1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48 * used by extent splitting.
49 */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54
55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
57
58 static int ext4_split_extent(handle_t *handle,
59 struct inode *inode,
60 struct ext4_ext_path *path,
61 struct ext4_map_blocks *map,
62 int split_flag,
63 int flags);
64
65 static int ext4_split_extent_at(handle_t *handle,
66 struct inode *inode,
67 struct ext4_ext_path *path,
68 ext4_lblk_t split,
69 int split_flag,
70 int flags);
71
ext4_ext_truncate_extend_restart(handle_t * handle,struct inode * inode,int needed)72 static int ext4_ext_truncate_extend_restart(handle_t *handle,
73 struct inode *inode,
74 int needed)
75 {
76 int err;
77
78 if (!ext4_handle_valid(handle))
79 return 0;
80 if (handle->h_buffer_credits > needed)
81 return 0;
82 err = ext4_journal_extend(handle, needed);
83 if (err <= 0)
84 return err;
85 err = ext4_truncate_restart_trans(handle, inode, needed);
86 if (err == 0)
87 err = -EAGAIN;
88
89 return err;
90 }
91
92 /*
93 * could return:
94 * - EROFS
95 * - ENOMEM
96 */
ext4_ext_get_access(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)97 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
98 struct ext4_ext_path *path)
99 {
100 if (path->p_bh) {
101 /* path points to block */
102 return ext4_journal_get_write_access(handle, path->p_bh);
103 }
104 /* path points to leaf/index in inode body */
105 /* we use in-core data, no need to protect them */
106 return 0;
107 }
108
109 /*
110 * could return:
111 * - EROFS
112 * - ENOMEM
113 * - EIO
114 */
115 #define ext4_ext_dirty(handle, inode, path) \
116 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
__ext4_ext_dirty(const char * where,unsigned int line,handle_t * handle,struct inode * inode,struct ext4_ext_path * path)117 static int __ext4_ext_dirty(const char *where, unsigned int line,
118 handle_t *handle, struct inode *inode,
119 struct ext4_ext_path *path)
120 {
121 int err;
122 if (path->p_bh) {
123 /* path points to block */
124 err = __ext4_handle_dirty_metadata(where, line, handle,
125 inode, path->p_bh);
126 } else {
127 /* path points to leaf/index in inode body */
128 err = ext4_mark_inode_dirty(handle, inode);
129 }
130 return err;
131 }
132
ext4_ext_find_goal(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)133 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
134 struct ext4_ext_path *path,
135 ext4_lblk_t block)
136 {
137 if (path) {
138 int depth = path->p_depth;
139 struct ext4_extent *ex;
140
141 /*
142 * Try to predict block placement assuming that we are
143 * filling in a file which will eventually be
144 * non-sparse --- i.e., in the case of libbfd writing
145 * an ELF object sections out-of-order but in a way
146 * the eventually results in a contiguous object or
147 * executable file, or some database extending a table
148 * space file. However, this is actually somewhat
149 * non-ideal if we are writing a sparse file such as
150 * qemu or KVM writing a raw image file that is going
151 * to stay fairly sparse, since it will end up
152 * fragmenting the file system's free space. Maybe we
153 * should have some hueristics or some way to allow
154 * userspace to pass a hint to file system,
155 * especially if the latter case turns out to be
156 * common.
157 */
158 ex = path[depth].p_ext;
159 if (ex) {
160 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
161 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
162
163 if (block > ext_block)
164 return ext_pblk + (block - ext_block);
165 else
166 return ext_pblk - (ext_block - block);
167 }
168
169 /* it looks like index is empty;
170 * try to find starting block from index itself */
171 if (path[depth].p_bh)
172 return path[depth].p_bh->b_blocknr;
173 }
174
175 /* OK. use inode's group */
176 return ext4_inode_to_goal_block(inode);
177 }
178
179 /*
180 * Allocation for a meta data block
181 */
182 static ext4_fsblk_t
ext4_ext_new_meta_block(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex,int * err,unsigned int flags)183 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
184 struct ext4_ext_path *path,
185 struct ext4_extent *ex, int *err, unsigned int flags)
186 {
187 ext4_fsblk_t goal, newblock;
188
189 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
190 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
191 NULL, err);
192 return newblock;
193 }
194
ext4_ext_space_block(struct inode * inode,int check)195 static inline int ext4_ext_space_block(struct inode *inode, int check)
196 {
197 int size;
198
199 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
200 / sizeof(struct ext4_extent);
201 #ifdef AGGRESSIVE_TEST
202 if (!check && size > 6)
203 size = 6;
204 #endif
205 return size;
206 }
207
ext4_ext_space_block_idx(struct inode * inode,int check)208 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
209 {
210 int size;
211
212 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
213 / sizeof(struct ext4_extent_idx);
214 #ifdef AGGRESSIVE_TEST
215 if (!check && size > 5)
216 size = 5;
217 #endif
218 return size;
219 }
220
ext4_ext_space_root(struct inode * inode,int check)221 static inline int ext4_ext_space_root(struct inode *inode, int check)
222 {
223 int size;
224
225 size = sizeof(EXT4_I(inode)->i_data);
226 size -= sizeof(struct ext4_extent_header);
227 size /= sizeof(struct ext4_extent);
228 #ifdef AGGRESSIVE_TEST
229 if (!check && size > 3)
230 size = 3;
231 #endif
232 return size;
233 }
234
ext4_ext_space_root_idx(struct inode * inode,int check)235 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
236 {
237 int size;
238
239 size = sizeof(EXT4_I(inode)->i_data);
240 size -= sizeof(struct ext4_extent_header);
241 size /= sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 if (!check && size > 4)
244 size = 4;
245 #endif
246 return size;
247 }
248
249 /*
250 * Calculate the number of metadata blocks needed
251 * to allocate @blocks
252 * Worse case is one block per extent
253 */
ext4_ext_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)254 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
255 {
256 struct ext4_inode_info *ei = EXT4_I(inode);
257 int idxs;
258
259 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
260 / sizeof(struct ext4_extent_idx));
261
262 /*
263 * If the new delayed allocation block is contiguous with the
264 * previous da block, it can share index blocks with the
265 * previous block, so we only need to allocate a new index
266 * block every idxs leaf blocks. At ldxs**2 blocks, we need
267 * an additional index block, and at ldxs**3 blocks, yet
268 * another index blocks.
269 */
270 if (ei->i_da_metadata_calc_len &&
271 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
272 int num = 0;
273
274 if ((ei->i_da_metadata_calc_len % idxs) == 0)
275 num++;
276 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
277 num++;
278 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
279 num++;
280 ei->i_da_metadata_calc_len = 0;
281 } else
282 ei->i_da_metadata_calc_len++;
283 ei->i_da_metadata_calc_last_lblock++;
284 return num;
285 }
286
287 /*
288 * In the worst case we need a new set of index blocks at
289 * every level of the inode's extent tree.
290 */
291 ei->i_da_metadata_calc_len = 1;
292 ei->i_da_metadata_calc_last_lblock = lblock;
293 return ext_depth(inode) + 1;
294 }
295
296 static int
ext4_ext_max_entries(struct inode * inode,int depth)297 ext4_ext_max_entries(struct inode *inode, int depth)
298 {
299 int max;
300
301 if (depth == ext_depth(inode)) {
302 if (depth == 0)
303 max = ext4_ext_space_root(inode, 1);
304 else
305 max = ext4_ext_space_root_idx(inode, 1);
306 } else {
307 if (depth == 0)
308 max = ext4_ext_space_block(inode, 1);
309 else
310 max = ext4_ext_space_block_idx(inode, 1);
311 }
312
313 return max;
314 }
315
ext4_valid_extent(struct inode * inode,struct ext4_extent * ext)316 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
317 {
318 ext4_fsblk_t block = ext4_ext_pblock(ext);
319 int len = ext4_ext_get_actual_len(ext);
320 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
321 ext4_lblk_t last = lblock + len - 1;
322
323 if (lblock > last)
324 return 0;
325 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
326 }
327
ext4_valid_extent_idx(struct inode * inode,struct ext4_extent_idx * ext_idx)328 static int ext4_valid_extent_idx(struct inode *inode,
329 struct ext4_extent_idx *ext_idx)
330 {
331 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
332
333 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
334 }
335
ext4_valid_extent_entries(struct inode * inode,struct ext4_extent_header * eh,int depth)336 static int ext4_valid_extent_entries(struct inode *inode,
337 struct ext4_extent_header *eh,
338 int depth)
339 {
340 unsigned short entries;
341 if (eh->eh_entries == 0)
342 return 1;
343
344 entries = le16_to_cpu(eh->eh_entries);
345
346 if (depth == 0) {
347 /* leaf entries */
348 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
349 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
350 ext4_fsblk_t pblock = 0;
351 ext4_lblk_t lblock = 0;
352 ext4_lblk_t prev = 0;
353 int len = 0;
354 while (entries) {
355 if (!ext4_valid_extent(inode, ext))
356 return 0;
357
358 /* Check for overlapping extents */
359 lblock = le32_to_cpu(ext->ee_block);
360 len = ext4_ext_get_actual_len(ext);
361 if ((lblock <= prev) && prev) {
362 pblock = ext4_ext_pblock(ext);
363 es->s_last_error_block = cpu_to_le64(pblock);
364 return 0;
365 }
366 ext++;
367 entries--;
368 prev = lblock + len - 1;
369 }
370 } else {
371 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
372 while (entries) {
373 if (!ext4_valid_extent_idx(inode, ext_idx))
374 return 0;
375 ext_idx++;
376 entries--;
377 }
378 }
379 return 1;
380 }
381
__ext4_ext_check(const char * function,unsigned int line,struct inode * inode,struct ext4_extent_header * eh,int depth)382 static int __ext4_ext_check(const char *function, unsigned int line,
383 struct inode *inode, struct ext4_extent_header *eh,
384 int depth)
385 {
386 const char *error_msg;
387 int max = 0;
388
389 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
390 error_msg = "invalid magic";
391 goto corrupted;
392 }
393 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
394 error_msg = "unexpected eh_depth";
395 goto corrupted;
396 }
397 if (unlikely(eh->eh_max == 0)) {
398 error_msg = "invalid eh_max";
399 goto corrupted;
400 }
401 max = ext4_ext_max_entries(inode, depth);
402 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
403 error_msg = "too large eh_max";
404 goto corrupted;
405 }
406 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
407 error_msg = "invalid eh_entries";
408 goto corrupted;
409 }
410 if (!ext4_valid_extent_entries(inode, eh, depth)) {
411 error_msg = "invalid extent entries";
412 goto corrupted;
413 }
414 return 0;
415
416 corrupted:
417 ext4_error_inode(inode, function, line, 0,
418 "bad header/extent: %s - magic %x, "
419 "entries %u, max %u(%u), depth %u(%u)",
420 error_msg, le16_to_cpu(eh->eh_magic),
421 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
422 max, le16_to_cpu(eh->eh_depth), depth);
423
424 return -EIO;
425 }
426
427 #define ext4_ext_check(inode, eh, depth) \
428 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
429
ext4_ext_check_inode(struct inode * inode)430 int ext4_ext_check_inode(struct inode *inode)
431 {
432 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
433 }
434
435 #ifdef EXT_DEBUG
ext4_ext_show_path(struct inode * inode,struct ext4_ext_path * path)436 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
437 {
438 int k, l = path->p_depth;
439
440 ext_debug("path:");
441 for (k = 0; k <= l; k++, path++) {
442 if (path->p_idx) {
443 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
444 ext4_idx_pblock(path->p_idx));
445 } else if (path->p_ext) {
446 ext_debug(" %d:[%d]%d:%llu ",
447 le32_to_cpu(path->p_ext->ee_block),
448 ext4_ext_is_uninitialized(path->p_ext),
449 ext4_ext_get_actual_len(path->p_ext),
450 ext4_ext_pblock(path->p_ext));
451 } else
452 ext_debug(" []");
453 }
454 ext_debug("\n");
455 }
456
ext4_ext_show_leaf(struct inode * inode,struct ext4_ext_path * path)457 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
458 {
459 int depth = ext_depth(inode);
460 struct ext4_extent_header *eh;
461 struct ext4_extent *ex;
462 int i;
463
464 if (!path)
465 return;
466
467 eh = path[depth].p_hdr;
468 ex = EXT_FIRST_EXTENT(eh);
469
470 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
471
472 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
473 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
474 ext4_ext_is_uninitialized(ex),
475 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
476 }
477 ext_debug("\n");
478 }
479
ext4_ext_show_move(struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t newblock,int level)480 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
481 ext4_fsblk_t newblock, int level)
482 {
483 int depth = ext_depth(inode);
484 struct ext4_extent *ex;
485
486 if (depth != level) {
487 struct ext4_extent_idx *idx;
488 idx = path[level].p_idx;
489 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
490 ext_debug("%d: move %d:%llu in new index %llu\n", level,
491 le32_to_cpu(idx->ei_block),
492 ext4_idx_pblock(idx),
493 newblock);
494 idx++;
495 }
496
497 return;
498 }
499
500 ex = path[depth].p_ext;
501 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
502 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
503 le32_to_cpu(ex->ee_block),
504 ext4_ext_pblock(ex),
505 ext4_ext_is_uninitialized(ex),
506 ext4_ext_get_actual_len(ex),
507 newblock);
508 ex++;
509 }
510 }
511
512 #else
513 #define ext4_ext_show_path(inode, path)
514 #define ext4_ext_show_leaf(inode, path)
515 #define ext4_ext_show_move(inode, path, newblock, level)
516 #endif
517
ext4_ext_drop_refs(struct ext4_ext_path * path)518 void ext4_ext_drop_refs(struct ext4_ext_path *path)
519 {
520 int depth = path->p_depth;
521 int i;
522
523 for (i = 0; i <= depth; i++, path++)
524 if (path->p_bh) {
525 brelse(path->p_bh);
526 path->p_bh = NULL;
527 }
528 }
529
530 /*
531 * ext4_ext_binsearch_idx:
532 * binary search for the closest index of the given block
533 * the header must be checked before calling this
534 */
535 static void
ext4_ext_binsearch_idx(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)536 ext4_ext_binsearch_idx(struct inode *inode,
537 struct ext4_ext_path *path, ext4_lblk_t block)
538 {
539 struct ext4_extent_header *eh = path->p_hdr;
540 struct ext4_extent_idx *r, *l, *m;
541
542
543 ext_debug("binsearch for %u(idx): ", block);
544
545 l = EXT_FIRST_INDEX(eh) + 1;
546 r = EXT_LAST_INDEX(eh);
547 while (l <= r) {
548 m = l + (r - l) / 2;
549 if (block < le32_to_cpu(m->ei_block))
550 r = m - 1;
551 else
552 l = m + 1;
553 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
554 m, le32_to_cpu(m->ei_block),
555 r, le32_to_cpu(r->ei_block));
556 }
557
558 path->p_idx = l - 1;
559 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
560 ext4_idx_pblock(path->p_idx));
561
562 #ifdef CHECK_BINSEARCH
563 {
564 struct ext4_extent_idx *chix, *ix;
565 int k;
566
567 chix = ix = EXT_FIRST_INDEX(eh);
568 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
569 if (k != 0 &&
570 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
571 printk(KERN_DEBUG "k=%d, ix=0x%p, "
572 "first=0x%p\n", k,
573 ix, EXT_FIRST_INDEX(eh));
574 printk(KERN_DEBUG "%u <= %u\n",
575 le32_to_cpu(ix->ei_block),
576 le32_to_cpu(ix[-1].ei_block));
577 }
578 BUG_ON(k && le32_to_cpu(ix->ei_block)
579 <= le32_to_cpu(ix[-1].ei_block));
580 if (block < le32_to_cpu(ix->ei_block))
581 break;
582 chix = ix;
583 }
584 BUG_ON(chix != path->p_idx);
585 }
586 #endif
587
588 }
589
590 /*
591 * ext4_ext_binsearch:
592 * binary search for closest extent of the given block
593 * the header must be checked before calling this
594 */
595 static void
ext4_ext_binsearch(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)596 ext4_ext_binsearch(struct inode *inode,
597 struct ext4_ext_path *path, ext4_lblk_t block)
598 {
599 struct ext4_extent_header *eh = path->p_hdr;
600 struct ext4_extent *r, *l, *m;
601
602 if (eh->eh_entries == 0) {
603 /*
604 * this leaf is empty:
605 * we get such a leaf in split/add case
606 */
607 return;
608 }
609
610 ext_debug("binsearch for %u: ", block);
611
612 l = EXT_FIRST_EXTENT(eh) + 1;
613 r = EXT_LAST_EXTENT(eh);
614
615 while (l <= r) {
616 m = l + (r - l) / 2;
617 if (block < le32_to_cpu(m->ee_block))
618 r = m - 1;
619 else
620 l = m + 1;
621 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
622 m, le32_to_cpu(m->ee_block),
623 r, le32_to_cpu(r->ee_block));
624 }
625
626 path->p_ext = l - 1;
627 ext_debug(" -> %d:%llu:[%d]%d ",
628 le32_to_cpu(path->p_ext->ee_block),
629 ext4_ext_pblock(path->p_ext),
630 ext4_ext_is_uninitialized(path->p_ext),
631 ext4_ext_get_actual_len(path->p_ext));
632
633 #ifdef CHECK_BINSEARCH
634 {
635 struct ext4_extent *chex, *ex;
636 int k;
637
638 chex = ex = EXT_FIRST_EXTENT(eh);
639 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
640 BUG_ON(k && le32_to_cpu(ex->ee_block)
641 <= le32_to_cpu(ex[-1].ee_block));
642 if (block < le32_to_cpu(ex->ee_block))
643 break;
644 chex = ex;
645 }
646 BUG_ON(chex != path->p_ext);
647 }
648 #endif
649
650 }
651
ext4_ext_tree_init(handle_t * handle,struct inode * inode)652 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
653 {
654 struct ext4_extent_header *eh;
655
656 eh = ext_inode_hdr(inode);
657 eh->eh_depth = 0;
658 eh->eh_entries = 0;
659 eh->eh_magic = EXT4_EXT_MAGIC;
660 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
661 ext4_mark_inode_dirty(handle, inode);
662 ext4_ext_invalidate_cache(inode);
663 return 0;
664 }
665
666 struct ext4_ext_path *
ext4_ext_find_extent(struct inode * inode,ext4_lblk_t block,struct ext4_ext_path * path)667 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
668 struct ext4_ext_path *path)
669 {
670 struct ext4_extent_header *eh;
671 struct buffer_head *bh;
672 short int depth, i, ppos = 0, alloc = 0;
673 int ret;
674
675 eh = ext_inode_hdr(inode);
676 depth = ext_depth(inode);
677
678 /* account possible depth increase */
679 if (!path) {
680 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
681 GFP_NOFS);
682 if (!path)
683 return ERR_PTR(-ENOMEM);
684 alloc = 1;
685 }
686 path[0].p_hdr = eh;
687 path[0].p_bh = NULL;
688
689 i = depth;
690 /* walk through the tree */
691 while (i) {
692 int need_to_validate = 0;
693
694 ext_debug("depth %d: num %d, max %d\n",
695 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
696
697 ext4_ext_binsearch_idx(inode, path + ppos, block);
698 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
699 path[ppos].p_depth = i;
700 path[ppos].p_ext = NULL;
701
702 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
703 if (unlikely(!bh)) {
704 ret = -ENOMEM;
705 goto err;
706 }
707 if (!bh_uptodate_or_lock(bh)) {
708 trace_ext4_ext_load_extent(inode, block,
709 path[ppos].p_block);
710 ret = bh_submit_read(bh);
711 if (ret < 0) {
712 put_bh(bh);
713 goto err;
714 }
715 /* validate the extent entries */
716 need_to_validate = 1;
717 }
718 eh = ext_block_hdr(bh);
719 ppos++;
720 if (unlikely(ppos > depth)) {
721 put_bh(bh);
722 EXT4_ERROR_INODE(inode,
723 "ppos %d > depth %d", ppos, depth);
724 ret = -EIO;
725 goto err;
726 }
727 path[ppos].p_bh = bh;
728 path[ppos].p_hdr = eh;
729 i--;
730
731 ret = need_to_validate ? ext4_ext_check(inode, eh, i) : 0;
732 if (ret < 0)
733 goto err;
734 }
735
736 path[ppos].p_depth = i;
737 path[ppos].p_ext = NULL;
738 path[ppos].p_idx = NULL;
739
740 /* find extent */
741 ext4_ext_binsearch(inode, path + ppos, block);
742 /* if not an empty leaf */
743 if (path[ppos].p_ext)
744 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
745
746 ext4_ext_show_path(inode, path);
747
748 return path;
749
750 err:
751 ext4_ext_drop_refs(path);
752 if (alloc)
753 kfree(path);
754 return ERR_PTR(ret);
755 }
756
757 /*
758 * ext4_ext_insert_index:
759 * insert new index [@logical;@ptr] into the block at @curp;
760 * check where to insert: before @curp or after @curp
761 */
ext4_ext_insert_index(handle_t * handle,struct inode * inode,struct ext4_ext_path * curp,int logical,ext4_fsblk_t ptr)762 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
763 struct ext4_ext_path *curp,
764 int logical, ext4_fsblk_t ptr)
765 {
766 struct ext4_extent_idx *ix;
767 int len, err;
768
769 err = ext4_ext_get_access(handle, inode, curp);
770 if (err)
771 return err;
772
773 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
774 EXT4_ERROR_INODE(inode,
775 "logical %d == ei_block %d!",
776 logical, le32_to_cpu(curp->p_idx->ei_block));
777 return -EIO;
778 }
779
780 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
781 >= le16_to_cpu(curp->p_hdr->eh_max))) {
782 EXT4_ERROR_INODE(inode,
783 "eh_entries %d >= eh_max %d!",
784 le16_to_cpu(curp->p_hdr->eh_entries),
785 le16_to_cpu(curp->p_hdr->eh_max));
786 return -EIO;
787 }
788
789 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
790 /* insert after */
791 ext_debug("insert new index %d after: %llu\n", logical, ptr);
792 ix = curp->p_idx + 1;
793 } else {
794 /* insert before */
795 ext_debug("insert new index %d before: %llu\n", logical, ptr);
796 ix = curp->p_idx;
797 }
798
799 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
800 BUG_ON(len < 0);
801 if (len > 0) {
802 ext_debug("insert new index %d: "
803 "move %d indices from 0x%p to 0x%p\n",
804 logical, len, ix, ix + 1);
805 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
806 }
807
808 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
809 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
810 return -EIO;
811 }
812
813 ix->ei_block = cpu_to_le32(logical);
814 ext4_idx_store_pblock(ix, ptr);
815 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
816
817 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
818 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
819 return -EIO;
820 }
821
822 err = ext4_ext_dirty(handle, inode, curp);
823 ext4_std_error(inode->i_sb, err);
824
825 return err;
826 }
827
828 /*
829 * ext4_ext_split:
830 * inserts new subtree into the path, using free index entry
831 * at depth @at:
832 * - allocates all needed blocks (new leaf and all intermediate index blocks)
833 * - makes decision where to split
834 * - moves remaining extents and index entries (right to the split point)
835 * into the newly allocated blocks
836 * - initializes subtree
837 */
ext4_ext_split(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext,int at)838 static int ext4_ext_split(handle_t *handle, struct inode *inode,
839 unsigned int flags,
840 struct ext4_ext_path *path,
841 struct ext4_extent *newext, int at)
842 {
843 struct buffer_head *bh = NULL;
844 int depth = ext_depth(inode);
845 struct ext4_extent_header *neh;
846 struct ext4_extent_idx *fidx;
847 int i = at, k, m, a;
848 ext4_fsblk_t newblock, oldblock;
849 __le32 border;
850 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
851 int err = 0;
852
853 /* make decision: where to split? */
854 /* FIXME: now decision is simplest: at current extent */
855
856 /* if current leaf will be split, then we should use
857 * border from split point */
858 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
859 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
860 return -EIO;
861 }
862 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
863 border = path[depth].p_ext[1].ee_block;
864 ext_debug("leaf will be split."
