1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22 
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31 
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 
45 #include <trace/events/ext4.h>
46 
47 /*
48  * used by extent splitting.
49  */
50 #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
51 					due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
54 
55 #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
57 
58 static int ext4_split_extent(handle_t *handle,
59 				struct inode *inode,
60 				struct ext4_ext_path *path,
61 				struct ext4_map_blocks *map,
62 				int split_flag,
63 				int flags);
64 
65 static int ext4_split_extent_at(handle_t *handle,
66 			     struct inode *inode,
67 			     struct ext4_ext_path *path,
68 			     ext4_lblk_t split,
69 			     int split_flag,
70 			     int flags);
71 
ext4_ext_truncate_extend_restart(handle_t * handle,struct inode * inode,int needed)72 static int ext4_ext_truncate_extend_restart(handle_t *handle,
73 					    struct inode *inode,
74 					    int needed)
75 {
76 	int err;
77 
78 	if (!ext4_handle_valid(handle))
79 		return 0;
80 	if (handle->h_buffer_credits > needed)
81 		return 0;
82 	err = ext4_journal_extend(handle, needed);
83 	if (err <= 0)
84 		return err;
85 	err = ext4_truncate_restart_trans(handle, inode, needed);
86 	if (err == 0)
87 		err = -EAGAIN;
88 
89 	return err;
90 }
91 
92 /*
93  * could return:
94  *  - EROFS
95  *  - ENOMEM
96  */
ext4_ext_get_access(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)97 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
98 				struct ext4_ext_path *path)
99 {
100 	if (path->p_bh) {
101 		/* path points to block */
102 		return ext4_journal_get_write_access(handle, path->p_bh);
103 	}
104 	/* path points to leaf/index in inode body */
105 	/* we use in-core data, no need to protect them */
106 	return 0;
107 }
108 
109 /*
110  * could return:
111  *  - EROFS
112  *  - ENOMEM
113  *  - EIO
114  */
115 #define ext4_ext_dirty(handle, inode, path) \
116 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
__ext4_ext_dirty(const char * where,unsigned int line,handle_t * handle,struct inode * inode,struct ext4_ext_path * path)117 static int __ext4_ext_dirty(const char *where, unsigned int line,
118 			    handle_t *handle, struct inode *inode,
119 			    struct ext4_ext_path *path)
120 {
121 	int err;
122 	if (path->p_bh) {
123 		/* path points to block */
124 		err = __ext4_handle_dirty_metadata(where, line, handle,
125 						   inode, path->p_bh);
126 	} else {
127 		/* path points to leaf/index in inode body */
128 		err = ext4_mark_inode_dirty(handle, inode);
129 	}
130 	return err;
131 }
132 
ext4_ext_find_goal(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)133 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
134 			      struct ext4_ext_path *path,
135 			      ext4_lblk_t block)
136 {
137 	if (path) {
138 		int depth = path->p_depth;
139 		struct ext4_extent *ex;
140 
141 		/*
142 		 * Try to predict block placement assuming that we are
143 		 * filling in a file which will eventually be
144 		 * non-sparse --- i.e., in the case of libbfd writing
145 		 * an ELF object sections out-of-order but in a way
146 		 * the eventually results in a contiguous object or
147 		 * executable file, or some database extending a table
148 		 * space file.  However, this is actually somewhat
149 		 * non-ideal if we are writing a sparse file such as
150 		 * qemu or KVM writing a raw image file that is going
151 		 * to stay fairly sparse, since it will end up
152 		 * fragmenting the file system's free space.  Maybe we
153 		 * should have some hueristics or some way to allow
154 		 * userspace to pass a hint to file system,
155 		 * especially if the latter case turns out to be
156 		 * common.
157 		 */
158 		ex = path[depth].p_ext;
159 		if (ex) {
160 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
161 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
162 
163 			if (block > ext_block)
164 				return ext_pblk + (block - ext_block);
165 			else
166 				return ext_pblk - (ext_block - block);
167 		}
168 
169 		/* it looks like index is empty;
170 		 * try to find starting block from index itself */
171 		if (path[depth].p_bh)
172 			return path[depth].p_bh->b_blocknr;
173 	}
174 
175 	/* OK. use inode's group */
176 	return ext4_inode_to_goal_block(inode);
177 }
178 
179 /*
180  * Allocation for a meta data block
181  */
182 static ext4_fsblk_t
ext4_ext_new_meta_block(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex,int * err,unsigned int flags)183 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
184 			struct ext4_ext_path *path,
185 			struct ext4_extent *ex, int *err, unsigned int flags)
186 {
187 	ext4_fsblk_t goal, newblock;
188 
189 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
190 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
191 					NULL, err);
192 	return newblock;
193 }
194 
ext4_ext_space_block(struct inode * inode,int check)195 static inline int ext4_ext_space_block(struct inode *inode, int check)
196 {
197 	int size;
198 
199 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
200 			/ sizeof(struct ext4_extent);
201 #ifdef AGGRESSIVE_TEST
202 	if (!check && size > 6)
203 		size = 6;
204 #endif
205 	return size;
206 }
207 
ext4_ext_space_block_idx(struct inode * inode,int check)208 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
209 {
210 	int size;
211 
212 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
213 			/ sizeof(struct ext4_extent_idx);
214 #ifdef AGGRESSIVE_TEST
215 	if (!check && size > 5)
216 		size = 5;
217 #endif
218 	return size;
219 }
220 
ext4_ext_space_root(struct inode * inode,int check)221 static inline int ext4_ext_space_root(struct inode *inode, int check)
222 {
223 	int size;
224 
225 	size = sizeof(EXT4_I(inode)->i_data);
226 	size -= sizeof(struct ext4_extent_header);
227 	size /= sizeof(struct ext4_extent);
228 #ifdef AGGRESSIVE_TEST
229 	if (!check && size > 3)
230 		size = 3;
231 #endif
232 	return size;
233 }
234 
ext4_ext_space_root_idx(struct inode * inode,int check)235 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
236 {
237 	int size;
238 
239 	size = sizeof(EXT4_I(inode)->i_data);
240 	size -= sizeof(struct ext4_extent_header);
241 	size /= sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 	if (!check && size > 4)
244 		size = 4;
245 #endif
246 	return size;
247 }
248 
249 /*
250  * Calculate the number of metadata blocks needed
251  * to allocate @blocks
252  * Worse case is one block per extent
253  */
ext4_ext_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)254 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
255 {
256 	struct ext4_inode_info *ei = EXT4_I(inode);
257 	int idxs;
258 
259 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
260 		/ sizeof(struct ext4_extent_idx));
261 
262 	/*
263 	 * If the new delayed allocation block is contiguous with the
264 	 * previous da block, it can share index blocks with the
265 	 * previous block, so we only need to allocate a new index
266 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
267 	 * an additional index block, and at ldxs**3 blocks, yet
268 	 * another index blocks.
269 	 */
270 	if (ei->i_da_metadata_calc_len &&
271 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
272 		int num = 0;
273 
274 		if ((ei->i_da_metadata_calc_len % idxs) == 0)
275 			num++;
276 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
277 			num++;
278 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
279 			num++;
280 			ei->i_da_metadata_calc_len = 0;
281 		} else
282 			ei->i_da_metadata_calc_len++;
283 		ei->i_da_metadata_calc_last_lblock++;
284 		return num;
285 	}
286 
287 	/*
288 	 * In the worst case we need a new set of index blocks at
289 	 * every level of the inode's extent tree.
290 	 */
291 	ei->i_da_metadata_calc_len = 1;
292 	ei->i_da_metadata_calc_last_lblock = lblock;
293 	return ext_depth(inode) + 1;
294 }
295 
296 static int
ext4_ext_max_entries(struct inode * inode,int depth)297 ext4_ext_max_entries(struct inode *inode, int depth)
298 {
299 	int max;
300 
301 	if (depth == ext_depth(inode)) {
302 		if (depth == 0)
303 			max = ext4_ext_space_root(inode, 1);
304 		else
305 			max = ext4_ext_space_root_idx(inode, 1);
306 	} else {
307 		if (depth == 0)
308 			max = ext4_ext_space_block(inode, 1);
309 		else
310 			max = ext4_ext_space_block_idx(inode, 1);
311 	}
312 
313 	return max;
314 }
315 
ext4_valid_extent(struct inode * inode,struct ext4_extent * ext)316 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
317 {
318 	ext4_fsblk_t block = ext4_ext_pblock(ext);
319 	int len = ext4_ext_get_actual_len(ext);
320 	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
321 	ext4_lblk_t last = lblock + len - 1;
322 
323 	if (lblock > last)
324 		return 0;
325 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
326 }
327 
ext4_valid_extent_idx(struct inode * inode,struct ext4_extent_idx * ext_idx)328 static int ext4_valid_extent_idx(struct inode *inode,
329 				struct ext4_extent_idx *ext_idx)
330 {
331 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
332 
333 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
334 }
335 
ext4_valid_extent_entries(struct inode * inode,struct ext4_extent_header * eh,int depth)336 static int ext4_valid_extent_entries(struct inode *inode,
337 				struct ext4_extent_header *eh,
338 				int depth)
339 {
340 	unsigned short entries;
341 	if (eh->eh_entries == 0)
342 		return 1;
343 
344 	entries = le16_to_cpu(eh->eh_entries);
345 
346 	if (depth == 0) {
347 		/* leaf entries */
348 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
349 		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
350 		ext4_fsblk_t pblock = 0;
351 		ext4_lblk_t lblock = 0;
352 		ext4_lblk_t prev = 0;
353 		int len = 0;
354 		while (entries) {
355 			if (!ext4_valid_extent(inode, ext))
356 				return 0;
357 
358 			/* Check for overlapping extents */
359 			lblock = le32_to_cpu(ext->ee_block);
360 			len = ext4_ext_get_actual_len(ext);
361 			if ((lblock <= prev) && prev) {
362 				pblock = ext4_ext_pblock(ext);
363 				es->s_last_error_block = cpu_to_le64(pblock);
364 				return 0;
365 			}
366 			ext++;
367 			entries--;
368 			prev = lblock + len - 1;
369 		}
370 	} else {
371 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
372 		while (entries) {
373 			if (!ext4_valid_extent_idx(inode, ext_idx))
374 				return 0;
375 			ext_idx++;
376 			entries--;
377 		}
378 	}
379 	return 1;
380 }
381 
__ext4_ext_check(const char * function,unsigned int line,struct inode * inode,struct ext4_extent_header * eh,int depth)382 static int __ext4_ext_check(const char *function, unsigned int line,
383 			    struct inode *inode, struct ext4_extent_header *eh,
384 			    int depth)
385 {
386 	const char *error_msg;
387 	int max = 0;
388 
389 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
390 		error_msg = "invalid magic";
391 		goto corrupted;
392 	}
393 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
394 		error_msg = "unexpected eh_depth";
395 		goto corrupted;
396 	}
397 	if (unlikely(eh->eh_max == 0)) {
398 		error_msg = "invalid eh_max";
399 		goto corrupted;
400 	}
401 	max = ext4_ext_max_entries(inode, depth);
402 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
403 		error_msg = "too large eh_max";
404 		goto corrupted;
405 	}
406 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
407 		error_msg = "invalid eh_entries";
408 		goto corrupted;
409 	}
410 	if (!ext4_valid_extent_entries(inode, eh, depth)) {
411 		error_msg = "invalid extent entries";
412 		goto corrupted;
413 	}
414 	return 0;
415 
416 corrupted:
417 	ext4_error_inode(inode, function, line, 0,
418 			"bad header/extent: %s - magic %x, "
419 			"entries %u, max %u(%u), depth %u(%u)",
420 			error_msg, le16_to_cpu(eh->eh_magic),
421 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
422 			max, le16_to_cpu(eh->eh_depth), depth);
423 
424 	return -EIO;
425 }
426 
427 #define ext4_ext_check(inode, eh, depth)	\
428 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
429 
ext4_ext_check_inode(struct inode * inode)430 int ext4_ext_check_inode(struct inode *inode)
431 {
432 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
433 }
434 
435 #ifdef EXT_DEBUG
ext4_ext_show_path(struct inode * inode,struct ext4_ext_path * path)436 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
437 {
438 	int k, l = path->p_depth;
439 
440 	ext_debug("path:");
441 	for (k = 0; k <= l; k++, path++) {
442 		if (path->p_idx) {
443 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
444 			    ext4_idx_pblock(path->p_idx));
445 		} else if (path->p_ext) {
446 			ext_debug("  %d:[%d]%d:%llu ",
447 				  le32_to_cpu(path->p_ext->ee_block),
448 				  ext4_ext_is_uninitialized(path->p_ext),
449 				  ext4_ext_get_actual_len(path->p_ext),
450 				  ext4_ext_pblock(path->p_ext));
451 		} else
452 			ext_debug("  []");
453 	}
454 	ext_debug("\n");
455 }
456 
ext4_ext_show_leaf(struct inode * inode,struct ext4_ext_path * path)457 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
458 {
459 	int depth = ext_depth(inode);
460 	struct ext4_extent_header *eh;
461 	struct ext4_extent *ex;
462 	int i;
463 
464 	if (!path)
465 		return;
466 
467 	eh = path[depth].p_hdr;
468 	ex = EXT_FIRST_EXTENT(eh);
469 
470 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
471 
472 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
473 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
474 			  ext4_ext_is_uninitialized(ex),
475 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
476 	}
477 	ext_debug("\n");
478 }
479 
ext4_ext_show_move(struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t newblock,int level)480 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
481 			ext4_fsblk_t newblock, int level)
482 {
483 	int depth = ext_depth(inode);
484 	struct ext4_extent *ex;
485 
486 	if (depth != level) {
487 		struct ext4_extent_idx *idx;
488 		idx = path[level].p_idx;
489 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
490 			ext_debug("%d: move %d:%llu in new index %llu\n", level,
491 					le32_to_cpu(idx->ei_block),
492 					ext4_idx_pblock(idx),
493 					newblock);
494 			idx++;
495 		}
496 
497 		return;
498 	}
499 
500 	ex = path[depth].p_ext;
501 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
502 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
503 				le32_to_cpu(ex->ee_block),
504 				ext4_ext_pblock(ex),
505 				ext4_ext_is_uninitialized(ex),
506 				ext4_ext_get_actual_len(ex),
507 				newblock);
508 		ex++;
509 	}
510 }
511 
512 #else
513 #define ext4_ext_show_path(inode, path)
514 #define ext4_ext_show_leaf(inode, path)
515 #define ext4_ext_show_move(inode, path, newblock, level)
516 #endif
517 
ext4_ext_drop_refs(struct ext4_ext_path * path)518 void ext4_ext_drop_refs(struct ext4_ext_path *path)
519 {
520 	int depth = path->p_depth;
521 	int i;
522 
523 	for (i = 0; i <= depth; i++, path++)
524 		if (path->p_bh) {
525 			brelse(path->p_bh);
526 			path->p_bh = NULL;
527 		}
528 }
529 
530 /*
531  * ext4_ext_binsearch_idx:
532  * binary search for the closest index of the given block
533  * the header must be checked before calling this
534  */
535 static void
ext4_ext_binsearch_idx(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)536 ext4_ext_binsearch_idx(struct inode *inode,
537 			struct ext4_ext_path *path, ext4_lblk_t block)
538 {
539 	struct ext4_extent_header *eh = path->p_hdr;
540 	struct ext4_extent_idx *r, *l, *m;
541 
542 
543 	ext_debug("binsearch for %u(idx):  ", block);
544 
545 	l = EXT_FIRST_INDEX(eh) + 1;
546 	r = EXT_LAST_INDEX(eh);
547 	while (l <= r) {
548 		m = l + (r - l) / 2;
549 		if (block < le32_to_cpu(m->ei_block))
550 			r = m - 1;
551 		else
552 			l = m + 1;
553 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
554 				m, le32_to_cpu(m->ei_block),
555 				r, le32_to_cpu(r->ei_block));
556 	}
557 
558 	path->p_idx = l - 1;
559 	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
560 		  ext4_idx_pblock(path->p_idx));
561 
562 #ifdef CHECK_BINSEARCH
563 	{
564 		struct ext4_extent_idx *chix, *ix;
565 		int k;
566 
567 		chix = ix = EXT_FIRST_INDEX(eh);
568 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
569 		  if (k != 0 &&
570 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
571 				printk(KERN_DEBUG "k=%d, ix=0x%p, "
572 				       "first=0x%p\n", k,
573 				       ix, EXT_FIRST_INDEX(eh));
574 				printk(KERN_DEBUG "%u <= %u\n",
575 				       le32_to_cpu(ix->ei_block),
576 				       le32_to_cpu(ix[-1].ei_block));
577 			}
578 			BUG_ON(k && le32_to_cpu(ix->ei_block)
579 					   <= le32_to_cpu(ix[-1].ei_block));
580 			if (block < le32_to_cpu(ix->ei_block))
581 				break;
582 			chix = ix;
583 		}
584 		BUG_ON(chix != path->p_idx);
585 	}
586 #endif
587 
588 }
589 
590 /*
591  * ext4_ext_binsearch:
592  * binary search for closest extent of the given block
593  * the header must be checked before calling this
594  */
595 static void
ext4_ext_binsearch(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)596 ext4_ext_binsearch(struct inode *inode,
597 		struct ext4_ext_path *path, ext4_lblk_t block)
598 {
599 	struct ext4_extent_header *eh = path->p_hdr;
600 	struct ext4_extent *r, *l, *m;
601 
602 	if (eh->eh_entries == 0) {
603 		/*
604 		 * this leaf is empty:
605 		 * we get such a leaf in split/add case
606 		 */
607 		return;
608 	}
609 
610 	ext_debug("binsearch for %u:  ", block);
611 
612 	l = EXT_FIRST_EXTENT(eh) + 1;
613 	r = EXT_LAST_EXTENT(eh);
614 
615 	while (l <= r) {
616 		m = l + (r - l) / 2;
617 		if (block < le32_to_cpu(m->ee_block))
618 			r = m - 1;
619 		else
620 			l = m + 1;
621 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
622 				m, le32_to_cpu(m->ee_block),
623 				r, le32_to_cpu(r->ee_block));
624 	}
625 
626 	path->p_ext = l - 1;
627 	ext_debug("  -> %d:%llu:[%d]%d ",
628 			le32_to_cpu(path->p_ext->ee_block),
629 			ext4_ext_pblock(path->p_ext),
630 			ext4_ext_is_uninitialized(path->p_ext),
631 			ext4_ext_get_actual_len(path->p_ext));
632 
633 #ifdef CHECK_BINSEARCH
634 	{
635 		struct ext4_extent *chex, *ex;
636 		int k;
637 
638 		chex = ex = EXT_FIRST_EXTENT(eh);
639 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
640 			BUG_ON(k && le32_to_cpu(ex->ee_block)
641 					  <= le32_to_cpu(ex[-1].ee_block));
642 			if (block < le32_to_cpu(ex->ee_block))
643 				break;
644 			chex = ex;
645 		}
646 		BUG_ON(chex != path->p_ext);
647 	}
648 #endif
649 
650 }
651 
ext4_ext_tree_init(handle_t * handle,struct inode * inode)652 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
653 {
654 	struct ext4_extent_header *eh;
655 
656 	eh = ext_inode_hdr(inode);
657 	eh->eh_depth = 0;
658 	eh->eh_entries = 0;
659 	eh->eh_magic = EXT4_EXT_MAGIC;
660 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
661 	ext4_mark_inode_dirty(handle, inode);
662 	ext4_ext_invalidate_cache(inode);
663 	return 0;
664 }
665 
666 struct ext4_ext_path *
ext4_ext_find_extent(struct inode * inode,ext4_lblk_t block,struct ext4_ext_path * path)667 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
668 					struct ext4_ext_path *path)
669 {
670 	struct ext4_extent_header *eh;
671 	struct buffer_head *bh;
672 	short int depth, i, ppos = 0, alloc = 0;
673 	int ret;
674 
675 	eh = ext_inode_hdr(inode);
676 	depth = ext_depth(inode);
677 
678 	/* account possible depth increase */
679 	if (!path) {
680 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
681 				GFP_NOFS);
682 		if (!path)
683 			return ERR_PTR(-ENOMEM);
684 		alloc = 1;
685 	}
686 	path[0].p_hdr = eh;
687 	path[0].p_bh = NULL;
688 
689 	i = depth;
690 	/* walk through the tree */
691 	while (i) {
692 		int need_to_validate = 0;
693 
694 		ext_debug("depth %d: num %d, max %d\n",
695 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
696 
697 		ext4_ext_binsearch_idx(inode, path + ppos, block);
698 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
699 		path[ppos].p_depth = i;
700 		path[ppos].p_ext = NULL;
701 
702 		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
703 		if (unlikely(!bh)) {
704 			ret = -ENOMEM;
705 			goto err;
706 		}
707 		if (!bh_uptodate_or_lock(bh)) {
708 			trace_ext4_ext_load_extent(inode, block,
709 						path[ppos].p_block);
710 			ret = bh_submit_read(bh);
711 			if (ret < 0) {
712 				put_bh(bh);
713 				goto err;
714 			}
715 			/* validate the extent entries */
716 			need_to_validate = 1;
717 		}
718 		eh = ext_block_hdr(bh);
719 		ppos++;
720 		if (unlikely(ppos > depth)) {
721 			put_bh(bh);
722 			EXT4_ERROR_INODE(inode,
723 					 "ppos %d > depth %d", ppos, depth);
724 			ret = -EIO;
725 			goto err;
726 		}
727 		path[ppos].p_bh = bh;
728 		path[ppos].p_hdr = eh;
729 		i--;
730 
731 		ret = need_to_validate ? ext4_ext_check(inode, eh, i) : 0;
732 		if (ret < 0)
733 			goto err;
734 	}
735 
736 	path[ppos].p_depth = i;
737 	path[ppos].p_ext = NULL;
738 	path[ppos].p_idx = NULL;
739 
740 	/* find extent */
741 	ext4_ext_binsearch(inode, path + ppos, block);
742 	/* if not an empty leaf */
743 	if (path[ppos].p_ext)
744 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
745 
746 	ext4_ext_show_path(inode, path);
747 
748 	return path;
749 
750 err:
751 	ext4_ext_drop_refs(path);
752 	if (alloc)
753 		kfree(path);
754 	return ERR_PTR(ret);
755 }
756 
757 /*
758  * ext4_ext_insert_index:
759  * insert new index [@logical;@ptr] into the block at @curp;
760  * check where to insert: before @curp or after @curp
761  */
ext4_ext_insert_index(handle_t * handle,struct inode * inode,struct ext4_ext_path * curp,int logical,ext4_fsblk_t ptr)762 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
763 				 struct ext4_ext_path *curp,
764 				 int logical, ext4_fsblk_t ptr)
765 {
766 	struct ext4_extent_idx *ix;
767 	int len, err;
768 
769 	err = ext4_ext_get_access(handle, inode, curp);
770 	if (err)
771 		return err;
772 
773 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
774 		EXT4_ERROR_INODE(inode,
775 				 "logical %d == ei_block %d!",
776 				 logical, le32_to_cpu(curp->p_idx->ei_block));
777 		return -EIO;
778 	}
779 
780 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
781 			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
782 		EXT4_ERROR_INODE(inode,
783 				 "eh_entries %d >= eh_max %d!",
784 				 le16_to_cpu(curp->p_hdr->eh_entries),
785 				 le16_to_cpu(curp->p_hdr->eh_max));
786 		return -EIO;
787 	}
788 
789 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
790 		/* insert after */
791 		ext_debug("insert new index %d after: %llu\n", logical, ptr);
792 		ix = curp->p_idx + 1;
793 	} else {
794 		/* insert before */
795 		ext_debug("insert new index %d before: %llu\n", logical, ptr);
796 		ix = curp->p_idx;
797 	}
798 
799 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
800 	BUG_ON(len < 0);
801 	if (len > 0) {
802 		ext_debug("insert new index %d: "
803 				"move %d indices from 0x%p to 0x%p\n",
804 				logical, len, ix, ix + 1);
805 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
806 	}
807 
808 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
809 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
810 		return -EIO;
811 	}
812 
813 	ix->ei_block = cpu_to_le32(logical);
814 	ext4_idx_store_pblock(ix, ptr);
815 	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
816 
817 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
818 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
819 		return -EIO;
820 	}
821 
822 	err = ext4_ext_dirty(handle, inode, curp);
823 	ext4_std_error(inode->i_sb, err);
824 
825 	return err;
826 }
827 
828 /*
829  * ext4_ext_split:
830  * inserts new subtree into the path, using free index entry
831  * at depth @at:
832  * - allocates all needed blocks (new leaf and all intermediate index blocks)
833  * - makes decision where to split
834  * - moves remaining extents and index entries (right to the split point)
835  *   into the newly allocated blocks
836  * - initializes subtree
837  */
ext4_ext_split(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext,int at)838 static int ext4_ext_split(handle_t *handle, struct inode *inode,
839 			  unsigned int flags,
840 			  struct ext4_ext_path *path,
841 			  struct ext4_extent *newext, int at)
842 {
843 	struct buffer_head *bh = NULL;
844 	int depth = ext_depth(inode);
845 	struct ext4_extent_header *neh;
846 	struct ext4_extent_idx *fidx;
847 	int i = at, k, m, a;
848 	ext4_fsblk_t newblock, oldblock;
849 	__le32 border;
850 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
851 	int err = 0;
852 
853 	/* make decision: where to split? */
854 	/* FIXME: now decision is simplest: at current extent */
855 
856 	/* if current leaf will be split, then we should use
857 	 * border from split point */
858 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
859 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
860 		return -EIO;
861 	}
862 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
863 		border = path[depth].p_ext[1].ee_block;
864 		ext_debug("leaf will be split."
