1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185 }
186
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193 }
194
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
205 }
206
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219 #else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224 #endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
230 }
231
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237
238 /*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
251
252 restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261 out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265
266 /*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278 }
279
280 /*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
292
293 restart:
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329
330 return;
331 }
332
333 /*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342
343 if (ext4_fc_disabled(sb))
344 return;
345
346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(handle))
348 tid = handle->h_transaction->t_tid;
349 else {
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
354 }
355 spin_lock(&sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(&sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 }
362
363 /*
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
370 *
371 * If enqueue is set, this function enqueues the inode in fast commit list.
372 */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)373 static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
377 {
378 bool update = false;
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 tid_t tid = 0;
382 int ret;
383
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
387 update = true;
388 } else {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
391 }
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(&ei->i_fc_lock);
394
395 if (!enqueue)
396 return ret;
397
398 spin_lock(&sbi->s_fc_lock);
399 if (list_empty(&EXT4_I(inode)->i_fc_list))
400 list_add_tail(&EXT4_I(inode)->i_fc_list,
401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(&sbi->s_fc_lock);
406
407 return ret;
408 }
409
410 struct __track_dentry_update_args {
411 struct dentry *dentry;
412 int op;
413 };
414
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 {
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct inode *dir = dentry->d_parent->d_inode;
424 struct super_block *sb = inode->i_sb;
425 struct ext4_sb_info *sbi = EXT4_SB(sb);
426
427 mutex_unlock(&ei->i_fc_lock);
428
429 if (IS_ENCRYPTED(dir)) {
430 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 NULL);
432 mutex_lock(&ei->i_fc_lock);
433 return -EOPNOTSUPP;
434 }
435
436 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 if (!node) {
438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 mutex_lock(&ei->i_fc_lock);
440 return -ENOMEM;
441 }
442
443 node->fcd_op = dentry_update->op;
444 node->fcd_parent = dir->i_ino;
445 node->fcd_ino = inode->i_ino;
446 if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 if (!node->fcd_name.name) {
449 kmem_cache_free(ext4_fc_dentry_cachep, node);
450 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 mutex_lock(&ei->i_fc_lock);
452 return -ENOMEM;
453 }
454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 dentry->d_name.len);
456 } else {
457 memcpy(node->fcd_iname, dentry->d_name.name,
458 dentry->d_name.len);
459 node->fcd_name.name = node->fcd_iname;
460 }
461 node->fcd_name.len = dentry->d_name.len;
462 INIT_LIST_HEAD(&node->fcd_dilist);
463 spin_lock(&sbi->s_fc_lock);
464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 list_add_tail(&node->fcd_list,
467 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 else
469 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470
471 /*
472 * This helps us keep a track of all fc_dentry updates which is part of
473 * this ext4 inode. So in case the inode is getting unlinked, before
474 * even we get a chance to fsync, we could remove all fc_dentry
475 * references while evicting the inode in ext4_fc_del().
476 * Also with this, we don't need to loop over all the inodes in
477 * sbi->s_fc_q to get the corresponding inode in
478 * ext4_fc_commit_dentry_updates().
479 */
480 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 WARN_ON(!list_empty(&ei->i_fc_dilist));
482 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 }
484 spin_unlock(&sbi->s_fc_lock);
485 mutex_lock(&ei->i_fc_lock);
486
487 return 0;
488 }
489
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)490 void __ext4_fc_track_unlink(handle_t *handle,
491 struct inode *inode, struct dentry *dentry)
492 {
493 struct __track_dentry_update_args args;
494 int ret;
495
496 args.dentry = dentry;
497 args.op = EXT4_FC_TAG_UNLINK;
498
499 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 (void *)&args, 0);
501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 }
503
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 {
506 struct inode *inode = d_inode(dentry);
507
508 if (ext4_fc_disabled(inode->i_sb))
509 return;
510
511 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 return;
513
514 __ext4_fc_track_unlink(handle, inode, dentry);
515 }
516
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)517 void __ext4_fc_track_link(handle_t *handle,
518 struct inode *inode, struct dentry *dentry)
519 {
520 struct __track_dentry_update_args args;
521 int ret;
522
523 args.dentry = dentry;
524 args.op = EXT4_FC_TAG_LINK;
525
526 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 (void *)&args, 0);
528 trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 }
530
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 {
533 struct inode *inode = d_inode(dentry);
534
535 if (ext4_fc_disabled(inode->i_sb))
536 return;
537
538 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 return;
540
541 __ext4_fc_track_link(handle, inode, dentry);
542 }
543
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 struct dentry *dentry)
546 {
547 struct __track_dentry_update_args args;
548 int ret;
549
550 args.dentry = dentry;
551 args.op = EXT4_FC_TAG_CREAT;
552
553 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 (void *)&args, 0);
555 trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 }
557
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 {
560 struct inode *inode = d_inode(dentry);
561
562 if (ext4_fc_disabled(inode->i_sb))
563 return;
564
565 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 return;
567
568 __ext4_fc_track_create(handle, inode, dentry);
569 }
570
571 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)572 static int __track_inode(struct inode *inode, void *arg, bool update)
573 {
574 if (update)
575 return -EEXIST;
576
577 EXT4_I(inode)->i_fc_lblk_len = 0;
578
579 return 0;
580 }
581
ext4_fc_track_inode(handle_t * handle,struct inode * inode)582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 {
584 int ret;
585
586 if (S_ISDIR(inode->i_mode))
587 return;
588
589 if (ext4_fc_disabled(inode->i_sb))
590 return;
591
592 if (ext4_should_journal_data(inode)) {
593 ext4_fc_mark_ineligible(inode->i_sb,
594 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 return;
596 }
597
598 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 return;
600
601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604
605 struct __track_range_args {
606 ext4_lblk_t start, end;
607 };
608
609 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)610 static int __track_range(struct inode *inode, void *arg, bool update)
611 {
612 struct ext4_inode_info *ei = EXT4_I(inode);
613 ext4_lblk_t oldstart;
614 struct __track_range_args *__arg =
615 (struct __track_range_args *)arg;
616
617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 return -ECANCELED;
620 }
621
622 oldstart = ei->i_fc_lblk_start;
623
624 if (update && ei->i_fc_lblk_len > 0) {
625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 ei->i_fc_lblk_len =
627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 ei->i_fc_lblk_start + 1;
629 } else {
630 ei->i_fc_lblk_start = __arg->start;
631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 }
633
634 return 0;
635 }
636
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 ext4_lblk_t end)
639 {
640 struct __track_range_args args;
641 int ret;
642
643 if (S_ISDIR(inode->i_mode))
644 return;
645
646 if (ext4_fc_disabled(inode->i_sb))
647 return;
648
649 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 return;
651
652 args.start = start;
653 args.end = end;
654
655 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
656
657 trace_ext4_fc_track_range(handle, inode, start, end, ret);
658 }
659
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)660 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661 {
662 blk_opf_t write_flags = REQ_SYNC;
663 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664
665 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 if (test_opt(sb, BARRIER) && is_tail)
667 write_flags |= REQ_FUA | REQ_PREFLUSH;
668 lock_buffer(bh);
669 set_buffer_dirty(bh);
670 set_buffer_uptodate(bh);
671 bh->b_end_io = ext4_end_buffer_io_sync;
672 submit_bh(REQ_OP_WRITE | write_flags, bh);
673 EXT4_SB(sb)->s_fc_bh = NULL;
674 }
675
676 /* Ext4 commit path routines */
677
678 /* memcpy to fc reserved space and update CRC */
ext4_fc_memcpy(struct super_block * sb,void * dst,const void * src,int len,u32 * crc)679 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
680 int len, u32 *crc)
681 {
682 if (crc)
683 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
684 return memcpy(dst, src, len);
685 }
686
687 /* memzero and update CRC */
ext4_fc_memzero(struct super_block * sb,void * dst,int len,u32 * crc)688 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
689 u32 *crc)
690 {
691 void *ret;
692
693 ret = memset(dst, 0, len);
694 if (crc)
695 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
696 return ret;
697 }
698
699 /*
700 * Allocate len bytes on a fast commit buffer.