865 " next leaf starts at %d\n",
866 le32_to_cpu(border));
867 } else {
868 border = newext->ee_block;
869 ext_debug("leaf will be added."
870 " next leaf starts at %d\n",
871 le32_to_cpu(border));
872 }
873
874 /*
875 * If error occurs, then we break processing
876 * and mark filesystem read-only. index won't
877 * be inserted and tree will be in consistent
878 * state. Next mount will repair buffers too.
879 */
880
881 /*
882 * Get array to track all allocated blocks.
883 * We need this to handle errors and free blocks
884 * upon them.
885 */
886 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
887 if (!ablocks)
888 return -ENOMEM;
889
890 /* allocate all needed blocks */
891 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
892 for (a = 0; a < depth - at; a++) {
893 newblock = ext4_ext_new_meta_block(handle, inode, path,
894 newext, &err, flags);
895 if (newblock == 0)
896 goto cleanup;
897 ablocks[a] = newblock;
898 }
899
900 /* initialize new leaf */
901 newblock = ablocks[--a];
902 if (unlikely(newblock == 0)) {
903 EXT4_ERROR_INODE(inode, "newblock == 0!");
904 err = -EIO;
905 goto cleanup;
906 }
907 bh = sb_getblk(inode->i_sb, newblock);
908 if (!bh) {
909 err = -ENOMEM;
910 goto cleanup;
911 }
912 lock_buffer(bh);
913
914 err = ext4_journal_get_create_access(handle, bh);
915 if (err)
916 goto cleanup;
917
918 neh = ext_block_hdr(bh);
919 neh->eh_entries = 0;
920 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
921 neh->eh_magic = EXT4_EXT_MAGIC;
922 neh->eh_depth = 0;
923
924 /* move remainder of path[depth] to the new leaf */
925 if (unlikely(path[depth].p_hdr->eh_entries !=
926 path[depth].p_hdr->eh_max)) {
927 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
928 path[depth].p_hdr->eh_entries,
929 path[depth].p_hdr->eh_max);
930 err = -EIO;
931 goto cleanup;
932 }
933 /* start copy from next extent */
934 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
935 ext4_ext_show_move(inode, path, newblock, depth);
936 if (m) {
937 struct ext4_extent *ex;
938 ex = EXT_FIRST_EXTENT(neh);
939 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
940 le16_add_cpu(&neh->eh_entries, m);
941 }
942
943 set_buffer_uptodate(bh);
944 unlock_buffer(bh);
945
946 err = ext4_handle_dirty_metadata(handle, inode, bh);
947 if (err)
948 goto cleanup;
949 brelse(bh);
950 bh = NULL;
951
952 /* correct old leaf */
953 if (m) {
954 err = ext4_ext_get_access(handle, inode, path + depth);
955 if (err)
956 goto cleanup;
957 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
958 err = ext4_ext_dirty(handle, inode, path + depth);
959 if (err)
960 goto cleanup;
961
962 }
963
964 /* create intermediate indexes */
965 k = depth - at - 1;
966 if (unlikely(k < 0)) {
967 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
968 err = -EIO;
969 goto cleanup;
970 }
971 if (k)
972 ext_debug("create %d intermediate indices\n", k);
973 /* insert new index into current index block */
974 /* current depth stored in i var */
975 i = depth - 1;
976 while (k--) {
977 oldblock = newblock;
978 newblock = ablocks[--a];
979 bh = sb_getblk(inode->i_sb, newblock);
980 if (!bh) {
981 err = -ENOMEM;
982 goto cleanup;
983 }
984 lock_buffer(bh);
985
986 err = ext4_journal_get_create_access(handle, bh);
987 if (err)
988 goto cleanup;
989
990 neh = ext_block_hdr(bh);
991 neh->eh_entries = cpu_to_le16(1);
992 neh->eh_magic = EXT4_EXT_MAGIC;
993 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
994 neh->eh_depth = cpu_to_le16(depth - i);
995 fidx = EXT_FIRST_INDEX(neh);
996 fidx->ei_block = border;
997 ext4_idx_store_pblock(fidx, oldblock);
998
999 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1000 i, newblock, le32_to_cpu(border), oldblock);
1001
1002 /* move remainder of path[i] to the new index block */
1003 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1004 EXT_LAST_INDEX(path[i].p_hdr))) {
1005 EXT4_ERROR_INODE(inode,
1006 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1007 le32_to_cpu(path[i].p_ext->ee_block));
1008 err = -EIO;
1009 goto cleanup;
1010 }
1011 /* start copy indexes */
1012 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1013 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1014 EXT_MAX_INDEX(path[i].p_hdr));
1015 ext4_ext_show_move(inode, path, newblock, i);
1016 if (m) {
1017 memmove(++fidx, path[i].p_idx,
1018 sizeof(struct ext4_extent_idx) * m);
1019 le16_add_cpu(&neh->eh_entries, m);
1020 }
1021 set_buffer_uptodate(bh);
1022 unlock_buffer(bh);
1023
1024 err = ext4_handle_dirty_metadata(handle, inode, bh);
1025 if (err)
1026 goto cleanup;
1027 brelse(bh);
1028 bh = NULL;
1029
1030 /* correct old index */
1031 if (m) {
1032 err = ext4_ext_get_access(handle, inode, path + i);
1033 if (err)
1034 goto cleanup;
1035 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1036 err = ext4_ext_dirty(handle, inode, path + i);
1037 if (err)
1038 goto cleanup;
1039 }
1040
1041 i--;
1042 }
1043
1044 /* insert new index */
1045 err = ext4_ext_insert_index(handle, inode, path + at,
1046 le32_to_cpu(border), newblock);
1047
1048 cleanup:
1049 if (bh) {
1050 if (buffer_locked(bh))
1051 unlock_buffer(bh);
1052 brelse(bh);
1053 }
1054
1055 if (err) {
1056 /* free all allocated blocks in error case */
1057 for (i = 0; i < depth; i++) {
1058 if (!ablocks[i])
1059 continue;
1060 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1061 EXT4_FREE_BLOCKS_METADATA);
1062 }
1063 }
1064 kfree(ablocks);
1065
1066 return err;
1067 }
1068
1069 /*
1070 * ext4_ext_grow_indepth:
1071 * implements tree growing procedure:
1072 * - allocates new block
1073 * - moves top-level data (index block or leaf) into the new block
1074 * - initializes new top-level, creating index that points to the
1075 * just created block
1076 */
ext4_ext_grow_indepth(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_extent * newext)1077 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1078 unsigned int flags,
1079 struct ext4_extent *newext)
1080 {
1081 struct ext4_extent_header *neh;
1082 struct buffer_head *bh;
1083 ext4_fsblk_t newblock;
1084 int err = 0;
1085
1086 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1087 newext, &err, flags);
1088 if (newblock == 0)
1089 return err;
1090
1091 bh = sb_getblk(inode->i_sb, newblock);
1092 if (!bh)
1093 return -ENOMEM;
1094 lock_buffer(bh);
1095
1096 err = ext4_journal_get_create_access(handle, bh);
1097 if (err) {
1098 unlock_buffer(bh);
1099 goto out;
1100 }
1101
1102 /* move top-level index/leaf into new block */
1103 memmove(bh->b_data, EXT4_I(inode)->i_data,
1104 sizeof(EXT4_I(inode)->i_data));
1105
1106 /* set size of new block */
1107 neh = ext_block_hdr(bh);
1108 /* old root could have indexes or leaves
1109 * so calculate e_max right way */
1110 if (ext_depth(inode))
1111 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1112 else
1113 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1114 neh->eh_magic = EXT4_EXT_MAGIC;
1115 set_buffer_uptodate(bh);
1116 unlock_buffer(bh);
1117
1118 err = ext4_handle_dirty_metadata(handle, inode, bh);
1119 if (err)
1120 goto out;
1121
1122 /* Update top-level index: num,max,pointer */
1123 neh = ext_inode_hdr(inode);
1124 neh->eh_entries = cpu_to_le16(1);
1125 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1126 if (neh->eh_depth == 0) {
1127 /* Root extent block becomes index block */
1128 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1129 EXT_FIRST_INDEX(neh)->ei_block =
1130 EXT_FIRST_EXTENT(neh)->ee_block;
1131 }
1132 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1133 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1134 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1135 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1136
1137 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1138 ext4_mark_inode_dirty(handle, inode);
1139 out:
1140 brelse(bh);
1141
1142 return err;
1143 }
1144
1145 /*
1146 * ext4_ext_create_new_leaf:
1147 * finds empty index and adds new leaf.
1148 * if no free index is found, then it requests in-depth growing.
1149 */
ext4_ext_create_new_leaf(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext)1150 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1151 unsigned int flags,
1152 struct ext4_ext_path *path,
1153 struct ext4_extent *newext)
1154 {
1155 struct ext4_ext_path *curp;
1156 int depth, i, err = 0;
1157
1158 repeat:
1159 i = depth = ext_depth(inode);
1160
1161 /* walk up to the tree and look for free index entry */
1162 curp = path + depth;
1163 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1164 i--;
1165 curp--;
1166 }
1167
1168 /* we use already allocated block for index block,
1169 * so subsequent data blocks should be contiguous */
1170 if (EXT_HAS_FREE_INDEX(curp)) {
1171 /* if we found index with free entry, then use that
1172 * entry: create all needed subtree and add new leaf */
1173 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1174 if (err)
1175 goto out;
1176
1177 /* refill path */
1178 ext4_ext_drop_refs(path);
1179 path = ext4_ext_find_extent(inode,
1180 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1181 path);
1182 if (IS_ERR(path))
1183 err = PTR_ERR(path);
1184 } else {
1185 /* tree is full, time to grow in depth */
1186 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1187 if (err)
1188 goto out;
1189
1190 /* refill path */
1191 ext4_ext_drop_refs(path);
1192 path = ext4_ext_find_extent(inode,
1193 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1194 path);
1195 if (IS_ERR(path)) {
1196 err = PTR_ERR(path);
1197 goto out;
1198 }
1199
1200 /*
1201 * only first (depth 0 -> 1) produces free space;
1202 * in all other cases we have to split the grown tree
1203 */
1204 depth = ext_depth(inode);
1205 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1206 /* now we need to split */
1207 goto repeat;
1208 }
1209 }
1210
1211 out:
1212 return err;
1213 }
1214
1215 /*
1216 * search the closest allocated block to the left for *logical
1217 * and returns it at @logical + it's physical address at @phys
1218 * if *logical is the smallest allocated block, the function
1219 * returns 0 at @phys
1220 * return value contains 0 (success) or error code
1221 */
ext4_ext_search_left(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1222 static int ext4_ext_search_left(struct inode *inode,
1223 struct ext4_ext_path *path,
1224 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1225 {
1226 struct ext4_extent_idx *ix;
1227 struct ext4_extent *ex;
1228 int depth, ee_len;
1229
1230 if (unlikely(path == NULL)) {
1231 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1232 return -EIO;
1233 }
1234 depth = path->p_depth;
1235 *phys = 0;
1236
1237 if (depth == 0 && path->p_ext == NULL)
1238 return 0;
1239
1240 /* usually extent in the path covers blocks smaller
1241 * then *logical, but it can be that extent is the
1242 * first one in the file */
1243
1244 ex = path[depth].p_ext;
1245 ee_len = ext4_ext_get_actual_len(ex);
1246 if (*logical < le32_to_cpu(ex->ee_block)) {
1247 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1248 EXT4_ERROR_INODE(inode,
1249 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1250 *logical, le32_to_cpu(ex->ee_block));
1251 return -EIO;
1252 }
1253 while (--depth >= 0) {
1254 ix = path[depth].p_idx;
1255 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1256 EXT4_ERROR_INODE(inode,
1257 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1258 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1259 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1260 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1261 depth);
1262 return -EIO;
1263 }
1264 }
1265 return 0;
1266 }
1267
1268 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1269 EXT4_ERROR_INODE(inode,
1270 "logical %d < ee_block %d + ee_len %d!",
1271 *logical, le32_to_cpu(ex->ee_block), ee_len);
1272 return -EIO;
1273 }
1274
1275 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1276 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1277 return 0;
1278 }
1279
1280 /*
1281 * search the closest allocated block to the right for *logical
1282 * and returns it at @logical + it's physical address at @phys
1283 * if *logical is the largest allocated block, the function
1284 * returns 0 at @phys
1285 * return value contains 0 (success) or error code
1286 */
ext4_ext_search_right(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys,struct ext4_extent ** ret_ex)1287 static int ext4_ext_search_right(struct inode *inode,
1288 struct ext4_ext_path *path,
1289 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1290 struct ext4_extent **ret_ex)
1291 {
1292 struct buffer_head *bh = NULL;
1293 struct ext4_extent_header *eh;
1294 struct ext4_extent_idx *ix;
1295 struct ext4_extent *ex;
1296 ext4_fsblk_t block;
1297 int depth; /* Note, NOT eh_depth; depth from top of tree */
1298 int ee_len;
1299
1300 if (unlikely(path == NULL)) {
1301 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1302 return -EIO;
1303 }
1304 depth = path->p_depth;
1305 *phys = 0;
1306
1307 if (depth == 0 && path->p_ext == NULL)
1308 return 0;
1309
1310 /* usually extent in the path covers blocks smaller
1311 * then *logical, but it can be that extent is the
1312 * first one in the file */
1313
1314 ex = path[depth].p_ext;
1315 ee_len = ext4_ext_get_actual_len(ex);
1316 if (*logical < le32_to_cpu(ex->ee_block)) {
1317 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1318 EXT4_ERROR_INODE(inode,
1319 "first_extent(path[%d].p_hdr) != ex",
1320 depth);
1321 return -EIO;
1322 }
1323 while (--depth >= 0) {
1324 ix = path[depth].p_idx;
1325 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1326 EXT4_ERROR_INODE(inode,
1327 "ix != EXT_FIRST_INDEX *logical %d!",
1328 *logical);
1329 return -EIO;
1330 }
1331 }
1332 goto found_extent;
1333 }
1334
1335 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1336 EXT4_ERROR_INODE(inode,
1337 "logical %d < ee_block %d + ee_len %d!",
1338 *logical, le32_to_cpu(ex->ee_block), ee_len);
1339 return -EIO;
1340 }
1341
1342 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1343 /* next allocated block in this leaf */
1344 ex++;
1345 goto found_extent;
1346 }
1347
1348 /* go up and search for index to the right */
1349 while (--depth >= 0) {
1350 ix = path[depth].p_idx;
1351 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1352 goto got_index;
1353 }
1354
1355 /* we've gone up to the root and found no index to the right */
1356 return 0;
1357
1358 got_index:
1359 /* we've found index to the right, let's
1360 * follow it and find the closest allocated
1361 * block to the right */
1362 ix++;
1363 block = ext4_idx_pblock(ix);
1364 while (++depth < path->p_depth) {
1365 bh = sb_bread(inode->i_sb, block);
1366 if (bh == NULL)
1367 return -EIO;
1368 eh = ext_block_hdr(bh);
1369 /* subtract from p_depth to get proper eh_depth */
1370 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1371 put_bh(bh);
1372 return -EIO;
1373 }
1374 ix = EXT_FIRST_INDEX(eh);
1375 block = ext4_idx_pblock(ix);
1376 put_bh(bh);
1377 }
1378
1379 bh = sb_bread(inode->i_sb, block);
1380 if (bh == NULL)
1381 return -EIO;
1382 eh = ext_block_hdr(bh);
1383 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1384 put_bh(bh);
1385 return -EIO;
1386 }
1387 ex = EXT_FIRST_EXTENT(eh);
1388 found_extent:
1389 *logical = le32_to_cpu(ex->ee_block);
1390 *phys = ext4_ext_pblock(ex);
1391 *ret_ex = ex;
1392 if (bh)
1393 put_bh(bh);
1394 return 0;
1395 }
1396
1397 /*
1398 * ext4_ext_next_allocated_block:
1399 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1400 * NOTE: it considers block number from index entry as
1401 * allocated block. Thus, index entries have to be consistent
1402 * with leaves.