865 				" next leaf starts at %d\n",
866 				  le32_to_cpu(border));
867 	} else {
868 		border = newext->ee_block;
869 		ext_debug("leaf will be added."
870 				" next leaf starts at %d\n",
871 				le32_to_cpu(border));
872 	}
873 
874 	/*
875 	 * If error occurs, then we break processing
876 	 * and mark filesystem read-only. index won't
877 	 * be inserted and tree will be in consistent
878 	 * state. Next mount will repair buffers too.
879 	 */
880 
881 	/*
882 	 * Get array to track all allocated blocks.
883 	 * We need this to handle errors and free blocks
884 	 * upon them.
885 	 */
886 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
887 	if (!ablocks)
888 		return -ENOMEM;
889 
890 	/* allocate all needed blocks */
891 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
892 	for (a = 0; a < depth - at; a++) {
893 		newblock = ext4_ext_new_meta_block(handle, inode, path,
894 						   newext, &err, flags);
895 		if (newblock == 0)
896 			goto cleanup;
897 		ablocks[a] = newblock;
898 	}
899 
900 	/* initialize new leaf */
901 	newblock = ablocks[--a];
902 	if (unlikely(newblock == 0)) {
903 		EXT4_ERROR_INODE(inode, "newblock == 0!");
904 		err = -EIO;
905 		goto cleanup;
906 	}
907 	bh = sb_getblk(inode->i_sb, newblock);
908 	if (!bh) {
909 		err = -ENOMEM;
910 		goto cleanup;
911 	}
912 	lock_buffer(bh);
913 
914 	err = ext4_journal_get_create_access(handle, bh);
915 	if (err)
916 		goto cleanup;
917 
918 	neh = ext_block_hdr(bh);
919 	neh->eh_entries = 0;
920 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
921 	neh->eh_magic = EXT4_EXT_MAGIC;
922 	neh->eh_depth = 0;
923 
924 	/* move remainder of path[depth] to the new leaf */
925 	if (unlikely(path[depth].p_hdr->eh_entries !=
926 		     path[depth].p_hdr->eh_max)) {
927 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
928 				 path[depth].p_hdr->eh_entries,
929 				 path[depth].p_hdr->eh_max);
930 		err = -EIO;
931 		goto cleanup;
932 	}
933 	/* start copy from next extent */
934 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
935 	ext4_ext_show_move(inode, path, newblock, depth);
936 	if (m) {
937 		struct ext4_extent *ex;
938 		ex = EXT_FIRST_EXTENT(neh);
939 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
940 		le16_add_cpu(&neh->eh_entries, m);
941 	}
942 
943 	set_buffer_uptodate(bh);
944 	unlock_buffer(bh);
945 
946 	err = ext4_handle_dirty_metadata(handle, inode, bh);
947 	if (err)
948 		goto cleanup;
949 	brelse(bh);
950 	bh = NULL;
951 
952 	/* correct old leaf */
953 	if (m) {
954 		err = ext4_ext_get_access(handle, inode, path + depth);
955 		if (err)
956 			goto cleanup;
957 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
958 		err = ext4_ext_dirty(handle, inode, path + depth);
959 		if (err)
960 			goto cleanup;
961 
962 	}
963 
964 	/* create intermediate indexes */
965 	k = depth - at - 1;
966 	if (unlikely(k < 0)) {
967 		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
968 		err = -EIO;
969 		goto cleanup;
970 	}
971 	if (k)
972 		ext_debug("create %d intermediate indices\n", k);
973 	/* insert new index into current index block */
974 	/* current depth stored in i var */
975 	i = depth - 1;
976 	while (k--) {
977 		oldblock = newblock;
978 		newblock = ablocks[--a];
979 		bh = sb_getblk(inode->i_sb, newblock);
980 		if (!bh) {
981 			err = -ENOMEM;
982 			goto cleanup;
983 		}
984 		lock_buffer(bh);
985 
986 		err = ext4_journal_get_create_access(handle, bh);
987 		if (err)
988 			goto cleanup;
989 
990 		neh = ext_block_hdr(bh);
991 		neh->eh_entries = cpu_to_le16(1);
992 		neh->eh_magic = EXT4_EXT_MAGIC;
993 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
994 		neh->eh_depth = cpu_to_le16(depth - i);
995 		fidx = EXT_FIRST_INDEX(neh);
996 		fidx->ei_block = border;
997 		ext4_idx_store_pblock(fidx, oldblock);
998 
999 		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1000 				i, newblock, le32_to_cpu(border), oldblock);
1001 
1002 		/* move remainder of path[i] to the new index block */
1003 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1004 					EXT_LAST_INDEX(path[i].p_hdr))) {
1005 			EXT4_ERROR_INODE(inode,
1006 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1007 					 le32_to_cpu(path[i].p_ext->ee_block));
1008 			err = -EIO;
1009 			goto cleanup;
1010 		}
1011 		/* start copy indexes */
1012 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1013 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1014 				EXT_MAX_INDEX(path[i].p_hdr));
1015 		ext4_ext_show_move(inode, path, newblock, i);
1016 		if (m) {
1017 			memmove(++fidx, path[i].p_idx,
1018 				sizeof(struct ext4_extent_idx) * m);
1019 			le16_add_cpu(&neh->eh_entries, m);
1020 		}
1021 		set_buffer_uptodate(bh);
1022 		unlock_buffer(bh);
1023 
1024 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1025 		if (err)
1026 			goto cleanup;
1027 		brelse(bh);
1028 		bh = NULL;
1029 
1030 		/* correct old index */
1031 		if (m) {
1032 			err = ext4_ext_get_access(handle, inode, path + i);
1033 			if (err)
1034 				goto cleanup;
1035 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1036 			err = ext4_ext_dirty(handle, inode, path + i);
1037 			if (err)
1038 				goto cleanup;
1039 		}
1040 
1041 		i--;
1042 	}
1043 
1044 	/* insert new index */
1045 	err = ext4_ext_insert_index(handle, inode, path + at,
1046 				    le32_to_cpu(border), newblock);
1047 
1048 cleanup:
1049 	if (bh) {
1050 		if (buffer_locked(bh))
1051 			unlock_buffer(bh);
1052 		brelse(bh);
1053 	}
1054 
1055 	if (err) {
1056 		/* free all allocated blocks in error case */
1057 		for (i = 0; i < depth; i++) {
1058 			if (!ablocks[i])
1059 				continue;
1060 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1061 					 EXT4_FREE_BLOCKS_METADATA);
1062 		}
1063 	}
1064 	kfree(ablocks);
1065 
1066 	return err;
1067 }
1068 
1069 /*
1070  * ext4_ext_grow_indepth:
1071  * implements tree growing procedure:
1072  * - allocates new block
1073  * - moves top-level data (index block or leaf) into the new block
1074  * - initializes new top-level, creating index that points to the
1075  *   just created block
1076  */
ext4_ext_grow_indepth(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_extent * newext)1077 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1078 				 unsigned int flags,
1079 				 struct ext4_extent *newext)
1080 {
1081 	struct ext4_extent_header *neh;
1082 	struct buffer_head *bh;
1083 	ext4_fsblk_t newblock;
1084 	int err = 0;
1085 
1086 	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1087 		newext, &err, flags);
1088 	if (newblock == 0)
1089 		return err;
1090 
1091 	bh = sb_getblk(inode->i_sb, newblock);
1092 	if (!bh)
1093 		return -ENOMEM;
1094 	lock_buffer(bh);
1095 
1096 	err = ext4_journal_get_create_access(handle, bh);
1097 	if (err) {
1098 		unlock_buffer(bh);
1099 		goto out;
1100 	}
1101 
1102 	/* move top-level index/leaf into new block */
1103 	memmove(bh->b_data, EXT4_I(inode)->i_data,
1104 		sizeof(EXT4_I(inode)->i_data));
1105 
1106 	/* set size of new block */
1107 	neh = ext_block_hdr(bh);
1108 	/* old root could have indexes or leaves
1109 	 * so calculate e_max right way */
1110 	if (ext_depth(inode))
1111 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1112 	else
1113 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1114 	neh->eh_magic = EXT4_EXT_MAGIC;
1115 	set_buffer_uptodate(bh);
1116 	unlock_buffer(bh);
1117 
1118 	err = ext4_handle_dirty_metadata(handle, inode, bh);
1119 	if (err)
1120 		goto out;
1121 
1122 	/* Update top-level index: num,max,pointer */
1123 	neh = ext_inode_hdr(inode);
1124 	neh->eh_entries = cpu_to_le16(1);
1125 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1126 	if (neh->eh_depth == 0) {
1127 		/* Root extent block becomes index block */
1128 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1129 		EXT_FIRST_INDEX(neh)->ei_block =
1130 			EXT_FIRST_EXTENT(neh)->ee_block;
1131 	}
1132 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1133 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1134 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1135 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1136 
1137 	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1138 	ext4_mark_inode_dirty(handle, inode);
1139 out:
1140 	brelse(bh);
1141 
1142 	return err;
1143 }
1144 
1145 /*
1146  * ext4_ext_create_new_leaf:
1147  * finds empty index and adds new leaf.
1148  * if no free index is found, then it requests in-depth growing.
1149  */
ext4_ext_create_new_leaf(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext)1150 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1151 				    unsigned int flags,
1152 				    struct ext4_ext_path *path,
1153 				    struct ext4_extent *newext)
1154 {
1155 	struct ext4_ext_path *curp;
1156 	int depth, i, err = 0;
1157 
1158 repeat:
1159 	i = depth = ext_depth(inode);
1160 
1161 	/* walk up to the tree and look for free index entry */
1162 	curp = path + depth;
1163 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1164 		i--;
1165 		curp--;
1166 	}
1167 
1168 	/* we use already allocated block for index block,
1169 	 * so subsequent data blocks should be contiguous */
1170 	if (EXT_HAS_FREE_INDEX(curp)) {
1171 		/* if we found index with free entry, then use that
1172 		 * entry: create all needed subtree and add new leaf */
1173 		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1174 		if (err)
1175 			goto out;
1176 
1177 		/* refill path */
1178 		ext4_ext_drop_refs(path);
1179 		path = ext4_ext_find_extent(inode,
1180 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1181 				    path);
1182 		if (IS_ERR(path))
1183 			err = PTR_ERR(path);
1184 	} else {
1185 		/* tree is full, time to grow in depth */
1186 		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1187 		if (err)
1188 			goto out;
1189 
1190 		/* refill path */
1191 		ext4_ext_drop_refs(path);
1192 		path = ext4_ext_find_extent(inode,
1193 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1194 				    path);
1195 		if (IS_ERR(path)) {
1196 			err = PTR_ERR(path);
1197 			goto out;
1198 		}
1199 
1200 		/*
1201 		 * only first (depth 0 -> 1) produces free space;
1202 		 * in all other cases we have to split the grown tree
1203 		 */
1204 		depth = ext_depth(inode);
1205 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1206 			/* now we need to split */
1207 			goto repeat;
1208 		}
1209 	}
1210 
1211 out:
1212 	return err;
1213 }
1214 
1215 /*
1216  * search the closest allocated block to the left for *logical
1217  * and returns it at @logical + it's physical address at @phys
1218  * if *logical is the smallest allocated block, the function
1219  * returns 0 at @phys
1220  * return value contains 0 (success) or error code
1221  */
ext4_ext_search_left(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1222 static int ext4_ext_search_left(struct inode *inode,
1223 				struct ext4_ext_path *path,
1224 				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1225 {
1226 	struct ext4_extent_idx *ix;
1227 	struct ext4_extent *ex;
1228 	int depth, ee_len;
1229 
1230 	if (unlikely(path == NULL)) {
1231 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1232 		return -EIO;
1233 	}
1234 	depth = path->p_depth;
1235 	*phys = 0;
1236 
1237 	if (depth == 0 && path->p_ext == NULL)
1238 		return 0;
1239 
1240 	/* usually extent in the path covers blocks smaller
1241 	 * then *logical, but it can be that extent is the
1242 	 * first one in the file */
1243 
1244 	ex = path[depth].p_ext;
1245 	ee_len = ext4_ext_get_actual_len(ex);
1246 	if (*logical < le32_to_cpu(ex->ee_block)) {
1247 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1248 			EXT4_ERROR_INODE(inode,
1249 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1250 					 *logical, le32_to_cpu(ex->ee_block));
1251 			return -EIO;
1252 		}
1253 		while (--depth >= 0) {
1254 			ix = path[depth].p_idx;
1255 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1256 				EXT4_ERROR_INODE(inode,
1257 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1258 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1259 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1260 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1261 				  depth);
1262 				return -EIO;
1263 			}
1264 		}
1265 		return 0;
1266 	}
1267 
1268 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1269 		EXT4_ERROR_INODE(inode,
1270 				 "logical %d < ee_block %d + ee_len %d!",
1271 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1272 		return -EIO;
1273 	}
1274 
1275 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1276 	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1277 	return 0;
1278 }
1279 
1280 /*
1281  * search the closest allocated block to the right for *logical
1282  * and returns it at @logical + it's physical address at @phys
1283  * if *logical is the largest allocated block, the function
1284  * returns 0 at @phys
1285  * return value contains 0 (success) or error code
1286  */
ext4_ext_search_right(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys,struct ext4_extent ** ret_ex)1287 static int ext4_ext_search_right(struct inode *inode,
1288 				 struct ext4_ext_path *path,
1289 				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1290 				 struct ext4_extent **ret_ex)
1291 {
1292 	struct buffer_head *bh = NULL;
1293 	struct ext4_extent_header *eh;
1294 	struct ext4_extent_idx *ix;
1295 	struct ext4_extent *ex;
1296 	ext4_fsblk_t block;
1297 	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1298 	int ee_len;
1299 
1300 	if (unlikely(path == NULL)) {
1301 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1302 		return -EIO;
1303 	}
1304 	depth = path->p_depth;
1305 	*phys = 0;
1306 
1307 	if (depth == 0 && path->p_ext == NULL)
1308 		return 0;
1309 
1310 	/* usually extent in the path covers blocks smaller
1311 	 * then *logical, but it can be that extent is the
1312 	 * first one in the file */
1313 
1314 	ex = path[depth].p_ext;
1315 	ee_len = ext4_ext_get_actual_len(ex);
1316 	if (*logical < le32_to_cpu(ex->ee_block)) {
1317 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1318 			EXT4_ERROR_INODE(inode,
1319 					 "first_extent(path[%d].p_hdr) != ex",
1320 					 depth);
1321 			return -EIO;
1322 		}
1323 		while (--depth >= 0) {
1324 			ix = path[depth].p_idx;
1325 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1326 				EXT4_ERROR_INODE(inode,
1327 						 "ix != EXT_FIRST_INDEX *logical %d!",
1328 						 *logical);
1329 				return -EIO;
1330 			}
1331 		}
1332 		goto found_extent;
1333 	}
1334 
1335 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1336 		EXT4_ERROR_INODE(inode,
1337 				 "logical %d < ee_block %d + ee_len %d!",
1338 				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1339 		return -EIO;
1340 	}
1341 
1342 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1343 		/* next allocated block in this leaf */
1344 		ex++;
1345 		goto found_extent;
1346 	}
1347 
1348 	/* go up and search for index to the right */
1349 	while (--depth >= 0) {
1350 		ix = path[depth].p_idx;
1351 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1352 			goto got_index;
1353 	}
1354 
1355 	/* we've gone up to the root and found no index to the right */
1356 	return 0;
1357 
1358 got_index:
1359 	/* we've found index to the right, let's
1360 	 * follow it and find the closest allocated
1361 	 * block to the right */
1362 	ix++;
1363 	block = ext4_idx_pblock(ix);
1364 	while (++depth < path->p_depth) {
1365 		bh = sb_bread(inode->i_sb, block);
1366 		if (bh == NULL)
1367 			return -EIO;
1368 		eh = ext_block_hdr(bh);
1369 		/* subtract from p_depth to get proper eh_depth */
1370 		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1371 			put_bh(bh);
1372 			return -EIO;
1373 		}
1374 		ix = EXT_FIRST_INDEX(eh);
1375 		block = ext4_idx_pblock(ix);
1376 		put_bh(bh);
1377 	}
1378 
1379 	bh = sb_bread(inode->i_sb, block);
1380 	if (bh == NULL)
1381 		return -EIO;
1382 	eh = ext_block_hdr(bh);
1383 	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1384 		put_bh(bh);
1385 		return -EIO;
1386 	}
1387 	ex = EXT_FIRST_EXTENT(eh);
1388 found_extent:
1389 	*logical = le32_to_cpu(ex->ee_block);
1390 	*phys = ext4_ext_pblock(ex);
1391 	*ret_ex = ex;
1392 	if (bh)
1393 		put_bh(bh);
1394 	return 0;
1395 }
1396 
1397 /*
1398  * ext4_ext_next_allocated_block:
1399  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1400  * NOTE: it considers block number from index entry as
1401  * allocated block. Thus, index entries have to be consistent
1402  * with leaves.