701 *
702 * During the commit time this function is used to manage fast commit
703 * block space. We don't split a fast commit log onto different
704 * blocks. So this function makes sure that if there's not enough space
705 * on the current block, the remaining space in the current block is
706 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
707 * new block is from jbd2 and CRC is updated to reflect the padding
708 * we added.
709 */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)710 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
711 {
712 struct ext4_fc_tl tl;
713 struct ext4_sb_info *sbi = EXT4_SB(sb);
714 struct buffer_head *bh;
715 int bsize = sbi->s_journal->j_blocksize;
716 int ret, off = sbi->s_fc_bytes % bsize;
717 int remaining;
718 u8 *dst;
719
720 /*
721 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
722 * cannot fulfill the request.
723 */
724 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
725 return NULL;
726
727 if (!sbi->s_fc_bh) {
728 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
729 if (ret)
730 return NULL;
731 sbi->s_fc_bh = bh;
732 }
733 dst = sbi->s_fc_bh->b_data + off;
734
735 /*
736 * Allocate the bytes in the current block if we can do so while still
737 * leaving enough space for a PAD tlv.
738 */
739 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
740 if (len <= remaining) {
741 sbi->s_fc_bytes += len;
742 return dst;
743 }
744
745 /*
746 * Else, terminate the current block with a PAD tlv, then allocate a new
747 * block and allocate the bytes at the start of that new block.
748 */
749
750 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
751 tl.fc_len = cpu_to_le16(remaining);
752 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
753 ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc);
754
755 ext4_fc_submit_bh(sb, false);
756
757 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
758 if (ret)
759 return NULL;
760 sbi->s_fc_bh = bh;
761 sbi->s_fc_bytes += bsize - off + len;
762 return sbi->s_fc_bh->b_data;
763 }
764
765 /*
766 * Complete a fast commit by writing tail tag.
767 *
768 * Writing tail tag marks the end of a fast commit. In order to guarantee
769 * atomicity, after writing tail tag, even if there's space remaining
770 * in the block, next commit shouldn't use it. That's why tail tag
771 * has the length as that of the remaining space on the block.
772 */
ext4_fc_write_tail(struct super_block * sb,u32 crc)773 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
774 {
775 struct ext4_sb_info *sbi = EXT4_SB(sb);
776 struct ext4_fc_tl tl;
777 struct ext4_fc_tail tail;
778 int off, bsize = sbi->s_journal->j_blocksize;
779 u8 *dst;
780
781 /*
782 * ext4_fc_reserve_space takes care of allocating an extra block if
783 * there's no enough space on this block for accommodating this tail.
784 */
785 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
786 if (!dst)
787 return -ENOSPC;
788
789 off = sbi->s_fc_bytes % bsize;
790
791 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
792 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
793 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
794
795 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
796 dst += EXT4_FC_TAG_BASE_LEN;
797 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
798 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
799 dst += sizeof(tail.fc_tid);
800 tail.fc_crc = cpu_to_le32(crc);
801 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
802 dst += sizeof(tail.fc_crc);
803 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
804
805 ext4_fc_submit_bh(sb, true);
806
807 return 0;
808 }
809
810 /*
811 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
812 * Returns false if there's not enough space.
813 */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)814 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
815 u32 *crc)
816 {
817 struct ext4_fc_tl tl;
818 u8 *dst;
819
820 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
821 if (!dst)
822 return false;
823
824 tl.fc_tag = cpu_to_le16(tag);
825 tl.fc_len = cpu_to_le16(len);
826
827 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
828 ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
829
830 return true;
831 }
832
833 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)834 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
835 struct ext4_fc_dentry_update *fc_dentry)
836 {
837 struct ext4_fc_dentry_info fcd;
838 struct ext4_fc_tl tl;
839 int dlen = fc_dentry->fcd_name.len;
840 u8 *dst = ext4_fc_reserve_space(sb,
841 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
842
843 if (!dst)
844 return false;
845
846 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
847 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
848 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
849 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
850 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
851 dst += EXT4_FC_TAG_BASE_LEN;
852 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
853 dst += sizeof(fcd);
854 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
855
856 return true;
857 }
858
859 /*
860 * Writes inode in the fast commit space under TLV with tag @tag.
861 * Returns 0 on success, error on failure.
862 */
ext4_fc_write_inode(struct inode * inode,u32 * crc)863 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
864 {
865 struct ext4_inode_info *ei = EXT4_I(inode);
866 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
867 int ret;
868 struct ext4_iloc iloc;
869 struct ext4_fc_inode fc_inode;
870 struct ext4_fc_tl tl;
871 u8 *dst;
872
873 ret = ext4_get_inode_loc(inode, &iloc);
874 if (ret)
875 return ret;
876
877 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
878 inode_len = EXT4_INODE_SIZE(inode->i_sb);
879 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
880 inode_len += ei->i_extra_isize;
881
882 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
883 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
884 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
885
886 ret = -ECANCELED;
887 dst = ext4_fc_reserve_space(inode->i_sb,
888 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
889 if (!dst)
890 goto err;
891
892 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
893 goto err;
894 dst += EXT4_FC_TAG_BASE_LEN;
895 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
896 goto err;
897 dst += sizeof(fc_inode);
898 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
899 inode_len, crc))
900 goto err;
901 ret = 0;
902 err:
903 brelse(iloc.bh);
904 return ret;
905 }
906
907 /*
908 * Writes updated data ranges for the inode in question. Updates CRC.
909 * Returns 0 on success, error otherwise.