1403 */
1404 static ext4_lblk_t
ext4_ext_next_allocated_block(struct ext4_ext_path * path)1405 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1406 {
1407 int depth;
1408
1409 BUG_ON(path == NULL);
1410 depth = path->p_depth;
1411
1412 if (depth == 0 && path->p_ext == NULL)
1413 return EXT_MAX_BLOCKS;
1414
1415 while (depth >= 0) {
1416 if (depth == path->p_depth) {
1417 /* leaf */
1418 if (path[depth].p_ext &&
1419 path[depth].p_ext !=
1420 EXT_LAST_EXTENT(path[depth].p_hdr))
1421 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1422 } else {
1423 /* index */
1424 if (path[depth].p_idx !=
1425 EXT_LAST_INDEX(path[depth].p_hdr))
1426 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1427 }
1428 depth--;
1429 }
1430
1431 return EXT_MAX_BLOCKS;
1432 }
1433
1434 /*
1435 * ext4_ext_next_leaf_block:
1436 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1437 */
ext4_ext_next_leaf_block(struct ext4_ext_path * path)1438 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1439 {
1440 int depth;
1441
1442 BUG_ON(path == NULL);
1443 depth = path->p_depth;
1444
1445 /* zero-tree has no leaf blocks at all */
1446 if (depth == 0)
1447 return EXT_MAX_BLOCKS;
1448
1449 /* go to index block */
1450 depth--;
1451
1452 while (depth >= 0) {
1453 if (path[depth].p_idx !=
1454 EXT_LAST_INDEX(path[depth].p_hdr))
1455 return (ext4_lblk_t)
1456 le32_to_cpu(path[depth].p_idx[1].ei_block);
1457 depth--;
1458 }
1459
1460 return EXT_MAX_BLOCKS;
1461 }
1462
1463 /*
1464 * ext4_ext_correct_indexes:
1465 * if leaf gets modified and modified extent is first in the leaf,
1466 * then we have to correct all indexes above.
1467 * TODO: do we need to correct tree in all cases?
1468 */
ext4_ext_correct_indexes(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1469 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1470 struct ext4_ext_path *path)
1471 {
1472 struct ext4_extent_header *eh;
1473 int depth = ext_depth(inode);
1474 struct ext4_extent *ex;
1475 __le32 border;
1476 int k, err = 0;
1477
1478 eh = path[depth].p_hdr;
1479 ex = path[depth].p_ext;
1480
1481 if (unlikely(ex == NULL || eh == NULL)) {
1482 EXT4_ERROR_INODE(inode,
1483 "ex %p == NULL or eh %p == NULL", ex, eh);
1484 return -EIO;
1485 }
1486
1487 if (depth == 0) {
1488 /* there is no tree at all */
1489 return 0;
1490 }
1491
1492 if (ex != EXT_FIRST_EXTENT(eh)) {
1493 /* we correct tree if first leaf got modified only */
1494 return 0;
1495 }
1496
1497 /*
1498 * TODO: we need correction if border is smaller than current one
1499 */
1500 k = depth - 1;
1501 border = path[depth].p_ext->ee_block;
1502 err = ext4_ext_get_access(handle, inode, path + k);
1503 if (err)
1504 return err;
1505 path[k].p_idx->ei_block = border;
1506 err = ext4_ext_dirty(handle, inode, path + k);
1507 if (err)
1508 return err;
1509
1510 while (k--) {
1511 /* change all left-side indexes */
1512 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1513 break;
1514 err = ext4_ext_get_access(handle, inode, path + k);
1515 if (err)
1516 break;
1517 path[k].p_idx->ei_block = border;
1518 err = ext4_ext_dirty(handle, inode, path + k);
1519 if (err)
1520 break;
1521 }
1522
1523 return err;
1524 }
1525
1526 int
ext4_can_extents_be_merged(struct inode * inode,struct ext4_extent * ex1,struct ext4_extent * ex2)1527 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1528 struct ext4_extent *ex2)
1529 {
1530 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1531
1532 /*
1533 * Make sure that either both extents are uninitialized, or
1534 * both are _not_.
1535 */
1536 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1537 return 0;
1538
1539 if (ext4_ext_is_uninitialized(ex1))
1540 max_len = EXT_UNINIT_MAX_LEN;
1541 else
1542 max_len = EXT_INIT_MAX_LEN;
1543
1544 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1545 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1546
1547 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1548 le32_to_cpu(ex2->ee_block))
1549 return 0;
1550
1551 /*
1552 * To allow future support for preallocated extents to be added
1553 * as an RO_COMPAT feature, refuse to merge to extents if
1554 * this can result in the top bit of ee_len being set.
1555 */
1556 if (ext1_ee_len + ext2_ee_len > max_len)
1557 return 0;
1558 #ifdef AGGRESSIVE_TEST
1559 if (ext1_ee_len >= 4)
1560 return 0;
1561 #endif
1562
1563 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1564 return 1;
1565 return 0;
1566 }
1567
1568 /*
1569 * This function tries to merge the "ex" extent to the next extent in the tree.
1570 * It always tries to merge towards right. If you want to merge towards
1571 * left, pass "ex - 1" as argument instead of "ex".
1572 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1573 * 1 if they got merged.
1574 */
ext4_ext_try_to_merge_right(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1575 static int ext4_ext_try_to_merge_right(struct inode *inode,
1576 struct ext4_ext_path *path,
1577 struct ext4_extent *ex)
1578 {
1579 struct ext4_extent_header *eh;
1580 unsigned int depth, len;
1581 int merge_done = 0;
1582 int uninitialized = 0;
1583
1584 depth = ext_depth(inode);
1585 BUG_ON(path[depth].p_hdr == NULL);
1586 eh = path[depth].p_hdr;
1587
1588 while (ex < EXT_LAST_EXTENT(eh)) {
1589 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1590 break;
1591 /* merge with next extent! */
1592 if (ext4_ext_is_uninitialized(ex))
1593 uninitialized = 1;
1594 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1595 + ext4_ext_get_actual_len(ex + 1));
1596 if (uninitialized)
1597 ext4_ext_mark_uninitialized(ex);
1598
1599 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1600 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1601 * sizeof(struct ext4_extent);
1602 memmove(ex + 1, ex + 2, len);
1603 }
1604 le16_add_cpu(&eh->eh_entries, -1);
1605 merge_done = 1;
1606 WARN_ON(eh->eh_entries == 0);
1607 if (!eh->eh_entries)
1608 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1609 }
1610
1611 return merge_done;
1612 }
1613
1614 /*
1615 * This function tries to merge the @ex extent to neighbours in the tree.
1616 * return 1 if merge left else 0.
1617 */
ext4_ext_try_to_merge(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1618 static int ext4_ext_try_to_merge(struct inode *inode,
1619 struct ext4_ext_path *path,
1620 struct ext4_extent *ex) {
1621 struct ext4_extent_header *eh;
1622 unsigned int depth;
1623 int merge_done = 0;
1624 int ret = 0;
1625
1626 depth = ext_depth(inode);
1627 BUG_ON(path[depth].p_hdr == NULL);
1628 eh = path[depth].p_hdr;
1629
1630 if (ex > EXT_FIRST_EXTENT(eh))
1631 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1632
1633 if (!merge_done)
1634 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1635
1636 return ret;
1637 }
1638
1639 /*
1640 * check if a portion of the "newext" extent overlaps with an
1641 * existing extent.
1642 *
1643 * If there is an overlap discovered, it updates the length of the newext
1644 * such that there will be no overlap, and then returns 1.
1645 * If there is no overlap found, it returns 0.
1646 */
ext4_ext_check_overlap(struct ext4_sb_info * sbi,struct inode * inode,struct ext4_extent * newext,struct ext4_ext_path * path)1647 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1648 struct inode *inode,
1649 struct ext4_extent *newext,
1650 struct ext4_ext_path *path)
1651 {
1652 ext4_lblk_t b1, b2;
1653 unsigned int depth, len1;
1654 unsigned int ret = 0;
1655
1656 b1 = le32_to_cpu(newext->ee_block);
1657 len1 = ext4_ext_get_actual_len(newext);
1658 depth = ext_depth(inode);
1659 if (!path[depth].p_ext)
1660 goto out;
1661 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1662 b2 &= ~(sbi->s_cluster_ratio - 1);
1663
1664 /*
1665 * get the next allocated block if the extent in the path
1666 * is before the requested block(s)
1667 */
1668 if (b2 < b1) {
1669 b2 = ext4_ext_next_allocated_block(path);
1670 if (b2 == EXT_MAX_BLOCKS)
1671 goto out;
1672 b2 &= ~(sbi->s_cluster_ratio - 1);
1673 }
1674
1675 /* check for wrap through zero on extent logical start block*/
1676 if (b1 + len1 < b1) {
1677 len1 = EXT_MAX_BLOCKS - b1;
1678 newext->ee_len = cpu_to_le16(len1);
1679 ret = 1;
1680 }
1681
1682 /* check for overlap */
1683 if (b1 + len1 > b2) {
1684 newext->ee_len = cpu_to_le16(b2 - b1);
1685 ret = 1;
1686 }
1687 out:
1688 return ret;
1689 }
1690
1691 /*
1692 * ext4_ext_insert_extent:
1693 * tries to merge requsted extent into the existing extent or
1694 * inserts requested extent as new one into the tree,
1695 * creating new leaf in the no-space case.
1696 */
ext4_ext_insert_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext,int flag)1697 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1698 struct ext4_ext_path *path,
1699 struct ext4_extent *newext, int flag)
1700 {
1701 struct ext4_extent_header *eh;
1702 struct ext4_extent *ex, *fex;
1703 struct ext4_extent *nearex; /* nearest extent */
1704 struct ext4_ext_path *npath = NULL;
1705 int depth, len, err;
1706 ext4_lblk_t next;
1707 unsigned uninitialized = 0;
1708 int flags = 0;
1709
1710 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1711 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1712 return -EIO;
1713 }
1714 depth = ext_depth(inode);
1715 ex = path[depth].p_ext;
1716 if (unlikely(path[depth].p_hdr == NULL)) {
1717 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1718 return -EIO;
1719 }
1720
1721 /* try to insert block into found extent and return */
1722 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1723 && ext4_can_extents_be_merged(inode, ex, newext)) {
1724 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1725 ext4_ext_is_uninitialized(newext),
1726 ext4_ext_get_actual_len(newext),
1727 le32_to_cpu(ex->ee_block),
1728 ext4_ext_is_uninitialized(ex),
1729 ext4_ext_get_actual_len(ex),
1730 ext4_ext_pblock(ex));
1731 err = ext4_ext_get_access(handle, inode, path + depth);
1732 if (err)
1733 return err;
1734
1735 /*
1736 * ext4_can_extents_be_merged should have checked that either
1737 * both extents are uninitialized, or both aren't. Thus we
1738 * need to check only one of them here.
1739 */
1740 if (ext4_ext_is_uninitialized(ex))
1741 uninitialized = 1;
1742 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1743 + ext4_ext_get_actual_len(newext));
1744 if (uninitialized)
1745 ext4_ext_mark_uninitialized(ex);
1746 eh = path[depth].p_hdr;
1747 nearex = ex;
1748 goto merge;
1749 }
1750
1751 depth = ext_depth(inode);
1752 eh = path[depth].p_hdr;
1753 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1754 goto has_space;
1755
1756 /* probably next leaf has space for us? */
1757 fex = EXT_LAST_EXTENT(eh);
1758 next = EXT_MAX_BLOCKS;
1759 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1760 next = ext4_ext_next_leaf_block(path);
1761 if (next != EXT_MAX_BLOCKS) {
1762 ext_debug("next leaf block - %u\n", next);
1763 BUG_ON(npath != NULL);
1764 npath = ext4_ext_find_extent(inode, next, NULL);
1765 if (IS_ERR(npath))
1766 return PTR_ERR(npath);
1767 BUG_ON(npath->p_depth != path->p_depth);
1768 eh = npath[depth].p_hdr;
1769 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1770 ext_debug("next leaf isn't full(%d)\n",
1771 le16_to_cpu(eh->eh_entries));
1772 path = npath;
1773 goto has_space;
1774 }
1775 ext_debug("next leaf has no free space(%d,%d)\n",
1776 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1777 }
1778
1779 /*
1780 * There is no free space in the found leaf.
1781 * We're gonna add a new leaf in the tree.
1782 */
1783 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1784 flags = EXT4_MB_USE_ROOT_BLOCKS;
1785 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1786 if (err)
1787 goto cleanup;
1788 depth = ext_depth(inode);
1789 eh = path[depth].p_hdr;
1790
1791 has_space:
1792 nearex = path[depth].p_ext;
1793
1794 err = ext4_ext_get_access(handle, inode, path + depth);
1795 if (err)
1796 goto cleanup;
1797
1798 if (!nearex) {
1799 /* there is no extent in this leaf, create first one */
1800 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1801 le32_to_cpu(newext->ee_block),
1802 ext4_ext_pblock(newext),
1803 ext4_ext_is_uninitialized(newext),
1804 ext4_ext_get_actual_len(newext));
1805 nearex = EXT_FIRST_EXTENT(eh);
1806 } else {
1807 if (le32_to_cpu(newext->ee_block)
1808 > le32_to_cpu(nearex->ee_block)) {
1809 /* Insert after */
1810 ext_debug("insert %u:%llu:[%d]%d before: "
1811 "nearest %p\n",
1812 le32_to_cpu(newext->ee_block),
1813 ext4_ext_pblock(newext),
1814 ext4_ext_is_uninitialized(newext),
1815 ext4_ext_get_actual_len(newext),
1816 nearex);
1817 nearex++;
1818 } else {
1819 /* Insert before */
1820 BUG_ON(newext->ee_block == nearex->ee_block);
1821 ext_debug("insert %u:%llu:[%d]%d after: "
1822 "nearest %p\n",
1823 le32_to_cpu(newext->ee_block),
1824 ext4_ext_pblock(newext),
1825 ext4_ext_is_uninitialized(newext),
1826 ext4_ext_get_actual_len(newext),
1827 nearex);
1828 }
1829 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1830 if (len > 0) {
1831 ext_debug("insert %u:%llu:[%d]%d: "
1832 "move %d extents from 0x%p to 0x%p\n",
1833 le32_to_cpu(newext->ee_block),
1834 ext4_ext_pblock(newext),
1835 ext4_ext_is_uninitialized(newext),
1836 ext4_ext_get_actual_len(newext),
1837 len, nearex, nearex + 1);
1838 memmove(nearex + 1, nearex,
1839 len * sizeof(struct ext4_extent));
1840 }
1841 }
1842
1843 le16_add_cpu(&eh->eh_entries, 1);
1844 path[depth].p_ext = nearex;
1845 nearex->ee_block = newext->ee_block;
1846 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1847 nearex->ee_len = newext->ee_len;
1848
1849 merge:
1850 /* try to merge extents to the right */
1851 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1852 ext4_ext_try_to_merge(inode, path, nearex);
1853
1854 /* try to merge extents to the left */
1855
1856 /* time to correct all indexes above */
1857 err = ext4_ext_correct_indexes(handle, inode, path);
1858 if (err)
1859 goto cleanup;
1860
1861 err = ext4_ext_dirty(handle, inode, path + depth);
1862
1863 cleanup:
1864 if (npath) {
1865 ext4_ext_drop_refs(npath);
1866 kfree(npath);
1867 }
1868 ext4_ext_invalidate_cache(inode);
1869 return err;
1870 }
1871
ext4_ext_walk_space(struct inode * inode,ext4_lblk_t block,ext4_lblk_t num,ext_prepare_callback func,void * cbdata)1872 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1873 ext4_lblk_t num, ext_prepare_callback func,
1874 void *cbdata)
1875 {
1876 struct ext4_ext_path *path = NULL;
1877 struct ext4_ext_cache cbex;
1878 struct ext4_extent *ex;
1879 ext4_lblk_t next, start = 0, end = 0;
1880 ext4_lblk_t last = block + num;
1881 int depth, exists, err = 0;
1882
1883 BUG_ON(func == NULL);
1884 BUG_ON(inode == NULL);
1885
1886 while (block < last && block != EXT_MAX_BLOCKS) {
1887 num = last - block;
1888 /* find extent for this block */
1889 down_read(&EXT4_I(inode)->i_data_sem);
1890 path = ext4_ext_find_extent(inode, block, path);
1891 up_read(&EXT4_I(inode)->i_data_sem);
1892 if (IS_ERR(path)) {
1893 err = PTR_ERR(path);
1894 path = NULL;
1895 break;
1896 }
1897
1898 depth = ext_depth(inode);
1899 if (unlikely(path[depth].p_hdr == NULL)) {
1900 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1901 err = -EIO;
1902 break;
1903 }
1904 ex = path[depth].p_ext;
1905 next = ext4_ext_next_allocated_block(path);
1906
1907 exists = 0;
1908 if (!ex) {
1909 /* there is no extent yet, so try to allocate
1910 * all requested space */
1911 start = block;
1912 end = block + num;
1913 } else if (le32_to_cpu(ex->ee_block) > block) {
1914 /* need to allocate space before found extent */
1915 start = block;
1916 end = le32_to_cpu(ex->ee_block);
1917 if (block + num < end)
1918 end = block + num;
1919 } else if (block >= le32_to_cpu(ex->ee_block)
1920 + ext4_ext_get_actual_len(ex)) {
1921 /* need to allocate space after found extent */
1922 start = block;
1923 end = block + num;
1924 if (end >= next)
1925 end = next;
1926 } else if (block >= le32_to_cpu(ex->ee_block)) {
1927 /*
1928 * some part of requested space is covered
1929 * by found extent
1930 */
1931 start = block;
1932 end = le32_to_cpu(ex->ee_block)
1933 + ext4_ext_get_actual_len(ex);
1934 if (block + num < end)
1935 end = block + num;
1936 exists = 1;
1937 } else {
1938 BUG();
1939 }
1940 BUG_ON(end <= start);
1941
1942 if (!exists) {
1943 cbex.ec_block = start;
1944 cbex.ec_len = end - start;
1945 cbex.ec_start = 0;
1946 } else {
1947 cbex.ec_block = le32_to_cpu(ex->ee_block);
1948 cbex.ec_len = ext4_ext_get_actual_len(ex);
1949 cbex.ec_start = ext4_ext_pblock(ex);
1950 }
1951
1952 if (unlikely(cbex.ec_len == 0)) {
1953 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1954 err = -EIO;
1955 break;
1956 }
1957 err = func(inode, next, &cbex, ex, cbdata);
1958 ext4_ext_drop_refs(path);
1959
1960 if (err < 0)
1961 break;
1962
1963 if (err == EXT_REPEAT)
1964 continue;
1965 else if (err == EXT_BREAK) {
1966 err = 0;
1967 break;
1968 }
1969
1970 if (ext_depth(inode) != depth) {
1971 /* depth was changed. we have to realloc path */
1972 kfree(path);
1973 path = NULL;
1974 }
1975
1976 block = cbex.ec_block + cbex.ec_len;
1977 }
1978
1979 if (path) {
1980 ext4_ext_drop_refs(path);
1981 kfree(path);
1982 }
1983
1984 return err;
1985 }
1986
1987 static void
ext4_ext_put_in_cache(struct inode * inode,ext4_lblk_t block,__u32 len,ext4_fsblk_t start)1988 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1989 __u32 len, ext4_fsblk_t start)
1990 {
1991 struct ext4_ext_cache *cex;
1992 BUG_ON(len == 0);
1993 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1994 trace_ext4_ext_put_in_cache(inode, block, len, start);
1995 cex = &EXT4_I(inode)->i_cached_extent;
1996 cex->ec_block = block;
1997 cex->ec_len = len;
1998 cex->ec_start = start;
1999 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2000 }
2001
2002 /*
2003 * ext4_ext_put_gap_in_cache:
2004 * calculate boundaries of the gap that the requested block fits into
2005 * and cache this gap
2006 */
2007 static void
ext4_ext_put_gap_in_cache(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)2008 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2009 ext4_lblk_t block)
2010 {
2011 int depth = ext_depth(inode);
2012 unsigned long len;
2013 ext4_lblk_t lblock;
2014 struct ext4_extent *ex;
2015
2016 ex = path[depth].p_ext;
2017 if (ex == NULL) {
2018 /* there is no extent yet, so gap is [0;-] */
2019 lblock = 0;
2020 len = EXT_MAX_BLOCKS;
2021 ext_debug("cache gap(whole file):");
2022 } else if (block < le32_to_cpu(ex->ee_block)) {
2023 lblock = block;
2024 len = le32_to_cpu(ex->ee_block) - block;
2025 ext_debug("cache gap(before): %u [%u:%u]",
2026 block,
2027 le32_to_cpu(ex->ee_block),
2028 ext4_ext_get_actual_len(ex));
2029 } else if (block >= le32_to_cpu(ex->ee_block)
2030 + ext4_ext_get_actual_len(ex)) {
2031 ext4_lblk_t next;
2032 lblock = le32_to_cpu(ex->ee_block)
2033 + ext4_ext_get_actual_len(ex);
2034
2035 next = ext4_ext_next_allocated_block(path);
2036 ext_debug("cache gap(after): [%u:%u] %u",
2037 le32_to_cpu(ex->ee_block),
2038 ext4_ext_get_actual_len(ex),
2039 block);
2040 BUG_ON(next == lblock);
2041 len = next - lblock;
2042 } else {
2043 lblock = len = 0;
2044 BUG();
2045 }
2046
2047 ext_debug(" -> %u:%lu\n", lblock, len);
2048 ext4_ext_put_in_cache(inode, lblock, len, 0);
2049 }
2050
2051 /*
2052 * ext4_ext_check_cache()
2053 * Checks to see if the given block is in the cache.