1403  */
1404 static ext4_lblk_t
ext4_ext_next_allocated_block(struct ext4_ext_path * path)1405 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1406 {
1407 	int depth;
1408 
1409 	BUG_ON(path == NULL);
1410 	depth = path->p_depth;
1411 
1412 	if (depth == 0 && path->p_ext == NULL)
1413 		return EXT_MAX_BLOCKS;
1414 
1415 	while (depth >= 0) {
1416 		if (depth == path->p_depth) {
1417 			/* leaf */
1418 			if (path[depth].p_ext &&
1419 				path[depth].p_ext !=
1420 					EXT_LAST_EXTENT(path[depth].p_hdr))
1421 			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1422 		} else {
1423 			/* index */
1424 			if (path[depth].p_idx !=
1425 					EXT_LAST_INDEX(path[depth].p_hdr))
1426 			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1427 		}
1428 		depth--;
1429 	}
1430 
1431 	return EXT_MAX_BLOCKS;
1432 }
1433 
1434 /*
1435  * ext4_ext_next_leaf_block:
1436  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1437  */
ext4_ext_next_leaf_block(struct ext4_ext_path * path)1438 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1439 {
1440 	int depth;
1441 
1442 	BUG_ON(path == NULL);
1443 	depth = path->p_depth;
1444 
1445 	/* zero-tree has no leaf blocks at all */
1446 	if (depth == 0)
1447 		return EXT_MAX_BLOCKS;
1448 
1449 	/* go to index block */
1450 	depth--;
1451 
1452 	while (depth >= 0) {
1453 		if (path[depth].p_idx !=
1454 				EXT_LAST_INDEX(path[depth].p_hdr))
1455 			return (ext4_lblk_t)
1456 				le32_to_cpu(path[depth].p_idx[1].ei_block);
1457 		depth--;
1458 	}
1459 
1460 	return EXT_MAX_BLOCKS;
1461 }
1462 
1463 /*
1464  * ext4_ext_correct_indexes:
1465  * if leaf gets modified and modified extent is first in the leaf,
1466  * then we have to correct all indexes above.
1467  * TODO: do we need to correct tree in all cases?
1468  */
ext4_ext_correct_indexes(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1469 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1470 				struct ext4_ext_path *path)
1471 {
1472 	struct ext4_extent_header *eh;
1473 	int depth = ext_depth(inode);
1474 	struct ext4_extent *ex;
1475 	__le32 border;
1476 	int k, err = 0;
1477 
1478 	eh = path[depth].p_hdr;
1479 	ex = path[depth].p_ext;
1480 
1481 	if (unlikely(ex == NULL || eh == NULL)) {
1482 		EXT4_ERROR_INODE(inode,
1483 				 "ex %p == NULL or eh %p == NULL", ex, eh);
1484 		return -EIO;
1485 	}
1486 
1487 	if (depth == 0) {
1488 		/* there is no tree at all */
1489 		return 0;
1490 	}
1491 
1492 	if (ex != EXT_FIRST_EXTENT(eh)) {
1493 		/* we correct tree if first leaf got modified only */
1494 		return 0;
1495 	}
1496 
1497 	/*
1498 	 * TODO: we need correction if border is smaller than current one
1499 	 */
1500 	k = depth - 1;
1501 	border = path[depth].p_ext->ee_block;
1502 	err = ext4_ext_get_access(handle, inode, path + k);
1503 	if (err)
1504 		return err;
1505 	path[k].p_idx->ei_block = border;
1506 	err = ext4_ext_dirty(handle, inode, path + k);
1507 	if (err)
1508 		return err;
1509 
1510 	while (k--) {
1511 		/* change all left-side indexes */
1512 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1513 			break;
1514 		err = ext4_ext_get_access(handle, inode, path + k);
1515 		if (err)
1516 			break;
1517 		path[k].p_idx->ei_block = border;
1518 		err = ext4_ext_dirty(handle, inode, path + k);
1519 		if (err)
1520 			break;
1521 	}
1522 
1523 	return err;
1524 }
1525 
1526 int
ext4_can_extents_be_merged(struct inode * inode,struct ext4_extent * ex1,struct ext4_extent * ex2)1527 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1528 				struct ext4_extent *ex2)
1529 {
1530 	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1531 
1532 	/*
1533 	 * Make sure that either both extents are uninitialized, or
1534 	 * both are _not_.
1535 	 */
1536 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1537 		return 0;
1538 
1539 	if (ext4_ext_is_uninitialized(ex1))
1540 		max_len = EXT_UNINIT_MAX_LEN;
1541 	else
1542 		max_len = EXT_INIT_MAX_LEN;
1543 
1544 	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1545 	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1546 
1547 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1548 			le32_to_cpu(ex2->ee_block))
1549 		return 0;
1550 
1551 	/*
1552 	 * To allow future support for preallocated extents to be added
1553 	 * as an RO_COMPAT feature, refuse to merge to extents if
1554 	 * this can result in the top bit of ee_len being set.
1555 	 */
1556 	if (ext1_ee_len + ext2_ee_len > max_len)
1557 		return 0;
1558 #ifdef AGGRESSIVE_TEST
1559 	if (ext1_ee_len >= 4)
1560 		return 0;
1561 #endif
1562 
1563 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1564 		return 1;
1565 	return 0;
1566 }
1567 
1568 /*
1569  * This function tries to merge the "ex" extent to the next extent in the tree.
1570  * It always tries to merge towards right. If you want to merge towards
1571  * left, pass "ex - 1" as argument instead of "ex".
1572  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1573  * 1 if they got merged.
1574  */
ext4_ext_try_to_merge_right(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1575 static int ext4_ext_try_to_merge_right(struct inode *inode,
1576 				 struct ext4_ext_path *path,
1577 				 struct ext4_extent *ex)
1578 {
1579 	struct ext4_extent_header *eh;
1580 	unsigned int depth, len;
1581 	int merge_done = 0;
1582 	int uninitialized = 0;
1583 
1584 	depth = ext_depth(inode);
1585 	BUG_ON(path[depth].p_hdr == NULL);
1586 	eh = path[depth].p_hdr;
1587 
1588 	while (ex < EXT_LAST_EXTENT(eh)) {
1589 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1590 			break;
1591 		/* merge with next extent! */
1592 		if (ext4_ext_is_uninitialized(ex))
1593 			uninitialized = 1;
1594 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1595 				+ ext4_ext_get_actual_len(ex + 1));
1596 		if (uninitialized)
1597 			ext4_ext_mark_uninitialized(ex);
1598 
1599 		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1600 			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1601 				* sizeof(struct ext4_extent);
1602 			memmove(ex + 1, ex + 2, len);
1603 		}
1604 		le16_add_cpu(&eh->eh_entries, -1);
1605 		merge_done = 1;
1606 		WARN_ON(eh->eh_entries == 0);
1607 		if (!eh->eh_entries)
1608 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1609 	}
1610 
1611 	return merge_done;
1612 }
1613 
1614 /*
1615  * This function tries to merge the @ex extent to neighbours in the tree.
1616  * return 1 if merge left else 0.
1617  */
ext4_ext_try_to_merge(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1618 static int ext4_ext_try_to_merge(struct inode *inode,
1619 				  struct ext4_ext_path *path,
1620 				  struct ext4_extent *ex) {
1621 	struct ext4_extent_header *eh;
1622 	unsigned int depth;
1623 	int merge_done = 0;
1624 	int ret = 0;
1625 
1626 	depth = ext_depth(inode);
1627 	BUG_ON(path[depth].p_hdr == NULL);
1628 	eh = path[depth].p_hdr;
1629 
1630 	if (ex > EXT_FIRST_EXTENT(eh))
1631 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1632 
1633 	if (!merge_done)
1634 		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1635 
1636 	return ret;
1637 }
1638 
1639 /*
1640  * check if a portion of the "newext" extent overlaps with an
1641  * existing extent.
1642  *
1643  * If there is an overlap discovered, it updates the length of the newext
1644  * such that there will be no overlap, and then returns 1.
1645  * If there is no overlap found, it returns 0.
1646  */
ext4_ext_check_overlap(struct ext4_sb_info * sbi,struct inode * inode,struct ext4_extent * newext,struct ext4_ext_path * path)1647 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1648 					   struct inode *inode,
1649 					   struct ext4_extent *newext,
1650 					   struct ext4_ext_path *path)
1651 {
1652 	ext4_lblk_t b1, b2;
1653 	unsigned int depth, len1;
1654 	unsigned int ret = 0;
1655 
1656 	b1 = le32_to_cpu(newext->ee_block);
1657 	len1 = ext4_ext_get_actual_len(newext);
1658 	depth = ext_depth(inode);
1659 	if (!path[depth].p_ext)
1660 		goto out;
1661 	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1662 	b2 &= ~(sbi->s_cluster_ratio - 1);
1663 
1664 	/*
1665 	 * get the next allocated block if the extent in the path
1666 	 * is before the requested block(s)
1667 	 */
1668 	if (b2 < b1) {
1669 		b2 = ext4_ext_next_allocated_block(path);
1670 		if (b2 == EXT_MAX_BLOCKS)
1671 			goto out;
1672 		b2 &= ~(sbi->s_cluster_ratio - 1);
1673 	}
1674 
1675 	/* check for wrap through zero on extent logical start block*/
1676 	if (b1 + len1 < b1) {
1677 		len1 = EXT_MAX_BLOCKS - b1;
1678 		newext->ee_len = cpu_to_le16(len1);
1679 		ret = 1;
1680 	}
1681 
1682 	/* check for overlap */
1683 	if (b1 + len1 > b2) {
1684 		newext->ee_len = cpu_to_le16(b2 - b1);
1685 		ret = 1;
1686 	}
1687 out:
1688 	return ret;
1689 }
1690 
1691 /*
1692  * ext4_ext_insert_extent:
1693  * tries to merge requsted extent into the existing extent or
1694  * inserts requested extent as new one into the tree,
1695  * creating new leaf in the no-space case.
1696  */
ext4_ext_insert_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext,int flag)1697 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1698 				struct ext4_ext_path *path,
1699 				struct ext4_extent *newext, int flag)
1700 {
1701 	struct ext4_extent_header *eh;
1702 	struct ext4_extent *ex, *fex;
1703 	struct ext4_extent *nearex; /* nearest extent */
1704 	struct ext4_ext_path *npath = NULL;
1705 	int depth, len, err;
1706 	ext4_lblk_t next;
1707 	unsigned uninitialized = 0;
1708 	int flags = 0;
1709 
1710 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1711 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1712 		return -EIO;
1713 	}
1714 	depth = ext_depth(inode);
1715 	ex = path[depth].p_ext;
1716 	if (unlikely(path[depth].p_hdr == NULL)) {
1717 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1718 		return -EIO;
1719 	}
1720 
1721 	/* try to insert block into found extent and return */
1722 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1723 		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1724 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1725 			  ext4_ext_is_uninitialized(newext),
1726 			  ext4_ext_get_actual_len(newext),
1727 			  le32_to_cpu(ex->ee_block),
1728 			  ext4_ext_is_uninitialized(ex),
1729 			  ext4_ext_get_actual_len(ex),
1730 			  ext4_ext_pblock(ex));
1731 		err = ext4_ext_get_access(handle, inode, path + depth);
1732 		if (err)
1733 			return err;
1734 
1735 		/*
1736 		 * ext4_can_extents_be_merged should have checked that either
1737 		 * both extents are uninitialized, or both aren't. Thus we
1738 		 * need to check only one of them here.
1739 		 */
1740 		if (ext4_ext_is_uninitialized(ex))
1741 			uninitialized = 1;
1742 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1743 					+ ext4_ext_get_actual_len(newext));
1744 		if (uninitialized)
1745 			ext4_ext_mark_uninitialized(ex);
1746 		eh = path[depth].p_hdr;
1747 		nearex = ex;
1748 		goto merge;
1749 	}
1750 
1751 	depth = ext_depth(inode);
1752 	eh = path[depth].p_hdr;
1753 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1754 		goto has_space;
1755 
1756 	/* probably next leaf has space for us? */
1757 	fex = EXT_LAST_EXTENT(eh);
1758 	next = EXT_MAX_BLOCKS;
1759 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1760 		next = ext4_ext_next_leaf_block(path);
1761 	if (next != EXT_MAX_BLOCKS) {
1762 		ext_debug("next leaf block - %u\n", next);
1763 		BUG_ON(npath != NULL);
1764 		npath = ext4_ext_find_extent(inode, next, NULL);
1765 		if (IS_ERR(npath))
1766 			return PTR_ERR(npath);
1767 		BUG_ON(npath->p_depth != path->p_depth);
1768 		eh = npath[depth].p_hdr;
1769 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1770 			ext_debug("next leaf isn't full(%d)\n",
1771 				  le16_to_cpu(eh->eh_entries));
1772 			path = npath;
1773 			goto has_space;
1774 		}
1775 		ext_debug("next leaf has no free space(%d,%d)\n",
1776 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1777 	}
1778 
1779 	/*
1780 	 * There is no free space in the found leaf.
1781 	 * We're gonna add a new leaf in the tree.
1782 	 */
1783 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1784 		flags = EXT4_MB_USE_ROOT_BLOCKS;
1785 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1786 	if (err)
1787 		goto cleanup;
1788 	depth = ext_depth(inode);
1789 	eh = path[depth].p_hdr;
1790 
1791 has_space:
1792 	nearex = path[depth].p_ext;
1793 
1794 	err = ext4_ext_get_access(handle, inode, path + depth);
1795 	if (err)
1796 		goto cleanup;
1797 
1798 	if (!nearex) {
1799 		/* there is no extent in this leaf, create first one */
1800 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1801 				le32_to_cpu(newext->ee_block),
1802 				ext4_ext_pblock(newext),
1803 				ext4_ext_is_uninitialized(newext),
1804 				ext4_ext_get_actual_len(newext));
1805 		nearex = EXT_FIRST_EXTENT(eh);
1806 	} else {
1807 		if (le32_to_cpu(newext->ee_block)
1808 			   > le32_to_cpu(nearex->ee_block)) {
1809 			/* Insert after */
1810 			ext_debug("insert %u:%llu:[%d]%d before: "
1811 					"nearest %p\n",
1812 					le32_to_cpu(newext->ee_block),
1813 					ext4_ext_pblock(newext),
1814 					ext4_ext_is_uninitialized(newext),
1815 					ext4_ext_get_actual_len(newext),
1816 					nearex);
1817 			nearex++;
1818 		} else {
1819 			/* Insert before */
1820 			BUG_ON(newext->ee_block == nearex->ee_block);
1821 			ext_debug("insert %u:%llu:[%d]%d after: "
1822 					"nearest %p\n",
1823 					le32_to_cpu(newext->ee_block),
1824 					ext4_ext_pblock(newext),
1825 					ext4_ext_is_uninitialized(newext),
1826 					ext4_ext_get_actual_len(newext),
1827 					nearex);
1828 		}
1829 		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1830 		if (len > 0) {
1831 			ext_debug("insert %u:%llu:[%d]%d: "
1832 					"move %d extents from 0x%p to 0x%p\n",
1833 					le32_to_cpu(newext->ee_block),
1834 					ext4_ext_pblock(newext),
1835 					ext4_ext_is_uninitialized(newext),
1836 					ext4_ext_get_actual_len(newext),
1837 					len, nearex, nearex + 1);
1838 			memmove(nearex + 1, nearex,
1839 				len * sizeof(struct ext4_extent));
1840 		}
1841 	}
1842 
1843 	le16_add_cpu(&eh->eh_entries, 1);
1844 	path[depth].p_ext = nearex;
1845 	nearex->ee_block = newext->ee_block;
1846 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1847 	nearex->ee_len = newext->ee_len;
1848 
1849 merge:
1850 	/* try to merge extents to the right */
1851 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1852 		ext4_ext_try_to_merge(inode, path, nearex);
1853 
1854 	/* try to merge extents to the left */
1855 
1856 	/* time to correct all indexes above */
1857 	err = ext4_ext_correct_indexes(handle, inode, path);
1858 	if (err)
1859 		goto cleanup;
1860 
1861 	err = ext4_ext_dirty(handle, inode, path + depth);
1862 
1863 cleanup:
1864 	if (npath) {
1865 		ext4_ext_drop_refs(npath);
1866 		kfree(npath);
1867 	}
1868 	ext4_ext_invalidate_cache(inode);
1869 	return err;
1870 }
1871 
ext4_ext_walk_space(struct inode * inode,ext4_lblk_t block,ext4_lblk_t num,ext_prepare_callback func,void * cbdata)1872 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1873 			       ext4_lblk_t num, ext_prepare_callback func,
1874 			       void *cbdata)
1875 {
1876 	struct ext4_ext_path *path = NULL;
1877 	struct ext4_ext_cache cbex;
1878 	struct ext4_extent *ex;
1879 	ext4_lblk_t next, start = 0, end = 0;
1880 	ext4_lblk_t last = block + num;
1881 	int depth, exists, err = 0;
1882 
1883 	BUG_ON(func == NULL);
1884 	BUG_ON(inode == NULL);
1885 
1886 	while (block < last && block != EXT_MAX_BLOCKS) {
1887 		num = last - block;
1888 		/* find extent for this block */
1889 		down_read(&EXT4_I(inode)->i_data_sem);
1890 		path = ext4_ext_find_extent(inode, block, path);
1891 		up_read(&EXT4_I(inode)->i_data_sem);
1892 		if (IS_ERR(path)) {
1893 			err = PTR_ERR(path);
1894 			path = NULL;
1895 			break;
1896 		}
1897 
1898 		depth = ext_depth(inode);
1899 		if (unlikely(path[depth].p_hdr == NULL)) {
1900 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1901 			err = -EIO;
1902 			break;
1903 		}
1904 		ex = path[depth].p_ext;
1905 		next = ext4_ext_next_allocated_block(path);
1906 
1907 		exists = 0;
1908 		if (!ex) {
1909 			/* there is no extent yet, so try to allocate
1910 			 * all requested space */
1911 			start = block;
1912 			end = block + num;
1913 		} else if (le32_to_cpu(ex->ee_block) > block) {
1914 			/* need to allocate space before found extent */
1915 			start = block;
1916 			end = le32_to_cpu(ex->ee_block);
1917 			if (block + num < end)
1918 				end = block + num;
1919 		} else if (block >= le32_to_cpu(ex->ee_block)
1920 					+ ext4_ext_get_actual_len(ex)) {
1921 			/* need to allocate space after found extent */
1922 			start = block;
1923 			end = block + num;
1924 			if (end >= next)
1925 				end = next;
1926 		} else if (block >= le32_to_cpu(ex->ee_block)) {
1927 			/*
1928 			 * some part of requested space is covered
1929 			 * by found extent
1930 			 */
1931 			start = block;
1932 			end = le32_to_cpu(ex->ee_block)
1933 				+ ext4_ext_get_actual_len(ex);
1934 			if (block + num < end)
1935 				end = block + num;
1936 			exists = 1;
1937 		} else {
1938 			BUG();
1939 		}
1940 		BUG_ON(end <= start);
1941 
1942 		if (!exists) {
1943 			cbex.ec_block = start;
1944 			cbex.ec_len = end - start;
1945 			cbex.ec_start = 0;
1946 		} else {
1947 			cbex.ec_block = le32_to_cpu(ex->ee_block);
1948 			cbex.ec_len = ext4_ext_get_actual_len(ex);
1949 			cbex.ec_start = ext4_ext_pblock(ex);
1950 		}
1951 
1952 		if (unlikely(cbex.ec_len == 0)) {
1953 			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1954 			err = -EIO;
1955 			break;
1956 		}
1957 		err = func(inode, next, &cbex, ex, cbdata);
1958 		ext4_ext_drop_refs(path);
1959 
1960 		if (err < 0)
1961 			break;
1962 
1963 		if (err == EXT_REPEAT)
1964 			continue;
1965 		else if (err == EXT_BREAK) {
1966 			err = 0;
1967 			break;
1968 		}
1969 
1970 		if (ext_depth(inode) != depth) {
1971 			/* depth was changed. we have to realloc path */
1972 			kfree(path);
1973 			path = NULL;
1974 		}
1975 
1976 		block = cbex.ec_block + cbex.ec_len;
1977 	}
1978 
1979 	if (path) {
1980 		ext4_ext_drop_refs(path);
1981 		kfree(path);
1982 	}
1983 
1984 	return err;
1985 }
1986 
1987 static void
ext4_ext_put_in_cache(struct inode * inode,ext4_lblk_t block,__u32 len,ext4_fsblk_t start)1988 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1989 			__u32 len, ext4_fsblk_t start)
1990 {
1991 	struct ext4_ext_cache *cex;
1992 	BUG_ON(len == 0);
1993 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1994 	trace_ext4_ext_put_in_cache(inode, block, len, start);
1995 	cex = &EXT4_I(inode)->i_cached_extent;
1996 	cex->ec_block = block;
1997 	cex->ec_len = len;
1998 	cex->ec_start = start;
1999 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2000 }
2001 
2002 /*
2003  * ext4_ext_put_gap_in_cache:
2004  * calculate boundaries of the gap that the requested block fits into
2005  * and cache this gap
2006  */
2007 static void
ext4_ext_put_gap_in_cache(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)2008 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2009 				ext4_lblk_t block)
2010 {
2011 	int depth = ext_depth(inode);
2012 	unsigned long len;
2013 	ext4_lblk_t lblock;
2014 	struct ext4_extent *ex;
2015 
2016 	ex = path[depth].p_ext;
2017 	if (ex == NULL) {
2018 		/* there is no extent yet, so gap is [0;-] */
2019 		lblock = 0;
2020 		len = EXT_MAX_BLOCKS;
2021 		ext_debug("cache gap(whole file):");
2022 	} else if (block < le32_to_cpu(ex->ee_block)) {
2023 		lblock = block;
2024 		len = le32_to_cpu(ex->ee_block) - block;
2025 		ext_debug("cache gap(before): %u [%u:%u]",
2026 				block,
2027 				le32_to_cpu(ex->ee_block),
2028 				 ext4_ext_get_actual_len(ex));
2029 	} else if (block >= le32_to_cpu(ex->ee_block)
2030 			+ ext4_ext_get_actual_len(ex)) {
2031 		ext4_lblk_t next;
2032 		lblock = le32_to_cpu(ex->ee_block)
2033 			+ ext4_ext_get_actual_len(ex);
2034 
2035 		next = ext4_ext_next_allocated_block(path);
2036 		ext_debug("cache gap(after): [%u:%u] %u",
2037 				le32_to_cpu(ex->ee_block),
2038 				ext4_ext_get_actual_len(ex),
2039 				block);
2040 		BUG_ON(next == lblock);
2041 		len = next - lblock;
2042 	} else {
2043 		lblock = len = 0;
2044 		BUG();
2045 	}
2046 
2047 	ext_debug(" -> %u:%lu\n", lblock, len);
2048 	ext4_ext_put_in_cache(inode, lblock, len, 0);
2049 }
2050 
2051 /*
2052  * ext4_ext_check_cache()
2053  * Checks to see if the given block is in the cache.
