode->i_ino - 1) %
4622 			EXT4_INODES_PER_GROUP(sb));
4623 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4624 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4625 
4626 	bh = sb_getblk(sb, block);
4627 	if (!bh) {
4628 		EXT4_ERROR_INODE_BLOCK(inode, block,
4629 				       "unable to read itable block");
4630 		return -EIO;
4631 	}
4632 	if (!buffer_uptodate(bh)) {
4633 		lock_buffer(bh);
4634 
4635 		/*
4636 		 * If the buffer has the write error flag, we have failed
4637 		 * to write out another inode in the same block.  In this
4638 		 * case, we don't have to read the block because we may
4639 		 * read the old inode data successfully.
4640 		 */
4641 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4642 			set_buffer_uptodate(bh);
4643 
4644 		if (buffer_uptodate(bh)) {
4645 			/* someone brought it uptodate while we waited */
4646 			unlock_buffer(bh);
4647 			goto has_buffer;
4648 		}
4649 
4650 		/*
4651 		 * If we have all information of the inode in memory and this
4652 		 * is the only valid inode in the block, we need not read the
4653 		 * block.
4654 		 */
4655 		if (in_mem) {
4656 			struct buffer_head *bitmap_bh;
4657 			int i, start;
4658 
4659 			start = inode_offset & ~(inodes_per_block - 1);
4660 
4661 			/* Is the inode bitmap in cache? */
4662 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4663 			if (!bitmap_bh)
4664 				goto make_io;
4665 
4666 			/*
4667 			 * If the inode bitmap isn't in cache then the
4668 			 * optimisation may end up performing two reads instead
4669 			 * of one, so skip it.
4670 			 */
4671 			if (!buffer_uptodate(bitmap_bh)) {
4672 				brelse(bitmap_bh);
4673 				goto make_io;
4674 			}
4675 			for (i = start; i < start + inodes_per_block; i++) {
4676 				if (i == inode_offset)
4677 					continue;
4678 				if (ext4_test_bit(i, bitmap_bh->b_data))
4679 					break;
4680 			}
4681 			brelse(bitmap_bh);
4682 			if (i == start + inodes_per_block) {
4683 				/* all other inodes are free, so skip I/O */
4684 				memset(bh->b_data, 0, bh->b_size);
4685 				set_buffer_uptodate(bh);
4686 				unlock_buffer(bh);
4687 				goto has_buffer;
4688 			}
4689 		}
4690 
4691 make_io:
4692 		/*
4693 		 * If we need to do any I/O, try to pre-readahead extra
4694 		 * blocks from the inode table.
4695 		 */
4696 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4697 			ext4_fsblk_t b, end, table;
4698 			unsigned num;
4699 
4700 			table = ext4_inode_table(sb, gdp);
4701 			/* s_inode_readahead_blks is always a power of 2 */
4702 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4703 			if (table > b)
4704 				b = table;
4705 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4706 			num = EXT4_INODES_PER_GROUP(sb);
4707 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4708 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4709 				num -= ext4_itable_unused_count(sb, gdp);
4710 			table += num / inodes_per_block;
4711 			if (end > table)
4712 				end = table;
4713 			while (b <= end)
4714 				sb_breadahead(sb, b++);
4715 		}
4716 
4717 		/*
4718 		 * There are other valid inodes in the buffer, this inode
4719 		 * has in-inode xattrs, or we don't have this inode in memory.
4720 		 * Read the block from disk.
4721 		 */
4722 		trace_ext4_load_inode(inode);
4723 		get_bh(bh);
4724 		bh->b_end_io = end_buffer_read_sync;
4725 		submit_bh(READ_META, bh);
4726 		wait_on_buffer(bh);
4727 		if (!buffer_uptodate(bh)) {
4728 			EXT4_ERROR_INODE_BLOCK(inode, block,
4729 					       "unable to read itable block");
4730 			brelse(bh);
4731 			return -EIO;
4732 		}
4733 	}
4734 has_buffer:
4735 	iloc->bh = bh;
4736 	return 0;
4737 }
4738 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4739 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4740 {
4741 	/* We have all inode data except xattrs in memory here. */
4742 	return __ext4_get_inode_loc(inode, iloc,
4743 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4744 }
4745 
ext4_set_inode_flags(struct inode * inode)4746 void ext4_set_inode_flags(struct inode *inode)
4747 {
4748 	unsigned int flags = EXT4_I(inode)->i_flags;
4749 
4750 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4751 	if (flags & EXT4_SYNC_FL)
4752 		inode->i_flags |= S_SYNC;
4753 	if (flags & EXT4_APPEND_FL)
4754 		inode->i_flags |= S_APPEND;
4755 	if (flags & EXT4_IMMUTABLE_FL)
4756 		inode->i_flags |= S_IMMUTABLE;
4757 	if (flags & EXT4_NOATIME_FL)
4758 		inode->i_flags |= S_NOATIME;
4759 	if (flags & EXT4_DIRSYNC_FL)
4760 		inode->i_flags |= S_DIRSYNC;
4761 }
4762 
4763 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4764 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4765 {
4766 	unsigned int vfs_fl;