2054 * If it is, the cached extent is stored in the given
2055 * cache extent pointer. If the cached extent is a hole,
2056 * this routine should be used instead of
2057 * ext4_ext_in_cache if the calling function needs to
2058 * know the size of the hole.
2059 *
2060 * @inode: The files inode
2061 * @block: The block to look for in the cache
2062 * @ex: Pointer where the cached extent will be stored
2063 * if it contains block
2064 *
2065 * Return 0 if cache is invalid; 1 if the cache is valid
2066 */
ext4_ext_check_cache(struct inode * inode,ext4_lblk_t block,struct ext4_ext_cache * ex)2067 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2068 struct ext4_ext_cache *ex){
2069 struct ext4_ext_cache *cex;
2070 struct ext4_sb_info *sbi;
2071 int ret = 0;
2072
2073 /*
2074 * We borrow i_block_reservation_lock to protect i_cached_extent
2075 */
2076 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2077 cex = &EXT4_I(inode)->i_cached_extent;
2078 sbi = EXT4_SB(inode->i_sb);
2079
2080 /* has cache valid data? */
2081 if (cex->ec_len == 0)
2082 goto errout;
2083
2084 if (in_range(block, cex->ec_block, cex->ec_len)) {
2085 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2086 ext_debug("%u cached by %u:%u:%llu\n",
2087 block,
2088 cex->ec_block, cex->ec_len, cex->ec_start);
2089 ret = 1;
2090 }
2091 errout:
2092 trace_ext4_ext_in_cache(inode, block, ret);
2093 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2094 return ret;
2095 }
2096
2097 /*
2098 * ext4_ext_in_cache()
2099 * Checks to see if the given block is in the cache.
2100 * If it is, the cached extent is stored in the given
2101 * extent pointer.
2102 *
2103 * @inode: The files inode
2104 * @block: The block to look for in the cache
2105 * @ex: Pointer where the cached extent will be stored
2106 * if it contains block
2107 *
2108 * Return 0 if cache is invalid; 1 if the cache is valid
2109 */
2110 static int
ext4_ext_in_cache(struct inode * inode,ext4_lblk_t block,struct ext4_extent * ex)2111 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2112 struct ext4_extent *ex)
2113 {
2114 struct ext4_ext_cache cex;
2115 int ret = 0;
2116
2117 if (ext4_ext_check_cache(inode, block, &cex)) {
2118 ex->ee_block = cpu_to_le32(cex.ec_block);
2119 ext4_ext_store_pblock(ex, cex.ec_start);
2120 ex->ee_len = cpu_to_le16(cex.ec_len);
2121 ret = 1;
2122 }
2123
2124 return ret;
2125 }
2126
2127
2128 /*
2129 * ext4_ext_rm_idx:
2130 * removes index from the index block.
2131 */
ext4_ext_rm_idx(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,int depth)2132 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2133 struct ext4_ext_path *path, int depth)
2134 {
2135 int err;
2136 ext4_fsblk_t leaf;
2137
2138 /* free index block */
2139 depth--;
2140 path = path + depth;
2141 leaf = ext4_idx_pblock(path->p_idx);
2142 if (unlikely(path->p_hdr->eh_entries == 0)) {
2143 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2144 return -EIO;
2145 }
2146 err = ext4_ext_get_access(handle, inode, path);
2147 if (err)
2148 return err;
2149
2150 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2151 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2152 len *= sizeof(struct ext4_extent_idx);
2153 memmove(path->p_idx, path->p_idx + 1, len);
2154 }
2155
2156 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2157 err = ext4_ext_dirty(handle, inode, path);
2158 if (err)
2159 return err;
2160 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2161 trace_ext4_ext_rm_idx(inode, leaf);
2162
2163 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2164 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2165
2166 while (--depth >= 0) {
2167 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2168 break;
2169 path--;
2170 err = ext4_ext_get_access(handle, inode, path);
2171 if (err)
2172 break;
2173 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2174 err = ext4_ext_dirty(handle, inode, path);
2175 if (err)
2176 break;
2177 }
2178 return err;
2179 }
2180
2181 /*
2182 * ext4_ext_calc_credits_for_single_extent:
2183 * This routine returns max. credits that needed to insert an extent
2184 * to the extent tree.
2185 * When pass the actual path, the caller should calculate credits
2186 * under i_data_sem.
2187 */
ext4_ext_calc_credits_for_single_extent(struct inode * inode,int nrblocks,struct ext4_ext_path * path)2188 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2189 struct ext4_ext_path *path)
2190 {
2191 if (path) {
2192 int depth = ext_depth(inode);
2193 int ret = 0;
2194
2195 /* probably there is space in leaf? */
2196 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2197 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2198
2199 /*
2200 * There are some space in the leaf tree, no
2201 * need to account for leaf block credit
2202 *
2203 * bitmaps and block group descriptor blocks
2204 * and other metadata blocks still need to be
2205 * accounted.
2206 */
2207 /* 1 bitmap, 1 block group descriptor */
2208 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2209 return ret;
2210 }
2211 }
2212
2213 return ext4_chunk_trans_blocks(inode, nrblocks);
2214 }
2215
2216 /*
2217 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2218 *
2219 * if nrblocks are fit in a single extent (chunk flag is 1), then
2220 * in the worse case, each tree level index/leaf need to be changed
2221 * if the tree split due to insert a new extent, then the old tree
2222 * index/leaf need to be updated too
2223 *
2224 * If the nrblocks are discontiguous, they could cause
2225 * the whole tree split more than once, but this is really rare.
2226 */
ext4_ext_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)2227 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2228 {
2229 int index;
2230 int depth = ext_depth(inode);
2231
2232 if (chunk)
2233 index = depth * 2;
2234 else
2235 index = depth * 3;
2236
2237 return index;
2238 }
2239
ext4_remove_blocks(handle_t * handle,struct inode * inode,struct ext4_extent * ex,ext4_fsblk_t * partial_cluster,ext4_lblk_t from,ext4_lblk_t to)2240 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2241 struct ext4_extent *ex,
2242 ext4_fsblk_t *partial_cluster,
2243 ext4_lblk_t from, ext4_lblk_t to)
2244 {
2245 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2246 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2247 ext4_fsblk_t pblk;
2248 int flags = EXT4_FREE_BLOCKS_FORGET;
2249
2250 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2251 flags |= EXT4_FREE_BLOCKS_METADATA;
2252 /*
2253 * For bigalloc file systems, we never free a partial cluster
2254 * at the beginning of the extent. Instead, we make a note
2255 * that we tried freeing the cluster, and check to see if we
2256 * need to free it on a subsequent call to ext4_remove_blocks,
2257 * or at the end of the ext4_truncate() operation.
2258 */
2259 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2260
2261 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2262 /*
2263 * If we have a partial cluster, and it's different from the
2264 * cluster of the last block, we need to explicitly free the
2265 * partial cluster here.
2266 */
2267 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2268 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2269 ext4_free_blocks(handle, inode, NULL,
2270 EXT4_C2B(sbi, *partial_cluster),
2271 sbi->s_cluster_ratio, flags);
2272 *partial_cluster = 0;
2273 }
2274
2275 #ifdef EXTENTS_STATS
2276 {
2277 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2278 spin_lock(&sbi->s_ext_stats_lock);
2279 sbi->s_ext_blocks += ee_len;
2280 sbi->s_ext_extents++;
2281 if (ee_len < sbi->s_ext_min)
2282 sbi->s_ext_min = ee_len;
2283 if (ee_len > sbi->s_ext_max)
2284 sbi->s_ext_max = ee_len;
2285 if (ext_depth(inode) > sbi->s_depth_max)
2286 sbi->s_depth_max = ext_depth(inode);
2287 spin_unlock(&sbi->s_ext_stats_lock);
2288 }
2289 #endif
2290 if (from >= le32_to_cpu(ex->ee_block)
2291 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2292 /* tail removal */
2293 ext4_lblk_t num;
2294
2295 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2296 pblk = ext4_ext_pblock(ex) + ee_len - num;
2297 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2298 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2299 /*
2300 * If the block range to be freed didn't start at the
2301 * beginning of a cluster, and we removed the entire
2302 * extent, save the partial cluster here, since we
2303 * might need to delete if we determine that the
2304 * truncate operation has removed all of the blocks in
2305 * the cluster.
2306 */
2307 if (pblk & (sbi->s_cluster_ratio - 1) &&
2308 (ee_len == num))
2309 *partial_cluster = EXT4_B2C(sbi, pblk);
2310 else
2311 *partial_cluster = 0;
2312 } else if (from == le32_to_cpu(ex->ee_block)
2313 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2314 /* head removal */
2315 ext4_lblk_t num;
2316 ext4_fsblk_t start;
2317
2318 num = to - from;
2319 start = ext4_ext_pblock(ex);
2320
2321 ext_debug("free first %u blocks starting %llu\n", num, start);
2322 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2323
2324 } else {
2325 printk(KERN_INFO "strange request: removal(2) "
2326 "%u-%u from %u:%u\n",
2327 from, to, le32_to_cpu(ex->ee_block), ee_len);
2328 }
2329 return 0;
2330 }
2331
2332
2333 /*
2334 * ext4_ext_rm_leaf() Removes the extents associated with the
2335 * blocks appearing between "start" and "end", and splits the extents
2336 * if "start" and "end" appear in the same extent
2337 *
2338 * @handle: The journal handle
2339 * @inode: The files inode
2340 * @path: The path to the leaf
2341 * @start: The first block to remove
2342 * @end: The last block to remove
2343 */
2344 static int
ext4_ext_rm_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t * partial_cluster,ext4_lblk_t start,ext4_lblk_t end)2345 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2346 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2347 ext4_lblk_t start, ext4_lblk_t end)
2348 {
2349 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2350 int err = 0, correct_index = 0;
2351 int depth = ext_depth(inode), credits;
2352 struct ext4_extent_header *eh;
2353 ext4_lblk_t a, b;
2354 unsigned num;
2355 ext4_lblk_t ex_ee_block;
2356 unsigned short ex_ee_len;
2357 unsigned uninitialized = 0;
2358 struct ext4_extent *ex;
2359
2360 /* the header must be checked already in ext4_ext_remove_space() */
2361 ext_debug("truncate since %u in leaf to %u\n", start, end);
2362 if (!path[depth].p_hdr)
2363 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2364 eh = path[depth].p_hdr;
2365 if (unlikely(path[depth].p_hdr == NULL)) {
2366 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2367 return -EIO;
2368 }
2369 /* find where to start removing */
2370 ex = EXT_LAST_EXTENT(eh);
2371
2372 ex_ee_block = le32_to_cpu(ex->ee_block);
2373 ex_ee_len = ext4_ext_get_actual_len(ex);
2374
2375 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2376
2377 while (ex >= EXT_FIRST_EXTENT(eh) &&
2378 ex_ee_block + ex_ee_len > start) {
2379
2380 if (ext4_ext_is_uninitialized(ex))
2381 uninitialized = 1;
2382 else
2383 uninitialized = 0;
2384
2385 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2386 uninitialized, ex_ee_len);
2387 path[depth].p_ext = ex;
2388
2389 a = ex_ee_block > start ? ex_ee_block : start;
2390 b = ex_ee_block+ex_ee_len - 1 < end ?
2391 ex_ee_block+ex_ee_len - 1 : end;
2392
2393 ext_debug(" border %u:%u\n", a, b);
2394
2395 /* If this extent is beyond the end of the hole, skip it */
2396 if (end < ex_ee_block) {
2397 ex--;
2398 ex_ee_block = le32_to_cpu(ex->ee_block);
2399 ex_ee_len = ext4_ext_get_actual_len(ex);
2400 continue;
2401 } else if (b != ex_ee_block + ex_ee_len - 1) {
2402 EXT4_ERROR_INODE(inode,
2403 "can not handle truncate %u:%u "
2404 "on extent %u:%u",
2405 start, end, ex_ee_block,
2406 ex_ee_block + ex_ee_len - 1);
2407 err = -EIO;
2408 goto out;
2409 } else if (a != ex_ee_block) {
2410 /* remove tail of the extent */
2411 num = a - ex_ee_block;
2412 } else {
2413 /* remove whole extent: excellent! */
2414 num = 0;
2415 }
2416 /*
2417 * 3 for leaf, sb, and inode plus 2 (bmap and group
2418 * descriptor) for each block group; assume two block
2419 * groups plus ex_ee_len/blocks_per_block_group for
2420 * the worst case
2421 */
2422 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2423 if (ex == EXT_FIRST_EXTENT(eh)) {
2424 correct_index = 1;
2425 credits += (ext_depth(inode)) + 1;
2426 }
2427 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2428
2429 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2430 if (err)
2431 goto out;
2432
2433 err = ext4_ext_get_access(handle, inode, path + depth);
2434 if (err)
2435 goto out;
2436
2437 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2438 a, b);
2439 if (err)
2440 goto out;
2441
2442 if (num == 0)
2443 /* this extent is removed; mark slot entirely unused */
2444 ext4_ext_store_pblock(ex, 0);
2445
2446 ex->ee_len = cpu_to_le16(num);
2447 /*
2448 * Do not mark uninitialized if all the blocks in the
2449 * extent have been removed.
2450 */
2451 if (uninitialized && num)
2452 ext4_ext_mark_uninitialized(ex);
2453 /*
2454 * If the extent was completely released,
2455 * we need to remove it from the leaf
2456 */
2457 if (num == 0) {
2458 if (end != EXT_MAX_BLOCKS - 1) {
2459 /*
2460 * For hole punching, we need to scoot all the
2461 * extents up when an extent is removed so that
2462 * we dont have blank extents in the middle
2463 */
2464 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2465 sizeof(struct ext4_extent));
2466
2467 /* Now get rid of the one at the end */
2468 memset(EXT_LAST_EXTENT(eh), 0,
2469 sizeof(struct ext4_extent));
2470 }
2471 le16_add_cpu(&eh->eh_entries, -1);
2472 } else
2473 *partial_cluster = 0;
2474
2475 err = ext4_ext_dirty(handle, inode, path + depth);
2476 if (err)
2477 goto out;
2478
2479 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2480 ext4_ext_pblock(ex));
2481 ex--;
2482 ex_ee_block = le32_to_cpu(ex->ee_block);
2483 ex_ee_len = ext4_ext_get_actual_len(ex);
2484 }
2485
2486 if (correct_index && eh->eh_entries)
2487 err = ext4_ext_correct_indexes(handle, inode, path);
2488
2489 /*
2490 * If there is still a entry in the leaf node, check to see if
2491 * it references the partial cluster. This is the only place
2492 * where it could; if it doesn't, we can free the cluster.
2493 */
2494 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2495 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2496 *partial_cluster)) {
2497 int flags = EXT4_FREE_BLOCKS_FORGET;
2498
2499 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2500 flags |= EXT4_FREE_BLOCKS_METADATA;
2501
2502 ext4_free_blocks(handle, inode, NULL,
2503 EXT4_C2B(sbi, *partial_cluster),
2504 sbi->s_cluster_ratio, flags);
2505 *partial_cluster = 0;
2506 }
2507
2508 /* if this leaf is free, then we should
2509 * remove it from index block above */
2510 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2511 err = ext4_ext_rm_idx(handle, inode, path, depth);
2512
2513 out:
2514 return err;
2515 }
2516
2517 /*
2518 * ext4_ext_more_to_rm:
2519 * returns 1 if current index has to be freed (even partial)
2520 */
2521 static int
ext4_ext_more_to_rm(struct ext4_ext_path * path)2522 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2523 {
2524 BUG_ON(path->p_idx == NULL);
2525
2526 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2527 return 0;
2528
2529 /*
2530 * if truncate on deeper level happened, it wasn't partial,
2531 * so we have to consider current index for truncation
2532 */
2533 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2534 return 0;
2535 return 1;
2536 }
2537
ext4_ext_remove_space(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2538 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2539 ext4_lblk_t end)
2540 {
2541 struct super_block *sb = inode->i_sb;
2542 int depth = ext_depth(inode);
2543 struct ext4_ext_path *path = NULL;
2544 ext4_fsblk_t partial_cluster = 0;
2545 handle_t *handle;
2546 int i = 0, err;
2547
2548 ext_debug("truncate since %u to %u\n", start, end);
2549
2550 /* probably first extent we're gonna free will be last in block */
2551 handle = ext4_journal_start(inode, depth + 1);
2552 if (IS_ERR(handle))
2553 return PTR_ERR(handle);
2554
2555 again:
2556 ext4_ext_invalidate_cache(inode);
2557
2558 trace_ext4_ext_remove_space(inode, start, depth);
2559
2560 /*
2561 * Check if we are removing extents inside the extent tree. If that
2562 * is the case, we are going to punch a hole inside the extent tree
2563 * so we have to check whether we need to split the extent covering
2564 * the last block to remove so we can easily remove the part of it
2565 * in ext4_ext_rm_leaf().