2054  * If it is, the cached extent is stored in the given
2055  * cache extent pointer.  If the cached extent is a hole,
2056  * this routine should be used instead of
2057  * ext4_ext_in_cache if the calling function needs to
2058  * know the size of the hole.
2059  *
2060  * @inode: The files inode
2061  * @block: The block to look for in the cache
2062  * @ex:    Pointer where the cached extent will be stored
2063  *         if it contains block
2064  *
2065  * Return 0 if cache is invalid; 1 if the cache is valid
2066  */
ext4_ext_check_cache(struct inode * inode,ext4_lblk_t block,struct ext4_ext_cache * ex)2067 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2068 	struct ext4_ext_cache *ex){
2069 	struct ext4_ext_cache *cex;
2070 	struct ext4_sb_info *sbi;
2071 	int ret = 0;
2072 
2073 	/*
2074 	 * We borrow i_block_reservation_lock to protect i_cached_extent
2075 	 */
2076 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2077 	cex = &EXT4_I(inode)->i_cached_extent;
2078 	sbi = EXT4_SB(inode->i_sb);
2079 
2080 	/* has cache valid data? */
2081 	if (cex->ec_len == 0)
2082 		goto errout;
2083 
2084 	if (in_range(block, cex->ec_block, cex->ec_len)) {
2085 		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2086 		ext_debug("%u cached by %u:%u:%llu\n",
2087 				block,
2088 				cex->ec_block, cex->ec_len, cex->ec_start);
2089 		ret = 1;
2090 	}
2091 errout:
2092 	trace_ext4_ext_in_cache(inode, block, ret);
2093 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2094 	return ret;
2095 }
2096 
2097 /*
2098  * ext4_ext_in_cache()
2099  * Checks to see if the given block is in the cache.
2100  * If it is, the cached extent is stored in the given
2101  * extent pointer.
2102  *
2103  * @inode: The files inode
2104  * @block: The block to look for in the cache
2105  * @ex:    Pointer where the cached extent will be stored
2106  *         if it contains block
2107  *
2108  * Return 0 if cache is invalid; 1 if the cache is valid
2109  */
2110 static int
ext4_ext_in_cache(struct inode * inode,ext4_lblk_t block,struct ext4_extent * ex)2111 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2112 			struct ext4_extent *ex)
2113 {
2114 	struct ext4_ext_cache cex;
2115 	int ret = 0;
2116 
2117 	if (ext4_ext_check_cache(inode, block, &cex)) {
2118 		ex->ee_block = cpu_to_le32(cex.ec_block);
2119 		ext4_ext_store_pblock(ex, cex.ec_start);
2120 		ex->ee_len = cpu_to_le16(cex.ec_len);
2121 		ret = 1;
2122 	}
2123 
2124 	return ret;
2125 }
2126 
2127 
2128 /*
2129  * ext4_ext_rm_idx:
2130  * removes index from the index block.
2131  */
ext4_ext_rm_idx(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,int depth)2132 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2133 			struct ext4_ext_path *path, int depth)
2134 {
2135 	int err;
2136 	ext4_fsblk_t leaf;
2137 
2138 	/* free index block */
2139 	depth--;
2140 	path = path + depth;
2141 	leaf = ext4_idx_pblock(path->p_idx);
2142 	if (unlikely(path->p_hdr->eh_entries == 0)) {
2143 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2144 		return -EIO;
2145 	}
2146 	err = ext4_ext_get_access(handle, inode, path);
2147 	if (err)
2148 		return err;
2149 
2150 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2151 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2152 		len *= sizeof(struct ext4_extent_idx);
2153 		memmove(path->p_idx, path->p_idx + 1, len);
2154 	}
2155 
2156 	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2157 	err = ext4_ext_dirty(handle, inode, path);
2158 	if (err)
2159 		return err;
2160 	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2161 	trace_ext4_ext_rm_idx(inode, leaf);
2162 
2163 	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2164 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2165 
2166 	while (--depth >= 0) {
2167 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2168 			break;
2169 		path--;
2170 		err = ext4_ext_get_access(handle, inode, path);
2171 		if (err)
2172 			break;
2173 		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2174 		err = ext4_ext_dirty(handle, inode, path);
2175 		if (err)
2176 			break;
2177 	}
2178 	return err;
2179 }
2180 
2181 /*
2182  * ext4_ext_calc_credits_for_single_extent:
2183  * This routine returns max. credits that needed to insert an extent
2184  * to the extent tree.
2185  * When pass the actual path, the caller should calculate credits
2186  * under i_data_sem.
2187  */
ext4_ext_calc_credits_for_single_extent(struct inode * inode,int nrblocks,struct ext4_ext_path * path)2188 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2189 						struct ext4_ext_path *path)
2190 {
2191 	if (path) {
2192 		int depth = ext_depth(inode);
2193 		int ret = 0;
2194 
2195 		/* probably there is space in leaf? */
2196 		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2197 				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2198 
2199 			/*
2200 			 *  There are some space in the leaf tree, no
2201 			 *  need to account for leaf block credit
2202 			 *
2203 			 *  bitmaps and block group descriptor blocks
2204 			 *  and other metadata blocks still need to be
2205 			 *  accounted.
2206 			 */
2207 			/* 1 bitmap, 1 block group descriptor */
2208 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2209 			return ret;
2210 		}
2211 	}
2212 
2213 	return ext4_chunk_trans_blocks(inode, nrblocks);
2214 }
2215 
2216 /*
2217  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2218  *
2219  * if nrblocks are fit in a single extent (chunk flag is 1), then
2220  * in the worse case, each tree level index/leaf need to be changed
2221  * if the tree split due to insert a new extent, then the old tree
2222  * index/leaf need to be updated too
2223  *
2224  * If the nrblocks are discontiguous, they could cause
2225  * the whole tree split more than once, but this is really rare.
2226  */
ext4_ext_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)2227 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2228 {
2229 	int index;
2230 	int depth = ext_depth(inode);
2231 
2232 	if (chunk)
2233 		index = depth * 2;
2234 	else
2235 		index = depth * 3;
2236 
2237 	return index;
2238 }
2239 
ext4_remove_blocks(handle_t * handle,struct inode * inode,struct ext4_extent * ex,ext4_fsblk_t * partial_cluster,ext4_lblk_t from,ext4_lblk_t to)2240 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2241 			      struct ext4_extent *ex,
2242 			      ext4_fsblk_t *partial_cluster,
2243 			      ext4_lblk_t from, ext4_lblk_t to)
2244 {
2245 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2246 	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2247 	ext4_fsblk_t pblk;
2248 	int flags = EXT4_FREE_BLOCKS_FORGET;
2249 
2250 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2251 		flags |= EXT4_FREE_BLOCKS_METADATA;
2252 	/*
2253 	 * For bigalloc file systems, we never free a partial cluster
2254 	 * at the beginning of the extent.  Instead, we make a note
2255 	 * that we tried freeing the cluster, and check to see if we
2256 	 * need to free it on a subsequent call to ext4_remove_blocks,
2257 	 * or at the end of the ext4_truncate() operation.
2258 	 */
2259 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2260 
2261 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2262 	/*
2263 	 * If we have a partial cluster, and it's different from the
2264 	 * cluster of the last block, we need to explicitly free the
2265 	 * partial cluster here.
2266 	 */
2267 	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2268 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2269 		ext4_free_blocks(handle, inode, NULL,
2270 				 EXT4_C2B(sbi, *partial_cluster),
2271 				 sbi->s_cluster_ratio, flags);
2272 		*partial_cluster = 0;
2273 	}
2274 
2275 #ifdef EXTENTS_STATS
2276 	{
2277 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2278 		spin_lock(&sbi->s_ext_stats_lock);
2279 		sbi->s_ext_blocks += ee_len;
2280 		sbi->s_ext_extents++;
2281 		if (ee_len < sbi->s_ext_min)
2282 			sbi->s_ext_min = ee_len;
2283 		if (ee_len > sbi->s_ext_max)
2284 			sbi->s_ext_max = ee_len;
2285 		if (ext_depth(inode) > sbi->s_depth_max)
2286 			sbi->s_depth_max = ext_depth(inode);
2287 		spin_unlock(&sbi->s_ext_stats_lock);
2288 	}
2289 #endif
2290 	if (from >= le32_to_cpu(ex->ee_block)
2291 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2292 		/* tail removal */
2293 		ext4_lblk_t num;
2294 
2295 		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2296 		pblk = ext4_ext_pblock(ex) + ee_len - num;
2297 		ext_debug("free last %u blocks starting %llu\n", num, pblk);
2298 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2299 		/*
2300 		 * If the block range to be freed didn't start at the
2301 		 * beginning of a cluster, and we removed the entire
2302 		 * extent, save the partial cluster here, since we
2303 		 * might need to delete if we determine that the
2304 		 * truncate operation has removed all of the blocks in
2305 		 * the cluster.
2306 		 */
2307 		if (pblk & (sbi->s_cluster_ratio - 1) &&
2308 		    (ee_len == num))
2309 			*partial_cluster = EXT4_B2C(sbi, pblk);
2310 		else
2311 			*partial_cluster = 0;
2312 	} else if (from == le32_to_cpu(ex->ee_block)
2313 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2314 		/* head removal */
2315 		ext4_lblk_t num;
2316 		ext4_fsblk_t start;
2317 
2318 		num = to - from;
2319 		start = ext4_ext_pblock(ex);
2320 
2321 		ext_debug("free first %u blocks starting %llu\n", num, start);
2322 		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2323 
2324 	} else {
2325 		printk(KERN_INFO "strange request: removal(2) "
2326 				"%u-%u from %u:%u\n",
2327 				from, to, le32_to_cpu(ex->ee_block), ee_len);
2328 	}
2329 	return 0;
2330 }
2331 
2332 
2333 /*
2334  * ext4_ext_rm_leaf() Removes the extents associated with the
2335  * blocks appearing between "start" and "end", and splits the extents
2336  * if "start" and "end" appear in the same extent
2337  *
2338  * @handle: The journal handle
2339  * @inode:  The files inode
2340  * @path:   The path to the leaf
2341  * @start:  The first block to remove
2342  * @end:   The last block to remove
2343  */
2344 static int
ext4_ext_rm_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t * partial_cluster,ext4_lblk_t start,ext4_lblk_t end)2345 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2346 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2347 		 ext4_lblk_t start, ext4_lblk_t end)
2348 {
2349 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2350 	int err = 0, correct_index = 0;
2351 	int depth = ext_depth(inode), credits;
2352 	struct ext4_extent_header *eh;
2353 	ext4_lblk_t a, b;
2354 	unsigned num;
2355 	ext4_lblk_t ex_ee_block;
2356 	unsigned short ex_ee_len;
2357 	unsigned uninitialized = 0;
2358 	struct ext4_extent *ex;
2359 
2360 	/* the header must be checked already in ext4_ext_remove_space() */
2361 	ext_debug("truncate since %u in leaf to %u\n", start, end);
2362 	if (!path[depth].p_hdr)
2363 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2364 	eh = path[depth].p_hdr;
2365 	if (unlikely(path[depth].p_hdr == NULL)) {
2366 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2367 		return -EIO;
2368 	}
2369 	/* find where to start removing */
2370 	ex = EXT_LAST_EXTENT(eh);
2371 
2372 	ex_ee_block = le32_to_cpu(ex->ee_block);
2373 	ex_ee_len = ext4_ext_get_actual_len(ex);
2374 
2375 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2376 
2377 	while (ex >= EXT_FIRST_EXTENT(eh) &&
2378 			ex_ee_block + ex_ee_len > start) {
2379 
2380 		if (ext4_ext_is_uninitialized(ex))
2381 			uninitialized = 1;
2382 		else
2383 			uninitialized = 0;
2384 
2385 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2386 			 uninitialized, ex_ee_len);
2387 		path[depth].p_ext = ex;
2388 
2389 		a = ex_ee_block > start ? ex_ee_block : start;
2390 		b = ex_ee_block+ex_ee_len - 1 < end ?
2391 			ex_ee_block+ex_ee_len - 1 : end;
2392 
2393 		ext_debug("  border %u:%u\n", a, b);
2394 
2395 		/* If this extent is beyond the end of the hole, skip it */
2396 		if (end < ex_ee_block) {
2397 			ex--;
2398 			ex_ee_block = le32_to_cpu(ex->ee_block);
2399 			ex_ee_len = ext4_ext_get_actual_len(ex);
2400 			continue;
2401 		} else if (b != ex_ee_block + ex_ee_len - 1) {
2402 			EXT4_ERROR_INODE(inode,
2403 					 "can not handle truncate %u:%u "
2404 					 "on extent %u:%u",
2405 					 start, end, ex_ee_block,
2406 					 ex_ee_block + ex_ee_len - 1);
2407 			err = -EIO;
2408 			goto out;
2409 		} else if (a != ex_ee_block) {
2410 			/* remove tail of the extent */
2411 			num = a - ex_ee_block;
2412 		} else {
2413 			/* remove whole extent: excellent! */
2414 			num = 0;
2415 		}
2416 		/*
2417 		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2418 		 * descriptor) for each block group; assume two block
2419 		 * groups plus ex_ee_len/blocks_per_block_group for
2420 		 * the worst case
2421 		 */
2422 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2423 		if (ex == EXT_FIRST_EXTENT(eh)) {
2424 			correct_index = 1;
2425 			credits += (ext_depth(inode)) + 1;
2426 		}
2427 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2428 
2429 		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2430 		if (err)
2431 			goto out;
2432 
2433 		err = ext4_ext_get_access(handle, inode, path + depth);
2434 		if (err)
2435 			goto out;
2436 
2437 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2438 					 a, b);
2439 		if (err)
2440 			goto out;
2441 
2442 		if (num == 0)
2443 			/* this extent is removed; mark slot entirely unused */
2444 			ext4_ext_store_pblock(ex, 0);
2445 
2446 		ex->ee_len = cpu_to_le16(num);
2447 		/*
2448 		 * Do not mark uninitialized if all the blocks in the
2449 		 * extent have been removed.
2450 		 */
2451 		if (uninitialized && num)
2452 			ext4_ext_mark_uninitialized(ex);
2453 		/*
2454 		 * If the extent was completely released,
2455 		 * we need to remove it from the leaf
2456 		 */
2457 		if (num == 0) {
2458 			if (end != EXT_MAX_BLOCKS - 1) {
2459 				/*
2460 				 * For hole punching, we need to scoot all the
2461 				 * extents up when an extent is removed so that
2462 				 * we dont have blank extents in the middle
2463 				 */
2464 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2465 					sizeof(struct ext4_extent));
2466 
2467 				/* Now get rid of the one at the end */
2468 				memset(EXT_LAST_EXTENT(eh), 0,
2469 					sizeof(struct ext4_extent));
2470 			}
2471 			le16_add_cpu(&eh->eh_entries, -1);
2472 		} else
2473 			*partial_cluster = 0;
2474 
2475 		err = ext4_ext_dirty(handle, inode, path + depth);
2476 		if (err)
2477 			goto out;
2478 
2479 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2480 				ext4_ext_pblock(ex));
2481 		ex--;
2482 		ex_ee_block = le32_to_cpu(ex->ee_block);
2483 		ex_ee_len = ext4_ext_get_actual_len(ex);
2484 	}
2485 
2486 	if (correct_index && eh->eh_entries)
2487 		err = ext4_ext_correct_indexes(handle, inode, path);
2488 
2489 	/*
2490 	 * If there is still a entry in the leaf node, check to see if
2491 	 * it references the partial cluster.  This is the only place
2492 	 * where it could; if it doesn't, we can free the cluster.
2493 	 */
2494 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2495 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2496 	     *partial_cluster)) {
2497 		int flags = EXT4_FREE_BLOCKS_FORGET;
2498 
2499 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2500 			flags |= EXT4_FREE_BLOCKS_METADATA;
2501 
2502 		ext4_free_blocks(handle, inode, NULL,
2503 				 EXT4_C2B(sbi, *partial_cluster),
2504 				 sbi->s_cluster_ratio, flags);
2505 		*partial_cluster = 0;
2506 	}
2507 
2508 	/* if this leaf is free, then we should
2509 	 * remove it from index block above */
2510 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2511 		err = ext4_ext_rm_idx(handle, inode, path, depth);
2512 
2513 out:
2514 	return err;
2515 }
2516 
2517 /*
2518  * ext4_ext_more_to_rm:
2519  * returns 1 if current index has to be freed (even partial)
2520  */
2521 static int
ext4_ext_more_to_rm(struct ext4_ext_path * path)2522 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2523 {
2524 	BUG_ON(path->p_idx == NULL);
2525 
2526 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2527 		return 0;
2528 
2529 	/*
2530 	 * if truncate on deeper level happened, it wasn't partial,
2531 	 * so we have to consider current index for truncation
2532 	 */
2533 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2534 		return 0;
2535 	return 1;
2536 }
2537 
ext4_ext_remove_space(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2538 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2539 				 ext4_lblk_t end)
2540 {
2541 	struct super_block *sb = inode->i_sb;
2542 	int depth = ext_depth(inode);
2543 	struct ext4_ext_path *path = NULL;
2544 	ext4_fsblk_t partial_cluster = 0;
2545 	handle_t *handle;
2546 	int i = 0, err;
2547 
2548 	ext_debug("truncate since %u to %u\n", start, end);
2549 
2550 	/* probably first extent we're gonna free will be last in block */
2551 	handle = ext4_journal_start(inode, depth + 1);
2552 	if (IS_ERR(handle))
2553 		return PTR_ERR(handle);
2554 
2555 again:
2556 	ext4_ext_invalidate_cache(inode);
2557 
2558 	trace_ext4_ext_remove_space(inode, start, depth);
2559 
2560 	/*
2561 	 * Check if we are removing extents inside the extent tree. If that
2562 	 * is the case, we are going to punch a hole inside the extent tree
2563 	 * so we have to check whether we need to split the extent covering
2564 	 * the last block to remove so we can easily remove the part of it
2565 	 * in ext4_ext_rm_leaf().