4767 	unsigned long old_fl, new_fl;
4768 
4769 	do {
4770 		vfs_fl = ei->vfs_inode.i_flags;
4771 		old_fl = ei->i_flags;
4772 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4773 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4774 				EXT4_DIRSYNC_FL);
4775 		if (vfs_fl & S_SYNC)
4776 			new_fl |= EXT4_SYNC_FL;
4777 		if (vfs_fl & S_APPEND)
4778 			new_fl |= EXT4_APPEND_FL;
4779 		if (vfs_fl & S_IMMUTABLE)
4780 			new_fl |= EXT4_IMMUTABLE_FL;
4781 		if (vfs_fl & S_NOATIME)
4782 			new_fl |= EXT4_NOATIME_FL;
4783 		if (vfs_fl & S_DIRSYNC)
4784 			new_fl |= EXT4_DIRSYNC_FL;
4785 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4786 }
4787 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4788 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4789 				  struct ext4_inode_info *ei)
4790 {
4791 	blkcnt_t i_blocks ;
4792 	struct inode *inode = &(ei->vfs_inode);
4793 	struct super_block *sb = inode->i_sb;
4794 
4795 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4796 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4797 		/* we are using combined 48 bit field */
4798 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4799 					le32_to_cpu(raw_inode->i_blocks_lo);
4800 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4801 			/* i_blocks represent file system block size */
4802 			return i_blocks  << (inode->i_blkbits - 9);
4803 		} else {
4804 			return i_blocks;
4805 		}
4806 	} else {
4807 		return le32_to_cpu(raw_inode->i_blocks_lo);
4808 	}
4809 }
4810 
ext4_iget(struct super_block * sb,unsigned long ino)4811 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4812 {
4813 	struct ext4_iloc iloc;
4814 	struct ext4_inode *raw_inode;
4815 	struct ext4_inode_info *ei;
4816 	struct inode *inode;
4817 	journal_t *journal = EXT4_SB(sb)->s_journal;
4818 	long ret;
4819 	int block;
4820 
4821 	inode = iget_locked(sb, ino);
4822 	if (!inode)
4823 		return ERR_PTR(-ENOMEM);
4824 	if (!(inode->i_state & I_NEW))
4825 		return inode;
4826 
4827 	ei = EXT4_I(inode);
4828 	iloc.bh = NULL;
4829 
4830 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4831 	if (ret < 0)
4832 		goto bad_inode;
4833 	raw_inode = ext4_raw_inode(&iloc);
4834 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4835 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4836 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4837 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4838 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4839 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4840 	}
4841 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4842 
4843 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4844 	ei->i_dir_start_lookup = 0;
4845 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 	/* We now have enough fields to check if the inode was active or not.
4847 	 * This is needed because nfsd might try to access dead inodes
4848 	 * the test is that same one that e2fsck uses
4849 	 * NeilBrown 1999oct15
4850 	 */
4851 	if (inode->i_nlink == 0) {
4852 		if (inode->i_mode == 0 ||
4853 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4854 			/* this inode is deleted */
4855 			ret = -ESTALE;
4856 			goto bad_inode;
4857 		}
4858 		/* The only unlinked inodes we let through here have
4859 		 * valid i_mode and are being read by the orphan
4860 		 * recovery code: that's fine, we're about to complete
4861 		 * the process of deleting those. */
4862 	}
4863 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4864 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4865 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4866 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4867 		ei->i_file_acl |=
4868 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4869 	inode->i_size = ext4_isize(raw_inode);
4870 	ei->i_disksize = inode->i_size;
4871 #ifdef CONFIG_QUOTA
4872 	ei->i_reserved_quota = 0;
4873 #endif
4874 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4875 	ei->i_block_group = iloc.block_group;
4876 	ei->i_last_alloc_group = ~0;
4877 	/*
4878 	 * NOTE! The in-memory inode i_data array is in little-endian order
4879 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4880 	 */
4881 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4882 		ei->i_data[block] = raw_inode->i_block[block];
4883 	INIT_LIST_HEAD(&ei->i_orphan);
4884 
4885 	/*
4886 	 * Set transaction id's of transactions that have to be committed
4887 	 * to finish f[data]sync. We set them to currently running transaction
4888 	 * as we cannot be sure that the inode or some of its metadata isn't
4889 	 * part of the transaction - the inode could have been reclaimed and
4890 	 * now it is reread from disk.