910 */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)911 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
912 {
913 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
914 struct ext4_inode_info *ei = EXT4_I(inode);
915 struct ext4_map_blocks map;
916 struct ext4_fc_add_range fc_ext;
917 struct ext4_fc_del_range lrange;
918 struct ext4_extent *ex;
919 int ret;
920
921 mutex_lock(&ei->i_fc_lock);
922 if (ei->i_fc_lblk_len == 0) {
923 mutex_unlock(&ei->i_fc_lock);
924 return 0;
925 }
926 old_blk_size = ei->i_fc_lblk_start;
927 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
928 ei->i_fc_lblk_len = 0;
929 mutex_unlock(&ei->i_fc_lock);
930
931 cur_lblk_off = old_blk_size;
932 ext4_debug("will try writing %d to %d for inode %ld\n",
933 cur_lblk_off, new_blk_size, inode->i_ino);
934
935 while (cur_lblk_off <= new_blk_size) {
936 map.m_lblk = cur_lblk_off;
937 map.m_len = new_blk_size - cur_lblk_off + 1;
938 ret = ext4_map_blocks(NULL, inode, &map, 0);
939 if (ret < 0)
940 return -ECANCELED;
941
942 if (map.m_len == 0) {
943 cur_lblk_off++;
944 continue;
945 }
946
947 if (ret == 0) {
948 lrange.fc_ino = cpu_to_le32(inode->i_ino);
949 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
950 lrange.fc_len = cpu_to_le32(map.m_len);
951 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
952 sizeof(lrange), (u8 *)&lrange, crc))
953 return -ENOSPC;
954 } else {
955 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
956 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
957
958 /* Limit the number of blocks in one extent */
959 map.m_len = min(max, map.m_len);
960
961 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
962 ex = (struct ext4_extent *)&fc_ext.fc_ex;
963 ex->ee_block = cpu_to_le32(map.m_lblk);
964 ex->ee_len = cpu_to_le16(map.m_len);
965 ext4_ext_store_pblock(ex, map.m_pblk);
966 if (map.m_flags & EXT4_MAP_UNWRITTEN)
967 ext4_ext_mark_unwritten(ex);
968 else
969 ext4_ext_mark_initialized(ex);
970 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
971 sizeof(fc_ext), (u8 *)&fc_ext, crc))
972 return -ENOSPC;
973 }
974
975 cur_lblk_off += map.m_len;
976 }
977
978 return 0;
979 }
980
981
982 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)983 static int ext4_fc_submit_inode_data_all(journal_t *journal)
984 {
985 struct super_block *sb = journal->j_private;
986 struct ext4_sb_info *sbi = EXT4_SB(sb);
987 struct ext4_inode_info *ei;
988 int ret = 0;
989
990 spin_lock(&sbi->s_fc_lock);
991 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
992 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
993 while (atomic_read(&ei->i_fc_updates)) {
994 DEFINE_WAIT(wait);
995
996 prepare_to_wait(&ei->i_fc_wait, &wait,
997 TASK_UNINTERRUPTIBLE);
998 if (atomic_read(&ei->i_fc_updates)) {
999 spin_unlock(&sbi->s_fc_lock);
1000 schedule();
1001 spin_lock(&sbi->s_fc_lock);
1002 }
1003 finish_wait(&ei->i_fc_wait, &wait);
1004 }
1005 spin_unlock(&sbi->s_fc_lock);
1006 ret = jbd2_submit_inode_data(ei->jinode);
1007 if (ret)
1008 return ret;
1009 spin_lock(&sbi->s_fc_lock);
1010 }
1011 spin_unlock(&sbi->s_fc_lock);
1012
1013 return ret;
1014 }
1015
1016 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)1017 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1018 {
1019 struct super_block *sb = journal->j_private;
1020 struct ext4_sb_info *sbi = EXT4_SB(sb);
1021 struct ext4_inode_info *pos, *n;
1022 int ret = 0;
1023
1024 spin_lock(&sbi->s_fc_lock);
1025 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1026 if (!ext4_test_inode_state(&pos->vfs_inode,
1027 EXT4_STATE_FC_COMMITTING))
1028 continue;
1029 spin_unlock(&sbi->s_fc_lock);
1030
1031 ret = jbd2_wait_inode_data(journal, pos->jinode);
1032 if (ret)
1033 return ret;
1034 spin_lock(&sbi->s_fc_lock);
1035 }
1036 spin_unlock(&sbi->s_fc_lock);
1037
1038 return 0;
1039 }
1040
1041 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1042 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1043 __acquires(&sbi->s_fc_lock)
1044 __releases(&sbi->s_fc_lock)
1045 {
1046 struct super_block *sb = journal->j_private;
1047 struct ext4_sb_info *sbi = EXT4_SB(sb);
1048 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1049 struct inode *inode;
1050 struct ext4_inode_info *ei;
1051 int ret;
1052
1053 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1054 return 0;
1055 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1056 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1057 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1058 spin_unlock(&sbi->s_fc_lock);
1059 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1060 ret = -ENOSPC;
1061 goto lock_and_exit;
1062 }
1063 spin_lock(&sbi->s_fc_lock);
1064 continue;
1065 }
1066 /*
1067 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1068 * corresponding inode pointer
1069 */
1070 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1071 ei = list_first_entry(&fc_dentry->fcd_dilist,
1072 struct ext4_inode_info, i_fc_dilist);
1073 inode = &ei->vfs_inode;
1074 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1075
1076 spin_unlock(&sbi->s_fc_lock);
1077
1078 /*
1079 * We first write the inode and then the create dirent. This
1080 * allows the recovery code to create an unnamed inode first
1081 * and then link it to a directory entry. This allows us
1082 * to use namei.c routines almost as is and simplifies
1083 * the recovery code.
1084 */
1085 ret = ext4_fc_write_inode(inode, crc);
1086 if (ret)
1087 goto lock_and_exit;
1088
1089 ret = ext4_fc_write_inode_data(inode, crc);
1090 if (ret)
1091 goto lock_and_exit;
1092
1093 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1094 ret = -ENOSPC;
1095 goto lock_and_exit;
1096 }
1097
1098 spin_lock(&sbi->s_fc_lock);
1099 }
1100 return 0;
1101 lock_and_exit:
1102 spin_lock(&sbi->s_fc_lock);
1103 return ret;
1104 }
1105
ext4_fc_perform_commit(journal_t * journal)1106 static int ext4_fc_perform_commit(journal_t *journal)
1107 {
1108 struct super_block *sb = journal->j_private;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct ext4_inode_info *iter;
1111 struct ext4_fc_head head;
1112 struct inode *inode;
1113 struct blk_plug plug;
1114 int ret = 0;
1115 u32 crc = 0;
1116
1117 ret = ext4_fc_submit_inode_data_all(journal);
1118 if (ret)
1119 return ret;
1120
1121 ret = ext4_fc_wait_inode_data_all(journal);
1122 if (ret)
1123 return ret;
1124
1125 /*
1126 * If file system device is different from journal device, issue a cache
1127 * flush before we start writing fast commit blocks.
1128 */
1129 if (journal->j_fs_dev != journal->j_dev)
1130 blkdev_issue_flush(journal->j_fs_dev);
1131
1132 blk_start_plug(&plug);
1133 if (sbi->s_fc_bytes == 0) {
1134 /*
1135 * Add a head tag only if this is the first fast commit
1136 * in this TID.