2566 	 */
2567 	if (end < EXT_MAX_BLOCKS - 1) {
2568 		struct ext4_extent *ex;
2569 		ext4_lblk_t ee_block;
2570 
2571 		/* find extent for this block */
2572 		path = ext4_ext_find_extent(inode, end, NULL);
2573 		if (IS_ERR(path)) {
2574 			ext4_journal_stop(handle);
2575 			return PTR_ERR(path);
2576 		}
2577 		depth = ext_depth(inode);
2578 		ex = path[depth].p_ext;
2579 		if (!ex) {
2580 			ext4_ext_drop_refs(path);
2581 			kfree(path);
2582 			path = NULL;
2583 			goto cont;
2584 		}
2585 
2586 		ee_block = le32_to_cpu(ex->ee_block);
2587 
2588 		/*
2589 		 * See if the last block is inside the extent, if so split
2590 		 * the extent at 'end' block so we can easily remove the
2591 		 * tail of the first part of the split extent in
2592 		 * ext4_ext_rm_leaf().
2593 		 */
2594 		if (end >= ee_block &&
2595 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2596 			int split_flag = 0;
2597 
2598 			if (ext4_ext_is_uninitialized(ex))
2599 				split_flag = EXT4_EXT_MARK_UNINIT1 |
2600 					     EXT4_EXT_MARK_UNINIT2;
2601 
2602 			/*
2603 			 * Split the extent in two so that 'end' is the last
2604 			 * block in the first new extent
2605 			 */
2606 			err = ext4_split_extent_at(handle, inode, path,
2607 						end + 1, split_flag,
2608 						EXT4_GET_BLOCKS_PRE_IO |
2609 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2610 
2611 			if (err < 0)
2612 				goto out;
2613 		}
2614 	}
2615 cont:
2616 
2617 	/*
2618 	 * We start scanning from right side, freeing all the blocks
2619 	 * after i_size and walking into the tree depth-wise.
2620 	 */
2621 	depth = ext_depth(inode);
2622 	if (path) {
2623 		int k = i = depth;
2624 		while (--k > 0)
2625 			path[k].p_block =
2626 				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2627 	} else {
2628 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2629 			       GFP_NOFS);
2630 		if (path == NULL) {
2631 			ext4_journal_stop(handle);
2632 			return -ENOMEM;
2633 		}
2634 		path[0].p_depth = depth;
2635 		path[0].p_hdr = ext_inode_hdr(inode);
2636 		i = 0;
2637 
2638 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2639 			err = -EIO;
2640 			goto out;
2641 		}
2642 	}
2643 	err = 0;
2644 
2645 	while (i >= 0 && err == 0) {
2646 		if (i == depth) {
2647 			/* this is leaf block */
2648 			err = ext4_ext_rm_leaf(handle, inode, path,
2649 					       &partial_cluster, start,
2650 					       end);
2651 			/* root level has p_bh == NULL, brelse() eats this */
2652 			brelse(path[i].p_bh);
2653 			path[i].p_bh = NULL;
2654 			i--;
2655 			continue;
2656 		}
2657 
2658 		/* this is index block */
2659 		if (!path[i].p_hdr) {
2660 			ext_debug("initialize header\n");
2661 			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2662 		}
2663 
2664 		if (!path[i].p_idx) {
2665 			/* this level hasn't been touched yet */
2666 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2667 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2668 			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2669 				  path[i].p_hdr,
2670 				  le16_to_cpu(path[i].p_hdr->eh_entries));
2671 		} else {
2672 			/* we were already here, see at next index */
2673 			path[i].p_idx--;
2674 		}
2675 
2676 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2677 				i, EXT_FIRST_INDEX(path[i].p_hdr),
2678 				path[i].p_idx);
2679 		if (ext4_ext_more_to_rm(path + i)) {
2680 			struct buffer_head *bh;
2681 			/* go to the next level */
2682 			ext_debug("move to level %d (block %llu)\n",
2683 				  i + 1, ext4_idx_pblock(path[i].p_idx));
2684 			memset(path + i + 1, 0, sizeof(*path));
2685 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2686 			if (!bh) {
2687 				/* should we reset i_size? */
2688 				err = -EIO;
2689 				break;
2690 			}
2691 			if (WARN_ON(i + 1 > depth)) {
2692 				err = -EIO;
2693 				break;
2694 			}
2695 			if (ext4_ext_check(inode, ext_block_hdr(bh),
2696 							depth - i - 1)) {
2697 				err = -EIO;
2698 				break;
2699 			}
2700 			path[i + 1].p_bh = bh;
2701 
2702 			/* save actual number of indexes since this
2703 			 * number is changed at the next iteration */
2704 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2705 			i++;
2706 		} else {
2707 			/* we finished processing this index, go up */
2708 			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2709 				/* index is empty, remove it;
2710 				 * handle must be already prepared by the
2711 				 * truncatei_leaf() */
2712 				err = ext4_ext_rm_idx(handle, inode, path, i);
2713 			}
2714 			/* root level has p_bh == NULL, brelse() eats this */
2715 			brelse(path[i].p_bh);
2716 			path[i].p_bh = NULL;
2717 			i--;
2718 			ext_debug("return to level %d\n", i);
2719 		}
2720 	}
2721 
2722 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2723 			path->p_hdr->eh_entries);
2724 
2725 	/* If we still have something in the partial cluster and we have removed
2726 	 * even the first extent, then we should free the blocks in the partial
2727 	 * cluster as well. */
2728 	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2729 		int flags = EXT4_FREE_BLOCKS_FORGET;
2730 
2731 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2732 			flags |= EXT4_FREE_BLOCKS_METADATA;
2733 
2734 		ext4_free_blocks(handle, inode, NULL,
2735 				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2736 				 EXT4_SB(sb)->s_cluster_ratio, flags);
2737 		partial_cluster = 0;
2738 	}
2739 
2740 	/* TODO: flexible tree reduction should be here */
2741 	if (path->p_hdr->eh_entries == 0) {
2742 		/*
2743 		 * truncate to zero freed all the tree,
2744 		 * so we need to correct eh_depth
2745 		 */
2746 		err = ext4_ext_get_access(handle, inode, path);
2747 		if (err == 0) {
2748 			ext_inode_hdr(inode)->eh_depth = 0;
2749 			ext_inode_hdr(inode)->eh_max =
2750 				cpu_to_le16(ext4_ext_space_root(inode, 0));
2751 			err = ext4_ext_dirty(handle, inode, path);
2752 		}
2753 	}
2754 out:
2755 	ext4_ext_drop_refs(path);
2756 	kfree(path);
2757 	if (err == -EAGAIN) {
2758 		path = NULL;
2759 		goto again;
2760 	}
2761 	ext4_journal_stop(handle);
2762 
2763 	return err;
2764 }
2765 
2766 /*
2767  * called at mount time
2768  */
ext4_ext_init(struct super_block * sb)2769 void ext4_ext_init(struct super_block *sb)
2770 {
2771 	/*
2772 	 * possible initialization would be here
2773 	 */
2774 
2775 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2776 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2777 		printk(KERN_INFO "EXT4-fs: file extents enabled"
2778 #ifdef AGGRESSIVE_TEST
2779 		       ", aggressive tests"
2780 #endif
2781 #ifdef CHECK_BINSEARCH
2782 		       ", check binsearch"
2783 #endif
2784 #ifdef EXTENTS_STATS
2785 		       ", stats"
2786 #endif
2787 		       "\n");
2788 #endif
2789 #ifdef EXTENTS_STATS
2790 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2791 		EXT4_SB(sb)->s_ext_min = 1 << 30;
2792 		EXT4_SB(sb)->s_ext_max = 0;
2793 #endif
2794 	}
2795 }
2796 
2797 /*
2798  * called at umount time
2799  */
ext4_ext_release(struct super_block * sb)2800 void ext4_ext_release(struct super_block *sb)
2801 {
2802 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2803 		return;
2804 
2805 #ifdef EXTENTS_STATS
2806 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2807 		struct ext4_sb_info *sbi = EXT4_SB(sb);
2808 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2809 			sbi->s_ext_blocks, sbi->s_ext_extents,
2810 			sbi->s_ext_blocks / sbi->s_ext_extents);
2811 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2812 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2813 	}
2814 #endif
2815 }
2816 
2817 /* FIXME!! we need to try to merge to left or right after zero-out  */
ext4_ext_zeroout(struct inode * inode,struct ext4_extent * ex)2818 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2819 {
2820 	ext4_fsblk_t ee_pblock;
2821 	unsigned int ee_len;
2822 	int ret;
2823 
2824 	ee_len    = ext4_ext_get_actual_len(ex);
2825 	ee_pblock = ext4_ext_pblock(ex);
2826 
2827 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2828 	if (ret > 0)
2829 		ret = 0;
2830 
2831 	return ret;
2832 }
2833 
2834 /*
2835  * ext4_split_extent_at() splits an extent at given block.
2836  *
2837  * @handle: the journal handle
2838  * @inode: the file inode
2839  * @path: the path to the extent
2840  * @split: the logical block where the extent is splitted.
2841  * @split_flags: indicates if the extent could be zeroout if split fails, and
2842  *		 the states(init or uninit) of new extents.
2843  * @flags: flags used to insert new extent to extent tree.
2844  *
2845  *
2846  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2847  * of which are deterimined by split_flag.
2848  *
2849  * There are two cases:
2850  *  a> the extent are splitted into two extent.
2851  *  b> split is not needed, and just mark the extent.
2852  *
2853  * return 0 on success.
2854  */
ext4_split_extent_at(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t split,int split_flag,int flags)2855 static int ext4_split_extent_at(handle_t *handle,
2856 			     struct inode *inode,
2857 			     struct ext4_ext_path *path,
2858 			     ext4_lblk_t split,
2859 			     int split_flag,
2860 			     int flags)
2861 {
2862 	ext4_fsblk_t newblock;
2863 	ext4_lblk_t ee_block;
2864 	struct ext4_extent *ex, newex, orig_ex;
2865 	struct ext4_extent *ex2 = NULL;
2866 	unsigned int ee_len, depth;
2867 	int err = 0;
2868 
2869 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2870 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2871 
2872 	ext_debug("ext4_split_extents_at: inode %lu, logical"
2873 		"block %llu\n", inode->i_ino, (unsigned long long)split);
2874 
2875 	ext4_ext_show_leaf(inode, path);
2876 
2877 	depth = ext_depth(inode);
2878 	ex = path[depth].p_ext;
2879 	ee_block = le32_to_cpu(ex->ee_block);
2880 	ee_len = ext4_ext_get_actual_len(ex);
2881 	newblock = split - ee_block + ext4_ext_pblock(ex);
2882 
2883 	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2884 
2885 	err = ext4_ext_get_access(handle, inode, path + depth);
2886 	if (err)
2887 		goto out;
2888 
2889 	if (split == ee_block) {
2890 		/*
2891 		 * case b: block @split is the block that the extent begins with
2892 		 * then we just change the state of the extent, and splitting
2893 		 * is not needed.
2894 		 */
2895 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2896 			ext4_ext_mark_uninitialized(ex);
2897 		else
2898 			ext4_ext_mark_initialized(ex);
2899 
2900 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2901 			ext4_ext_try_to_merge(inode, path, ex);
2902 
2903 		err = ext4_ext_dirty(handle, inode, path + depth);
2904 		goto out;
2905 	}
2906 
2907 	/* case a */
2908 	memcpy(&orig_ex, ex, sizeof(orig_ex));
2909 	ex->ee_len = cpu_to_le16(split - ee_block);
2910 	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2911 		ext4_ext_mark_uninitialized(ex);
2912 
2913 	/*
2914 	 * path may lead to new leaf, not to original leaf any more
2915 	 * after ext4_ext_insert_extent() returns,
2916 	 */
2917 	err = ext4_ext_dirty(handle, inode, path + depth);
2918 	if (err)
2919 		goto fix_extent_len;
2920 
2921 	ex2 = &newex;
2922 	ex2->ee_block = cpu_to_le32(split);
2923 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2924 	ext4_ext_store_pblock(ex2, newblock);
2925 	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2926 		ext4_ext_mark_uninitialized(ex2);
2927 
2928 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2929 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2930 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2931 			if (split_flag & EXT4_EXT_DATA_VALID1)
2932 				err = ext4_ext_zeroout(inode, ex2);
2933 			else
2934 				err = ext4_ext_zeroout(inode, ex);
2935 		} else
2936 			err = ext4_ext_zeroout(inode, &orig_ex);
2937 
2938 		if (err)
2939 			goto fix_extent_len;
2940 		/* update the extent length and mark as initialized */
2941 		ex->ee_len = cpu_to_le16(ee_len);
2942 		ext4_ext_try_to_merge(inode, path, ex);
2943 		err = ext4_ext_dirty(handle, inode, path + depth);
2944 		goto out;
2945 	} else if (err)
2946 		goto fix_extent_len;
2947 
2948 out:
2949 	ext4_ext_show_leaf(inode, path);
2950 	return err;
2951 
2952 fix_extent_len:
2953 	ex->ee_len = orig_ex.ee_len;
2954 	ext4_ext_dirty(handle, inode, path + depth);
2955 	return err;
2956 }
2957 
2958 /*
2959  * ext4_split_extents() splits an extent and mark extent which is covered
2960  * by @map as split_flags indicates
2961  *
2962  * It may result in splitting the extent into multiple extents (upto three)
2963  * There are three possibilities:
2964  *   a> There is no split required
2965  *   b> Splits in two extents: Split is happening at either end of the extent
2966  *   c> Splits in three extents: Somone is splitting in middle of the extent
2967  *
2968  */
ext4_split_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_map_blocks * map,int split_flag,int flags)2969 static int ext4_split_extent(handle_t *handle,
2970 			      struct inode *inode,
2971 			      struct ext4_ext_path *path,
2972 			      struct ext4_map_blocks *map,
2973 			      int split_flag,
2974 			      int flags)
2975 {
2976 	ext4_lblk_t ee_block;
2977 	struct ext4_extent *ex;
2978 	unsigned int ee_len, depth;
2979 	int err = 0;
2980 	int uninitialized;
2981 	int split_flag1, flags1;
2982 	int allocated = map->m_len;
2983 
2984 	depth = ext_depth(inode);
2985 	ex = path[depth].p_ext;
2986 	ee_block = le32_to_cpu(ex->ee_block);
2987 	ee_len = ext4_ext_get_actual_len(ex);
2988 	uninitialized = ext4_ext_is_uninitialized(ex);
2989 
2990 	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2991 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
2992 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2993 		if (uninitialized)
2994 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2995 				       EXT4_EXT_MARK_UNINIT2;
2996 		if (split_flag & EXT4_EXT_DATA_VALID2)
2997 			split_flag1 |= EXT4_EXT_DATA_VALID1;
2998 		err = ext4_split_extent_at(handle, inode, path,
2999 				map->m_lblk + map->m_len, split_flag1, flags1);
3000 		if (err)
3001 			goto out;
3002 	} else {
3003 		allocated = ee_len - (map->m_lblk - ee_block);
3004 	}
3005 
3006 	ext4_ext_drop_refs(path);
3007 	path = ext4_ext_find_extent(inode, map->m_lblk, path);
3008 	if (IS_ERR(path))
3009 		return PTR_ERR(path);
3010 
3011 	if (map->m_lblk >= ee_block) {
3012 		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3013 					    EXT4_EXT_DATA_VALID2);
3014 		if (uninitialized)
3015 			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3016 		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3017 			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3018 		err = ext4_split_extent_at(handle, inode, path,
3019 				map->m_lblk, split_flag1, flags);
3020 		if (err)
3021 			goto out;
3022 	}
3023 
3024 	ext4_ext_show_leaf(inode, path);
3025 out:
3026 	return err ? err : allocated;
3027 }
3028 
3029 #define EXT4_EXT_ZERO_LEN 7
3030 /*
3031  * This function is called by ext4_ext_map_blocks() if someone tries to write
3032  * to an uninitialized extent. It may result in splitting the uninitialized
3033  * extent into multiple extents (up to three - one initialized and two
3034  * uninitialized).
3035  * There are three possibilities:
3036  *   a> There is no split required: Entire extent should be initialized
3037  *   b> Splits in two extents: Write is happening at either end of the extent
3038  *   c> Splits in three extents: Somone is writing in middle of the extent
3039  *
3040  * Pre-conditions:
3041  *  - The extent pointed to by 'path' is uninitialized.
3042  *  - The extent pointed to by 'path' contains a superset
3043  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3044  *
3045  * Post-conditions on success:
3046  *  - the returned value is the number of blocks beyond map->l_lblk
3047  *    that are allocated and initialized.
3048  *    It is guaranteed to be >= map->m_len.
3049  */
ext4_ext_convert_to_initialized(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3050 static int ext4_ext_convert_to_initialized(handle_t *handle,
3051 					   struct inode *inode,
3052 					   struct ext4_map_blocks *map,
3053 					   struct ext4_ext_path *path)
3054 {
3055 	struct ext4_extent_header *eh;
3056 	struct ext4_map_blocks split_map;
3057 	struct ext4_extent zero_ex;
3058 	struct ext4_extent *ex;
3059 	ext4_lblk_t ee_block, eof_block;
3060 	unsigned int ee_len, depth;
3061 	int allocated;
3062 	int err = 0;
3063 	int split_flag = 0;
3064 
3065 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3066 		"block %llu, max_blocks %u\n", inode->i_ino,
3067 		(unsigned long long)map->m_lblk, map->m_len);
3068 
3069 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3070 		inode->i_sb->s_blocksize_bits;
3071 	if (eof_block < map->m_lblk + map->m_len)
3072 		eof_block = map->m_lblk + map->m_len;
3073 
3074 	depth = ext_depth(inode);
3075 	eh = path[depth].p_hdr;
3076 	ex = path[depth].p_ext;
3077 	ee_block = le32_to_cpu(ex->ee_block);
3078 	ee_len = ext4_ext_get_actual_len(ex);
3079 	allocated = ee_len - (map->m_lblk - ee_block);
3080 
3081 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3082 
3083 	/* Pre-conditions */
3084 	BUG_ON(!ext4_ext_is_uninitialized(ex));
3085 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3086 
3087 	/*
3088 	 * Attempt to transfer newly initialized blocks from the currently
3089 	 * uninitialized extent to its left neighbor. This is much cheaper
3090 	 * than an insertion followed by a merge as those involve costly
3091 	 * memmove() calls. This is the common case in steady state for
3092 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3093 	 * writes.
3094 	 *
3095 	 * Limitations of the current logic:
3096 	 *  - L1: we only deal with writes at the start of the extent.
3097 	 *    The approach could be extended to writes at the end
3098 	 *    of the extent but this scenario was deemed less common.
3099 	 *  - L2: we do not deal with writes covering the whole extent.
3100 	 *    This would require removing the extent if the transfer
3101 	 *    is possible.
3102 	 *  - L3: we only attempt to merge with an extent stored in the
3103 	 *    same extent tree node.
3104 	 */
3105 	if ((map->m_lblk == ee_block) &&	/*L1*/
3106 		(map->m_len < ee_len) &&	/*L2*/
3107 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3108 		struct ext4_extent *prev_ex;
3109 		ext4_lblk_t prev_lblk;
3110 		ext4_fsblk_t prev_pblk, ee_pblk;
3111 		unsigned int prev_len, write_len;
3112 
3113 		prev_ex = ex - 1;
3114 		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3115 		prev_len = ext4_ext_get_actual_len(prev_ex);
3116 		prev_pblk = ext4_ext_pblock(prev_ex);
3117 		ee_pblk = ext4_ext_pblock(ex);
3118 		write_len = map->m_len;
3119 
3120 		/*
3121 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3122 		 * upon those conditions:
3123 		 * - C1: prev_ex is initialized,
3124 		 * - C2: prev_ex is logically abutting ex,
3125 		 * - C3: prev_ex is physically abutting ex,
3126 		 * - C4: prev_ex can receive the additional blocks without
3127 		 *   overflowing the (initialized) length limit.
3128 		 */
3129 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3130 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3131 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3132 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3133 			err = ext4_ext_get_access(handle, inode, path + depth);
3134 			if (err)
3135 				goto out;
3136 
3137 			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3138 				map, ex, prev_ex);
3139 
3140 			/* Shift the start of ex by 'write_len' blocks */
3141 			ex->ee_block = cpu_to_le32(ee_block + write_len);
3142 			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3143 			ex->ee_len = cpu_to_le16(ee_len - write_len);
3144 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3145 
3146 			/* Extend prev_ex by 'write_len' blocks */
3147 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3148 
3149 			/* Mark the block containing both extents as dirty */
3150 			ext4_ext_dirty(handle, inode, path + depth);
3151 
3152 			/* Update path to point to the right extent */
3153 			path[depth].p_ext = prev_ex;
3154 
3155 			/* Result: number of initialized blocks past m_lblk */
3156 			allocated = write_len;
3157 			goto out;
3158 		}
3159 	}
3160 
3161 	WARN_ON(map->m_lblk < ee_block);
3162 	/*
3163 	 * It is safe to convert extent to initialized via explicit
3164 	 * zeroout only if extent is fully insde i_size or new_size.