4891 	 */
4892 	if (journal) {
4893 		transaction_t *transaction;
4894 		tid_t tid;
4895 
4896 		read_lock(&journal->j_state_lock);
4897 		if (journal->j_running_transaction)
4898 			transaction = journal->j_running_transaction;
4899 		else
4900 			transaction = journal->j_committing_transaction;
4901 		if (transaction)
4902 			tid = transaction->t_tid;
4903 		else
4904 			tid = journal->j_commit_sequence;
4905 		read_unlock(&journal->j_state_lock);
4906 		ei->i_sync_tid = tid;
4907 		ei->i_datasync_tid = tid;
4908 	}
4909 
4910 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4912 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4913 		    EXT4_INODE_SIZE(inode->i_sb)) {
4914 			ret = -EIO;
4915 			goto bad_inode;
4916 		}
4917 		if (ei->i_extra_isize == 0) {
4918 			/* The extra space is currently unused. Use it. */
4919 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4920 					    EXT4_GOOD_OLD_INODE_SIZE;
4921 		} else {
4922 			__le32 *magic = (void *)raw_inode +
4923 					EXT4_GOOD_OLD_INODE_SIZE +
4924 					ei->i_extra_isize;
4925 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4926 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4927 		}
4928 	} else
4929 		ei->i_extra_isize = 0;
4930 
4931 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4932 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4933 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4934 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4935 
4936 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4937 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4938 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4939 			inode->i_version |=
4940 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4941 	}
4942 
4943 	ret = 0;
4944 	if (ei->i_file_acl &&
4945 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4946 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4947 				 ei->i_file_acl);
4948 		ret = -EIO;
4949 		goto bad_inode;
4950 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4951 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4952 		    (S_ISLNK(inode->i_mode) &&
4953 		     !ext4_inode_is_fast_symlink(inode)))
4954 			/* Validate extent which is part of inode */
4955 			ret = ext4_ext_check_inode(inode);
4956 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4957 		   (S_ISLNK(inode->i_mode) &&
4958 		    !ext4_inode_is_fast_symlink(inode))) {
4959 		/* Validate block references which are part of inode */
4960 		ret = ext4_check_inode_blockref(inode);
4961 	}
4962 	if (ret)
4963 		goto bad_inode;
4964 
4965 	if (S_ISREG(inode->i_mode)) {
4966 		inode->i_op = &ext4_file_inode_operations;
4967 		inode->i_fop = &ext4_file_operations;
4968 		ext4_set_aops(inode);
4969 	} else if (S_ISDIR(inode->i_mode)) {
4970 		inode->i_op = &ext4_dir_inode_operations;
4971 		inode->i_fop = &ext4_dir_operations;
4972 	} else if (S_ISLNK(inode->i_mode)) {
4973 		if (ext4_inode_is_fast_symlink(inode)) {
4974 			inode->i_op = &ext4_fast_symlink_inode_operations;
4975 			nd_terminate_link(ei->i_data, inode->i_size,
4976 				sizeof(ei->i_data) - 1);
4977 		} else {
4978 			inode->i_op = &ext4_symlink_inode_operations;
4979 			ext4_set_aops(inode);
4980 		}
4981 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4982 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4983 		inode->i_op = &ext4_special_inode_operations;
4984 		if (raw_inode->i_block[0])
4985 			init_special_inode(inode, inode->i_mode,
4986 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4987 		else
4988 			init_special_inode(inode, inode->i_mode,
4989 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4990 	} else {
4991 		ret = -EIO;
4992 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4993 		goto bad_inode;
4994 	}
4995 	brelse(iloc.bh);
4996 	ext4_set_inode_flags(inode);
4997 	unlock_new_inode(inode);
4998 	return inode;
4999 
5000 bad_inode:
5001 	brelse(iloc.bh);
5002 	iget_failed(inode);
5003 	return ERR_PTR(ret);
5004 }
5005 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5006 static int ext4_inode_blocks_set(handle_t *handle,
5007 				struct ext4_inode *raw_inode,
5008 				struct ext4_inode_info *ei)
5009 {
5010 	struct inode *inode = &(ei->vfs_inode);
5011 	u64 i_blocks = inode->i_blocks;
5012 	struct super_block *sb = inode->i_sb;
5013 
5014 	if (i_blocks <= ~0U) {
5015 		/*
5016 		 * i_blocks can be represnted in a 32 bit variable
5017 		 * as multiple of 512 bytes
5018 		 */
5019 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5020 		raw_inode->i_blocks_high = 0;
5021 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5022 		return 0;
5023 	}
5024 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5025 		return -EFBIG;
5026 
5027 	if (i_blocks <= 0xffffffffffffULL) {
5028 		/*
5029 		 * i_blocks can be represented in a 48 bit variable
5030 		 * as multiple of 512 bytes
5031 		 */
5032 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5033 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5034 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5035 	} else {
5036 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5037 		/* i_block is stored in file system block size */
5038 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5039 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5040 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5041 	}
5042 	return 0;
5043 }
5044 
5045 /*
5046  * Post the struct inode info into an on-disk inode location in the
5047  * buffer-cache.  This gobbles the caller's reference to the
5048  * buffer_head in the inode location struct.
5049  *
5050  * The caller must have write access to iloc->bh.