1137 */
1138 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1139 head.fc_tid = cpu_to_le32(
1140 sbi->s_journal->j_running_transaction->t_tid);
1141 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1142 (u8 *)&head, &crc)) {
1143 ret = -ENOSPC;
1144 goto out;
1145 }
1146 }
1147
1148 spin_lock(&sbi->s_fc_lock);
1149 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1150 if (ret) {
1151 spin_unlock(&sbi->s_fc_lock);
1152 goto out;
1153 }
1154
1155 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1156 inode = &iter->vfs_inode;
1157 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1158 continue;
1159
1160 spin_unlock(&sbi->s_fc_lock);
1161 ret = ext4_fc_write_inode_data(inode, &crc);
1162 if (ret)
1163 goto out;
1164 ret = ext4_fc_write_inode(inode, &crc);
1165 if (ret)
1166 goto out;
1167 spin_lock(&sbi->s_fc_lock);
1168 }
1169 spin_unlock(&sbi->s_fc_lock);
1170
1171 ret = ext4_fc_write_tail(sb, crc);
1172
1173 out:
1174 blk_finish_plug(&plug);
1175 return ret;
1176 }
1177
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1178 static void ext4_fc_update_stats(struct super_block *sb, int status,
1179 u64 commit_time, int nblks, tid_t commit_tid)
1180 {
1181 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1182
1183 ext4_debug("Fast commit ended with status = %d for tid %u",
1184 status, commit_tid);
1185 if (status == EXT4_FC_STATUS_OK) {
1186 stats->fc_num_commits++;
1187 stats->fc_numblks += nblks;
1188 if (likely(stats->s_fc_avg_commit_time))
1189 stats->s_fc_avg_commit_time =
1190 (commit_time +
1191 stats->s_fc_avg_commit_time * 3) / 4;
1192 else
1193 stats->s_fc_avg_commit_time = commit_time;
1194 } else if (status == EXT4_FC_STATUS_FAILED ||
1195 status == EXT4_FC_STATUS_INELIGIBLE) {
1196 if (status == EXT4_FC_STATUS_FAILED)
1197 stats->fc_failed_commits++;
1198 stats->fc_ineligible_commits++;
1199 } else {
1200 stats->fc_skipped_commits++;
1201 }
1202 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1203 }
1204
1205 /*
1206 * The main commit entry point. Performs a fast commit for transaction
1207 * commit_tid if needed. If it's not possible to perform a fast commit
1208 * due to various reasons, we fall back to full commit. Returns 0
1209 * on success, error otherwise.
1210 */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1211 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1212 {
1213 struct super_block *sb = journal->j_private;
1214 struct ext4_sb_info *sbi = EXT4_SB(sb);
1215 int nblks = 0, ret, bsize = journal->j_blocksize;
1216 int subtid = atomic_read(&sbi->s_fc_subtid);
1217 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1218 ktime_t start_time, commit_time;
1219
1220 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1221 return jbd2_complete_transaction(journal, commit_tid);
1222
1223 trace_ext4_fc_commit_start(sb, commit_tid);
1224
1225 start_time = ktime_get();
1226
1227 restart_fc:
1228 ret = jbd2_fc_begin_commit(journal, commit_tid);
1229 if (ret == -EALREADY) {
1230 /* There was an ongoing commit, check if we need to restart */
1231 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1232 commit_tid > journal->j_commit_sequence)
1233 goto restart_fc;
1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1235 commit_tid);
1236 return 0;
1237 } else if (ret) {
1238 /*
1239 * Commit couldn't start. Just update stats and perform a
1240 * full commit.
1241 */
1242 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1243 commit_tid);
1244 return jbd2_complete_transaction(journal, commit_tid);
1245 }
1246
1247 /*
1248 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1249 * if we are fast commit ineligible.
1250 */
1251 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1252 status = EXT4_FC_STATUS_INELIGIBLE;
1253 goto fallback;
1254 }
1255
1256 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1257 ret = ext4_fc_perform_commit(journal);
1258 if (ret < 0) {
1259 status = EXT4_FC_STATUS_FAILED;
1260 goto fallback;
1261 }
1262 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1263 ret = jbd2_fc_wait_bufs(journal, nblks);
1264 if (ret < 0) {
1265 status = EXT4_FC_STATUS_FAILED;
1266 goto fallback;
1267 }
1268 atomic_inc(&sbi->s_fc_subtid);
1269 ret = jbd2_fc_end_commit(journal);
1270 /*
1271 * weight the commit time higher than the average time so we
1272 * don't react too strongly to vast changes in the commit time
1273 */
1274 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1275 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1276 return ret;
1277
1278 fallback:
1279 ret = jbd2_fc_end_commit_fallback(journal);
1280 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1281 return ret;
1282 }
1283
1284 /*
1285 * Fast commit cleanup routine. This is called after every fast commit and
1286 * full commit. full is true if we are called after a full commit.
1287 */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1288 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1289 {
1290 struct super_block *sb = journal->j_private;
1291 struct ext4_sb_info *sbi = EXT4_SB(sb);
1292 struct ext4_inode_info *iter, *iter_n;
1293 struct ext4_fc_dentry_update *fc_dentry;
1294
1295 if (full && sbi->s_fc_bh)
1296 sbi->s_fc_bh = NULL;
1297
1298 trace_ext4_fc_cleanup(journal, full, tid);
1299 jbd2_fc_release_bufs(journal);
1300
1301 spin_lock(&sbi->s_fc_lock);
1302 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1303 i_fc_list) {
1304 list_del_init(&iter->i_fc_list);
1305 ext4_clear_inode_state(&iter->vfs_inode,
1306 EXT4_STATE_FC_COMMITTING);
1307 if (iter->i_sync_tid <= tid)
1308 ext4_fc_reset_inode(&iter->vfs_inode);
1309 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1310 smp_mb();
1311 #if (BITS_PER_LONG < 64)
1312 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1313 #else
1314 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1315 #endif
1316 }
1317
1318 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1319 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1320 struct ext4_fc_dentry_update,
1321 fcd_list);
1322 list_del_init(&fc_dentry->fcd_list);
1323 list_del_init(&fc_dentry->fcd_dilist);
1324 spin_unlock(&sbi->s_fc_lock);
1325
1326 if (fc_dentry->fcd_name.name &&
1327 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1328 kfree(fc_dentry->fcd_name.name);
1329 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1330 spin_lock(&sbi->s_fc_lock);
1331 }
1332
1333 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1334 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1335 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1336 &sbi->s_fc_q[FC_Q_MAIN]);
1337
1338 if (tid >= sbi->s_fc_ineligible_tid) {
1339 sbi->s_fc_ineligible_tid = 0;
1340 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1341 }
1342
1343 if (full)
1344 sbi->s_fc_bytes = 0;
1345 spin_unlock(&sbi->s_fc_lock);
1346 trace_ext4_fc_stats(sb);
1347 }
1348
1349 /* Ext4 Replay Path Routines */
1350
1351 /* Helper struct for dentry replay routines */
1352 struct dentry_info_args {
1353 int parent_ino, dname_len, ino, inode_len;
1354 char *dname;
1355 };
1356
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl * tl,u8 * val)1357 static inline void tl_to_darg(struct dentry_info_args *darg,
1358 struct ext4_fc_tl *tl, u8 *val)
1359 {
1360 struct ext4_fc_dentry_info fcd;
1361
1362 memcpy(&fcd, val, sizeof(fcd));
1363
1364 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1365 darg->ino = le32_to_cpu(fcd.fc_ino);
1366 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1367 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1368 }
1369
ext4_fc_get_tl(struct ext4_fc_tl * tl,u8 * val)1370 static inline void ext4_fc_get_tl(struct ext4_fc_tl *tl, u8 *val)
1371 {
1372 memcpy(tl, val, EXT4_FC_TAG_BASE_LEN);
1373 tl->fc_len = le16_to_cpu(tl->fc_len);
1374 tl->fc_tag = le16_to_cpu(tl->fc_tag);
1375 }
1376
1377 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1378 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1379 u8 *val)
1380 {
1381 struct inode *inode, *old_parent;
1382 struct qstr entry;
1383 struct dentry_info_args darg;
1384 int ret = 0;
1385
1386 tl_to_darg(&darg, tl, val);
1387
1388 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1389 darg.parent_ino, darg.dname_len);
1390
1391 entry.name = darg.dname;
1392 entry.len = darg.dname_len;
1393 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1394
1395 if (IS_ERR(inode)) {
1396 ext4_debug("Inode %d not found", darg.ino);
1397 return 0;
1398 }
1399
1400 old_parent = ext4_iget(sb, darg.parent_ino,
1401 EXT4_IGET_NORMAL);
1402 if (IS_ERR(old_parent)) {
1403 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1404 iput(inode);
1405 return 0;
1406 }
1407
1408 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1409 /* -ENOENT ok coz it might not exist anymore. */
1410 if (ret == -ENOENT)
1411 ret = 0;
1412 iput(old_parent);
1413 iput(inode);
1414 return ret;
1415 }
1416
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1417 static int ext4_fc_replay_link_internal(struct super_block *sb,
1418 struct dentry_info_args *darg,
1419 struct inode *inode)
1420 {
1421 struct inode *dir = NULL;
1422 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1423 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1424 int ret = 0;
1425
1426 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1427 if (IS_ERR(dir)) {
1428 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1429 dir = NULL;
1430 goto out;
1431 }
1432
1433 dentry_dir = d_obtain_alias(dir);
1434 if (IS_ERR(dentry_dir)) {
1435 ext4_debug("Failed to obtain dentry");
1436 dentry_dir = NULL;
1437 goto out;
1438 }
1439
1440 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1441 if (!dentry_inode) {
1442 ext4_debug("Inode dentry not created.");
1443 ret = -ENOMEM;
1444 goto out;
1445 }
1446
1447 ret = __ext4_link(dir, inode, dentry_inode);
1448 /*
1449 * It's possible that link already existed since data blocks
1450 * for the dir in question got persisted before we crashed OR
1451 * we replayed this tag and crashed before the entire replay
1452 * could complete.