3165 	 */
3166 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3167 
3168 	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3169 	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3170 	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3171 		err = ext4_ext_zeroout(inode, ex);
3172 		if (err)
3173 			goto out;
3174 
3175 		err = ext4_ext_get_access(handle, inode, path + depth);
3176 		if (err)
3177 			goto out;
3178 		ext4_ext_mark_initialized(ex);
3179 		ext4_ext_try_to_merge(inode, path, ex);
3180 		err = ext4_ext_dirty(handle, inode, path + depth);
3181 		goto out;
3182 	}
3183 
3184 	/*
3185 	 * four cases:
3186 	 * 1. split the extent into three extents.
3187 	 * 2. split the extent into two extents, zeroout the first half.
3188 	 * 3. split the extent into two extents, zeroout the second half.
3189 	 * 4. split the extent into two extents with out zeroout.
3190 	 */
3191 	split_map.m_lblk = map->m_lblk;
3192 	split_map.m_len = map->m_len;
3193 
3194 	if (allocated > map->m_len) {
3195 		if (allocated <= EXT4_EXT_ZERO_LEN &&
3196 		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3197 			/* case 3 */
3198 			zero_ex.ee_block =
3199 					 cpu_to_le32(map->m_lblk);
3200 			zero_ex.ee_len = cpu_to_le16(allocated);
3201 			ext4_ext_store_pblock(&zero_ex,
3202 				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3203 			err = ext4_ext_zeroout(inode, &zero_ex);
3204 			if (err)
3205 				goto out;
3206 			split_map.m_lblk = map->m_lblk;
3207 			split_map.m_len = allocated;
3208 		} else if ((map->m_lblk - ee_block + map->m_len <
3209 			   EXT4_EXT_ZERO_LEN) &&
3210 			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3211 			/* case 2 */
3212 			if (map->m_lblk != ee_block) {
3213 				zero_ex.ee_block = ex->ee_block;
3214 				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3215 							ee_block);
3216 				ext4_ext_store_pblock(&zero_ex,
3217 						      ext4_ext_pblock(ex));
3218 				err = ext4_ext_zeroout(inode, &zero_ex);
3219 				if (err)
3220 					goto out;
3221 			}
3222 
3223 			split_map.m_lblk = ee_block;
3224 			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3225 			allocated = map->m_len;
3226 		}
3227 	}
3228 
3229 	allocated = ext4_split_extent(handle, inode, path,
3230 				       &split_map, split_flag, 0);
3231 	if (allocated < 0)
3232 		err = allocated;
3233 
3234 out:
3235 	return err ? err : allocated;
3236 }
3237 
3238 /*
3239  * This function is called by ext4_ext_map_blocks() from
3240  * ext4_get_blocks_dio_write() when DIO to write
3241  * to an uninitialized extent.
3242  *
3243  * Writing to an uninitialized extent may result in splitting the uninitialized
3244  * extent into multiple /initialized uninitialized extents (up to three)
3245  * There are three possibilities:
3246  *   a> There is no split required: Entire extent should be uninitialized
3247  *   b> Splits in two extents: Write is happening at either end of the extent
3248  *   c> Splits in three extents: Somone is writing in middle of the extent
3249  *
3250  * One of more index blocks maybe needed if the extent tree grow after
3251  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3252  * complete, we need to split the uninitialized extent before DIO submit
3253  * the IO. The uninitialized extent called at this time will be split
3254  * into three uninitialized extent(at most). After IO complete, the part
3255  * being filled will be convert to initialized by the end_io callback function
3256  * via ext4_convert_unwritten_extents().
3257  *
3258  * Returns the size of uninitialized extent to be written on success.
3259  */
ext4_split_unwritten_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags)3260 static int ext4_split_unwritten_extents(handle_t *handle,
3261 					struct inode *inode,
3262 					struct ext4_map_blocks *map,
3263 					struct ext4_ext_path *path,
3264 					int flags)
3265 {
3266 	ext4_lblk_t eof_block;
3267 	ext4_lblk_t ee_block;
3268 	struct ext4_extent *ex;
3269 	unsigned int ee_len;
3270 	int split_flag = 0, depth;
3271 
3272 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3273 		"block %llu, max_blocks %u\n", inode->i_ino,
3274 		(unsigned long long)map->m_lblk, map->m_len);
3275 
3276 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3277 		inode->i_sb->s_blocksize_bits;
3278 	if (eof_block < map->m_lblk + map->m_len)
3279 		eof_block = map->m_lblk + map->m_len;
3280 	/*
3281 	 * It is safe to convert extent to initialized via explicit
3282 	 * zeroout only if extent is fully insde i_size or new_size.
3283 	 */
3284 	depth = ext_depth(inode);
3285 	ex = path[depth].p_ext;
3286 	ee_block = le32_to_cpu(ex->ee_block);
3287 	ee_len = ext4_ext_get_actual_len(ex);
3288 
3289 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3290 	split_flag |= EXT4_EXT_MARK_UNINIT2;
3291 	if (flags & EXT4_GET_BLOCKS_CONVERT)
3292 		split_flag |= EXT4_EXT_DATA_VALID2;
3293 	flags |= EXT4_GET_BLOCKS_PRE_IO;
3294 	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3295 }
3296 
ext4_convert_unwritten_extents_endio(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3297 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3298 						struct inode *inode,
3299 						struct ext4_map_blocks *map,
3300 						struct ext4_ext_path *path)
3301 {
3302 	struct ext4_extent *ex;
3303 	ext4_lblk_t ee_block;
3304 	unsigned int ee_len;
3305 	int depth;
3306 	int err = 0;
3307 
3308 	depth = ext_depth(inode);
3309 	ex = path[depth].p_ext;
3310 	ee_block = le32_to_cpu(ex->ee_block);
3311 	ee_len = ext4_ext_get_actual_len(ex);
3312 
3313 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3314 		"block %llu, max_blocks %u\n", inode->i_ino,
3315 		  (unsigned long long)ee_block, ee_len);
3316 
3317 	/* If extent is larger than requested then split is required */
3318 	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3319 		err = ext4_split_unwritten_extents(handle, inode, map, path,
3320 						   EXT4_GET_BLOCKS_CONVERT);
3321 		if (err < 0)
3322 			goto out;
3323 		ext4_ext_drop_refs(path);
3324 		path = ext4_ext_find_extent(inode, map->m_lblk, path);
3325 		if (IS_ERR(path)) {
3326 			err = PTR_ERR(path);
3327 			goto out;
3328 		}
3329 		depth = ext_depth(inode);
3330 		ex = path[depth].p_ext;
3331 	}
3332 
3333 	err = ext4_ext_get_access(handle, inode, path + depth);
3334 	if (err)
3335 		goto out;
3336 	/* first mark the extent as initialized */
3337 	ext4_ext_mark_initialized(ex);
3338 
3339 	/* note: ext4_ext_correct_indexes() isn't needed here because
3340 	 * borders are not changed
3341 	 */
3342 	ext4_ext_try_to_merge(inode, path, ex);
3343 
3344 	/* Mark modified extent as dirty */
3345 	err = ext4_ext_dirty(handle, inode, path + depth);
3346 out:
3347 	ext4_ext_show_leaf(inode, path);
3348 	return err;
3349 }
3350 
unmap_underlying_metadata_blocks(struct block_device * bdev,sector_t block,int count)3351 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3352 			sector_t block, int count)
3353 {
3354 	int i;
3355 	for (i = 0; i < count; i++)
3356                 unmap_underlying_metadata(bdev, block + i);
3357 }
3358 
3359 /*
3360  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3361  */
check_eofblocks_fl(handle_t * handle,struct inode * inode,ext4_lblk_t lblk,struct ext4_ext_path * path,unsigned int len)3362 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3363 			      ext4_lblk_t lblk,
3364 			      struct ext4_ext_path *path,
3365 			      unsigned int len)
3366 {
3367 	int i, depth;
3368 	struct ext4_extent_header *eh;
3369 	struct ext4_extent *last_ex;
3370 
3371 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3372 		return 0;
3373 
3374 	depth = ext_depth(inode);
3375 	eh = path[depth].p_hdr;
3376 
3377 	/*
3378 	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3379 	 * do not care for this case anymore. Simply remove the flag
3380 	 * if there are no extents.
3381 	 */
3382 	if (unlikely(!eh->eh_entries))
3383 		goto out;
3384 	last_ex = EXT_LAST_EXTENT(eh);
3385 	/*
3386 	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3387 	 * last block in the last extent in the file.  We test this by
3388 	 * first checking to see if the caller to
3389 	 * ext4_ext_get_blocks() was interested in the last block (or
3390 	 * a block beyond the last block) in the current extent.  If
3391 	 * this turns out to be false, we can bail out from this
3392 	 * function immediately.
3393 	 */
3394 	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3395 	    ext4_ext_get_actual_len(last_ex))
3396 		return 0;
3397 	/*
3398 	 * If the caller does appear to be planning to write at or
3399 	 * beyond the end of the current extent, we then test to see
3400 	 * if the current extent is the last extent in the file, by
3401 	 * checking to make sure it was reached via the rightmost node
3402 	 * at each level of the tree.
3403 	 */
3404 	for (i = depth-1; i >= 0; i--)
3405 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3406 			return 0;
3407 out:
3408 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3409 	return ext4_mark_inode_dirty(handle, inode);
3410 }
3411 
3412 /**
3413  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3414  *
3415  * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3416  * whether there are any buffers marked for delayed allocation. It returns '1'
3417  * on the first delalloc'ed buffer head found. If no buffer head in the given
3418  * range is marked for delalloc, it returns 0.
3419  * lblk_start should always be <= lblk_end.
3420  * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3421  * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3422  * block sooner). This is useful when blocks are truncated sequentially from
3423  * lblk_start towards lblk_end.
3424  */
ext4_find_delalloc_range(struct inode * inode,ext4_lblk_t lblk_start,ext4_lblk_t lblk_end,int search_hint_reverse)3425 static int ext4_find_delalloc_range(struct inode *inode,
3426 				    ext4_lblk_t lblk_start,
3427 				    ext4_lblk_t lblk_end,
3428 				    int search_hint_reverse)
3429 {
3430 	struct address_space *mapping = inode->i_mapping;
3431 	struct buffer_head *head, *bh = NULL;
3432 	struct page *page;
3433 	ext4_lblk_t i, pg_lblk;
3434 	pgoff_t index;
3435 
3436 	if (!test_opt(inode->i_sb, DELALLOC))
3437 		return 0;
3438 
3439 	/* reverse search wont work if fs block size is less than page size */
3440 	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3441 		search_hint_reverse = 0;
3442 
3443 	if (search_hint_reverse)
3444 		i = lblk_end;
3445 	else
3446 		i = lblk_start;
3447 
3448 	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3449 
3450 	while ((i >= lblk_start) && (i <= lblk_end)) {
3451 		page = find_get_page(mapping, index);
3452 		if (!page)
3453 			goto nextpage;
3454 
3455 		if (!page_has_buffers(page))
3456 			goto nextpage;
3457 
3458 		head = page_buffers(page);
3459 		if (!head)
3460 			goto nextpage;
3461 
3462 		bh = head;
3463 		pg_lblk = index << (PAGE_CACHE_SHIFT -
3464 						inode->i_blkbits);
3465 		do {
3466 			if (unlikely(pg_lblk < lblk_start)) {
3467 				/*
3468 				 * This is possible when fs block size is less
3469 				 * than page size and our cluster starts/ends in
3470 				 * middle of the page. So we need to skip the
3471 				 * initial few blocks till we reach the 'lblk'
3472 				 */
3473 				pg_lblk++;
3474 				continue;
3475 			}
3476 
3477 			/* Check if the buffer is delayed allocated and that it
3478 			 * is not yet mapped. (when da-buffers are mapped during
3479 			 * their writeout, their da_mapped bit is set.)
3480 			 */
3481 			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3482 				page_cache_release(page);
3483 				trace_ext4_find_delalloc_range(inode,
3484 						lblk_start, lblk_end,
3485 						search_hint_reverse,
3486 						1, i);
3487 				return 1;
3488 			}
3489 			if (search_hint_reverse)
3490 				i--;
3491 			else
3492 				i++;
3493 		} while ((i >= lblk_start) && (i <= lblk_end) &&
3494 				((bh = bh->b_this_page) != head));
3495 nextpage:
3496 		if (page)
3497 			page_cache_release(page);
3498 		/*
3499 		 * Move to next page. 'i' will be the first lblk in the next
3500 		 * page.
3501 		 */
3502 		if (search_hint_reverse)
3503 			index--;
3504 		else
3505 			index++;
3506 		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3507 	}
3508 
3509 	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3510 					search_hint_reverse, 0, 0);
3511 	return 0;
3512 }
3513 
ext4_find_delalloc_cluster(struct inode * inode,ext4_lblk_t lblk,int search_hint_reverse)3514 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3515 			       int search_hint_reverse)
3516 {
3517 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3518 	ext4_lblk_t lblk_start, lblk_end;
3519 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3520 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3521 
3522 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3523 					search_hint_reverse);
3524 }
3525 
3526 /**
3527  * Determines how many complete clusters (out of those specified by the 'map')
3528  * are under delalloc and were reserved quota for.
3529  * This function is called when we are writing out the blocks that were
3530  * originally written with their allocation delayed, but then the space was
3531  * allocated using fallocate() before the delayed allocation could be resolved.
3532  * The cases to look for are:
3533  * ('=' indicated delayed allocated blocks
3534  *  '-' indicates non-delayed allocated blocks)
3535  * (a) partial clusters towards beginning and/or end outside of allocated range
3536  *     are not delalloc'ed.
3537  *	Ex:
3538  *	|----c---=|====c====|====c====|===-c----|
3539  *	         |++++++ allocated ++++++|
3540  *	==> 4 complete clusters in above example
3541  *
3542  * (b) partial cluster (outside of allocated range) towards either end is
3543  *     marked for delayed allocation. In this case, we will exclude that
3544  *     cluster.
3545  *	Ex:
3546  *	|----====c========|========c========|
3547  *	     |++++++ allocated ++++++|
3548  *	==> 1 complete clusters in above example
3549  *
3550  *	Ex:
3551  *	|================c================|
3552  *            |++++++ allocated ++++++|
3553  *	==> 0 complete clusters in above example
3554  *
3555  * The ext4_da_update_reserve_space will be called only if we
3556  * determine here that there were some "entire" clusters that span
3557  * this 'allocated' range.
3558  * In the non-bigalloc case, this function will just end up returning num_blks
3559  * without ever calling ext4_find_delalloc_range.
3560  */
3561 static unsigned int
get_reserved_cluster_alloc(struct inode * inode,ext4_lblk_t lblk_start,unsigned int num_blks)3562 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3563 			   unsigned int num_blks)
3564 {
3565 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3566 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3567 	ext4_lblk_t lblk_from, lblk_to, c_offset;
3568 	unsigned int allocated_clusters = 0;
3569 
3570 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3571 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3572 
3573 	/* max possible clusters for this allocation */
3574 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3575 
3576 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3577 
3578 	/* Check towards left side */
3579 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3580 	if (c_offset) {
3581 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3582 		lblk_to = lblk_from + c_offset - 1;
3583 
3584 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3585 			allocated_clusters--;
3586 	}
3587 
3588 	/* Now check towards right. */
3589 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3590 	if (allocated_clusters && c_offset) {
3591 		lblk_from = lblk_start + num_blks;
3592 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3593 
3594 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3595 			allocated_clusters--;
3596 	}
3597 
3598 	return allocated_clusters;
3599 }
3600 
3601 static int
ext4_ext_handle_uninitialized_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags,unsigned int allocated,ext4_fsblk_t newblock)3602 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3603 			struct ext4_map_blocks *map,
3604 			struct ext4_ext_path *path, int flags,
3605 			unsigned int allocated, ext4_fsblk_t newblock)
3606 {
3607 	int ret = 0;
3608 	int err = 0;
3609 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3610 
3611 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3612 		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3613 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3614 		  flags, allocated);
3615 	ext4_ext_show_leaf(inode, path);
3616 
3617 	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3618 						    newblock);
3619 
3620 	/* get_block() before submit the IO, split the extent */
3621 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3622 		ret = ext4_split_unwritten_extents(handle, inode, map,
3623 						   path, flags);
3624 		/*
3625 		 * Flag the inode(non aio case) or end_io struct (aio case)
3626 		 * that this IO needs to conversion to written when IO is
3627 		 * completed
3628 		 */
3629 		if (io)
3630 			ext4_set_io_unwritten_flag(inode, io);
3631 		else
3632 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3633 		if (ext4_should_dioread_nolock(inode))
3634 			map->m_flags |= EXT4_MAP_UNINIT;
3635 		goto out;
3636 	}
3637 	/* IO end_io complete, convert the filled extent to written */
3638 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3639 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3640 							path);
3641 		if (ret >= 0) {
3642 			ext4_update_inode_fsync_trans(handle, inode, 1);
3643 			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3644 						 path, map->m_len);
3645 		} else
3646 			err = ret;
3647 		goto out2;
3648 	}
3649 	/* buffered IO case */
3650 	/*
3651 	 * repeat fallocate creation request
3652 	 * we already have an unwritten extent
3653 	 */
3654 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3655 		goto map_out;
3656 
3657 	/* buffered READ or buffered write_begin() lookup */
3658 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3659 		/*
3660 		 * We have blocks reserved already.  We
3661 		 * return allocated blocks so that delalloc
3662 		 * won't do block reservation for us.  But
3663 		 * the buffer head will be unmapped so that
3664 		 * a read from the block returns 0s.
3665 		 */
3666 		map->m_flags |= EXT4_MAP_UNWRITTEN;
3667 		goto out1;
3668 	}
3669 
3670 	/* buffered write, writepage time, convert*/
3671 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3672 	if (ret >= 0)
3673 		ext4_update_inode_fsync_trans(handle, inode, 1);
3674 out:
3675 	if (ret <= 0) {
3676 		err = ret;
3677 		goto out2;
3678 	} else
3679 		allocated = ret;
3680 	map->m_flags |= EXT4_MAP_NEW;
3681 	/*
3682 	 * if we allocated more blocks than requested
3683 	 * we need to make sure we unmap the extra block
3684 	 * allocated. The actual needed block will get
3685 	 * unmapped later when we find the buffer_head marked
3686 	 * new.
3687 	 */
3688 	if (allocated > map->m_len) {
3689 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3690 					newblock + map->m_len,
3691 					allocated - map->m_len);
3692 		allocated = map->m_len;
3693 	}
3694 	map->m_len = allocated;
3695 
3696 	/*
3697 	 * If we have done fallocate with the offset that is already
3698 	 * delayed allocated, we would have block reservation
3699 	 * and quota reservation done in the delayed write path.
3700 	 * But fallocate would have already updated quota and block
3701 	 * count for this offset. So cancel these reservation
3702 	 */
3703 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3704 		unsigned int reserved_clusters;
3705 		reserved_clusters = get_reserved_cluster_alloc(inode,
3706 				map->m_lblk, map->m_len);
3707 		if (reserved_clusters)
3708 			ext4_da_update_reserve_space(inode,
3709 						     reserved_clusters,
3710 						     0);
3711 	}
3712 
3713 map_out:
3714 	map->m_flags |= EXT4_MAP_MAPPED;
3715 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3716 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3717 					 map->m_len);
3718 		if (err < 0)
3719 			goto out2;
3720 	}
3721 out1:
3722 	if (allocated > map->m_len)
3723 		allocated = map->m_len;
3724 	ext4_ext_show_leaf(inode, path);
3725 	map->m_pblk = newblock;
3726 	map->m_len = allocated;
3727 out2:
3728 	if (path) {
3729 		ext4_ext_drop_refs(path);
3730 		kfree(path);
3731 	}
3732 	return err ? err : allocated;
3733 }
3734 
3735 /*
3736  * get_implied_cluster_alloc - check to see if the requested
3737  * allocation (in the map structure) overlaps with a cluster already
3738  * allocated in an extent.