2566 */
2567 if (end < EXT_MAX_BLOCKS - 1) {
2568 struct ext4_extent *ex;
2569 ext4_lblk_t ee_block;
2570
2571 /* find extent for this block */
2572 path = ext4_ext_find_extent(inode, end, NULL);
2573 if (IS_ERR(path)) {
2574 ext4_journal_stop(handle);
2575 return PTR_ERR(path);
2576 }
2577 depth = ext_depth(inode);
2578 ex = path[depth].p_ext;
2579 if (!ex) {
2580 ext4_ext_drop_refs(path);
2581 kfree(path);
2582 path = NULL;
2583 goto cont;
2584 }
2585
2586 ee_block = le32_to_cpu(ex->ee_block);
2587
2588 /*
2589 * See if the last block is inside the extent, if so split
2590 * the extent at 'end' block so we can easily remove the
2591 * tail of the first part of the split extent in
2592 * ext4_ext_rm_leaf().
2593 */
2594 if (end >= ee_block &&
2595 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2596 int split_flag = 0;
2597
2598 if (ext4_ext_is_uninitialized(ex))
2599 split_flag = EXT4_EXT_MARK_UNINIT1 |
2600 EXT4_EXT_MARK_UNINIT2;
2601
2602 /*
2603 * Split the extent in two so that 'end' is the last
2604 * block in the first new extent
2605 */
2606 err = ext4_split_extent_at(handle, inode, path,
2607 end + 1, split_flag,
2608 EXT4_GET_BLOCKS_PRE_IO |
2609 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2610
2611 if (err < 0)
2612 goto out;
2613 }
2614 }
2615 cont:
2616
2617 /*
2618 * We start scanning from right side, freeing all the blocks
2619 * after i_size and walking into the tree depth-wise.
2620 */
2621 depth = ext_depth(inode);
2622 if (path) {
2623 int k = i = depth;
2624 while (--k > 0)
2625 path[k].p_block =
2626 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2627 } else {
2628 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2629 GFP_NOFS);
2630 if (path == NULL) {
2631 ext4_journal_stop(handle);
2632 return -ENOMEM;
2633 }
2634 path[0].p_depth = depth;
2635 path[0].p_hdr = ext_inode_hdr(inode);
2636 i = 0;
2637
2638 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2639 err = -EIO;
2640 goto out;
2641 }
2642 }
2643 err = 0;
2644
2645 while (i >= 0 && err == 0) {
2646 if (i == depth) {
2647 /* this is leaf block */
2648 err = ext4_ext_rm_leaf(handle, inode, path,
2649 &partial_cluster, start,
2650 end);
2651 /* root level has p_bh == NULL, brelse() eats this */
2652 brelse(path[i].p_bh);
2653 path[i].p_bh = NULL;
2654 i--;
2655 continue;
2656 }
2657
2658 /* this is index block */
2659 if (!path[i].p_hdr) {
2660 ext_debug("initialize header\n");
2661 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2662 }
2663
2664 if (!path[i].p_idx) {
2665 /* this level hasn't been touched yet */
2666 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2667 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2668 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2669 path[i].p_hdr,
2670 le16_to_cpu(path[i].p_hdr->eh_entries));
2671 } else {
2672 /* we were already here, see at next index */
2673 path[i].p_idx--;
2674 }
2675
2676 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2677 i, EXT_FIRST_INDEX(path[i].p_hdr),
2678 path[i].p_idx);
2679 if (ext4_ext_more_to_rm(path + i)) {
2680 struct buffer_head *bh;
2681 /* go to the next level */
2682 ext_debug("move to level %d (block %llu)\n",
2683 i + 1, ext4_idx_pblock(path[i].p_idx));
2684 memset(path + i + 1, 0, sizeof(*path));
2685 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2686 if (!bh) {
2687 /* should we reset i_size? */
2688 err = -EIO;
2689 break;
2690 }
2691 if (WARN_ON(i + 1 > depth)) {
2692 err = -EIO;
2693 break;
2694 }
2695 if (ext4_ext_check(inode, ext_block_hdr(bh),
2696 depth - i - 1)) {
2697 err = -EIO;
2698 break;
2699 }
2700 path[i + 1].p_bh = bh;
2701
2702 /* save actual number of indexes since this
2703 * number is changed at the next iteration */
2704 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2705 i++;
2706 } else {
2707 /* we finished processing this index, go up */
2708 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2709 /* index is empty, remove it;
2710 * handle must be already prepared by the
2711 * truncatei_leaf() */
2712 err = ext4_ext_rm_idx(handle, inode, path, i);
2713 }
2714 /* root level has p_bh == NULL, brelse() eats this */
2715 brelse(path[i].p_bh);
2716 path[i].p_bh = NULL;
2717 i--;
2718 ext_debug("return to level %d\n", i);
2719 }
2720 }
2721
2722 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2723 path->p_hdr->eh_entries);
2724
2725 /* If we still have something in the partial cluster and we have removed
2726 * even the first extent, then we should free the blocks in the partial
2727 * cluster as well. */
2728 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2729 int flags = EXT4_FREE_BLOCKS_FORGET;
2730
2731 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2732 flags |= EXT4_FREE_BLOCKS_METADATA;
2733
2734 ext4_free_blocks(handle, inode, NULL,
2735 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2736 EXT4_SB(sb)->s_cluster_ratio, flags);
2737 partial_cluster = 0;
2738 }
2739
2740 /* TODO: flexible tree reduction should be here */
2741 if (path->p_hdr->eh_entries == 0) {
2742 /*
2743 * truncate to zero freed all the tree,
2744 * so we need to correct eh_depth
2745 */
2746 err = ext4_ext_get_access(handle, inode, path);
2747 if (err == 0) {
2748 ext_inode_hdr(inode)->eh_depth = 0;
2749 ext_inode_hdr(inode)->eh_max =
2750 cpu_to_le16(ext4_ext_space_root(inode, 0));
2751 err = ext4_ext_dirty(handle, inode, path);
2752 }
2753 }
2754 out:
2755 ext4_ext_drop_refs(path);
2756 kfree(path);
2757 if (err == -EAGAIN) {
2758 path = NULL;
2759 goto again;
2760 }
2761 ext4_journal_stop(handle);
2762
2763 return err;
2764 }
2765
2766 /*
2767 * called at mount time
2768 */
ext4_ext_init(struct super_block * sb)2769 void ext4_ext_init(struct super_block *sb)
2770 {
2771 /*
2772 * possible initialization would be here
2773 */
2774
2775 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2776 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2777 printk(KERN_INFO "EXT4-fs: file extents enabled"
2778 #ifdef AGGRESSIVE_TEST
2779 ", aggressive tests"
2780 #endif
2781 #ifdef CHECK_BINSEARCH
2782 ", check binsearch"
2783 #endif
2784 #ifdef EXTENTS_STATS
2785 ", stats"
2786 #endif
2787 "\n");
2788 #endif
2789 #ifdef EXTENTS_STATS
2790 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2791 EXT4_SB(sb)->s_ext_min = 1 << 30;
2792 EXT4_SB(sb)->s_ext_max = 0;
2793 #endif
2794 }
2795 }
2796
2797 /*
2798 * called at umount time
2799 */
ext4_ext_release(struct super_block * sb)2800 void ext4_ext_release(struct super_block *sb)
2801 {
2802 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2803 return;
2804
2805 #ifdef EXTENTS_STATS
2806 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2807 struct ext4_sb_info *sbi = EXT4_SB(sb);
2808 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2809 sbi->s_ext_blocks, sbi->s_ext_extents,
2810 sbi->s_ext_blocks / sbi->s_ext_extents);
2811 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2812 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2813 }
2814 #endif
2815 }
2816
2817 /* FIXME!! we need to try to merge to left or right after zero-out */
ext4_ext_zeroout(struct inode * inode,struct ext4_extent * ex)2818 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2819 {
2820 ext4_fsblk_t ee_pblock;
2821 unsigned int ee_len;
2822 int ret;
2823
2824 ee_len = ext4_ext_get_actual_len(ex);
2825 ee_pblock = ext4_ext_pblock(ex);
2826
2827 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2828 if (ret > 0)
2829 ret = 0;
2830
2831 return ret;
2832 }
2833
2834 /*
2835 * ext4_split_extent_at() splits an extent at given block.
2836 *
2837 * @handle: the journal handle
2838 * @inode: the file inode
2839 * @path: the path to the extent
2840 * @split: the logical block where the extent is splitted.
2841 * @split_flags: indicates if the extent could be zeroout if split fails, and
2842 * the states(init or uninit) of new extents.
2843 * @flags: flags used to insert new extent to extent tree.
2844 *
2845 *
2846 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2847 * of which are deterimined by split_flag.
2848 *
2849 * There are two cases:
2850 * a> the extent are splitted into two extent.
2851 * b> split is not needed, and just mark the extent.
2852 *
2853 * return 0 on success.
2854 */
ext4_split_extent_at(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t split,int split_flag,int flags)2855 static int ext4_split_extent_at(handle_t *handle,
2856 struct inode *inode,
2857 struct ext4_ext_path *path,
2858 ext4_lblk_t split,
2859 int split_flag,
2860 int flags)
2861 {
2862 ext4_fsblk_t newblock;
2863 ext4_lblk_t ee_block;
2864 struct ext4_extent *ex, newex, orig_ex;
2865 struct ext4_extent *ex2 = NULL;
2866 unsigned int ee_len, depth;
2867 int err = 0;
2868
2869 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2870 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2871
2872 ext_debug("ext4_split_extents_at: inode %lu, logical"
2873 "block %llu\n", inode->i_ino, (unsigned long long)split);
2874
2875 ext4_ext_show_leaf(inode, path);
2876
2877 depth = ext_depth(inode);
2878 ex = path[depth].p_ext;
2879 ee_block = le32_to_cpu(ex->ee_block);
2880 ee_len = ext4_ext_get_actual_len(ex);
2881 newblock = split - ee_block + ext4_ext_pblock(ex);
2882
2883 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2884
2885 err = ext4_ext_get_access(handle, inode, path + depth);
2886 if (err)
2887 goto out;
2888
2889 if (split == ee_block) {
2890 /*
2891 * case b: block @split is the block that the extent begins with
2892 * then we just change the state of the extent, and splitting
2893 * is not needed.
2894 */
2895 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2896 ext4_ext_mark_uninitialized(ex);
2897 else
2898 ext4_ext_mark_initialized(ex);
2899
2900 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2901 ext4_ext_try_to_merge(inode, path, ex);
2902
2903 err = ext4_ext_dirty(handle, inode, path + depth);
2904 goto out;
2905 }
2906
2907 /* case a */
2908 memcpy(&orig_ex, ex, sizeof(orig_ex));
2909 ex->ee_len = cpu_to_le16(split - ee_block);
2910 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2911 ext4_ext_mark_uninitialized(ex);
2912
2913 /*
2914 * path may lead to new leaf, not to original leaf any more
2915 * after ext4_ext_insert_extent() returns,
2916 */
2917 err = ext4_ext_dirty(handle, inode, path + depth);
2918 if (err)
2919 goto fix_extent_len;
2920
2921 ex2 = &newex;
2922 ex2->ee_block = cpu_to_le32(split);
2923 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2924 ext4_ext_store_pblock(ex2, newblock);
2925 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2926 ext4_ext_mark_uninitialized(ex2);
2927
2928 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2929 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2930 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2931 if (split_flag & EXT4_EXT_DATA_VALID1)
2932 err = ext4_ext_zeroout(inode, ex2);
2933 else
2934 err = ext4_ext_zeroout(inode, ex);
2935 } else
2936 err = ext4_ext_zeroout(inode, &orig_ex);
2937
2938 if (err)
2939 goto fix_extent_len;
2940 /* update the extent length and mark as initialized */
2941 ex->ee_len = cpu_to_le16(ee_len);
2942 ext4_ext_try_to_merge(inode, path, ex);
2943 err = ext4_ext_dirty(handle, inode, path + depth);
2944 goto out;
2945 } else if (err)
2946 goto fix_extent_len;
2947
2948 out:
2949 ext4_ext_show_leaf(inode, path);
2950 return err;
2951
2952 fix_extent_len:
2953 ex->ee_len = orig_ex.ee_len;
2954 ext4_ext_dirty(handle, inode, path + depth);
2955 return err;
2956 }
2957
2958 /*
2959 * ext4_split_extents() splits an extent and mark extent which is covered
2960 * by @map as split_flags indicates
2961 *
2962 * It may result in splitting the extent into multiple extents (upto three)
2963 * There are three possibilities:
2964 * a> There is no split required
2965 * b> Splits in two extents: Split is happening at either end of the extent
2966 * c> Splits in three extents: Somone is splitting in middle of the extent
2967 *
2968 */
ext4_split_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_map_blocks * map,int split_flag,int flags)2969 static int ext4_split_extent(handle_t *handle,
2970 struct inode *inode,
2971 struct ext4_ext_path *path,
2972 struct ext4_map_blocks *map,
2973 int split_flag,
2974 int flags)
2975 {
2976 ext4_lblk_t ee_block;
2977 struct ext4_extent *ex;
2978 unsigned int ee_len, depth;
2979 int err = 0;
2980 int uninitialized;
2981 int split_flag1, flags1;
2982 int allocated = map->m_len;
2983
2984 depth = ext_depth(inode);
2985 ex = path[depth].p_ext;
2986 ee_block = le32_to_cpu(ex->ee_block);
2987 ee_len = ext4_ext_get_actual_len(ex);
2988 uninitialized = ext4_ext_is_uninitialized(ex);
2989
2990 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2991 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
2992 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2993 if (uninitialized)
2994 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2995 EXT4_EXT_MARK_UNINIT2;
2996 if (split_flag & EXT4_EXT_DATA_VALID2)
2997 split_flag1 |= EXT4_EXT_DATA_VALID1;
2998 err = ext4_split_extent_at(handle, inode, path,
2999 map->m_lblk + map->m_len, split_flag1, flags1);
3000 if (err)
3001 goto out;
3002 } else {
3003 allocated = ee_len - (map->m_lblk - ee_block);
3004 }
3005
3006 ext4_ext_drop_refs(path);
3007 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3008 if (IS_ERR(path))
3009 return PTR_ERR(path);
3010
3011 if (map->m_lblk >= ee_block) {
3012 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3013 EXT4_EXT_DATA_VALID2);
3014 if (uninitialized)
3015 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3016 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3017 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3018 err = ext4_split_extent_at(handle, inode, path,
3019 map->m_lblk, split_flag1, flags);
3020 if (err)
3021 goto out;
3022 }
3023
3024 ext4_ext_show_leaf(inode, path);
3025 out:
3026 return err ? err : allocated;
3027 }
3028
3029 #define EXT4_EXT_ZERO_LEN 7
3030 /*
3031 * This function is called by ext4_ext_map_blocks() if someone tries to write
3032 * to an uninitialized extent. It may result in splitting the uninitialized
3033 * extent into multiple extents (up to three - one initialized and two
3034 * uninitialized).
3035 * There are three possibilities:
3036 * a> There is no split required: Entire extent should be initialized
3037 * b> Splits in two extents: Write is happening at either end of the extent
3038 * c> Splits in three extents: Somone is writing in middle of the extent
3039 *
3040 * Pre-conditions:
3041 * - The extent pointed to by 'path' is uninitialized.
3042 * - The extent pointed to by 'path' contains a superset
3043 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3044 *
3045 * Post-conditions on success:
3046 * - the returned value is the number of blocks beyond map->l_lblk
3047 * that are allocated and initialized.
3048 * It is guaranteed to be >= map->m_len.
3049 */
ext4_ext_convert_to_initialized(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3050 static int ext4_ext_convert_to_initialized(handle_t *handle,
3051 struct inode *inode,
3052 struct ext4_map_blocks *map,
3053 struct ext4_ext_path *path)
3054 {
3055 struct ext4_extent_header *eh;
3056 struct ext4_map_blocks split_map;
3057 struct ext4_extent zero_ex;
3058 struct ext4_extent *ex;
3059 ext4_lblk_t ee_block, eof_block;
3060 unsigned int ee_len, depth;
3061 int allocated;
3062 int err = 0;
3063 int split_flag = 0;
3064
3065 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3066 "block %llu, max_blocks %u\n", inode->i_ino,
3067 (unsigned long long)map->m_lblk, map->m_len);
3068
3069 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3070 inode->i_sb->s_blocksize_bits;
3071 if (eof_block < map->m_lblk + map->m_len)
3072 eof_block = map->m_lblk + map->m_len;
3073
3074 depth = ext_depth(inode);
3075 eh = path[depth].p_hdr;
3076 ex = path[depth].p_ext;
3077 ee_block = le32_to_cpu(ex->ee_block);
3078 ee_len = ext4_ext_get_actual_len(ex);
3079 allocated = ee_len - (map->m_lblk - ee_block);
3080
3081 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3082
3083 /* Pre-conditions */
3084 BUG_ON(!ext4_ext_is_uninitialized(ex));
3085 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3086
3087 /*
3088 * Attempt to transfer newly initialized blocks from the currently
3089 * uninitialized extent to its left neighbor. This is much cheaper
3090 * than an insertion followed by a merge as those involve costly
3091 * memmove() calls. This is the common case in steady state for
3092 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3093 * writes.
3094 *
3095 * Limitations of the current logic:
3096 * - L1: we only deal with writes at the start of the extent.
3097 * The approach could be extended to writes at the end
3098 * of the extent but this scenario was deemed less common.
3099 * - L2: we do not deal with writes covering the whole extent.
3100 * This would require removing the extent if the transfer
3101 * is possible.
3102 * - L3: we only attempt to merge with an extent stored in the
3103 * same extent tree node.
3104 */
3105 if ((map->m_lblk == ee_block) && /*L1*/
3106 (map->m_len < ee_len) && /*L2*/
3107 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3108 struct ext4_extent *prev_ex;
3109 ext4_lblk_t prev_lblk;
3110 ext4_fsblk_t prev_pblk, ee_pblk;
3111 unsigned int prev_len, write_len;
3112
3113 prev_ex = ex - 1;
3114 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3115 prev_len = ext4_ext_get_actual_len(prev_ex);
3116 prev_pblk = ext4_ext_pblock(prev_ex);
3117 ee_pblk = ext4_ext_pblock(ex);
3118 write_len = map->m_len;
3119
3120 /*
3121 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3122 * upon those conditions:
3123 * - C1: prev_ex is initialized,
3124 * - C2: prev_ex is logically abutting ex,
3125 * - C3: prev_ex is physically abutting ex,
3126 * - C4: prev_ex can receive the additional blocks without
3127 * overflowing the (initialized) length limit.