1453 */
1454 if (ret && ret != -EEXIST) {
1455 ext4_debug("Failed to link\n");
1456 goto out;
1457 }
1458
1459 ret = 0;
1460 out:
1461 if (dentry_dir) {
1462 d_drop(dentry_dir);
1463 dput(dentry_dir);
1464 } else if (dir) {
1465 iput(dir);
1466 }
1467 if (dentry_inode) {
1468 d_drop(dentry_inode);
1469 dput(dentry_inode);
1470 }
1471
1472 return ret;
1473 }
1474
1475 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1476 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1477 u8 *val)
1478 {
1479 struct inode *inode;
1480 struct dentry_info_args darg;
1481 int ret = 0;
1482
1483 tl_to_darg(&darg, tl, val);
1484 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1485 darg.parent_ino, darg.dname_len);
1486
1487 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1488 if (IS_ERR(inode)) {
1489 ext4_debug("Inode not found.");
1490 return 0;
1491 }
1492
1493 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1494 iput(inode);
1495 return ret;
1496 }
1497
1498 /*
1499 * Record all the modified inodes during replay. We use this later to setup
1500 * block bitmaps correctly.
1501 */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1502 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1503 {
1504 struct ext4_fc_replay_state *state;
1505 int i;
1506
1507 state = &EXT4_SB(sb)->s_fc_replay_state;
1508 for (i = 0; i < state->fc_modified_inodes_used; i++)
1509 if (state->fc_modified_inodes[i] == ino)
1510 return 0;
1511 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1512 int *fc_modified_inodes;
1513
1514 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1515 sizeof(int) * (state->fc_modified_inodes_size +
1516 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1517 GFP_KERNEL);
1518 if (!fc_modified_inodes)
1519 return -ENOMEM;
1520 state->fc_modified_inodes = fc_modified_inodes;
1521 state->fc_modified_inodes_size +=
1522 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1523 }
1524 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1525 return 0;
1526 }
1527
1528 /*
1529 * Inode replay function
1530 */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1531 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1532 u8 *val)
1533 {
1534 struct ext4_fc_inode fc_inode;
1535 struct ext4_inode *raw_inode;
1536 struct ext4_inode *raw_fc_inode;
1537 struct inode *inode = NULL;
1538 struct ext4_iloc iloc;
1539 int inode_len, ino, ret, tag = tl->fc_tag;
1540 struct ext4_extent_header *eh;
1541 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1542
1543 memcpy(&fc_inode, val, sizeof(fc_inode));
1544
1545 ino = le32_to_cpu(fc_inode.fc_ino);
1546 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1547
1548 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1549 if (!IS_ERR(inode)) {
1550 ext4_ext_clear_bb(inode);
1551 iput(inode);
1552 }
1553 inode = NULL;
1554
1555 ret = ext4_fc_record_modified_inode(sb, ino);
1556 if (ret)
1557 goto out;
1558
1559 raw_fc_inode = (struct ext4_inode *)
1560 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1561 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1562 if (ret)
1563 goto out;
1564
1565 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1566 raw_inode = ext4_raw_inode(&iloc);
1567
1568 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1569 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1570 inode_len - off_gen);
1571 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1572 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1573 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1574 memset(eh, 0, sizeof(*eh));
1575 eh->eh_magic = EXT4_EXT_MAGIC;
1576 eh->eh_max = cpu_to_le16(
1577 (sizeof(raw_inode->i_block) -
1578 sizeof(struct ext4_extent_header))
1579 / sizeof(struct ext4_extent));
1580 }
1581 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1582 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1583 sizeof(raw_inode->i_block));
1584 }
1585
1586 /* Immediately update the inode on disk. */
1587 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1588 if (ret)
1589 goto out;
1590 ret = sync_dirty_buffer(iloc.bh);
1591 if (ret)
1592 goto out;
1593 ret = ext4_mark_inode_used(sb, ino);
1594 if (ret)
1595 goto out;
1596
1597 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1598 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1599 if (IS_ERR(inode)) {
1600 ext4_debug("Inode not found.");
1601 return -EFSCORRUPTED;
1602 }
1603
1604 /*
1605 * Our allocator could have made different decisions than before
1606 * crashing. This should be fixed but until then, we calculate
1607 * the number of blocks the inode.
1608 */
1609 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1610 ext4_ext_replay_set_iblocks(inode);
1611
1612 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1613 ext4_reset_inode_seed(inode);
1614
1615 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1616 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1617 sync_dirty_buffer(iloc.bh);
1618 brelse(iloc.bh);
1619 out:
1620 iput(inode);
1621 if (!ret)
1622 blkdev_issue_flush(sb->s_bdev);
1623
1624 return 0;
1625 }
1626
1627 /*
1628 * Dentry create replay function.
1629 *
1630 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1631 * inode for which we are trying to create a dentry here, should already have
1632 * been replayed before we start here.
1633 */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1634 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1635 u8 *val)
1636 {
1637 int ret = 0;
1638 struct inode *inode = NULL;
1639 struct inode *dir = NULL;
1640 struct dentry_info_args darg;
1641
1642 tl_to_darg(&darg, tl, val);
1643
1644 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1645 darg.parent_ino, darg.dname_len);
1646
1647 /* This takes care of update group descriptor and other metadata */
1648 ret = ext4_mark_inode_used(sb, darg.ino);
1649 if (ret)
1650 goto out;
1651
1652 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1653 if (IS_ERR(inode)) {
1654 ext4_debug("inode %d not found.", darg.ino);
1655 inode = NULL;
1656 ret = -EINVAL;
1657 goto out;
1658 }
1659
1660 if (S_ISDIR(inode->i_mode)) {
1661 /*
1662 * If we are creating a directory, we need to make sure that the
1663 * dot and dot dot dirents are setup properly.