3739  *	@sb	The filesystem superblock structure
3740  *	@map	The requested lblk->pblk mapping
3741  *	@ex	The extent structure which might contain an implied
3742  *			cluster allocation
3743  *
3744  * This function is called by ext4_ext_map_blocks() after we failed to
3745  * find blocks that were already in the inode's extent tree.  Hence,
3746  * we know that the beginning of the requested region cannot overlap
3747  * the extent from the inode's extent tree.  There are three cases we
3748  * want to catch.  The first is this case:
3749  *
3750  *		 |--- cluster # N--|
3751  *    |--- extent ---|	|---- requested region ---|
3752  *			|==========|
3753  *
3754  * The second case that we need to test for is this one:
3755  *
3756  *   |--------- cluster # N ----------------|
3757  *	   |--- requested region --|   |------- extent ----|
3758  *	   |=======================|
3759  *
3760  * The third case is when the requested region lies between two extents
3761  * within the same cluster:
3762  *          |------------- cluster # N-------------|
3763  * |----- ex -----|                  |---- ex_right ----|
3764  *                  |------ requested region ------|
3765  *                  |================|
3766  *
3767  * In each of the above cases, we need to set the map->m_pblk and
3768  * map->m_len so it corresponds to the return the extent labelled as
3769  * "|====|" from cluster #N, since it is already in use for data in
3770  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3771  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3772  * as a new "allocated" block region.  Otherwise, we will return 0 and
3773  * ext4_ext_map_blocks() will then allocate one or more new clusters
3774  * by calling ext4_mb_new_blocks().
3775  */
get_implied_cluster_alloc(struct super_block * sb,struct ext4_map_blocks * map,struct ext4_extent * ex,struct ext4_ext_path * path)3776 static int get_implied_cluster_alloc(struct super_block *sb,
3777 				     struct ext4_map_blocks *map,
3778 				     struct ext4_extent *ex,
3779 				     struct ext4_ext_path *path)
3780 {
3781 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3782 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3783 	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3784 	ext4_lblk_t rr_cluster_start;
3785 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3786 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3787 	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3788 
3789 	/* The extent passed in that we are trying to match */
3790 	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3791 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3792 
3793 	/* The requested region passed into ext4_map_blocks() */
3794 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3795 
3796 	if ((rr_cluster_start == ex_cluster_end) ||
3797 	    (rr_cluster_start == ex_cluster_start)) {
3798 		if (rr_cluster_start == ex_cluster_end)
3799 			ee_start += ee_len - 1;
3800 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3801 			c_offset;
3802 		map->m_len = min(map->m_len,
3803 				 (unsigned) sbi->s_cluster_ratio - c_offset);
3804 		/*
3805 		 * Check for and handle this case:
3806 		 *
3807 		 *   |--------- cluster # N-------------|
3808 		 *		       |------- extent ----|
3809 		 *	   |--- requested region ---|
3810 		 *	   |===========|
3811 		 */
3812 
3813 		if (map->m_lblk < ee_block)
3814 			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3815 
3816 		/*
3817 		 * Check for the case where there is already another allocated
3818 		 * block to the right of 'ex' but before the end of the cluster.
3819 		 *
3820 		 *          |------------- cluster # N-------------|
3821 		 * |----- ex -----|                  |---- ex_right ----|
3822 		 *                  |------ requested region ------|
3823 		 *                  |================|
3824 		 */
3825 		if (map->m_lblk > ee_block) {
3826 			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3827 			map->m_len = min(map->m_len, next - map->m_lblk);
3828 		}
3829 
3830 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3831 		return 1;
3832 	}
3833 
3834 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3835 	return 0;
3836 }
3837 
3838 
3839 /*
3840  * Block allocation/map/preallocation routine for extents based files
3841  *
3842  *
3843  * Need to be called with
3844  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3845  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3846  *
3847  * return > 0, number of of blocks already mapped/allocated
3848  *          if create == 0 and these are pre-allocated blocks
3849  *          	buffer head is unmapped
3850  *          otherwise blocks are mapped
3851  *
3852  * return = 0, if plain look up failed (blocks have not been allocated)
3853  *          buffer head is unmapped
3854  *
3855  * return < 0, error case.
3856  */
ext4_ext_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)3857 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3858 			struct ext4_map_blocks *map, int flags)
3859 {
3860 	struct ext4_ext_path *path = NULL;
3861 	struct ext4_extent newex, *ex, *ex2;
3862 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3863 	ext4_fsblk_t newblock = 0;
3864 	int free_on_err = 0, err = 0, depth, ret;
3865 	unsigned int allocated = 0, offset = 0;
3866 	unsigned int allocated_clusters = 0;
3867 	struct ext4_allocation_request ar;
3868 	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3869 	ext4_lblk_t cluster_offset;
3870 
3871 	ext_debug("blocks %u/%u requested for inode %lu\n",
3872 		  map->m_lblk, map->m_len, inode->i_ino);
3873 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3874 
3875 	/* check in cache */
3876 	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3877 		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3878 			if ((sbi->s_cluster_ratio > 1) &&
3879 			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3880 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3881 
3882 			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3883 				/*
3884 				 * block isn't allocated yet and
3885 				 * user doesn't want to allocate it
3886 				 */
3887 				goto out2;
3888 			}
3889 			/* we should allocate requested block */
3890 		} else {
3891 			/* block is already allocated */
3892 			if (sbi->s_cluster_ratio > 1)
3893 				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3894 			newblock = map->m_lblk
3895 				   - le32_to_cpu(newex.ee_block)
3896 				   + ext4_ext_pblock(&newex);
3897 			/* number of remaining blocks in the extent */
3898 			allocated = ext4_ext_get_actual_len(&newex) -
3899 				(map->m_lblk - le32_to_cpu(newex.ee_block));
3900 			goto out;
3901 		}
3902 	}
3903 
3904 	/* find extent for this block */
3905 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3906 	if (IS_ERR(path)) {
3907 		err = PTR_ERR(path);
3908 		path = NULL;
3909 		goto out2;
3910 	}
3911 
3912 	depth = ext_depth(inode);
3913 
3914 	/*
3915 	 * consistent leaf must not be empty;
3916 	 * this situation is possible, though, _during_ tree modification;
3917 	 * this is why assert can't be put in ext4_ext_find_extent()
3918 	 */
3919 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3920 		EXT4_ERROR_INODE(inode, "bad extent address "
3921 				 "lblock: %lu, depth: %d pblock %lld",
3922 				 (unsigned long) map->m_lblk, depth,
3923 				 path[depth].p_block);
3924 		err = -EIO;
3925 		goto out2;
3926 	}
3927 
3928 	ex = path[depth].p_ext;
3929 	if (ex) {
3930 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3931 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3932 		unsigned short ee_len;
3933 
3934 		/*
3935 		 * Uninitialized extents are treated as holes, except that
3936 		 * we split out initialized portions during a write.
3937 		 */
3938 		ee_len = ext4_ext_get_actual_len(ex);
3939 
3940 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3941 
3942 		/* if found extent covers block, simply return it */
3943 		if (in_range(map->m_lblk, ee_block, ee_len)) {
3944 			newblock = map->m_lblk - ee_block + ee_start;
3945 			/* number of remaining blocks in the extent */
3946 			allocated = ee_len - (map->m_lblk - ee_block);
3947 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3948 				  ee_block, ee_len, newblock);
3949 
3950 			/*
3951 			 * Do not put uninitialized extent
3952 			 * in the cache
3953 			 */
3954 			if (!ext4_ext_is_uninitialized(ex)) {
3955 				ext4_ext_put_in_cache(inode, ee_block,
3956 					ee_len, ee_start);
3957 				goto out;
3958 			}
3959 			ret = ext4_ext_handle_uninitialized_extents(
3960 				handle, inode, map, path, flags,
3961 				allocated, newblock);
3962 			return ret;
3963 		}
3964 	}
3965 
3966 	if ((sbi->s_cluster_ratio > 1) &&
3967 	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3968 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3969 
3970 	/*
3971 	 * requested block isn't allocated yet;
3972 	 * we couldn't try to create block if create flag is zero
3973 	 */
3974 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3975 		/*
3976 		 * put just found gap into cache to speed up
3977 		 * subsequent requests
3978 		 */
3979 		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3980 		goto out2;
3981 	}
3982 
3983 	/*
3984 	 * Okay, we need to do block allocation.
3985 	 */
3986 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3987 	newex.ee_block = cpu_to_le32(map->m_lblk);
3988 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3989 
3990 	/*
3991 	 * If we are doing bigalloc, check to see if the extent returned
3992 	 * by ext4_ext_find_extent() implies a cluster we can use.
3993 	 */
3994 	if (cluster_offset && ex &&
3995 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3996 		ar.len = allocated = map->m_len;
3997 		newblock = map->m_pblk;
3998 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3999 		goto got_allocated_blocks;
4000 	}
4001 
4002 	/* find neighbour allocated blocks */
4003 	ar.lleft = map->m_lblk;
4004 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4005 	if (err)
4006 		goto out2;
4007 	ar.lright = map->m_lblk;
4008 	ex2 = NULL;
4009 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4010 	if (err)
4011 		goto out2;
4012 
4013 	/* Check if the extent after searching to the right implies a
4014 	 * cluster we can use. */
4015 	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4016 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4017 		ar.len = allocated = map->m_len;
4018 		newblock = map->m_pblk;
4019 		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4020 		goto got_allocated_blocks;
4021 	}
4022 
4023 	/*
4024 	 * See if request is beyond maximum number of blocks we can have in
4025 	 * a single extent. For an initialized extent this limit is
4026 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4027 	 * EXT_UNINIT_MAX_LEN.
4028 	 */
4029 	if (map->m_len > EXT_INIT_MAX_LEN &&
4030 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4031 		map->m_len = EXT_INIT_MAX_LEN;
4032 	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4033 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4034 		map->m_len = EXT_UNINIT_MAX_LEN;
4035 
4036 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4037 	newex.ee_len = cpu_to_le16(map->m_len);
4038 	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4039 	if (err)
4040 		allocated = ext4_ext_get_actual_len(&newex);
4041 	else
4042 		allocated = map->m_len;
4043 
4044 	/* allocate new block */
4045 	ar.inode = inode;
4046 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4047 	ar.logical = map->m_lblk;
4048 	/*
4049 	 * We calculate the offset from the beginning of the cluster
4050 	 * for the logical block number, since when we allocate a
4051 	 * physical cluster, the physical block should start at the
4052 	 * same offset from the beginning of the cluster.  This is
4053 	 * needed so that future calls to get_implied_cluster_alloc()
4054 	 * work correctly.
4055 	 */
4056 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4057 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4058 	ar.goal -= offset;
4059 	ar.logical -= offset;
4060 	if (S_ISREG(inode->i_mode))
4061 		ar.flags = EXT4_MB_HINT_DATA;
4062 	else
4063 		/* disable in-core preallocation for non-regular files */
4064 		ar.flags = 0;
4065 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4066 		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4067 	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4068 	if (!newblock)
4069 		goto out2;
4070 	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4071 		  ar.goal, newblock, allocated);
4072 	free_on_err = 1;
4073 	allocated_clusters = ar.len;
4074 	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4075 	if (ar.len > allocated)
4076 		ar.len = allocated;
4077 
4078 got_allocated_blocks:
4079 	/* try to insert new extent into found leaf and return */
4080 	ext4_ext_store_pblock(&newex, newblock + offset);
4081 	newex.ee_len = cpu_to_le16(ar.len);
4082 	/* Mark uninitialized */
4083 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4084 		ext4_ext_mark_uninitialized(&newex);
4085 		/*
4086 		 * io_end structure was created for every IO write to an
4087 		 * uninitialized extent. To avoid unnecessary conversion,
4088 		 * here we flag the IO that really needs the conversion.
4089 		 * For non asycn direct IO case, flag the inode state
4090 		 * that we need to perform conversion when IO is done.
4091 		 */
4092 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4093 			if (io)
4094 				ext4_set_io_unwritten_flag(inode, io);
4095 			else
4096 				ext4_set_inode_state(inode,
4097 						     EXT4_STATE_DIO_UNWRITTEN);
4098 		}
4099 		if (ext4_should_dioread_nolock(inode))
4100 			map->m_flags |= EXT4_MAP_UNINIT;
4101 	}
4102 
4103 	err = 0;
4104 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4105 		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4106 					 path, ar.len);
4107 	if (!err)
4108 		err = ext4_ext_insert_extent(handle, inode, path,
4109 					     &newex, flags);
4110 	if (err && free_on_err) {
4111 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4112 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4113 		/* free data blocks we just allocated */
4114 		/* not a good idea to call discard here directly,
4115 		 * but otherwise we'd need to call it every free() */
4116 		ext4_discard_preallocations(inode);
4117 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4118 				 ext4_ext_get_actual_len(&newex), fb_flags);
4119 		goto out2;
4120 	}
4121 
4122 	/* previous routine could use block we allocated */
4123 	newblock = ext4_ext_pblock(&newex);
4124 	allocated = ext4_ext_get_actual_len(&newex);
4125 	if (allocated > map->m_len)
4126 		allocated = map->m_len;
4127 	map->m_flags |= EXT4_MAP_NEW;
4128 
4129 	/*
4130 	 * Update reserved blocks/metadata blocks after successful
4131 	 * block allocation which had been deferred till now.
4132 	 */
4133 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4134 		unsigned int reserved_clusters;
4135 		/*
4136 		 * Check how many clusters we had reserved this allocated range
4137 		 */
4138 		reserved_clusters = get_reserved_cluster_alloc(inode,
4139 						map->m_lblk, allocated);
4140 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4141 			if (reserved_clusters) {
4142 				/*
4143 				 * We have clusters reserved for this range.
4144 				 * But since we are not doing actual allocation
4145 				 * and are simply using blocks from previously
4146 				 * allocated cluster, we should release the
4147 				 * reservation and not claim quota.
4148 				 */
4149 				ext4_da_update_reserve_space(inode,
4150 						reserved_clusters, 0);
4151 			}
4152 		} else {
4153 			BUG_ON(allocated_clusters < reserved_clusters);
4154 			/* We will claim quota for all newly allocated blocks.*/
4155 			ext4_da_update_reserve_space(inode, allocated_clusters,
4156 							1);
4157 			if (reserved_clusters < allocated_clusters) {
4158 				struct ext4_inode_info *ei = EXT4_I(inode);
4159 				int reservation = allocated_clusters -
4160 						  reserved_clusters;
4161 				/*
4162 				 * It seems we claimed few clusters outside of
4163 				 * the range of this allocation. We should give
4164 				 * it back to the reservation pool. This can
4165 				 * happen in the following case:
4166 				 *
4167 				 * * Suppose s_cluster_ratio is 4 (i.e., each
4168 				 *   cluster has 4 blocks. Thus, the clusters
4169 				 *   are [0-3],[4-7],[8-11]...
4170 				 * * First comes delayed allocation write for
4171 				 *   logical blocks 10 & 11. Since there were no
4172 				 *   previous delayed allocated blocks in the
4173 				 *   range [8-11], we would reserve 1 cluster
4174 				 *   for this write.
4175 				 * * Next comes write for logical blocks 3 to 8.
4176 				 *   In this case, we will reserve 2 clusters
4177 				 *   (for [0-3] and [4-7]; and not for [8-11] as
4178 				 *   that range has a delayed allocated blocks.
4179 				 *   Thus total reserved clusters now becomes 3.
4180 				 * * Now, during the delayed allocation writeout
4181 				 *   time, we will first write blocks [3-8] and
4182 				 *   allocate 3 clusters for writing these
4183 				 *   blocks. Also, we would claim all these
4184 				 *   three clusters above.
4185 				 * * Now when we come here to writeout the
4186 				 *   blocks [10-11], we would expect to claim
4187 				 *   the reservation of 1 cluster we had made
4188 				 *   (and we would claim it since there are no
4189 				 *   more delayed allocated blocks in the range
4190 				 *   [8-11]. But our reserved cluster count had
4191 				 *   already gone to 0.
4192 				 *
4193 				 *   Thus, at the step 4 above when we determine
4194 				 *   that there are still some unwritten delayed
4195 				 *   allocated blocks outside of our current
4196 				 *   block range, we should increment the
4197 				 *   reserved clusters count so that when the
4198 				 *   remaining blocks finally gets written, we
4199 				 *   could claim them.
4200 				 */
4201 				dquot_reserve_block(inode,
4202 						EXT4_C2B(sbi, reservation));
4203 				spin_lock(&ei->i_block_reservation_lock);
4204 				ei->i_reserved_data_blocks += reservation;
4205 				spin_unlock(&ei->i_block_reservation_lock);
4206 			}
4207 		}
4208 	}
4209 
4210 	/*
4211 	 * Cache the extent and update transaction to commit on fdatasync only
4212 	 * when it is _not_ an uninitialized extent.
4213 	 */
4214 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4215 		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4216 		ext4_update_inode_fsync_trans(handle, inode, 1);
4217 	} else
4218 		ext4_update_inode_fsync_trans(handle, inode, 0);
4219 out:
4220 	if (allocated > map->m_len)
4221 		allocated = map->m_len;
4222 	ext4_ext_show_leaf(inode, path);
4223 	map->m_flags |= EXT4_MAP_MAPPED;
4224 	map->m_pblk = newblock;
4225 	map->m_len = allocated;
4226 out2:
4227 	if (path) {
4228 		ext4_ext_drop_refs(path);
4229 		kfree(path);
4230 	}
4231 
4232 	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4233 		newblock, map->m_len, err ? err : allocated);
4234 
4235 	return err ? err : allocated;
4236 }
4237 
ext4_ext_truncate(struct inode * inode)4238 void ext4_ext_truncate(struct inode *inode)
4239 {
4240 	struct address_space *mapping = inode->i_mapping;
4241 	struct super_block *sb = inode->i_sb;
4242 	ext4_lblk_t last_block;
4243 	handle_t *handle;
4244 	loff_t page_len;
4245 	int err = 0;
4246 
4247 	/*
4248 	 * finish any pending end_io work so we won't run the risk of
4249 	 * converting any truncated blocks to initialized later
4250 	 */
4251 	ext4_flush_completed_IO(inode);
4252 
4253 	/*
4254 	 * probably first extent we're gonna free will be last in block
4255 	 */
4256 	err = ext4_writepage_trans_blocks(inode);
4257 	handle = ext4_journal_start(inode, err);
4258 	if (IS_ERR(handle))
4259 		return;
4260 
4261 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4262 		page_len = PAGE_CACHE_SIZE -
4263 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4264 
4265 		err = ext4_discard_partial_page_buffers(handle,
4266 			mapping, inode->i_size, page_len, 0);
4267 
4268 		if (err)
4269 			goto out_stop;
4270 	}
4271 
4272 	if (ext4_orphan_add(handle, inode))
4273 		goto out_stop;
4274 
4275 	down_write(&EXT4_I(inode)->i_data_sem);
4276 	ext4_ext_invalidate_cache(inode);
4277 
4278 	ext4_discard_preallocations(inode);
4279 
4280 	/*
4281 	 * TODO: optimization is possible here.
4282 	 * Probably we need not scan at all,
4283 	 * because page truncation is enough.
4284 	 */
4285 
4286 	/* we have to know where to truncate from in crash case */
4287 	EXT4_I(inode)->i_disksize = inode->i_size;
4288 	ext4_mark_inode_dirty(handle, inode);
4289 
4290 	last_block = (inode->i_size + sb->s_blocksize - 1)
4291 			>> EXT4_BLOCK_SIZE_BITS(sb);
4292 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4293 
4294 	/* In a multi-transaction truncate, we only make the final
4295 	 * transaction synchronous.
4296 	 */
4297 	if (IS_SYNC(inode))
4298 		ext4_handle_sync(handle);
4299 
4300 	up_write(&EXT4_I(inode)->i_data_sem);
4301 
4302 out_stop:
4303 	/*
4304 	 * If this was a simple ftruncate() and the file will remain alive,
4305 	 * then we need to clear up the orphan record which we created above.
4306 	 * However, if this was a real unlink then we were called by
4307 	 * ext4_delete_inode(), and we allow that function to clean up the
4308 	 * orphan info for us.
4309 	 */
4310 	if (inode->i_nlink)
4311 		ext4_orphan_del(handle, inode);
4312 
4313 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4314 	ext4_mark_inode_dirty(handle, inode);
4315 	ext4_journal_stop(handle);
4316 }
4317 
ext4_falloc_update_inode(struct inode * inode,int mode,loff_t new_size,int update_ctime)4318 static void ext4_falloc_update_inode(struct inode *inode,
4319 				int mode, loff_t new_size, int update_ctime)
4320 {
4321 	struct timespec now;
4322 
4323 	if (update_ctime) {
4324 		now = current_fs_time(inode->i_sb);
4325 		if (!timespec_equal(&inode->i_ctime, &now))
4326 			inode->i_ctime = now;
4327 	}
4328 	/*
4329 	 * Update only when preallocation was requested beyond
4330 	 * the file size.
4331 	 */
4332 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4333 		if (new_size > i_size_read(inode))
4334 			i_size_write(inode, new_size);
4335 		if (new_size > EXT4_I(inode)->i_disksize)
4336 			ext4_update_i_disksize(inode, new_size);
4337 	} else {
4338 		/*
4339 		 * Mark that we allocate beyond EOF so the subsequent truncate
4340 		 * can proceed even if the new size is the same as i_size.