3128 */
3129 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3130 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3131 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3132 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3133 err = ext4_ext_get_access(handle, inode, path + depth);
3134 if (err)
3135 goto out;
3136
3137 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3138 map, ex, prev_ex);
3139
3140 /* Shift the start of ex by 'write_len' blocks */
3141 ex->ee_block = cpu_to_le32(ee_block + write_len);
3142 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3143 ex->ee_len = cpu_to_le16(ee_len - write_len);
3144 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3145
3146 /* Extend prev_ex by 'write_len' blocks */
3147 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3148
3149 /* Mark the block containing both extents as dirty */
3150 ext4_ext_dirty(handle, inode, path + depth);
3151
3152 /* Update path to point to the right extent */
3153 path[depth].p_ext = prev_ex;
3154
3155 /* Result: number of initialized blocks past m_lblk */
3156 allocated = write_len;
3157 goto out;
3158 }
3159 }
3160
3161 WARN_ON(map->m_lblk < ee_block);
3162 /*
3163 * It is safe to convert extent to initialized via explicit
3164 * zeroout only if extent is fully insde i_size or new_size.
3165 */
3166 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3167
3168 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3169 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3170 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3171 err = ext4_ext_zeroout(inode, ex);
3172 if (err)
3173 goto out;
3174
3175 err = ext4_ext_get_access(handle, inode, path + depth);
3176 if (err)
3177 goto out;
3178 ext4_ext_mark_initialized(ex);
3179 ext4_ext_try_to_merge(inode, path, ex);
3180 err = ext4_ext_dirty(handle, inode, path + depth);
3181 goto out;
3182 }
3183
3184 /*
3185 * four cases:
3186 * 1. split the extent into three extents.
3187 * 2. split the extent into two extents, zeroout the first half.
3188 * 3. split the extent into two extents, zeroout the second half.
3189 * 4. split the extent into two extents with out zeroout.
3190 */
3191 split_map.m_lblk = map->m_lblk;
3192 split_map.m_len = map->m_len;
3193
3194 if (allocated > map->m_len) {
3195 if (allocated <= EXT4_EXT_ZERO_LEN &&
3196 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3197 /* case 3 */
3198 zero_ex.ee_block =
3199 cpu_to_le32(map->m_lblk);
3200 zero_ex.ee_len = cpu_to_le16(allocated);
3201 ext4_ext_store_pblock(&zero_ex,
3202 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3203 err = ext4_ext_zeroout(inode, &zero_ex);
3204 if (err)
3205 goto out;
3206 split_map.m_lblk = map->m_lblk;
3207 split_map.m_len = allocated;
3208 } else if ((map->m_lblk - ee_block + map->m_len <
3209 EXT4_EXT_ZERO_LEN) &&
3210 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3211 /* case 2 */
3212 if (map->m_lblk != ee_block) {
3213 zero_ex.ee_block = ex->ee_block;
3214 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3215 ee_block);
3216 ext4_ext_store_pblock(&zero_ex,
3217 ext4_ext_pblock(ex));
3218 err = ext4_ext_zeroout(inode, &zero_ex);
3219 if (err)
3220 goto out;
3221 }
3222
3223 split_map.m_lblk = ee_block;
3224 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3225 allocated = map->m_len;
3226 }
3227 }
3228
3229 allocated = ext4_split_extent(handle, inode, path,
3230 &split_map, split_flag, 0);
3231 if (allocated < 0)
3232 err = allocated;
3233
3234 out:
3235 return err ? err : allocated;
3236 }
3237
3238 /*
3239 * This function is called by ext4_ext_map_blocks() from
3240 * ext4_get_blocks_dio_write() when DIO to write
3241 * to an uninitialized extent.
3242 *
3243 * Writing to an uninitialized extent may result in splitting the uninitialized
3244 * extent into multiple /initialized uninitialized extents (up to three)
3245 * There are three possibilities:
3246 * a> There is no split required: Entire extent should be uninitialized
3247 * b> Splits in two extents: Write is happening at either end of the extent
3248 * c> Splits in three extents: Somone is writing in middle of the extent
3249 *
3250 * One of more index blocks maybe needed if the extent tree grow after
3251 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3252 * complete, we need to split the uninitialized extent before DIO submit
3253 * the IO. The uninitialized extent called at this time will be split
3254 * into three uninitialized extent(at most). After IO complete, the part
3255 * being filled will be convert to initialized by the end_io callback function
3256 * via ext4_convert_unwritten_extents().
3257 *
3258 * Returns the size of uninitialized extent to be written on success.
3259 */
ext4_split_unwritten_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags)3260 static int ext4_split_unwritten_extents(handle_t *handle,
3261 struct inode *inode,
3262 struct ext4_map_blocks *map,
3263 struct ext4_ext_path *path,
3264 int flags)
3265 {
3266 ext4_lblk_t eof_block;
3267 ext4_lblk_t ee_block;
3268 struct ext4_extent *ex;
3269 unsigned int ee_len;
3270 int split_flag = 0, depth;
3271
3272 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3273 "block %llu, max_blocks %u\n", inode->i_ino,
3274 (unsigned long long)map->m_lblk, map->m_len);
3275
3276 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3277 inode->i_sb->s_blocksize_bits;
3278 if (eof_block < map->m_lblk + map->m_len)
3279 eof_block = map->m_lblk + map->m_len;
3280 /*
3281 * It is safe to convert extent to initialized via explicit
3282 * zeroout only if extent is fully insde i_size or new_size.
3283 */
3284 depth = ext_depth(inode);
3285 ex = path[depth].p_ext;
3286 ee_block = le32_to_cpu(ex->ee_block);
3287 ee_len = ext4_ext_get_actual_len(ex);
3288
3289 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3290 split_flag |= EXT4_EXT_MARK_UNINIT2;
3291 if (flags & EXT4_GET_BLOCKS_CONVERT)
3292 split_flag |= EXT4_EXT_DATA_VALID2;
3293 flags |= EXT4_GET_BLOCKS_PRE_IO;
3294 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3295 }
3296
ext4_convert_unwritten_extents_endio(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3297 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3298 struct inode *inode,
3299 struct ext4_map_blocks *map,
3300 struct ext4_ext_path *path)
3301 {
3302 struct ext4_extent *ex;
3303 ext4_lblk_t ee_block;
3304 unsigned int ee_len;
3305 int depth;
3306 int err = 0;
3307
3308 depth = ext_depth(inode);
3309 ex = path[depth].p_ext;
3310 ee_block = le32_to_cpu(ex->ee_block);
3311 ee_len = ext4_ext_get_actual_len(ex);
3312
3313 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3314 "block %llu, max_blocks %u\n", inode->i_ino,
3315 (unsigned long long)ee_block, ee_len);
3316
3317 /* If extent is larger than requested then split is required */
3318 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3319 err = ext4_split_unwritten_extents(handle, inode, map, path,
3320 EXT4_GET_BLOCKS_CONVERT);
3321 if (err < 0)
3322 goto out;
3323 ext4_ext_drop_refs(path);
3324 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3325 if (IS_ERR(path)) {
3326 err = PTR_ERR(path);
3327 goto out;
3328 }
3329 depth = ext_depth(inode);
3330 ex = path[depth].p_ext;
3331 }
3332
3333 err = ext4_ext_get_access(handle, inode, path + depth);
3334 if (err)
3335 goto out;
3336 /* first mark the extent as initialized */
3337 ext4_ext_mark_initialized(ex);
3338
3339 /* note: ext4_ext_correct_indexes() isn't needed here because
3340 * borders are not changed
3341 */
3342 ext4_ext_try_to_merge(inode, path, ex);
3343
3344 /* Mark modified extent as dirty */
3345 err = ext4_ext_dirty(handle, inode, path + depth);
3346 out:
3347 ext4_ext_show_leaf(inode, path);
3348 return err;
3349 }
3350
unmap_underlying_metadata_blocks(struct block_device * bdev,sector_t block,int count)3351 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3352 sector_t block, int count)
3353 {
3354 int i;
3355 for (i = 0; i < count; i++)
3356 unmap_underlying_metadata(bdev, block + i);
3357 }
3358
3359 /*
3360 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3361 */
check_eofblocks_fl(handle_t * handle,struct inode * inode,ext4_lblk_t lblk,struct ext4_ext_path * path,unsigned int len)3362 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3363 ext4_lblk_t lblk,
3364 struct ext4_ext_path *path,
3365 unsigned int len)
3366 {
3367 int i, depth;
3368 struct ext4_extent_header *eh;
3369 struct ext4_extent *last_ex;
3370
3371 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3372 return 0;
3373
3374 depth = ext_depth(inode);
3375 eh = path[depth].p_hdr;
3376
3377 /*
3378 * We're going to remove EOFBLOCKS_FL entirely in future so we
3379 * do not care for this case anymore. Simply remove the flag
3380 * if there are no extents.
3381 */
3382 if (unlikely(!eh->eh_entries))
3383 goto out;
3384 last_ex = EXT_LAST_EXTENT(eh);
3385 /*
3386 * We should clear the EOFBLOCKS_FL flag if we are writing the
3387 * last block in the last extent in the file. We test this by
3388 * first checking to see if the caller to
3389 * ext4_ext_get_blocks() was interested in the last block (or
3390 * a block beyond the last block) in the current extent. If
3391 * this turns out to be false, we can bail out from this
3392 * function immediately.
3393 */
3394 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3395 ext4_ext_get_actual_len(last_ex))
3396 return 0;
3397 /*
3398 * If the caller does appear to be planning to write at or
3399 * beyond the end of the current extent, we then test to see
3400 * if the current extent is the last extent in the file, by
3401 * checking to make sure it was reached via the rightmost node
3402 * at each level of the tree.
3403 */
3404 for (i = depth-1; i >= 0; i--)
3405 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3406 return 0;
3407 out:
3408 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3409 return ext4_mark_inode_dirty(handle, inode);
3410 }
3411
3412 /**
3413 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3414 *
3415 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3416 * whether there are any buffers marked for delayed allocation. It returns '1'
3417 * on the first delalloc'ed buffer head found. If no buffer head in the given
3418 * range is marked for delalloc, it returns 0.
3419 * lblk_start should always be <= lblk_end.
3420 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3421 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3422 * block sooner). This is useful when blocks are truncated sequentially from
3423 * lblk_start towards lblk_end.
3424 */
ext4_find_delalloc_range(struct inode * inode,ext4_lblk_t lblk_start,ext4_lblk_t lblk_end,int search_hint_reverse)3425 static int ext4_find_delalloc_range(struct inode *inode,
3426 ext4_lblk_t lblk_start,
3427 ext4_lblk_t lblk_end,
3428 int search_hint_reverse)
3429 {
3430 struct address_space *mapping = inode->i_mapping;
3431 struct buffer_head *head, *bh = NULL;
3432 struct page *page;
3433 ext4_lblk_t i, pg_lblk;
3434 pgoff_t index;
3435
3436 if (!test_opt(inode->i_sb, DELALLOC))
3437 return 0;
3438
3439 /* reverse search wont work if fs block size is less than page size */
3440 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3441 search_hint_reverse = 0;
3442
3443 if (search_hint_reverse)
3444 i = lblk_end;
3445 else
3446 i = lblk_start;
3447
3448 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3449
3450 while ((i >= lblk_start) && (i <= lblk_end)) {
3451 page = find_get_page(mapping, index);
3452 if (!page)
3453 goto nextpage;
3454
3455 if (!page_has_buffers(page))
3456 goto nextpage;
3457
3458 head = page_buffers(page);
3459 if (!head)
3460 goto nextpage;
3461
3462 bh = head;
3463 pg_lblk = index << (PAGE_CACHE_SHIFT -
3464 inode->i_blkbits);
3465 do {
3466 if (unlikely(pg_lblk < lblk_start)) {
3467 /*
3468 * This is possible when fs block size is less
3469 * than page size and our cluster starts/ends in
3470 * middle of the page. So we need to skip the
3471 * initial few blocks till we reach the 'lblk'
3472 */
3473 pg_lblk++;
3474 continue;
3475 }
3476
3477 /* Check if the buffer is delayed allocated and that it
3478 * is not yet mapped. (when da-buffers are mapped during
3479 * their writeout, their da_mapped bit is set.)
3480 */
3481 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3482 page_cache_release(page);
3483 trace_ext4_find_delalloc_range(inode,
3484 lblk_start, lblk_end,
3485 search_hint_reverse,
3486 1, i);
3487 return 1;
3488 }
3489 if (search_hint_reverse)
3490 i--;
3491 else
3492 i++;
3493 } while ((i >= lblk_start) && (i <= lblk_end) &&
3494 ((bh = bh->b_this_page) != head));
3495 nextpage:
3496 if (page)
3497 page_cache_release(page);
3498 /*
3499 * Move to next page. 'i' will be the first lblk in the next
3500 * page.
3501 */
3502 if (search_hint_reverse)
3503 index--;
3504 else
3505 index++;
3506 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3507 }
3508
3509 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3510 search_hint_reverse, 0, 0);
3511 return 0;
3512 }
3513
ext4_find_delalloc_cluster(struct inode * inode,ext4_lblk_t lblk,int search_hint_reverse)3514 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3515 int search_hint_reverse)
3516 {
3517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3518 ext4_lblk_t lblk_start, lblk_end;
3519 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3520 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3521
3522 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3523 search_hint_reverse);
3524 }
3525
3526 /**
3527 * Determines how many complete clusters (out of those specified by the 'map')
3528 * are under delalloc and were reserved quota for.
3529 * This function is called when we are writing out the blocks that were
3530 * originally written with their allocation delayed, but then the space was
3531 * allocated using fallocate() before the delayed allocation could be resolved.
3532 * The cases to look for are:
3533 * ('=' indicated delayed allocated blocks
3534 * '-' indicates non-delayed allocated blocks)
3535 * (a) partial clusters towards beginning and/or end outside of allocated range
3536 * are not delalloc'ed.
3537 * Ex:
3538 * |----c---=|====c====|====c====|===-c----|
3539 * |++++++ allocated ++++++|
3540 * ==> 4 complete clusters in above example
3541 *
3542 * (b) partial cluster (outside of allocated range) towards either end is
3543 * marked for delayed allocation. In this case, we will exclude that
3544 * cluster.
3545 * Ex:
3546 * |----====c========|========c========|
3547 * |++++++ allocated ++++++|
3548 * ==> 1 complete clusters in above example
3549 *
3550 * Ex:
3551 * |================c================|
3552 * |++++++ allocated ++++++|
3553 * ==> 0 complete clusters in above example
3554 *
3555 * The ext4_da_update_reserve_space will be called only if we
3556 * determine here that there were some "entire" clusters that span
3557 * this 'allocated' range.
3558 * In the non-bigalloc case, this function will just end up returning num_blks
3559 * without ever calling ext4_find_delalloc_range.
3560 */
3561 static unsigned int
get_reserved_cluster_alloc(struct inode * inode,ext4_lblk_t lblk_start,unsigned int num_blks)3562 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3563 unsigned int num_blks)
3564 {
3565 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3566 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3567 ext4_lblk_t lblk_from, lblk_to, c_offset;
3568 unsigned int allocated_clusters = 0;
3569
3570 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3571 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3572
3573 /* max possible clusters for this allocation */
3574 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3575
3576 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3577
3578 /* Check towards left side */
3579 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3580 if (c_offset) {
3581 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3582 lblk_to = lblk_from + c_offset - 1;
3583
3584 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3585 allocated_clusters--;
3586 }
3587
3588 /* Now check towards right. */
3589 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3590 if (allocated_clusters && c_offset) {
3591 lblk_from = lblk_start + num_blks;
3592 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3593
3594 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3595 allocated_clusters--;
3596 }
3597
3598 return allocated_clusters;
3599 }
3600
3601 static int
ext4_ext_handle_uninitialized_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags,unsigned int allocated,ext4_fsblk_t newblock)3602 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3603 struct ext4_map_blocks *map,
3604 struct ext4_ext_path *path, int flags,
3605 unsigned int allocated, ext4_fsblk_t newblock)
3606 {
3607 int ret = 0;
3608 int err = 0;
3609 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3610
3611 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3612 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3613 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3614 flags, allocated);
3615 ext4_ext_show_leaf(inode, path);
3616
3617 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3618 newblock);
3619
3620 /* get_block() before submit the IO, split the extent */
3621 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3622 ret = ext4_split_unwritten_extents(handle, inode, map,
3623 path, flags);
3624 /*
3625 * Flag the inode(non aio case) or end_io struct (aio case)
3626 * that this IO needs to conversion to written when IO is
3627 * completed
3628 */
3629 if (io)
3630 ext4_set_io_unwritten_flag(inode, io);
3631 else
3632 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3633 if (ext4_should_dioread_nolock(inode))
3634 map->m_flags |= EXT4_MAP_UNINIT;
3635 goto out;
3636 }
3637 /* IO end_io complete, convert the filled extent to written */
3638 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3639 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3640 path);
3641 if (ret >= 0) {
3642 ext4_update_inode_fsync_trans(handle, inode, 1);
3643 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3644 path, map->m_len);
3645 } else
3646 err = ret;
3647 goto out2;
3648 }
3649 /* buffered IO case */
3650 /*
3651 * repeat fallocate creation request
3652 * we already have an unwritten extent
3653 */
3654 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3655 goto map_out;
3656
3657 /* buffered READ or buffered write_begin() lookup */
3658 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3659 /*
3660 * We have blocks reserved already. We
3661 * return allocated blocks so that delalloc
3662 * won't do block reservation for us. But
3663 * the buffer head will be unmapped so that
3664 * a read from the block returns 0s.
3665 */
3666 map->m_flags |= EXT4_MAP_UNWRITTEN;
3667 goto out1;
3668 }
3669
3670 /* buffered write, writepage time, convert*/
3671 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3672 if (ret >= 0)
3673 ext4_update_inode_fsync_trans(handle, inode, 1);
3674 out:
3675 if (ret <= 0) {
3676 err = ret;
3677 goto out2;
3678 } else
3679 allocated = ret;
3680 map->m_flags |= EXT4_MAP_NEW;
3681 /*
3682 * if we allocated more blocks than requested
3683 * we need to make sure we unmap the extra block
3684 * allocated. The actual needed block will get
3685 * unmapped later when we find the buffer_head marked
3686 * new.
3687 */
3688 if (allocated > map->m_len) {
3689 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3690 newblock + map->m_len,
3691 allocated - map->m_len);
3692 allocated = map->m_len;
3693 }
3694 map->m_len = allocated;
3695
3696 /*
3697 * If we have done fallocate with the offset that is already
3698 * delayed allocated, we would have block reservation
3699 * and quota reservation done in the delayed write path.
3700 * But fallocate would have already updated quota and block
3701 * count for this offset. So cancel these reservation
3702 */
3703 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3704 unsigned int reserved_clusters;
3705 reserved_clusters = get_reserved_cluster_alloc(inode,
3706 map->m_lblk, map->m_len);
3707 if (reserved_clusters)
3708 ext4_da_update_reserve_space(inode,
3709 reserved_clusters,
3710 0);
3711 }
3712
3713 map_out:
3714 map->m_flags |= EXT4_MAP_MAPPED;
3715 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3716 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3717 map->m_len);
3718 if (err < 0)
3719 goto out2;
3720 }
3721 out1:
3722 if (allocated > map->m_len)
3723 allocated = map->m_len;
3724 ext4_ext_show_leaf(inode, path);
3725 map->m_pblk = newblock;
3726 map->m_len = allocated;
3727 out2:
3728 if (path) {
3729 ext4_ext_drop_refs(path);
3730 kfree(path);
3731 }
3732 return err ? err : allocated;
3733 }
3734
3735 /*
3736 * get_implied_cluster_alloc - check to see if the requested
3737 * allocation (in the map structure) overlaps with a cluster already
3738 * allocated in an extent.