5051  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5052 static int ext4_do_update_inode(handle_t *handle,
5053 				struct inode *inode,
5054 				struct ext4_iloc *iloc)
5055 {
5056 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5057 	struct ext4_inode_info *ei = EXT4_I(inode);
5058 	struct buffer_head *bh = iloc->bh;
5059 	int err = 0, rc, block;
5060 
5061 	/* For fields not not tracking in the in-memory inode,
5062 	 * initialise them to zero for new inodes. */
5063 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5064 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5065 
5066 	ext4_get_inode_flags(ei);
5067 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5068 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5069 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5070 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5071 /*
5072  * Fix up interoperability with old kernels. Otherwise, old inodes get
5073  * re-used with the upper 16 bits of the uid/gid intact
5074  */
5075 		if (!ei->i_dtime) {
5076 			raw_inode->i_uid_high =
5077 				cpu_to_le16(high_16_bits(inode->i_uid));
5078 			raw_inode->i_gid_high =
5079 				cpu_to_le16(high_16_bits(inode->i_gid));
5080 		} else {
5081 			raw_inode->i_uid_high = 0;
5082 			raw_inode->i_gid_high = 0;
5083 		}
5084 	} else {
5085 		raw_inode->i_uid_low =
5086 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5087 		raw_inode->i_gid_low =
5088 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5089 		raw_inode->i_uid_high = 0;
5090 		raw_inode->i_gid_high = 0;
5091 	}
5092 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5093 
5094 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5095 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5096 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5097 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5098 
5099 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5100 		goto out_brelse;
5101 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5102 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5104 	    cpu_to_le32(EXT4_OS_HURD))
5105 		raw_inode->i_file_acl_high =
5106 			cpu_to_le16(ei->i_file_acl >> 32);
5107 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5108 	ext4_isize_set(raw_inode, ei->i_disksize);
5109 	if (ei->i_disksize > 0x7fffffffULL) {
5110 		struct super_block *sb = inode->i_sb;
5111 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5112 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5113 				EXT4_SB(sb)->s_es->s_rev_level ==
5114 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5115 			/* If this is the first large file
5116 			 * created, add a flag to the superblock.
5117 			 */
5118 			err = ext4_journal_get_write_access(handle,
5119 					EXT4_SB(sb)->s_sbh);
5120 			if (err)
5121 				goto out_brelse;
5122 			ext4_update_dynamic_rev(sb);
5123 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5124 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5125 			sb->s_dirt = 1;
5126 			ext4_handle_sync(handle);
5127 			err = ext4_handle_dirty_metadata(handle, NULL,
5128 					EXT4_SB(sb)->s_sbh);
5129 		}
5130 	}
5131 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5132 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5133 		if (old_valid_dev(inode->i_rdev)) {
5134 			raw_inode->i_block[0] =
5135 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5136 			raw_inode->i_block[1] = 0;
5137 		} else {
5138 			raw_inode->i_block[0] = 0;
5139 			raw_inode->i_block[1] =
5140 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5141 			raw_inode->i_block[2] = 0;
5142 		}
5143 	} else
5144 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5145 			raw_inode->i_block[block] = ei->i_data[block];
5146 
5147 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5148 	if (ei->i_extra_isize) {
5149 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5150 			raw_inode->i_version_hi =
5151 			cpu_to_le32(inode->i_version >> 32);
5152 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5153 	}
5154 
5155 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5156 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5157 	if (!err)
5158 		err = rc;
5159 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5160 
5161 	ext4_update_inode_fsync_trans(handle, inode, 0);
5162 out_brelse:
5163 	brelse(bh);
5164 	ext4_std_error(inode->i_sb, err);
5165 	return err;
5166 }
5167 
5168 /*
5169  * ext4_write_inode()
5170  *
5171  * We are called from a few places:
5172  *
5173  * - Within generic_file_write() for O_SYNC files.
5174  *   Here, there will be no transaction running. We wait for any running
5175  *   trasnaction to commit.
5176  *
5177  * - Within sys_sync(), kupdate and such.
5178  *   We wait on commit, if tol to.
5179  *
5180  * - Within prune_icache() (PF_MEMALLOC == true)
5181  *   Here we simply return.  We can't afford to block kswapd on the
5182  *   journal commit.
5183  *
5184  * In all cases it is actually safe for us to return without doing anything,
5185  * because the inode has been copied into a raw inode buffer in
5186  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5187  * knfsd.
5188  *
5189  * Note that we are absolutely dependent upon all inode dirtiers doing the
5190  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191  * which we are interested.
5192  *
5193  * It would be a bug for them to not do this.  The code:
5194  *
5195  *	mark_inode_dirty(inode)
5196  *	stuff();
5197  *	inode->i_size = expr;
5198  *
5199  * is in error because a kswapd-driven write_inode() could occur while
5200  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5201  * will no longer be on the superblock's dirty inode list.
5202  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5203 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5204 {
5205 	int err;
5206 
5207 	if (current->flags & PF_MEMALLOC)
5208 		return 0;
5209 
5210 	if (EXT4_SB(inode->i_sb)->s_journal) {
5211 		if (ext4_journal_current_handle()) {
5212 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213 			dump_stack();
5214 			return -EIO;
5215 		}
5216 
5217 		if (wbc->sync_mode != WB_SYNC_ALL)
5218 			return 0;
5219 
5220 		err = ext4_force_commit(inode->i_sb);
5221 	} else {
5222 		struct ext4_iloc iloc;
5223 
5224 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5225 		if (err)
5226 			return err;
5227 		if (wbc->sync_mode == WB_SYNC_ALL)
5228 			sync_dirty_buffer(iloc.bh);
5229 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5230 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5231 					 "IO error syncing inode");
5232 			err = -EIO;
5233 		}
5234 		brelse(iloc.bh);
5235 	}
5236 	return err;
5237 }
5238 
5239 /*
5240  * ext4_setattr()
5241  *
5242  * Called from notify_change.