1664 */
1665 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1666 if (IS_ERR(dir)) {
1667 ext4_debug("Dir %d not found.", darg.ino);
1668 goto out;
1669 }
1670 ret = ext4_init_new_dir(NULL, dir, inode);
1671 iput(dir);
1672 if (ret) {
1673 ret = 0;
1674 goto out;
1675 }
1676 }
1677 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1678 if (ret)
1679 goto out;
1680 set_nlink(inode, 1);
1681 ext4_mark_inode_dirty(NULL, inode);
1682 out:
1683 iput(inode);
1684 return ret;
1685 }
1686
1687 /*
1688 * Record physical disk regions which are in use as per fast commit area,
1689 * and used by inodes during replay phase. Our simple replay phase
1690 * allocator excludes these regions from allocation.
1691 */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1692 int ext4_fc_record_regions(struct super_block *sb, int ino,
1693 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1694 {
1695 struct ext4_fc_replay_state *state;
1696 struct ext4_fc_alloc_region *region;
1697
1698 state = &EXT4_SB(sb)->s_fc_replay_state;
1699 /*
1700 * during replay phase, the fc_regions_valid may not same as
1701 * fc_regions_used, update it when do new additions.
1702 */
1703 if (replay && state->fc_regions_used != state->fc_regions_valid)
1704 state->fc_regions_used = state->fc_regions_valid;
1705 if (state->fc_regions_used == state->fc_regions_size) {
1706 struct ext4_fc_alloc_region *fc_regions;
1707
1708 fc_regions = krealloc(state->fc_regions,
1709 sizeof(struct ext4_fc_alloc_region) *
1710 (state->fc_regions_size +
1711 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1712 GFP_KERNEL);
1713 if (!fc_regions)
1714 return -ENOMEM;
1715 state->fc_regions_size +=
1716 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1717 state->fc_regions = fc_regions;
1718 }
1719 region = &state->fc_regions[state->fc_regions_used++];
1720 region->ino = ino;
1721 region->lblk = lblk;
1722 region->pblk = pblk;
1723 region->len = len;
1724
1725 if (replay)
1726 state->fc_regions_valid++;
1727
1728 return 0;
1729 }
1730
1731 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1732 static int ext4_fc_replay_add_range(struct super_block *sb,
1733 struct ext4_fc_tl *tl, u8 *val)
1734 {
1735 struct ext4_fc_add_range fc_add_ex;
1736 struct ext4_extent newex, *ex;
1737 struct inode *inode;
1738 ext4_lblk_t start, cur;
1739 int remaining, len;
1740 ext4_fsblk_t start_pblk;
1741 struct ext4_map_blocks map;
1742 struct ext4_ext_path *path = NULL;
1743 int ret;
1744
1745 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1746 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1747
1748 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1749 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1750 ext4_ext_get_actual_len(ex));
1751
1752 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1753 if (IS_ERR(inode)) {
1754 ext4_debug("Inode not found.");
1755 return 0;
1756 }
1757
1758 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1759 if (ret)
1760 goto out;
1761
1762 start = le32_to_cpu(ex->ee_block);
1763 start_pblk = ext4_ext_pblock(ex);
1764 len = ext4_ext_get_actual_len(ex);
1765
1766 cur = start;
1767 remaining = len;
1768 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1769 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1770 inode->i_ino);
1771
1772 while (remaining > 0) {
1773 map.m_lblk = cur;
1774 map.m_len = remaining;
1775 map.m_pblk = 0;
1776 ret = ext4_map_blocks(NULL, inode, &map, 0);
1777
1778 if (ret < 0)
1779 goto out;
1780
1781 if (ret == 0) {
1782 /* Range is not mapped */
1783 path = ext4_find_extent(inode, cur, NULL, 0);
1784 if (IS_ERR(path))
1785 goto out;
1786 memset(&newex, 0, sizeof(newex));
1787 newex.ee_block = cpu_to_le32(cur);
1788 ext4_ext_store_pblock(
1789 &newex, start_pblk + cur - start);
1790 newex.ee_len = cpu_to_le16(map.m_len);
1791 if (ext4_ext_is_unwritten(ex))
1792 ext4_ext_mark_unwritten(&newex);
1793 down_write(&EXT4_I(inode)->i_data_sem);
1794 ret = ext4_ext_insert_extent(
1795 NULL, inode, &path, &newex, 0);
1796 up_write((&EXT4_I(inode)->i_data_sem));
1797 ext4_free_ext_path(path);
1798 if (ret)
1799 goto out;
1800 goto next;
1801 }
1802
1803 if (start_pblk + cur - start != map.m_pblk) {
1804 /*
1805 * Logical to physical mapping changed. This can happen
1806 * if this range was removed and then reallocated to
1807 * map to new physical blocks during a fast commit.
1808 */
1809 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1810 ext4_ext_is_unwritten(ex),
1811 start_pblk + cur - start);
1812 if (ret)
1813 goto out;
1814 /*
1815 * Mark the old blocks as free since they aren't used
1816 * anymore. We maintain an array of all the modified
1817 * inodes. In case these blocks are still used at either
1818 * a different logical range in the same inode or in
1819 * some different inode, we will mark them as allocated
1820 * at the end of the FC replay using our array of
1821 * modified inodes.
1822 */
1823 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1824 goto next;
1825 }
1826
1827 /* Range is mapped and needs a state change */
1828 ext4_debug("Converting from %ld to %d %lld",
1829 map.m_flags & EXT4_MAP_UNWRITTEN,
1830 ext4_ext_is_unwritten(ex), map.m_pblk);
1831 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1832 ext4_ext_is_unwritten(ex), map.m_pblk);
1833 if (ret)
1834 goto out;
1835 /*
1836 * We may have split the extent tree while toggling the state.
1837 * Try to shrink the extent tree now.