3739 * @sb The filesystem superblock structure
3740 * @map The requested lblk->pblk mapping
3741 * @ex The extent structure which might contain an implied
3742 * cluster allocation
3743 *
3744 * This function is called by ext4_ext_map_blocks() after we failed to
3745 * find blocks that were already in the inode's extent tree. Hence,
3746 * we know that the beginning of the requested region cannot overlap
3747 * the extent from the inode's extent tree. There are three cases we
3748 * want to catch. The first is this case:
3749 *
3750 * |--- cluster # N--|
3751 * |--- extent ---| |---- requested region ---|
3752 * |==========|
3753 *
3754 * The second case that we need to test for is this one:
3755 *
3756 * |--------- cluster # N ----------------|
3757 * |--- requested region --| |------- extent ----|
3758 * |=======================|
3759 *
3760 * The third case is when the requested region lies between two extents
3761 * within the same cluster:
3762 * |------------- cluster # N-------------|
3763 * |----- ex -----| |---- ex_right ----|
3764 * |------ requested region ------|
3765 * |================|
3766 *
3767 * In each of the above cases, we need to set the map->m_pblk and
3768 * map->m_len so it corresponds to the return the extent labelled as
3769 * "|====|" from cluster #N, since it is already in use for data in
3770 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3771 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3772 * as a new "allocated" block region. Otherwise, we will return 0 and
3773 * ext4_ext_map_blocks() will then allocate one or more new clusters
3774 * by calling ext4_mb_new_blocks().
3775 */
get_implied_cluster_alloc(struct super_block * sb,struct ext4_map_blocks * map,struct ext4_extent * ex,struct ext4_ext_path * path)3776 static int get_implied_cluster_alloc(struct super_block *sb,
3777 struct ext4_map_blocks *map,
3778 struct ext4_extent *ex,
3779 struct ext4_ext_path *path)
3780 {
3781 struct ext4_sb_info *sbi = EXT4_SB(sb);
3782 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3783 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3784 ext4_lblk_t rr_cluster_start;
3785 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3786 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3787 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3788
3789 /* The extent passed in that we are trying to match */
3790 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3791 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3792
3793 /* The requested region passed into ext4_map_blocks() */
3794 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3795
3796 if ((rr_cluster_start == ex_cluster_end) ||
3797 (rr_cluster_start == ex_cluster_start)) {
3798 if (rr_cluster_start == ex_cluster_end)
3799 ee_start += ee_len - 1;
3800 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3801 c_offset;
3802 map->m_len = min(map->m_len,
3803 (unsigned) sbi->s_cluster_ratio - c_offset);
3804 /*
3805 * Check for and handle this case:
3806 *
3807 * |--------- cluster # N-------------|
3808 * |------- extent ----|
3809 * |--- requested region ---|
3810 * |===========|
3811 */
3812
3813 if (map->m_lblk < ee_block)
3814 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3815
3816 /*
3817 * Check for the case where there is already another allocated
3818 * block to the right of 'ex' but before the end of the cluster.
3819 *
3820 * |------------- cluster # N-------------|
3821 * |----- ex -----| |---- ex_right ----|
3822 * |------ requested region ------|
3823 * |================|
3824 */
3825 if (map->m_lblk > ee_block) {
3826 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3827 map->m_len = min(map->m_len, next - map->m_lblk);
3828 }
3829
3830 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3831 return 1;
3832 }
3833
3834 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3835 return 0;
3836 }
3837
3838
3839 /*
3840 * Block allocation/map/preallocation routine for extents based files
3841 *
3842 *
3843 * Need to be called with
3844 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3845 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3846 *
3847 * return > 0, number of of blocks already mapped/allocated
3848 * if create == 0 and these are pre-allocated blocks
3849 * buffer head is unmapped
3850 * otherwise blocks are mapped
3851 *
3852 * return = 0, if plain look up failed (blocks have not been allocated)
3853 * buffer head is unmapped
3854 *
3855 * return < 0, error case.
3856 */
ext4_ext_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)3857 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3858 struct ext4_map_blocks *map, int flags)
3859 {
3860 struct ext4_ext_path *path = NULL;
3861 struct ext4_extent newex, *ex, *ex2;
3862 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3863 ext4_fsblk_t newblock = 0;
3864 int free_on_err = 0, err = 0, depth, ret;
3865 unsigned int allocated = 0, offset = 0;
3866 unsigned int allocated_clusters = 0;
3867 struct ext4_allocation_request ar;
3868 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3869 ext4_lblk_t cluster_offset;
3870
3871 ext_debug("blocks %u/%u requested for inode %lu\n",
3872 map->m_lblk, map->m_len, inode->i_ino);
3873 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3874
3875 /* check in cache */
3876 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3877 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3878 if ((sbi->s_cluster_ratio > 1) &&
3879 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3880 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3881
3882 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3883 /*
3884 * block isn't allocated yet and
3885 * user doesn't want to allocate it
3886 */
3887 goto out2;
3888 }
3889 /* we should allocate requested block */
3890 } else {
3891 /* block is already allocated */
3892 if (sbi->s_cluster_ratio > 1)
3893 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3894 newblock = map->m_lblk
3895 - le32_to_cpu(newex.ee_block)
3896 + ext4_ext_pblock(&newex);
3897 /* number of remaining blocks in the extent */
3898 allocated = ext4_ext_get_actual_len(&newex) -
3899 (map->m_lblk - le32_to_cpu(newex.ee_block));
3900 goto out;
3901 }
3902 }
3903
3904 /* find extent for this block */
3905 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3906 if (IS_ERR(path)) {
3907 err = PTR_ERR(path);
3908 path = NULL;
3909 goto out2;
3910 }
3911
3912 depth = ext_depth(inode);
3913
3914 /*
3915 * consistent leaf must not be empty;
3916 * this situation is possible, though, _during_ tree modification;
3917 * this is why assert can't be put in ext4_ext_find_extent()
3918 */
3919 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3920 EXT4_ERROR_INODE(inode, "bad extent address "
3921 "lblock: %lu, depth: %d pblock %lld",
3922 (unsigned long) map->m_lblk, depth,
3923 path[depth].p_block);
3924 err = -EIO;
3925 goto out2;
3926 }
3927
3928 ex = path[depth].p_ext;
3929 if (ex) {
3930 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3931 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3932 unsigned short ee_len;
3933
3934 /*
3935 * Uninitialized extents are treated as holes, except that
3936 * we split out initialized portions during a write.
3937 */
3938 ee_len = ext4_ext_get_actual_len(ex);
3939
3940 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3941
3942 /* if found extent covers block, simply return it */
3943 if (in_range(map->m_lblk, ee_block, ee_len)) {
3944 newblock = map->m_lblk - ee_block + ee_start;
3945 /* number of remaining blocks in the extent */
3946 allocated = ee_len - (map->m_lblk - ee_block);
3947 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3948 ee_block, ee_len, newblock);
3949
3950 /*
3951 * Do not put uninitialized extent
3952 * in the cache
3953 */
3954 if (!ext4_ext_is_uninitialized(ex)) {
3955 ext4_ext_put_in_cache(inode, ee_block,
3956 ee_len, ee_start);
3957 goto out;
3958 }
3959 ret = ext4_ext_handle_uninitialized_extents(
3960 handle, inode, map, path, flags,
3961 allocated, newblock);
3962 return ret;
3963 }
3964 }
3965
3966 if ((sbi->s_cluster_ratio > 1) &&
3967 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3968 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3969
3970 /*
3971 * requested block isn't allocated yet;
3972 * we couldn't try to create block if create flag is zero
3973 */
3974 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3975 /*
3976 * put just found gap into cache to speed up
3977 * subsequent requests
3978 */
3979 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3980 goto out2;
3981 }
3982
3983 /*
3984 * Okay, we need to do block allocation.
3985 */
3986 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3987 newex.ee_block = cpu_to_le32(map->m_lblk);
3988 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3989
3990 /*
3991 * If we are doing bigalloc, check to see if the extent returned
3992 * by ext4_ext_find_extent() implies a cluster we can use.
3993 */
3994 if (cluster_offset && ex &&
3995 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3996 ar.len = allocated = map->m_len;
3997 newblock = map->m_pblk;
3998 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3999 goto got_allocated_blocks;
4000 }
4001
4002 /* find neighbour allocated blocks */
4003 ar.lleft = map->m_lblk;
4004 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4005 if (err)
4006 goto out2;
4007 ar.lright = map->m_lblk;
4008 ex2 = NULL;
4009 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4010 if (err)
4011 goto out2;
4012
4013 /* Check if the extent after searching to the right implies a
4014 * cluster we can use. */
4015 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4016 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4017 ar.len = allocated = map->m_len;
4018 newblock = map->m_pblk;
4019 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4020 goto got_allocated_blocks;
4021 }
4022
4023 /*
4024 * See if request is beyond maximum number of blocks we can have in
4025 * a single extent. For an initialized extent this limit is
4026 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4027 * EXT_UNINIT_MAX_LEN.
4028 */
4029 if (map->m_len > EXT_INIT_MAX_LEN &&
4030 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4031 map->m_len = EXT_INIT_MAX_LEN;
4032 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4033 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4034 map->m_len = EXT_UNINIT_MAX_LEN;
4035
4036 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4037 newex.ee_len = cpu_to_le16(map->m_len);
4038 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4039 if (err)
4040 allocated = ext4_ext_get_actual_len(&newex);
4041 else
4042 allocated = map->m_len;
4043
4044 /* allocate new block */
4045 ar.inode = inode;
4046 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4047 ar.logical = map->m_lblk;
4048 /*
4049 * We calculate the offset from the beginning of the cluster
4050 * for the logical block number, since when we allocate a
4051 * physical cluster, the physical block should start at the
4052 * same offset from the beginning of the cluster. This is
4053 * needed so that future calls to get_implied_cluster_alloc()
4054 * work correctly.
4055 */
4056 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4057 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4058 ar.goal -= offset;
4059 ar.logical -= offset;
4060 if (S_ISREG(inode->i_mode))
4061 ar.flags = EXT4_MB_HINT_DATA;
4062 else
4063 /* disable in-core preallocation for non-regular files */
4064 ar.flags = 0;
4065 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4066 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4067 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4068 if (!newblock)
4069 goto out2;
4070 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4071 ar.goal, newblock, allocated);
4072 free_on_err = 1;
4073 allocated_clusters = ar.len;
4074 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4075 if (ar.len > allocated)
4076 ar.len = allocated;
4077
4078 got_allocated_blocks:
4079 /* try to insert new extent into found leaf and return */
4080 ext4_ext_store_pblock(&newex, newblock + offset);
4081 newex.ee_len = cpu_to_le16(ar.len);
4082 /* Mark uninitialized */
4083 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4084 ext4_ext_mark_uninitialized(&newex);
4085 /*
4086 * io_end structure was created for every IO write to an
4087 * uninitialized extent. To avoid unnecessary conversion,
4088 * here we flag the IO that really needs the conversion.
4089 * For non asycn direct IO case, flag the inode state
4090 * that we need to perform conversion when IO is done.
4091 */
4092 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4093 if (io)
4094 ext4_set_io_unwritten_flag(inode, io);
4095 else
4096 ext4_set_inode_state(inode,
4097 EXT4_STATE_DIO_UNWRITTEN);
4098 }
4099 if (ext4_should_dioread_nolock(inode))
4100 map->m_flags |= EXT4_MAP_UNINIT;
4101 }
4102
4103 err = 0;
4104 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4105 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4106 path, ar.len);
4107 if (!err)
4108 err = ext4_ext_insert_extent(handle, inode, path,
4109 &newex, flags);
4110 if (err && free_on_err) {
4111 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4112 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4113 /* free data blocks we just allocated */
4114 /* not a good idea to call discard here directly,
4115 * but otherwise we'd need to call it every free() */
4116 ext4_discard_preallocations(inode);
4117 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4118 ext4_ext_get_actual_len(&newex), fb_flags);
4119 goto out2;
4120 }
4121
4122 /* previous routine could use block we allocated */
4123 newblock = ext4_ext_pblock(&newex);
4124 allocated = ext4_ext_get_actual_len(&newex);
4125 if (allocated > map->m_len)
4126 allocated = map->m_len;
4127 map->m_flags |= EXT4_MAP_NEW;
4128
4129 /*
4130 * Update reserved blocks/metadata blocks after successful
4131 * block allocation which had been deferred till now.
4132 */
4133 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4134 unsigned int reserved_clusters;
4135 /*
4136 * Check how many clusters we had reserved this allocated range
4137 */
4138 reserved_clusters = get_reserved_cluster_alloc(inode,
4139 map->m_lblk, allocated);
4140 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4141 if (reserved_clusters) {
4142 /*
4143 * We have clusters reserved for this range.
4144 * But since we are not doing actual allocation
4145 * and are simply using blocks from previously
4146 * allocated cluster, we should release the
4147 * reservation and not claim quota.
4148 */
4149 ext4_da_update_reserve_space(inode,
4150 reserved_clusters, 0);
4151 }
4152 } else {
4153 BUG_ON(allocated_clusters < reserved_clusters);
4154 /* We will claim quota for all newly allocated blocks.*/
4155 ext4_da_update_reserve_space(inode, allocated_clusters,
4156 1);
4157 if (reserved_clusters < allocated_clusters) {
4158 struct ext4_inode_info *ei = EXT4_I(inode);
4159 int reservation = allocated_clusters -
4160 reserved_clusters;
4161 /*
4162 * It seems we claimed few clusters outside of
4163 * the range of this allocation. We should give
4164 * it back to the reservation pool. This can
4165 * happen in the following case:
4166 *
4167 * * Suppose s_cluster_ratio is 4 (i.e., each
4168 * cluster has 4 blocks. Thus, the clusters
4169 * are [0-3],[4-7],[8-11]...
4170 * * First comes delayed allocation write for
4171 * logical blocks 10 & 11. Since there were no
4172 * previous delayed allocated blocks in the
4173 * range [8-11], we would reserve 1 cluster
4174 * for this write.
4175 * * Next comes write for logical blocks 3 to 8.
4176 * In this case, we will reserve 2 clusters
4177 * (for [0-3] and [4-7]; and not for [8-11] as
4178 * that range has a delayed allocated blocks.
4179 * Thus total reserved clusters now becomes 3.
4180 * * Now, during the delayed allocation writeout
4181 * time, we will first write blocks [3-8] and
4182 * allocate 3 clusters for writing these
4183 * blocks. Also, we would claim all these
4184 * three clusters above.
4185 * * Now when we come here to writeout the
4186 * blocks [10-11], we would expect to claim
4187 * the reservation of 1 cluster we had made
4188 * (and we would claim it since there are no
4189 * more delayed allocated blocks in the range
4190 * [8-11]. But our reserved cluster count had
4191 * already gone to 0.
4192 *
4193 * Thus, at the step 4 above when we determine
4194 * that there are still some unwritten delayed
4195 * allocated blocks outside of our current
4196 * block range, we should increment the
4197 * reserved clusters count so that when the
4198 * remaining blocks finally gets written, we
4199 * could claim them.
4200 */
4201 dquot_reserve_block(inode,
4202 EXT4_C2B(sbi, reservation));
4203 spin_lock(&ei->i_block_reservation_lock);
4204 ei->i_reserved_data_blocks += reservation;
4205 spin_unlock(&ei->i_block_reservation_lock);
4206 }
4207 }
4208 }
4209
4210 /*
4211 * Cache the extent and update transaction to commit on fdatasync only
4212 * when it is _not_ an uninitialized extent.
4213 */
4214 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4215 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4216 ext4_update_inode_fsync_trans(handle, inode, 1);
4217 } else
4218 ext4_update_inode_fsync_trans(handle, inode, 0);
4219 out:
4220 if (allocated > map->m_len)
4221 allocated = map->m_len;
4222 ext4_ext_show_leaf(inode, path);
4223 map->m_flags |= EXT4_MAP_MAPPED;
4224 map->m_pblk = newblock;
4225 map->m_len = allocated;
4226 out2:
4227 if (path) {
4228 ext4_ext_drop_refs(path);
4229 kfree(path);
4230 }
4231
4232 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4233 newblock, map->m_len, err ? err : allocated);
4234
4235 return err ? err : allocated;
4236 }
4237
ext4_ext_truncate(struct inode * inode)4238 void ext4_ext_truncate(struct inode *inode)
4239 {
4240 struct address_space *mapping = inode->i_mapping;
4241 struct super_block *sb = inode->i_sb;
4242 ext4_lblk_t last_block;
4243 handle_t *handle;
4244 loff_t page_len;
4245 int err = 0;
4246
4247 /*
4248 * finish any pending end_io work so we won't run the risk of
4249 * converting any truncated blocks to initialized later
4250 */
4251 ext4_flush_completed_IO(inode);
4252
4253 /*
4254 * probably first extent we're gonna free will be last in block
4255 */
4256 err = ext4_writepage_trans_blocks(inode);
4257 handle = ext4_journal_start(inode, err);
4258 if (IS_ERR(handle))
4259 return;
4260
4261 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4262 page_len = PAGE_CACHE_SIZE -
4263 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4264
4265 err = ext4_discard_partial_page_buffers(handle,
4266 mapping, inode->i_size, page_len, 0);
4267
4268 if (err)
4269 goto out_stop;
4270 }
4271
4272 if (ext4_orphan_add(handle, inode))
4273 goto out_stop;
4274
4275 down_write(&EXT4_I(inode)->i_data_sem);
4276 ext4_ext_invalidate_cache(inode);
4277
4278 ext4_discard_preallocations(inode);
4279
4280 /*
4281 * TODO: optimization is possible here.
4282 * Probably we need not scan at all,
4283 * because page truncation is enough.
4284 */
4285
4286 /* we have to know where to truncate from in crash case */
4287 EXT4_I(inode)->i_disksize = inode->i_size;
4288 ext4_mark_inode_dirty(handle, inode);
4289
4290 last_block = (inode->i_size + sb->s_blocksize - 1)
4291 >> EXT4_BLOCK_SIZE_BITS(sb);
4292 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4293
4294 /* In a multi-transaction truncate, we only make the final
4295 * transaction synchronous.
4296 */
4297 if (IS_SYNC(inode))
4298 ext4_handle_sync(handle);
4299
4300 up_write(&EXT4_I(inode)->i_data_sem);
4301
4302 out_stop:
4303 /*
4304 * If this was a simple ftruncate() and the file will remain alive,
4305 * then we need to clear up the orphan record which we created above.
4306 * However, if this was a real unlink then we were called by
4307 * ext4_delete_inode(), and we allow that function to clean up the
4308 * orphan info for us.
4309 */
4310 if (inode->i_nlink)
4311 ext4_orphan_del(handle, inode);
4312
4313 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4314 ext4_mark_inode_dirty(handle, inode);
4315 ext4_journal_stop(handle);
4316 }
4317
ext4_falloc_update_inode(struct inode * inode,int mode,loff_t new_size,int update_ctime)4318 static void ext4_falloc_update_inode(struct inode *inode,
4319 int mode, loff_t new_size, int update_ctime)
4320 {
4321 struct timespec now;
4322
4323 if (update_ctime) {
4324 now = current_fs_time(inode->i_sb);
4325 if (!timespec_equal(&inode->i_ctime, &now))
4326 inode->i_ctime = now;
4327 }
4328 /*
4329 * Update only when preallocation was requested beyond
4330 * the file size.