5243  *
5244  * We want to trap VFS attempts to truncate the file as soon as
5245  * possible.  In particular, we want to make sure that when the VFS
5246  * shrinks i_size, we put the inode on the orphan list and modify
5247  * i_disksize immediately, so that during the subsequent flushing of
5248  * dirty pages and freeing of disk blocks, we can guarantee that any
5249  * commit will leave the blocks being flushed in an unused state on
5250  * disk.  (On recovery, the inode will get truncated and the blocks will
5251  * be freed, so we have a strong guarantee that no future commit will
5252  * leave these blocks visible to the user.)
5253  *
5254  * Another thing we have to assure is that if we are in ordered mode
5255  * and inode is still attached to the committing transaction, we must
5256  * we start writeout of all the dirty pages which are being truncated.
5257  * This way we are sure that all the data written in the previous
5258  * transaction are already on disk (truncate waits for pages under
5259  * writeback).
5260  *
5261  * Called with inode->i_mutex down.
5262  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5263 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5264 {
5265 	struct inode *inode = dentry->d_inode;
5266 	int error, rc = 0;
5267 	int orphan = 0;
5268 	const unsigned int ia_valid = attr->ia_valid;
5269 
5270 	error = inode_change_ok(inode, attr);
5271 	if (error)
5272 		return error;
5273 
5274 	if (is_quota_modification(inode, attr))
5275 		dquot_initialize(inode);
5276 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5277 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5278 		handle_t *handle;
5279 
5280 		/* (user+group)*(old+new) structure, inode write (sb,
5281 		 * inode block, ? - but truncate inode update has it) */
5282 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5283 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5284 		if (IS_ERR(handle)) {
5285 			error = PTR_ERR(handle);
5286 			goto err_out;
5287 		}
5288 		error = dquot_transfer(inode, attr);
5289 		if (error) {
5290 			ext4_journal_stop(handle);
5291 			return error;
5292 		}
5293 		/* Update corresponding info in inode so that everything is in
5294 		 * one transaction */
5295 		if (attr->ia_valid & ATTR_UID)
5296 			inode->i_uid = attr->ia_uid;
5297 		if (attr->ia_valid & ATTR_GID)
5298 			inode->i_gid = attr->ia_gid;
5299 		error = ext4_mark_inode_dirty(handle, inode);
5300 		ext4_journal_stop(handle);
5301 	}
5302 
5303 	if (attr->ia_valid & ATTR_SIZE) {
5304 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5305 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5306 
5307 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5308 				return -EFBIG;
5309 		}
5310 	}
5311 
5312 	if (S_ISREG(inode->i_mode) &&
5313 	    attr->ia_valid & ATTR_SIZE &&
5314 	    (attr->ia_size < inode->i_size ||
5315 	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5316 		handle_t *handle;
5317 
5318 		handle = ext4_journal_start(inode, 3);
5319 		if (IS_ERR(handle)) {
5320 			error = PTR_ERR(handle);
5321 			goto err_out;
5322 		}
5323 		if (ext4_handle_valid(handle)) {
5324 			error = ext4_orphan_add(handle, inode);
5325 			orphan = 1;
5326 		}
5327 		EXT4_I(inode)->i_disksize = attr->ia_size;
5328 		rc = ext4_mark_inode_dirty(handle, inode);
5329 		if (!error)
5330 			error = rc;
5331 		ext4_journal_stop(handle);
5332 
5333 		if (ext4_should_order_data(inode)) {
5334 			error = ext4_begin_ordered_truncate(inode,
5335 							    attr->ia_size);
5336 			if (error) {
5337 				/* Do as much error cleanup as possible */
5338 				handle = ext4_journal_start(inode, 3);
5339 				if (IS_ERR(handle)) {
5340 					ext4_orphan_del(NULL, inode);
5341 					goto err_out;
5342 				}
5343 				ext4_orphan_del(handle, inode);
5344 				orphan = 0;
5345 				ext4_journal_stop(handle);
5346 				goto err_out;
5347 			}
5348 		}
5349 		/* ext4_truncate will clear the flag */
5350 		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5351 			ext4_truncate(inode);
5352 	}
5353 
5354 	if ((attr->ia_valid & ATTR_SIZE) &&
5355 	    attr->ia_size != i_size_read(inode))
5356 		rc = vmtruncate(inode, attr->ia_size);
5357 
5358 	if (!rc) {
5359 		setattr_copy(inode, attr);
5360 		mark_inode_dirty(inode);
5361 	}
5362 
5363 	/*
5364 	 * If the call to ext4_truncate failed to get a transaction handle at
5365 	 * all, we need to clean up the in-core orphan list manually.
5366 	 */
5367 	if (orphan && inode->i_nlink)
5368 		ext4_orphan_del(NULL, inode);
5369 
5370 	if (!rc && (ia_valid & ATTR_MODE))
5371 		rc = ext4_acl_chmod(inode);
5372 
5373 err_out:
5374 	ext4_std_error(inode->i_sb, error);
5375 	if (!error)
5376 		error = rc;
5377 	return error;
5378 }
5379 
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)5380 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5381 		 struct kstat *stat)
5382 {
5383 	struct inode *inode;
5384 	unsigned long delalloc_blocks;
5385 
5386 	inode = dentry->d_inode;
5387 	generic_fillattr(inode, stat);
5388 
5389 	/*
5390 	 * We can't update i_blocks if the block allocation is delayed
5391 	 * otherwise in the case of system crash before the real block
5392 	 * allocation is done, we will have i_blocks inconsistent with
5393 	 * on-disk file blocks.