1838 */
1839 ext4_ext_replay_shrink_inode(inode, start + len);
1840 next:
1841 cur += map.m_len;
1842 remaining -= map.m_len;
1843 }
1844 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1845 sb->s_blocksize_bits);
1846 out:
1847 iput(inode);
1848 return 0;
1849 }
1850
1851 /* Replay DEL_RANGE tag */
1852 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1853 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1854 u8 *val)
1855 {
1856 struct inode *inode;
1857 struct ext4_fc_del_range lrange;
1858 struct ext4_map_blocks map;
1859 ext4_lblk_t cur, remaining;
1860 int ret;
1861
1862 memcpy(&lrange, val, sizeof(lrange));
1863 cur = le32_to_cpu(lrange.fc_lblk);
1864 remaining = le32_to_cpu(lrange.fc_len);
1865
1866 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1867 le32_to_cpu(lrange.fc_ino), cur, remaining);
1868
1869 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1870 if (IS_ERR(inode)) {
1871 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1872 return 0;
1873 }
1874
1875 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1876 if (ret)
1877 goto out;
1878
1879 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1880 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1881 le32_to_cpu(lrange.fc_len));
1882 while (remaining > 0) {
1883 map.m_lblk = cur;
1884 map.m_len = remaining;
1885
1886 ret = ext4_map_blocks(NULL, inode, &map, 0);
1887 if (ret < 0)
1888 goto out;
1889 if (ret > 0) {
1890 remaining -= ret;
1891 cur += ret;
1892 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1893 } else {
1894 remaining -= map.m_len;
1895 cur += map.m_len;
1896 }
1897 }
1898
1899 down_write(&EXT4_I(inode)->i_data_sem);
1900 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1901 le32_to_cpu(lrange.fc_lblk) +
1902 le32_to_cpu(lrange.fc_len) - 1);
1903 up_write(&EXT4_I(inode)->i_data_sem);
1904 if (ret)
1905 goto out;
1906 ext4_ext_replay_shrink_inode(inode,
1907 i_size_read(inode) >> sb->s_blocksize_bits);
1908 ext4_mark_inode_dirty(NULL, inode);
1909 out:
1910 iput(inode);
1911 return 0;
1912 }
1913
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1914 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1915 {
1916 struct ext4_fc_replay_state *state;
1917 struct inode *inode;
1918 struct ext4_ext_path *path = NULL;
1919 struct ext4_map_blocks map;
1920 int i, ret, j;
1921 ext4_lblk_t cur, end;
1922
1923 state = &EXT4_SB(sb)->s_fc_replay_state;
1924 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1925 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1926 EXT4_IGET_NORMAL);
1927 if (IS_ERR(inode)) {
1928 ext4_debug("Inode %d not found.",
1929 state->fc_modified_inodes[i]);
1930 continue;
1931 }
1932 cur = 0;
1933 end = EXT_MAX_BLOCKS;
1934 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1935 iput(inode);
1936 continue;
1937 }
1938 while (cur < end) {
1939 map.m_lblk = cur;
1940 map.m_len = end - cur;
1941
1942 ret = ext4_map_blocks(NULL, inode, &map, 0);
1943 if (ret < 0)
1944 break;
1945
1946 if (ret > 0) {
1947 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1948 if (!IS_ERR(path)) {
1949 for (j = 0; j < path->p_depth; j++)
1950 ext4_mb_mark_bb(inode->i_sb,
1951 path[j].p_block, 1, 1);
1952 ext4_free_ext_path(path);
1953 }
1954 cur += ret;
1955 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1956 map.m_len, 1);
1957 } else {
1958 cur = cur + (map.m_len ? map.m_len : 1);
1959 }
1960 }
1961 iput(inode);
1962 }
1963 }
1964
1965 /*
1966 * Check if block is in excluded regions for block allocation. The simple
1967 * allocator that runs during replay phase is calls this function to see
1968 * if it is okay to use a block.
1969 */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1970 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1971 {
1972 int i;
1973 struct ext4_fc_replay_state *state;
1974
1975 state = &EXT4_SB(sb)->s_fc_replay_state;
1976 for (i = 0; i < state->fc_regions_valid; i++) {
1977 if (state->fc_regions[i].ino == 0 ||
1978 state->fc_regions[i].len == 0)
1979 continue;
1980 if (in_range(blk, state->fc_regions[i].pblk,
1981 state->fc_regions[i].len))
1982 return true;
1983 }
1984 return false;
1985 }
1986
1987 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1988 void ext4_fc_replay_cleanup(struct super_block *sb)
1989 {
1990 struct ext4_sb_info *sbi = EXT4_SB(sb);
1991
1992 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1993 kfree(sbi->s_fc_replay_state.fc_regions);
1994 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1995 }
1996
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)1997 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1998 int tag, int len)
1999 {
2000 switch (tag) {
2001 case EXT4_FC_TAG_ADD_RANGE:
2002 return len == sizeof(struct ext4_fc_add_range);
2003 case EXT4_FC_TAG_DEL_RANGE:
2004 return len == sizeof(struct ext4_fc_del_range);
2005 case EXT4_FC_TAG_CREAT:
2006 case EXT4_FC_TAG_LINK:
2007 case EXT4_FC_TAG_UNLINK:
2008 len -= sizeof(struct ext4_fc_dentry_info);
2009 return len >= 1 && len <= EXT4_NAME_LEN;
2010 case EXT4_FC_TAG_INODE:
2011 len -= sizeof(struct ext4_fc_inode);
2012 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2013 len <= sbi->s_inode_size;
2014 case EXT4_FC_TAG_PAD:
2015 return true; /* padding can have any length */
2016 case EXT4_FC_TAG_TAIL:
2017 return len >= sizeof(struct ext4_fc_tail);
2018 case EXT4_FC_TAG_HEAD:
2019 return len == sizeof(struct ext4_fc_head);
2020 }
2021 return false;
2022 }
2023
2024 /*
2025 * Recovery Scan phase handler
2026 *
2027 * This function is called during the scan phase and is responsible
2028 * for doing following things:
2029 * - Make sure the fast commit area has valid tags for replay
2030 * - Count number of tags that need to be replayed by the replay handler
2031 * - Verify CRC
2032 * - Create a list of excluded blocks for allocation during replay phase
2033 *
2034 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2035 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2036 * to indicate that scan has finished and JBD2 can now start replay phase.
2037 * It returns a negative error to indicate that there was an error. At the end
2038 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2039 * to indicate the number of tags that need to replayed during the replay phase.
2040 */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2041 static int ext4_fc_replay_scan(journal_t *journal,
2042 struct buffer_head *bh, int off,
2043 tid_t expected_tid)
2044 {
2045 struct super_block *sb = journal->j_private;
2046 struct ext4_sb_info *sbi = EXT4_SB(sb);
2047 struct ext4_fc_replay_state *state;
2048 int ret = JBD2_FC_REPLAY_CONTINUE;
2049 struct ext4_fc_add_range ext;
2050 struct ext4_fc_tl tl;
2051 struct ext4_fc_tail tail;
2052 __u8 *start, *end, *cur, *val;
2053 struct ext4_fc_head head;
2054 struct ext4_extent *ex;
2055
2056 state = &sbi->s_fc_replay_state;
2057
2058 start = (u8 *)bh->b_data;
2059 end = start + journal->j_blocksize;
2060
2061 if (state->fc_replay_expected_off == 0) {
2062 state->fc_cur_tag = 0;
2063 state->fc_replay_num_tags = 0;
2064 state->fc_crc = 0;
2065 state->fc_regions = NULL;
2066 state->fc_regions_valid = state->fc_regions_used =
2067 state->fc_regions_size = 0;
2068 /* Check if we can stop early */
2069 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2070 != EXT4_FC_TAG_HEAD)
2071 return 0;
2072 }
2073
2074 if (off != state->fc_replay_expected_off) {
2075 ret = -EFSCORRUPTED;
2076 goto out_err;
2077 }
2078
2079 state->fc_replay_expected_off++;
2080 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2081 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2082 ext4_fc_get_tl(&tl, cur);
2083 val = cur + EXT4_FC_TAG_BASE_LEN;
2084 if (tl.fc_len > end - val ||
2085 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2086 ret = state->fc_replay_num_tags ?