4331 */
4332 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4333 if (new_size > i_size_read(inode))
4334 i_size_write(inode, new_size);
4335 if (new_size > EXT4_I(inode)->i_disksize)
4336 ext4_update_i_disksize(inode, new_size);
4337 } else {
4338 /*
4339 * Mark that we allocate beyond EOF so the subsequent truncate
4340 * can proceed even if the new size is the same as i_size.
4341 */
4342 if (new_size > i_size_read(inode))
4343 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4344 }
4345
4346 }
4347
4348 /*
4349 * preallocate space for a file. This implements ext4's fallocate file
4350 * operation, which gets called from sys_fallocate system call.
4351 * For block-mapped files, posix_fallocate should fall back to the method
4352 * of writing zeroes to the required new blocks (the same behavior which is
4353 * expected for file systems which do not support fallocate() system call).
4354 */
ext4_fallocate(struct file * file,int mode,loff_t offset,loff_t len)4355 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4356 {
4357 struct inode *inode = file->f_path.dentry->d_inode;
4358 handle_t *handle;
4359 loff_t new_size;
4360 unsigned int max_blocks;
4361 int ret = 0;
4362 int ret2 = 0;
4363 int retries = 0;
4364 int flags;
4365 struct ext4_map_blocks map;
4366 unsigned int credits, blkbits = inode->i_blkbits;
4367
4368 /*
4369 * currently supporting (pre)allocate mode for extent-based
4370 * files _only_
4371 */
4372 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4373 return -EOPNOTSUPP;
4374
4375 /* Return error if mode is not supported */
4376 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4377 return -EOPNOTSUPP;
4378
4379 if (mode & FALLOC_FL_PUNCH_HOLE)
4380 return ext4_punch_hole(file, offset, len);
4381
4382 trace_ext4_fallocate_enter(inode, offset, len, mode);
4383 map.m_lblk = offset >> blkbits;
4384 /*
4385 * We can't just convert len to max_blocks because
4386 * If blocksize = 4096 offset = 3072 and len = 2048
4387 */
4388 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4389 - map.m_lblk;
4390 /*
4391 * credits to insert 1 extent into extent tree
4392 */
4393 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4394 mutex_lock(&inode->i_mutex);
4395 ret = inode_newsize_ok(inode, (len + offset));
4396 if (ret) {
4397 mutex_unlock(&inode->i_mutex);
4398 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4399 return ret;
4400 }
4401 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4402 if (mode & FALLOC_FL_KEEP_SIZE)
4403 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4404 /*
4405 * Don't normalize the request if it can fit in one extent so
4406 * that it doesn't get unnecessarily split into multiple
4407 * extents.
4408 */
4409 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4410 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4411 retry:
4412 while (ret >= 0 && ret < max_blocks) {
4413 map.m_lblk = map.m_lblk + ret;
4414 map.m_len = max_blocks = max_blocks - ret;
4415 handle = ext4_journal_start(inode, credits);
4416 if (IS_ERR(handle)) {
4417 ret = PTR_ERR(handle);
4418 break;
4419 }
4420 ret = ext4_map_blocks(handle, inode, &map, flags);
4421 if (ret <= 0) {
4422 #ifdef EXT4FS_DEBUG
4423 WARN_ON(ret <= 0);
4424 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4425 "returned error inode#%lu, block=%u, "
4426 "max_blocks=%u", __func__,
4427 inode->i_ino, map.m_lblk, max_blocks);
4428 #endif
4429 ext4_mark_inode_dirty(handle, inode);
4430 ret2 = ext4_journal_stop(handle);
4431 break;
4432 }
4433 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4434 blkbits) >> blkbits))
4435 new_size = offset + len;
4436 else
4437 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4438
4439 ext4_falloc_update_inode(inode, mode, new_size,
4440 (map.m_flags & EXT4_MAP_NEW));
4441 ext4_mark_inode_dirty(handle, inode);
4442 ret2 = ext4_journal_stop(handle);
4443 if (ret2)
4444 break;
4445 }
4446 if (ret == -ENOSPC &&
4447 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4448 ret = 0;
4449 goto retry;
4450 }
4451 mutex_unlock(&inode->i_mutex);
4452 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4453 ret > 0 ? ret2 : ret);
4454 return ret > 0 ? ret2 : ret;
4455 }
4456
4457 /*
4458 * This function convert a range of blocks to written extents
4459 * The caller of this function will pass the start offset and the size.
4460 * all unwritten extents within this range will be converted to
4461 * written extents.
4462 *
4463 * This function is called from the direct IO end io call back
4464 * function, to convert the fallocated extents after IO is completed.
4465 * Returns 0 on success.
4466 */
ext4_convert_unwritten_extents(struct inode * inode,loff_t offset,ssize_t len)4467 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4468 ssize_t len)
4469 {
4470 handle_t *handle;
4471 unsigned int max_blocks;
4472 int ret = 0;
4473 int ret2 = 0;
4474 struct ext4_map_blocks map;
4475 unsigned int credits, blkbits = inode->i_blkbits;
4476
4477 map.m_lblk = offset >> blkbits;
4478 /*
4479 * We can't just convert len to max_blocks because
4480 * If blocksize = 4096 offset = 3072 and len = 2048
4481 */
4482 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4483 map.m_lblk);
4484 /*
4485 * credits to insert 1 extent into extent tree
4486 */
4487 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4488 while (ret >= 0 && ret < max_blocks) {
4489 map.m_lblk += ret;
4490 map.m_len = (max_blocks -= ret);
4491 handle = ext4_journal_start(inode, credits);
4492 if (IS_ERR(handle)) {
4493 ret = PTR_ERR(handle);
4494 break;
4495 }
4496 ret = ext4_map_blocks(handle, inode, &map,
4497 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4498 if (ret <= 0) {
4499 WARN_ON(ret <= 0);
4500 ext4_msg(inode->i_sb, KERN_ERR,
4501 "%s:%d: inode #%lu: block %u: len %u: "
4502 "ext4_ext_map_blocks returned %d",
4503 __func__, __LINE__, inode->i_ino, map.m_lblk,
4504 map.m_len, ret);
4505 }
4506 ext4_mark_inode_dirty(handle, inode);
4507 ret2 = ext4_journal_stop(handle);
4508 if (ret <= 0 || ret2 )
4509 break;
4510 }
4511 return ret > 0 ? ret2 : ret;
4512 }
4513
4514 /*
4515 * Callback function called for each extent to gather FIEMAP information.
4516 */
ext4_ext_fiemap_cb(struct inode * inode,ext4_lblk_t next,struct ext4_ext_cache * newex,struct ext4_extent * ex,void * data)4517 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4518 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4519 void *data)
4520 {
4521 __u64 logical;
4522 __u64 physical;
4523 __u64 length;
4524 __u32 flags = 0;
4525 int ret = 0;
4526 struct fiemap_extent_info *fieinfo = data;
4527 unsigned char blksize_bits;
4528
4529 blksize_bits = inode->i_sb->s_blocksize_bits;
4530 logical = (__u64)newex->ec_block << blksize_bits;
4531
4532 if (newex->ec_start == 0) {
4533 /*
4534 * No extent in extent-tree contains block @newex->ec_start,
4535 * then the block may stay in 1)a hole or 2)delayed-extent.
4536 *
4537 * Holes or delayed-extents are processed as follows.
4538 * 1. lookup dirty pages with specified range in pagecache.
4539 * If no page is got, then there is no delayed-extent and
4540 * return with EXT_CONTINUE.
4541 * 2. find the 1st mapped buffer,
4542 * 3. check if the mapped buffer is both in the request range
4543 * and a delayed buffer. If not, there is no delayed-extent,
4544 * then return.
4545 * 4. a delayed-extent is found, the extent will be collected.
4546 */
4547 ext4_lblk_t end = 0;
4548 pgoff_t last_offset;
4549 pgoff_t offset;
4550 pgoff_t index;
4551 pgoff_t start_index = 0;
4552 struct page **pages = NULL;
4553 struct buffer_head *bh = NULL;
4554 struct buffer_head *head = NULL;
4555 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4556
4557 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4558 if (pages == NULL)
4559 return -ENOMEM;
4560
4561 offset = logical >> PAGE_SHIFT;
4562 repeat:
4563 last_offset = offset;
4564 head = NULL;
4565 ret = find_get_pages_tag(inode->i_mapping, &offset,
4566 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4567
4568 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4569 /* First time, try to find a mapped buffer. */
4570 if (ret == 0) {
4571 out:
4572 for (index = 0; index < ret; index++)
4573 page_cache_release(pages[index]);
4574 /* just a hole. */
4575 kfree(pages);
4576 return EXT_CONTINUE;
4577 }
4578 index = 0;
4579
4580 next_page:
4581 /* Try to find the 1st mapped buffer. */
4582 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4583 blksize_bits;
4584 if (!page_has_buffers(pages[index]))
4585 goto out;
4586 head = page_buffers(pages[index]);
4587 if (!head)
4588 goto out;
4589
4590 index++;
4591 bh = head;
4592 do {
4593 if (end >= newex->ec_block +
4594 newex->ec_len)
4595 /* The buffer is out of
4596 * the request range.
4597 */
4598 goto out;
4599
4600 if (buffer_mapped(bh) &&
4601 end >= newex->ec_block) {
4602 start_index = index - 1;
4603 /* get the 1st mapped buffer. */
4604 goto found_mapped_buffer;
4605 }
4606
4607 bh = bh->b_this_page;
4608 end++;
4609 } while (bh != head);
4610
4611 /* No mapped buffer in the range found in this page,
4612 * We need to look up next page.
4613 */
4614 if (index >= ret) {
4615 /* There is no page left, but we need to limit
4616 * newex->ec_len.
4617 */
4618 newex->ec_len = end - newex->ec_block;
4619 goto out;
4620 }
4621 goto next_page;
4622 } else {
4623 /*Find contiguous delayed buffers. */
4624 if (ret > 0 && pages[0]->index == last_offset)
4625 head = page_buffers(pages[0]);
4626 bh = head;
4627 index = 1;
4628 start_index = 0;
4629 }
4630
4631 found_mapped_buffer:
4632 if (bh != NULL && buffer_delay(bh)) {
4633 /* 1st or contiguous delayed buffer found. */
4634 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4635 /*
4636 * 1st delayed buffer found, record
4637 * the start of extent.
4638 */
4639 flags |= FIEMAP_EXTENT_DELALLOC;
4640 newex->ec_block = end;
4641 logical = (__u64)end << blksize_bits;
4642 }
4643 /* Find contiguous delayed buffers. */
4644 do {
4645 if (!buffer_delay(bh))
4646 goto found_delayed_extent;
4647 bh = bh->b_this_page;
4648 end++;
4649 } while (bh != head);
4650
4651 for (; index < ret; index++) {
4652 if (!page_has_buffers(pages[index])) {
4653 bh = NULL;
4654 break;
4655 }
4656 head = page_buffers(pages[index]);
4657 if (!head) {
4658 bh = NULL;
4659 break;
4660 }
4661
4662 if (pages[index]->index !=
4663 pages[start_index]->index + index
4664 - start_index) {
4665 /* Blocks are not contiguous. */
4666 bh = NULL;
4667 break;
4668 }
4669 bh = head;
4670 do {
4671 if (!buffer_delay(bh))
4672 /* Delayed-extent ends. */
4673 goto found_delayed_extent;
4674 bh = bh->b_this_page;
4675 end++;
4676 } while (bh != head);
4677 }
4678 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4679 /* a hole found. */
4680 goto out;
4681
4682 found_delayed_extent:
4683 newex->ec_len = min(end - newex->ec_block,
4684 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4685 if (ret == nr_pages && bh != NULL &&
4686 newex->ec_len < EXT_INIT_MAX_LEN &&
4687 buffer_delay(bh)) {
4688 /* Have not collected an extent and continue. */
4689 for (index = 0; index < ret; index++)
4690 page_cache_release(pages[index]);
4691 goto repeat;
4692 }
4693
4694 for (index = 0; index < ret; index++)
4695 page_cache_release(pages[index]);
4696 kfree(pages);
4697 }
4698
4699 physical = (__u64)newex->ec_start << blksize_bits;
4700 length = (__u64)newex->ec_len << blksize_bits;
4701
4702 if (ex && ext4_ext_is_uninitialized(ex))
4703 flags |= FIEMAP_EXTENT_UNWRITTEN;
4704
4705 if (next == EXT_MAX_BLOCKS)
4706 flags |= FIEMAP_EXTENT_LAST;
4707
4708 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4709 length, flags);
4710 if (ret < 0)
4711 return ret;
4712 if (ret == 1)
4713 return EXT_BREAK;
4714 return EXT_CONTINUE;
4715 }
4716 /* fiemap flags we can handle specified here */
4717 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4718
ext4_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)4719 static int ext4_xattr_fiemap(struct inode *inode,
4720 struct fiemap_extent_info *fieinfo)
4721 {
4722 __u64 physical = 0;
4723 __u64 length;
4724 __u32 flags = FIEMAP_EXTENT_LAST;
4725 int blockbits = inode->i_sb->s_blocksize_bits;
4726 int error = 0;
4727
4728 /* in-inode? */
4729 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4730 struct ext4_iloc iloc;
4731 int offset; /* offset of xattr in inode */
4732
4733 error = ext4_get_inode_loc(inode, &iloc);
4734 if (error)
4735 return error;
4736 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4737 offset = EXT4_GOOD_OLD_INODE_SIZE +
4738 EXT4_I(inode)->i_extra_isize;
4739 physical += offset;
4740 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4741 flags |= FIEMAP_EXTENT_DATA_INLINE;
4742 brelse(iloc.bh);
4743 } else { /* external block */
4744 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4745 length = inode->i_sb->s_blocksize;
4746 }
4747
4748 if (physical)
4749 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4750 length, flags);
4751 return (error < 0 ? error : 0);
4752 }
4753
4754 /*
4755 * ext4_ext_punch_hole
4756 *
4757 * Punches a hole of "length" bytes in a file starting
4758 * at byte "offset"
4759 *
4760 * @inode: The inode of the file to punch a hole in
4761 * @offset: The starting byte offset of the hole
4762 * @length: The length of the hole
4763 *
4764 * Returns the number of blocks removed or negative on err
4765 */
ext4_ext_punch_hole(struct file * file,loff_t offset,loff_t length)4766 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4767 {
4768 struct inode *inode = file->f_path.dentry->d_inode;
4769 struct super_block *sb = inode->i_sb;
4770 ext4_lblk_t first_block, stop_block;
4771 struct address_space *mapping = inode->i_mapping;
4772 handle_t *handle;
4773 loff_t first_page, last_page, page_len;
4774 loff_t first_page_offset, last_page_offset;
4775 int credits, err = 0;
4776
4777 /* No need to punch hole beyond i_size */
4778 if (offset >= inode->i_size)
4779 return 0;
4780
4781 /*
4782 * If the hole extends beyond i_size, set the hole
4783 * to end after the page that contains i_size
4784 */
4785 if (offset + length > inode->i_size) {
4786 length = inode->i_size +
4787 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4788 offset;
4789 }
4790
4791 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4792 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4793
4794 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4795 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4796
4797 /*
4798 * Write out all dirty pages to avoid race conditions
4799 * Then release them.
4800 */
4801 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4802 err = filemap_write_and_wait_range(mapping,
4803 offset, offset + length - 1);
4804
4805 if (err)
4806 return err;
4807 }
4808
4809 /* Now release the pages */
4810 if (last_page_offset > first_page_offset) {
4811 truncate_inode_pages_range(mapping, first_page_offset,
4812 last_page_offset-1);
4813 }
4814
4815 /* finish any pending end_io work */
4816 ext4_flush_completed_IO(inode);
4817
4818 credits = ext4_writepage_trans_blocks(inode);
4819 handle = ext4_journal_start(inode, credits);
4820 if (IS_ERR(handle))
4821 return PTR_ERR(handle);
4822
4823 err = ext4_orphan_add(handle, inode);
4824 if (err)
4825 goto out;
4826
4827 /*
4828 * Now we need to zero out the non-page-aligned data in the
4829 * pages at the start and tail of the hole, and unmap the buffer
4830 * heads for the block aligned regions of the page that were
4831 * completely zeroed.
4832 */
4833 if (first_page > last_page) {
4834 /*
4835 * If the file space being truncated is contained within a page
4836 * just zero out and unmap the middle of that page
4837 */
4838 err = ext4_discard_partial_page_buffers(handle,
4839 mapping, offset, length, 0);
4840
4841 if (err)
4842 goto out;
4843 } else {
4844 /*
4845 * zero out and unmap the partial page that contains
4846 * the start of the hole
4847 */
4848 page_len = first_page_offset - offset;
4849 if (page_len > 0) {
4850 err = ext4_discard_partial_page_buffers(handle, mapping,
4851 offset, page_len, 0);
4852 if (err)
4853 goto out;
4854 }
4855
4856 /*
4857 * zero out and unmap the partial page that contains
4858 * the end of the hole
4859 */
4860 page_len = offset + length - last_page_offset;
4861 if (page_len > 0) {
4862 err = ext4_discard_partial_page_buffers(handle, mapping,
4863 last_page_offset, page_len, 0);
4864 if (err)
4865 goto out;
4866 }
4867 }
4868
4869 /*
4870 * If i_size is contained in the last page, we need to
4871 * unmap and zero the partial page after i_size
4872 */
4873 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4874 inode->i_size % PAGE_CACHE_SIZE != 0) {
4875
4876 page_len = PAGE_CACHE_SIZE -
4877 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4878
4879 if (page_len > 0) {
4880 err = ext4_discard_partial_page_buffers(handle,
4881 mapping, inode->i_size, page_len, 0);
4882
4883 if (err)
4884 goto out;
4885 }
4886 }
4887
4888 first_block = (offset + sb->s_blocksize - 1) >>
4889 EXT4_BLOCK_SIZE_BITS(sb);
4890 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4891
4892 /* If there are no blocks to remove, return now */
4893 if (first_block >= stop_block)
4894 goto out;
4895
4896 down_write(&EXT4_I(inode)->i_data_sem);
4897 ext4_ext_invalidate_cache(inode);
4898 ext4_discard_preallocations(inode);
4899
4900 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4901
4902 ext4_ext_invalidate_cache(inode);
4903 ext4_discard_preallocations(inode);
4904
4905 if (IS_SYNC(inode))
4906 ext4_handle_sync(handle);
4907
4908 up_write(&EXT4_I(inode)->i_data_sem);
4909
4910 out:
4911 ext4_orphan_del(handle, inode);
4912 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4913 ext4_mark_inode_dirty(handle, inode);
4914 ext4_journal_stop(handle);
4915 return err;
4916 }
ext4_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4917 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4918 __u64 start, __u64 len)
4919 {
4920 ext4_lblk_t start_blk;
4921 int error = 0;
4922
4923 /* fallback to generic here if not in extents fmt */
4924 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4925 return generic_block_fiemap(inode, fieinfo, start, len,
4926 ext4_get_block);
4927
4928 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4929 return -EBADR;
4930
4931 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4932 error = ext4_xattr_fiemap(inode, fieinfo);
4933 } else {
4934 ext4_lblk_t len_blks;
4935 __u64 last_blk;
4936
4937 start_blk = start >> inode->i_sb->s_blocksize_bits;
4938 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4939 if (last_blk >= EXT_MAX_BLOCKS)
4940 last_blk = EXT_MAX_BLOCKS-1;
4941 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4942
4943 /*
4944 * Walk the extent tree gathering extent information.
4945 * ext4_ext_fiemap_cb will push extents back to user.
4946 */
4947 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4948 ext4_ext_fiemap_cb, fieinfo);
4949 }
4950
4951 return error;
4952 }
4953