5394 	 * We always keep i_blocks updated together with real
5395 	 * allocation. But to not confuse with user, stat
5396 	 * will return the blocks that include the delayed allocation
5397 	 * blocks for this file.
5398 	 */
5399 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5400 
5401 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5402 	return 0;
5403 }
5404 
ext4_indirect_trans_blocks(struct inode * inode,int nrblocks,int chunk)5405 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5406 				      int chunk)
5407 {
5408 	int indirects;
5409 
5410 	/* if nrblocks are contiguous */
5411 	if (chunk) {
5412 		/*
5413 		 * With N contiguous data blocks, we need at most
5414 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5415 		 * 2 dindirect blocks, and 1 tindirect block
5416 		 */
5417 		return DIV_ROUND_UP(nrblocks,
5418 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5419 	}
5420 	/*
5421 	 * if nrblocks are not contiguous, worse case, each block touch
5422 	 * a indirect block, and each indirect block touch a double indirect
5423 	 * block, plus a triple indirect block
5424 	 */
5425 	indirects = nrblocks * 2 + 1;
5426 	return indirects;
5427 }
5428 
ext4_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)5429 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5430 {
5431 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5432 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5433 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5434 }
5435 
5436 /*
5437  * Account for index blocks, block groups bitmaps and block group
5438  * descriptor blocks if modify datablocks and index blocks
5439  * worse case, the indexs blocks spread over different block groups
5440  *
5441  * If datablocks are discontiguous, they are possible to spread over
5442  * different block groups too. If they are contiuguous, with flexbg,
5443  * they could still across block group boundary.
5444  *
5445  * Also account for superblock, inode, quota and xattr blocks
5446  */
ext4_meta_trans_blocks(struct inode * inode,int nrblocks,int chunk)5447 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5448 {
5449 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5450 	int gdpblocks;
5451 	int idxblocks;
5452 	int ret = 0;
5453 
5454 	/*
5455 	 * How many index blocks need to touch to modify nrblocks?
5456 	 * The "Chunk" flag indicating whether the nrblocks is
5457 	 * physically contiguous on disk
5458 	 *
5459 	 * For Direct IO and fallocate, they calls get_block to allocate
5460 	 * one single extent at a time, so they could set the "Chunk" flag
5461 	 */
5462 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5463 
5464 	ret = idxblocks;
5465 
5466 	/*
5467 	 * Now let's see how many group bitmaps and group descriptors need
5468 	 * to account
5469 	 */
5470 	groups = idxblocks;
5471 	if (chunk)
5472 		groups += 1;
5473 	else
5474 		groups += nrblocks;
5475 
5476 	gdpblocks = groups;
5477 	if (groups > ngroups)
5478 		groups = ngroups;
5479 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5480 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5481 
5482 	/* bitmaps and block group descriptor blocks */
5483 	ret += groups + gdpblocks;
5484 
5485 	/* Blocks for super block, inode, quota and xattr blocks */
5486 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5487 
5488 	return ret;
5489 }
5490 
5491 /*
5492  * Calculate the total number of credits to reserve to fit
5493  * the modification of a single pages into a single transaction,
5494  * which may include multiple chunks of block allocations.
5495  *
5496  * This could be called via ext4_write_begin()
5497  *
5498  * We need to consider the worse case, when
5499  * one new block per extent.
5500  */
ext4_writepage_trans_blocks(struct inode * inode)5501 int ext4_writepage_trans_blocks(struct inode *inode)
5502 {
5503 	int bpp = ext4_journal_blocks_per_page(inode);
5504 	int ret;
5505 
5506 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5507 
5508 	/* Account for data blocks for journalled mode */
5509 	if (ext4_should_journal_data(inode))
5510 		ret += bpp;
5511 	return ret;
5512 }
5513 
5514 /*
5515  * Calculate the journal credits for a chunk of data modification.
5516  *
5517  * This is called from DIO, fallocate or whoever calling
5518  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5519  *
5520  * journal buffers for data blocks are not included here, as DIO
5521  * and fallocate do no need to journal data buffers.
5522  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5523 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5524 {
5525 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5526 }
5527 
5528 /*
5529  * The caller must have previously called ext4_reserve_inode_write().
5530  * Give this, we know that the caller already has write access to iloc->bh.
5531  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5532 int ext4_mark_iloc_dirty(handle_t *handle,
5533 			 struct inode *inode, struct ext4_iloc *iloc)
5534 {
5535 	int err = 0;
5536 
5537 	if (test_opt(inode->i_sb, I_VERSION))
5538 		inode_inc_iversion(inode);
5539 
5540 	/* the do_update_inode consumes one bh->b_count */
5541 	get_bh(iloc->bh);
5542 
5543 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5544 	err = ext4_do_update_inode(handle, inode, iloc);
5545 	put_bh(iloc->bh);
5546 	return err;
5547 }
5548 
5549 /*
5550  * On success, We end up with an outstanding reference count against
5551  * iloc->bh.  This _must_ be cleaned up later.