4341 		 */
4342 		if (new_size > i_size_read(inode))
4343 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4344 	}
4345 
4346 }
4347 
4348 /*
4349  * preallocate space for a file. This implements ext4's fallocate file
4350  * operation, which gets called from sys_fallocate system call.
4351  * For block-mapped files, posix_fallocate should fall back to the method
4352  * of writing zeroes to the required new blocks (the same behavior which is
4353  * expected for file systems which do not support fallocate() system call).
4354  */
ext4_fallocate(struct file * file,int mode,loff_t offset,loff_t len)4355 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4356 {
4357 	struct inode *inode = file->f_path.dentry->d_inode;
4358 	handle_t *handle;
4359 	loff_t new_size;
4360 	unsigned int max_blocks;
4361 	int ret = 0;
4362 	int ret2 = 0;
4363 	int retries = 0;
4364 	int flags;
4365 	struct ext4_map_blocks map;
4366 	unsigned int credits, blkbits = inode->i_blkbits;
4367 
4368 	/*
4369 	 * currently supporting (pre)allocate mode for extent-based
4370 	 * files _only_
4371 	 */
4372 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4373 		return -EOPNOTSUPP;
4374 
4375 	/* Return error if mode is not supported */
4376 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4377 		return -EOPNOTSUPP;
4378 
4379 	if (mode & FALLOC_FL_PUNCH_HOLE)
4380 		return ext4_punch_hole(file, offset, len);
4381 
4382 	trace_ext4_fallocate_enter(inode, offset, len, mode);
4383 	map.m_lblk = offset >> blkbits;
4384 	/*
4385 	 * We can't just convert len to max_blocks because
4386 	 * If blocksize = 4096 offset = 3072 and len = 2048
4387 	 */
4388 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4389 		- map.m_lblk;
4390 	/*
4391 	 * credits to insert 1 extent into extent tree
4392 	 */
4393 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4394 	mutex_lock(&inode->i_mutex);
4395 	ret = inode_newsize_ok(inode, (len + offset));
4396 	if (ret) {
4397 		mutex_unlock(&inode->i_mutex);
4398 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4399 		return ret;
4400 	}
4401 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4402 	if (mode & FALLOC_FL_KEEP_SIZE)
4403 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4404 	/*
4405 	 * Don't normalize the request if it can fit in one extent so
4406 	 * that it doesn't get unnecessarily split into multiple
4407 	 * extents.
4408 	 */
4409 	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4410 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4411 retry:
4412 	while (ret >= 0 && ret < max_blocks) {
4413 		map.m_lblk = map.m_lblk + ret;
4414 		map.m_len = max_blocks = max_blocks - ret;
4415 		handle = ext4_journal_start(inode, credits);
4416 		if (IS_ERR(handle)) {
4417 			ret = PTR_ERR(handle);
4418 			break;
4419 		}
4420 		ret = ext4_map_blocks(handle, inode, &map, flags);
4421 		if (ret <= 0) {
4422 #ifdef EXT4FS_DEBUG
4423 			WARN_ON(ret <= 0);
4424 			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4425 				    "returned error inode#%lu, block=%u, "
4426 				    "max_blocks=%u", __func__,
4427 				    inode->i_ino, map.m_lblk, max_blocks);
4428 #endif
4429 			ext4_mark_inode_dirty(handle, inode);
4430 			ret2 = ext4_journal_stop(handle);
4431 			break;
4432 		}
4433 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4434 						blkbits) >> blkbits))
4435 			new_size = offset + len;
4436 		else
4437 			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4438 
4439 		ext4_falloc_update_inode(inode, mode, new_size,
4440 					 (map.m_flags & EXT4_MAP_NEW));
4441 		ext4_mark_inode_dirty(handle, inode);
4442 		ret2 = ext4_journal_stop(handle);
4443 		if (ret2)
4444 			break;
4445 	}
4446 	if (ret == -ENOSPC &&
4447 			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4448 		ret = 0;
4449 		goto retry;
4450 	}
4451 	mutex_unlock(&inode->i_mutex);
4452 	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4453 				ret > 0 ? ret2 : ret);
4454 	return ret > 0 ? ret2 : ret;
4455 }
4456 
4457 /*
4458  * This function convert a range of blocks to written extents
4459  * The caller of this function will pass the start offset and the size.
4460  * all unwritten extents within this range will be converted to
4461  * written extents.
4462  *
4463  * This function is called from the direct IO end io call back
4464  * function, to convert the fallocated extents after IO is completed.
4465  * Returns 0 on success.
4466  */
ext4_convert_unwritten_extents(struct inode * inode,loff_t offset,ssize_t len)4467 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4468 				    ssize_t len)
4469 {
4470 	handle_t *handle;
4471 	unsigned int max_blocks;
4472 	int ret = 0;
4473 	int ret2 = 0;
4474 	struct ext4_map_blocks map;
4475 	unsigned int credits, blkbits = inode->i_blkbits;
4476 
4477 	map.m_lblk = offset >> blkbits;
4478 	/*
4479 	 * We can't just convert len to max_blocks because
4480 	 * If blocksize = 4096 offset = 3072 and len = 2048
4481 	 */
4482 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4483 		      map.m_lblk);
4484 	/*
4485 	 * credits to insert 1 extent into extent tree
4486 	 */
4487 	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4488 	while (ret >= 0 && ret < max_blocks) {
4489 		map.m_lblk += ret;
4490 		map.m_len = (max_blocks -= ret);
4491 		handle = ext4_journal_start(inode, credits);
4492 		if (IS_ERR(handle)) {
4493 			ret = PTR_ERR(handle);
4494 			break;
4495 		}
4496 		ret = ext4_map_blocks(handle, inode, &map,
4497 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4498 		if (ret <= 0) {
4499 			WARN_ON(ret <= 0);
4500 			ext4_msg(inode->i_sb, KERN_ERR,
4501 				 "%s:%d: inode #%lu: block %u: len %u: "
4502 				 "ext4_ext_map_blocks returned %d",
4503 				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4504 				 map.m_len, ret);
4505 		}
4506 		ext4_mark_inode_dirty(handle, inode);
4507 		ret2 = ext4_journal_stop(handle);
4508 		if (ret <= 0 || ret2 )
4509 			break;
4510 	}
4511 	return ret > 0 ? ret2 : ret;
4512 }
4513 
4514 /*
4515  * Callback function called for each extent to gather FIEMAP information.
4516  */
ext4_ext_fiemap_cb(struct inode * inode,ext4_lblk_t next,struct ext4_ext_cache * newex,struct ext4_extent * ex,void * data)4517 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4518 		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4519 		       void *data)
4520 {
4521 	__u64	logical;
4522 	__u64	physical;
4523 	__u64	length;
4524 	__u32	flags = 0;
4525 	int		ret = 0;
4526 	struct fiemap_extent_info *fieinfo = data;
4527 	unsigned char blksize_bits;
4528 
4529 	blksize_bits = inode->i_sb->s_blocksize_bits;
4530 	logical = (__u64)newex->ec_block << blksize_bits;
4531 
4532 	if (newex->ec_start == 0) {
4533 		/*
4534 		 * No extent in extent-tree contains block @newex->ec_start,
4535 		 * then the block may stay in 1)a hole or 2)delayed-extent.
4536 		 *
4537 		 * Holes or delayed-extents are processed as follows.
4538 		 * 1. lookup dirty pages with specified range in pagecache.
4539 		 *    If no page is got, then there is no delayed-extent and
4540 		 *    return with EXT_CONTINUE.
4541 		 * 2. find the 1st mapped buffer,
4542 		 * 3. check if the mapped buffer is both in the request range
4543 		 *    and a delayed buffer. If not, there is no delayed-extent,
4544 		 *    then return.
4545 		 * 4. a delayed-extent is found, the extent will be collected.
4546 		 */
4547 		ext4_lblk_t	end = 0;
4548 		pgoff_t		last_offset;
4549 		pgoff_t		offset;
4550 		pgoff_t		index;
4551 		pgoff_t		start_index = 0;
4552 		struct page	**pages = NULL;
4553 		struct buffer_head *bh = NULL;
4554 		struct buffer_head *head = NULL;
4555 		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4556 
4557 		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4558 		if (pages == NULL)
4559 			return -ENOMEM;
4560 
4561 		offset = logical >> PAGE_SHIFT;
4562 repeat:
4563 		last_offset = offset;
4564 		head = NULL;
4565 		ret = find_get_pages_tag(inode->i_mapping, &offset,
4566 					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4567 
4568 		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4569 			/* First time, try to find a mapped buffer. */
4570 			if (ret == 0) {
4571 out:
4572 				for (index = 0; index < ret; index++)
4573 					page_cache_release(pages[index]);
4574 				/* just a hole. */
4575 				kfree(pages);
4576 				return EXT_CONTINUE;
4577 			}
4578 			index = 0;
4579 
4580 next_page:
4581 			/* Try to find the 1st mapped buffer. */
4582 			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4583 				  blksize_bits;
4584 			if (!page_has_buffers(pages[index]))
4585 				goto out;
4586 			head = page_buffers(pages[index]);
4587 			if (!head)
4588 				goto out;
4589 
4590 			index++;
4591 			bh = head;
4592 			do {
4593 				if (end >= newex->ec_block +
4594 					newex->ec_len)
4595 					/* The buffer is out of
4596 					 * the request range.
4597 					 */
4598 					goto out;
4599 
4600 				if (buffer_mapped(bh) &&
4601 				    end >= newex->ec_block) {
4602 					start_index = index - 1;
4603 					/* get the 1st mapped buffer. */
4604 					goto found_mapped_buffer;
4605 				}
4606 
4607 				bh = bh->b_this_page;
4608 				end++;
4609 			} while (bh != head);
4610 
4611 			/* No mapped buffer in the range found in this page,
4612 			 * We need to look up next page.
4613 			 */
4614 			if (index >= ret) {
4615 				/* There is no page left, but we need to limit
4616 				 * newex->ec_len.
4617 				 */
4618 				newex->ec_len = end - newex->ec_block;
4619 				goto out;
4620 			}
4621 			goto next_page;
4622 		} else {
4623 			/*Find contiguous delayed buffers. */
4624 			if (ret > 0 && pages[0]->index == last_offset)
4625 				head = page_buffers(pages[0]);
4626 			bh = head;
4627 			index = 1;
4628 			start_index = 0;
4629 		}
4630 
4631 found_mapped_buffer:
4632 		if (bh != NULL && buffer_delay(bh)) {
4633 			/* 1st or contiguous delayed buffer found. */
4634 			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4635 				/*
4636 				 * 1st delayed buffer found, record
4637 				 * the start of extent.
4638 				 */
4639 				flags |= FIEMAP_EXTENT_DELALLOC;
4640 				newex->ec_block = end;
4641 				logical = (__u64)end << blksize_bits;
4642 			}
4643 			/* Find contiguous delayed buffers. */
4644 			do {
4645 				if (!buffer_delay(bh))
4646 					goto found_delayed_extent;
4647 				bh = bh->b_this_page;
4648 				end++;
4649 			} while (bh != head);
4650 
4651 			for (; index < ret; index++) {
4652 				if (!page_has_buffers(pages[index])) {
4653 					bh = NULL;
4654 					break;
4655 				}
4656 				head = page_buffers(pages[index]);
4657 				if (!head) {
4658 					bh = NULL;
4659 					break;
4660 				}
4661 
4662 				if (pages[index]->index !=
4663 				    pages[start_index]->index + index
4664 				    - start_index) {
4665 					/* Blocks are not contiguous. */
4666 					bh = NULL;
4667 					break;
4668 				}
4669 				bh = head;
4670 				do {
4671 					if (!buffer_delay(bh))
4672 						/* Delayed-extent ends. */
4673 						goto found_delayed_extent;
4674 					bh = bh->b_this_page;
4675 					end++;
4676 				} while (bh != head);
4677 			}
4678 		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4679 			/* a hole found. */
4680 			goto out;
4681 
4682 found_delayed_extent:
4683 		newex->ec_len = min(end - newex->ec_block,
4684 						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4685 		if (ret == nr_pages && bh != NULL &&
4686 			newex->ec_len < EXT_INIT_MAX_LEN &&
4687 			buffer_delay(bh)) {
4688 			/* Have not collected an extent and continue. */
4689 			for (index = 0; index < ret; index++)
4690 				page_cache_release(pages[index]);
4691 			goto repeat;
4692 		}
4693 
4694 		for (index = 0; index < ret; index++)
4695 			page_cache_release(pages[index]);
4696 		kfree(pages);
4697 	}
4698 
4699 	physical = (__u64)newex->ec_start << blksize_bits;
4700 	length =   (__u64)newex->ec_len << blksize_bits;
4701 
4702 	if (ex && ext4_ext_is_uninitialized(ex))
4703 		flags |= FIEMAP_EXTENT_UNWRITTEN;
4704 
4705 	if (next == EXT_MAX_BLOCKS)
4706 		flags |= FIEMAP_EXTENT_LAST;
4707 
4708 	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4709 					length, flags);
4710 	if (ret < 0)
4711 		return ret;
4712 	if (ret == 1)
4713 		return EXT_BREAK;
4714 	return EXT_CONTINUE;
4715 }
4716 /* fiemap flags we can handle specified here */
4717 #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4718 
ext4_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)4719 static int ext4_xattr_fiemap(struct inode *inode,
4720 				struct fiemap_extent_info *fieinfo)
4721 {
4722 	__u64 physical = 0;
4723 	__u64 length;
4724 	__u32 flags = FIEMAP_EXTENT_LAST;
4725 	int blockbits = inode->i_sb->s_blocksize_bits;
4726 	int error = 0;
4727 
4728 	/* in-inode? */
4729 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4730 		struct ext4_iloc iloc;
4731 		int offset;	/* offset of xattr in inode */
4732 
4733 		error = ext4_get_inode_loc(inode, &iloc);
4734 		if (error)
4735 			return error;
4736 		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4737 		offset = EXT4_GOOD_OLD_INODE_SIZE +
4738 				EXT4_I(inode)->i_extra_isize;
4739 		physical += offset;
4740 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4741 		flags |= FIEMAP_EXTENT_DATA_INLINE;
4742 		brelse(iloc.bh);
4743 	} else { /* external block */
4744 		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4745 		length = inode->i_sb->s_blocksize;
4746 	}
4747 
4748 	if (physical)
4749 		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4750 						length, flags);
4751 	return (error < 0 ? error : 0);
4752 }
4753 
4754 /*
4755  * ext4_ext_punch_hole
4756  *
4757  * Punches a hole of "length" bytes in a file starting
4758  * at byte "offset"
4759  *
4760  * @inode:  The inode of the file to punch a hole in
4761  * @offset: The starting byte offset of the hole
4762  * @length: The length of the hole
4763  *
4764  * Returns the number of blocks removed or negative on err
4765  */
ext4_ext_punch_hole(struct file * file,loff_t offset,loff_t length)4766 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4767 {
4768 	struct inode *inode = file->f_path.dentry->d_inode;
4769 	struct super_block *sb = inode->i_sb;
4770 	ext4_lblk_t first_block, stop_block;
4771 	struct address_space *mapping = inode->i_mapping;
4772 	handle_t *handle;
4773 	loff_t first_page, last_page, page_len;
4774 	loff_t first_page_offset, last_page_offset;
4775 	int credits, err = 0;
4776 
4777 	/* No need to punch hole beyond i_size */
4778 	if (offset >= inode->i_size)
4779 		return 0;
4780 
4781 	/*
4782 	 * If the hole extends beyond i_size, set the hole
4783 	 * to end after the page that contains i_size
4784 	 */
4785 	if (offset + length > inode->i_size) {
4786 		length = inode->i_size +
4787 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4788 		   offset;
4789 	}
4790 
4791 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4792 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4793 
4794 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4795 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
4796 
4797 	/*
4798 	 * Write out all dirty pages to avoid race conditions
4799 	 * Then release them.
4800 	 */
4801 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4802 		err = filemap_write_and_wait_range(mapping,
4803 			offset, offset + length - 1);
4804 
4805 		if (err)
4806 			return err;
4807 	}
4808 
4809 	/* Now release the pages */
4810 	if (last_page_offset > first_page_offset) {
4811 		truncate_inode_pages_range(mapping, first_page_offset,
4812 					   last_page_offset-1);
4813 	}
4814 
4815 	/* finish any pending end_io work */
4816 	ext4_flush_completed_IO(inode);
4817 
4818 	credits = ext4_writepage_trans_blocks(inode);
4819 	handle = ext4_journal_start(inode, credits);
4820 	if (IS_ERR(handle))
4821 		return PTR_ERR(handle);
4822 
4823 	err = ext4_orphan_add(handle, inode);
4824 	if (err)
4825 		goto out;
4826 
4827 	/*
4828 	 * Now we need to zero out the non-page-aligned data in the
4829 	 * pages at the start and tail of the hole, and unmap the buffer
4830 	 * heads for the block aligned regions of the page that were
4831 	 * completely zeroed.
4832 	 */
4833 	if (first_page > last_page) {
4834 		/*
4835 		 * If the file space being truncated is contained within a page
4836 		 * just zero out and unmap the middle of that page
4837 		 */
4838 		err = ext4_discard_partial_page_buffers(handle,
4839 			mapping, offset, length, 0);
4840 
4841 		if (err)
4842 			goto out;
4843 	} else {
4844 		/*
4845 		 * zero out and unmap the partial page that contains
4846 		 * the start of the hole
4847 		 */
4848 		page_len  = first_page_offset - offset;
4849 		if (page_len > 0) {
4850 			err = ext4_discard_partial_page_buffers(handle, mapping,
4851 						   offset, page_len, 0);
4852 			if (err)
4853 				goto out;
4854 		}
4855 
4856 		/*
4857 		 * zero out and unmap the partial page that contains
4858 		 * the end of the hole
4859 		 */
4860 		page_len = offset + length - last_page_offset;
4861 		if (page_len > 0) {
4862 			err = ext4_discard_partial_page_buffers(handle, mapping,
4863 					last_page_offset, page_len, 0);
4864 			if (err)
4865 				goto out;
4866 		}
4867 	}
4868 
4869 	/*
4870 	 * If i_size is contained in the last page, we need to
4871 	 * unmap and zero the partial page after i_size
4872 	 */
4873 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4874 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4875 
4876 		page_len = PAGE_CACHE_SIZE -
4877 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4878 
4879 		if (page_len > 0) {
4880 			err = ext4_discard_partial_page_buffers(handle,
4881 			  mapping, inode->i_size, page_len, 0);
4882 
4883 			if (err)
4884 				goto out;
4885 		}
4886 	}
4887 
4888 	first_block = (offset + sb->s_blocksize - 1) >>
4889 		EXT4_BLOCK_SIZE_BITS(sb);
4890 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4891 
4892 	/* If there are no blocks to remove, return now */
4893 	if (first_block >= stop_block)
4894 		goto out;
4895 
4896 	down_write(&EXT4_I(inode)->i_data_sem);
4897 	ext4_ext_invalidate_cache(inode);
4898 	ext4_discard_preallocations(inode);
4899 
4900 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4901 
4902 	ext4_ext_invalidate_cache(inode);
4903 	ext4_discard_preallocations(inode);
4904 
4905 	if (IS_SYNC(inode))
4906 		ext4_handle_sync(handle);
4907 
4908 	up_write(&EXT4_I(inode)->i_data_sem);
4909 
4910 out:
4911 	ext4_orphan_del(handle, inode);
4912 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4913 	ext4_mark_inode_dirty(handle, inode);
4914 	ext4_journal_stop(handle);
4915 	return err;
4916 }
ext4_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4917 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4918 		__u64 start, __u64 len)
4919 {
4920 	ext4_lblk_t start_blk;
4921 	int error = 0;
4922 
4923 	/* fallback to generic here if not in extents fmt */
4924 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4925 		return generic_block_fiemap(inode, fieinfo, start, len,
4926 			ext4_get_block);
4927 
4928 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4929 		return -EBADR;
4930 
4931 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4932 		error = ext4_xattr_fiemap(inode, fieinfo);
4933 	} else {
4934 		ext4_lblk_t len_blks;
4935 		__u64 last_blk;
4936 
4937 		start_blk = start >> inode->i_sb->s_blocksize_bits;
4938 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4939 		if (last_blk >= EXT_MAX_BLOCKS)
4940 			last_blk = EXT_MAX_BLOCKS-1;
4941 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4942 
4943 		/*
4944 		 * Walk the extent tree gathering extent information.
4945 		 * ext4_ext_fiemap_cb will push extents back to user.
4946 		 */
4947 		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4948 					  ext4_ext_fiemap_cb, fieinfo);
4949 	}
4950 
4951 	return error;
4952 }
4953