2087 JBD2_FC_REPLAY_STOP : -ECANCELED;
2088 goto out_err;
2089 }
2090 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2091 tag2str(tl.fc_tag), bh->b_blocknr);
2092 switch (tl.fc_tag) {
2093 case EXT4_FC_TAG_ADD_RANGE:
2094 memcpy(&ext, val, sizeof(ext));
2095 ex = (struct ext4_extent *)&ext.fc_ex;
2096 ret = ext4_fc_record_regions(sb,
2097 le32_to_cpu(ext.fc_ino),
2098 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2099 ext4_ext_get_actual_len(ex), 0);
2100 if (ret < 0)
2101 break;
2102 ret = JBD2_FC_REPLAY_CONTINUE;
2103 fallthrough;
2104 case EXT4_FC_TAG_DEL_RANGE:
2105 case EXT4_FC_TAG_LINK:
2106 case EXT4_FC_TAG_UNLINK:
2107 case EXT4_FC_TAG_CREAT:
2108 case EXT4_FC_TAG_INODE:
2109 case EXT4_FC_TAG_PAD:
2110 state->fc_cur_tag++;
2111 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2112 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2113 break;
2114 case EXT4_FC_TAG_TAIL:
2115 state->fc_cur_tag++;
2116 memcpy(&tail, val, sizeof(tail));
2117 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2118 EXT4_FC_TAG_BASE_LEN +
2119 offsetof(struct ext4_fc_tail,
2120 fc_crc));
2121 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2122 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2123 state->fc_replay_num_tags = state->fc_cur_tag;
2124 state->fc_regions_valid =
2125 state->fc_regions_used;
2126 } else {
2127 ret = state->fc_replay_num_tags ?
2128 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2129 }
2130 state->fc_crc = 0;
2131 break;
2132 case EXT4_FC_TAG_HEAD:
2133 memcpy(&head, val, sizeof(head));
2134 if (le32_to_cpu(head.fc_features) &
2135 ~EXT4_FC_SUPPORTED_FEATURES) {
2136 ret = -EOPNOTSUPP;
2137 break;
2138 }
2139 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2140 ret = JBD2_FC_REPLAY_STOP;
2141 break;
2142 }
2143 state->fc_cur_tag++;
2144 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2145 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2146 break;
2147 default:
2148 ret = state->fc_replay_num_tags ?
2149 JBD2_FC_REPLAY_STOP : -ECANCELED;
2150 }
2151 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2152 break;
2153 }
2154
2155 out_err:
2156 trace_ext4_fc_replay_scan(sb, ret, off);
2157 return ret;
2158 }
2159
2160 /*
2161 * Main recovery path entry point.
2162 * The meaning of return codes is similar as above.
2163 */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2164 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2165 enum passtype pass, int off, tid_t expected_tid)
2166 {
2167 struct super_block *sb = journal->j_private;
2168 struct ext4_sb_info *sbi = EXT4_SB(sb);
2169 struct ext4_fc_tl tl;
2170 __u8 *start, *end, *cur, *val;
2171 int ret = JBD2_FC_REPLAY_CONTINUE;
2172 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2173 struct ext4_fc_tail tail;
2174
2175 if (pass == PASS_SCAN) {
2176 state->fc_current_pass = PASS_SCAN;
2177 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2178 }
2179
2180 if (state->fc_current_pass != pass) {
2181 state->fc_current_pass = pass;
2182 sbi->s_mount_state |= EXT4_FC_REPLAY;
2183 }
2184 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2185 ext4_debug("Replay stops\n");
2186 ext4_fc_set_bitmaps_and_counters(sb);
2187 return 0;
2188 }
2189
2190 #ifdef CONFIG_EXT4_DEBUG
2191 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2192 pr_warn("Dropping fc block %d because max_replay set\n", off);
2193 return JBD2_FC_REPLAY_STOP;
2194 }
2195 #endif
2196
2197 start = (u8 *)bh->b_data;
2198 end = start + journal->j_blocksize;
2199
2200 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2201 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2202 ext4_fc_get_tl(&tl, cur);
2203 val = cur + EXT4_FC_TAG_BASE_LEN;
2204
2205 if (state->fc_replay_num_tags == 0) {
2206 ret = JBD2_FC_REPLAY_STOP;
2207 ext4_fc_set_bitmaps_and_counters(sb);
2208 break;
2209 }
2210
2211 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2212 state->fc_replay_num_tags--;
2213 switch (tl.fc_tag) {
2214 case EXT4_FC_TAG_LINK:
2215 ret = ext4_fc_replay_link(sb, &tl, val);
2216 break;
2217 case EXT4_FC_TAG_UNLINK:
2218 ret = ext4_fc_replay_unlink(sb, &tl, val);
2219 break;
2220 case EXT4_FC_TAG_ADD_RANGE:
2221 ret = ext4_fc_replay_add_range(sb, &tl, val);
2222 break;
2223 case EXT4_FC_TAG_CREAT:
2224 ret = ext4_fc_replay_create(sb, &tl, val);
2225 break;
2226 case EXT4_FC_TAG_DEL_RANGE:
2227 ret = ext4_fc_replay_del_range(sb, &tl, val);
2228 break;
2229 case EXT4_FC_TAG_INODE:
2230 ret = ext4_fc_replay_inode(sb, &tl, val);
2231 break;
2232 case EXT4_FC_TAG_PAD:
2233 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2234 tl.fc_len, 0);
2235 break;
2236 case EXT4_FC_TAG_TAIL:
2237 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2238 0, tl.fc_len, 0);
2239 memcpy(&tail, val, sizeof(tail));
2240 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2241 break;
2242 case EXT4_FC_TAG_HEAD:
2243 break;
2244 default:
2245 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2246 ret = -ECANCELED;
2247 break;
2248 }
2249 if (ret < 0)
2250 break;
2251 ret = JBD2_FC_REPLAY_CONTINUE;
2252 }
2253 return ret;
2254 }
2255
ext4_fc_init(struct super_block * sb,journal_t * journal)2256 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2257 {
2258 /*
2259 * We set replay callback even if fast commit disabled because we may
2260 * could still have fast commit blocks that need to be replayed even if
2261 * fast commit has now been turned off.
2262 */
2263 journal->j_fc_replay_callback = ext4_fc_replay;
2264 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2265 return;
2266 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2267 }
2268
2269 static const char * const fc_ineligible_reasons[] = {
2270 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2271 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2272 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2273 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2274 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2275 [EXT4_FC_REASON_RESIZE] = "Resize",
2276 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2277 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2278 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2279 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2280 };
2281
ext4_fc_info_show(struct seq_file * seq,void * v)2282 int ext4_fc_info_show(struct seq_file *seq, void *v)
2283 {
2284 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2285 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2286 int i;
2287
2288 if (v != SEQ_START_TOKEN)
2289 return 0;
2290
2291 seq_printf(seq,
2292 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2293 stats->fc_num_commits, stats->fc_ineligible_commits,
2294 stats->fc_numblks,
2295 div_u64(stats->s_fc_avg_commit_time, 1000));
2296 seq_puts(seq, "Ineligible reasons:\n");
2297 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2298 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2299 stats->fc_ineligible_reason_count[i]);
2300
2301 return 0;
2302 }
2303
ext4_fc_init_dentry_cache(void)2304 int __init ext4_fc_init_dentry_cache(void)
2305 {
2306 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2307 SLAB_RECLAIM_ACCOUNT);
2308
2309 if (ext4_fc_dentry_cachep == NULL)
2310 return -ENOMEM;
2311
2312 return 0;
2313 }
2314
ext4_fc_destroy_dentry_cache(void)2315 void ext4_fc_destroy_dentry_cache(void)
2316 {
2317 kmem_cache_destroy(ext4_fc_dentry_cachep);
2318 }
2319