5552  */
5553 
5554 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5555 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5556 			 struct ext4_iloc *iloc)
5557 {
5558 	int err;
5559 
5560 	err = ext4_get_inode_loc(inode, iloc);
5561 	if (!err) {
5562 		BUFFER_TRACE(iloc->bh, "get_write_access");
5563 		err = ext4_journal_get_write_access(handle, iloc->bh);
5564 		if (err) {
5565 			brelse(iloc->bh);
5566 			iloc->bh = NULL;
5567 		}
5568 	}
5569 	ext4_std_error(inode->i_sb, err);
5570 	return err;
5571 }
5572 
5573 /*
5574  * Expand an inode by new_extra_isize bytes.
5575  * Returns 0 on success or negative error number on failure.
5576  */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5577 static int ext4_expand_extra_isize(struct inode *inode,
5578 				   unsigned int new_extra_isize,
5579 				   struct ext4_iloc iloc,
5580 				   handle_t *handle)
5581 {
5582 	struct ext4_inode *raw_inode;
5583 	struct ext4_xattr_ibody_header *header;
5584 
5585 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5586 		return 0;
5587 
5588 	raw_inode = ext4_raw_inode(&iloc);
5589 
5590 	header = IHDR(inode, raw_inode);
5591 
5592 	/* No extended attributes present */
5593 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5594 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5595 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5596 			new_extra_isize);
5597 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5598 		return 0;
5599 	}
5600 
5601 	/* try to expand with EAs present */
5602 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5603 					  raw_inode, handle);
5604 }
5605 
5606 /*
5607  * What we do here is to mark the in-core inode as clean with respect to inode
5608  * dirtiness (it may still be data-dirty).
5609  * This means that the in-core inode may be reaped by prune_icache
5610  * without having to perform any I/O.  This is a very good thing,
5611  * because *any* task may call prune_icache - even ones which
5612  * have a transaction open against a different journal.
5613  *
5614  * Is this cheating?  Not really.  Sure, we haven't written the
5615  * inode out, but prune_icache isn't a user-visible syncing function.
5616  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5617  * we start and wait on commits.
5618  *
5619  * Is this efficient/effective?  Well, we're being nice to the system
5620  * by cleaning up our inodes proactively so they can be reaped
5621  * without I/O.  But we are potentially leaving up to five seconds'
5622  * worth of inodes floating about which prune_icache wants us to
5623  * write out.  One way to fix that would be to get prune_icache()
5624  * to do a write_super() to free up some memory.  It has the desired
5625  * effect.
5626  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5627 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5628 {
5629 	struct ext4_iloc iloc;
5630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5631 	static unsigned int mnt_count;
5632 	int err, ret;
5633 
5634 	might_sleep();
5635 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5636 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5637 	if (ext4_handle_valid(handle) &&
5638 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5639 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5640 		/*
5641 		 * We need extra buffer credits since we may write into EA block
5642 		 * with this same handle. If journal_extend fails, then it will
5643 		 * only result in a minor loss of functionality for that inode.
5644 		 * If this is felt to be critical, then e2fsck should be run to
5645 		 * force a large enough s_min_extra_isize.
5646 		 */
5647 		if ((jbd2_journal_extend(handle,
5648 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5649 			ret = ext4_expand_extra_isize(inode,
5650 						      sbi->s_want_extra_isize,
5651 						      iloc, handle);
5652 			if (ret) {
5653 				ext4_set_inode_state(inode,
5654 						     EXT4_STATE_NO_EXPAND);
5655 				if (mnt_count !=
5656 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5657 					ext4_warning(inode->i_sb,
5658 					"Unable to expand inode %lu. Delete"
5659 					" some EAs or run e2fsck.",
5660 					inode->i_ino);
5661 					mnt_count =
5662 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5663 				}
5664 			}
5665 		}
5666 	}
5667 	if (!err)
5668 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5669 	return err;
5670 }
5671 
5672 /*
5673  * ext4_dirty_inode() is called from __mark_inode_dirty()
5674  *
5675  * We're really interested in the case where a file is being extended.
5676  * i_size has been changed by generic_commit_write() and we thus need
5677  * to include the updated inode in the current transaction.
5678  *
5679  * Also, dquot_alloc_block() will always dirty the inode when blocks
5680  * are allocated to the file.
5681  *
5682  * If the inode is marked synchronous, we don't honour that here - doing
5683  * so would cause a commit on atime updates, which we don't bother doing.
5684  * We handle synchronous inodes at the highest possible level.
5685  */
ext4_dirty_inode(struct inode * inode)5686 void ext4_dirty_inode(struct inode *inode)
5687 {
5688 	handle_t *handle;
5689 
5690 	handle = ext4_journal_start(inode, 2);
5691 	if (IS_ERR(handle))
5692 		goto out;
5693 
5694 	ext4_mark_inode_dirty(handle, inode);
5695 
5696 	ext4_journal_stop(handle);
5697 out:
5698 	return;
5699 }
5700 
5701 #if 0
5702 /*
5703  * Bind an inode's backing buffer_head into this transaction, to prevent
5704  * it from being flushed to disk early.  Unlike
5705  * ext4_reserve_inode_write, this leaves behind no bh reference and
5706  * returns no iloc structure, so the caller needs to repeat the iloc
5707  * lookup to mark the inode dirty later.
5708  */
5709 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5710 {
5711 	struct ext4_iloc iloc;
5712 
5713 	int err = 0;
5714 	if (handle) {
5715 		err = ext4_get_inode_loc(inode, &iloc);
5716 		if (!err) {
5717 			BUFFER_TRACE(iloc.bh, "get_write_access");
5718 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5719 			if (!err)
5720 				err = ext4_handle_dirty_metadata(handle,
5721 								 NULL,
5722 								 iloc.bh);
5723 			brelse(iloc.bh);
5724 		}
5725 	}
5726 	ext4_std_error(inode->i_sb, err);
5727 	return err;
5728 }
5729 #endif
5730 
ext4_change_inode_journal_flag(struct inode * inode,int val)5731 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5732 {
5733 	journal_t *journal;
5734 	handle_t *handle;
5735 	int err;
5736 
5737 	/*
5738 	 * We have to be very careful here: changing a data block's
5739 	 * journaling status dynamically is dangerous.  If we write a
5740 	 * data block to the journal, change the status and then delete
5741 	 * that block, we risk forgetting to revoke the old log record
5742 	 * from the journal and so a subsequent replay can corrupt data.
5743 	 * So, first we make sure that the journal is empty and that
5744 	 * nobody is changing anything.
5745 	 */
5746 
5747 	journal = EXT4_JOURNAL(inode);
5748 	if (!journal)
5749 		return 0;
5750 	if (is_journal_aborted(journal))
5751 		return -EROFS;
5752 
5753 	jbd2_journal_lock_updates(journal);
5754 	jbd2_journal_flush(journal);
5755 
5756 	/*
5757 	 * OK, there are no updates running now, and all cached data is
5758 	 * synced to disk.  We are now in a completely consistent state
5759 	 * which doesn't have anything in the journal, and we know that
5760 	 * no filesystem updates are running, so it is safe to modify
5761 	 * the inode's in-core data-journaling state flag now.
5762 	 */
5763 
5764 	if (val)
5765 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5766 	else
5767 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5768 	ext4_set_aops(inode);
5769 
5770 	jbd2_journal_unlock_updates(journal);
5771 
5772 	/* Finally we can mark the inode as dirty. */
5773 
5774 	handle = ext4_journal_start(inode, 1);
5775 	if (IS_ERR(handle))
5776 		return PTR_ERR(handle);
5777 
5778 	err = ext4_mark_inode_dirty(handle, inode);
5779 	ext4_handle_sync(handle);
5780 	ext4_journal_stop(handle);
5781 	ext4_std_error(inode->i_sb, err);
5782 
5783 	return err;
5784 }
5785 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5786 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5787 {
5788 	return !buffer_mapped(bh);
5789 }
5790 
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5791 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5792 {
5793 	struct page *page = vmf->page;
5794 	loff_t size;
5795 	unsigned long len;
5796 	int ret = -EINVAL;
5797 	void *fsdata;
5798 	struct file *file = vma->vm_file;
5799 	struct inode *inode = file->f_path.dentry->d_inode;
5800 	struct address_space *mapping = inode->i_mapping;
5801 
5802 	/*
5803 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5804 	 * get i_mutex because we are already holding mmap_sem.
5805 	 */
5806 	down_read(&inode->i_alloc_sem);
5807 	size = i_size_read(inode);
5808 	if (page->mapping != mapping || size <= page_offset(page)
5809 	    || !PageUptodate(page)) {
5810 		/* page got truncated from under us? */
5811 		goto out_unlock;
5812 	}
5813 	ret = 0;
5814 	if (PageMappedToDisk(page))
5815 		goto out_unlock;
5816 
5817 	if (page->index == size >> PAGE_CACHE_SHIFT)
5818 		len = size & ~PAGE_CACHE_MASK;
5819 	else
5820 		len = PAGE_CACHE_SIZE;
5821 
5822 	lock_page(page);
5823 	/*
5824 	 * return if we have all the buffers mapped. This avoid
5825 	 * the need to call write_begin/write_end which does a
5826 	 * journal_start/journal_stop which can block and take
5827 	 * long time
5828 	 */
5829 	if (page_has_buffers(page)) {
5830 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5831 					ext4_bh_unmapped)) {
5832 			unlock_page(page);
5833 			goto out_unlock;
5834 		}
5835 	}
5836 	unlock_page(page);
5837 	/*
5838 	 * OK, we need to fill the hole... Do write_begin write_end
5839 	 * to do block allocation/reservation.We are not holding
5840 	 * inode.i__mutex here. That allow * parallel write_begin,
5841 	 * write_end call. lock_page prevent this from happening
5842 	 * on the same page though
5843 	 */
5844 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5845 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5846 	if (ret < 0)
5847 		goto out_unlock;
5848 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5849 			len, len, page, fsdata);
5850 	if (ret < 0)
5851 		goto out_unlock;
5852 	ret = 0;
5853 out_unlock:
5854 	if (ret)
5855 		ret = VM_FAULT_SIGBUS;
5856 	up_read(&inode->i_alloc_sem);
5857 	return ret;
5858 }
5859